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SUMMARY

Declining ore grades, extraction at greater depths and longer hauling distances put
pressure on maturing mines. Not enough new mines will be commissioned on time to
compensate for the resulting shortages. Ore-body replacement rates are relatively low
due to a reduced appetite for exploration. Development times are generally increasing
and most new projects are remote, possibly pushing costs further upwards.

To reverse these trends, the industry must collect, analyse and act on information
to extract and process material more productively (i.e. maximize resource efficiency).
This paradigm shift, driven by digital innovations, aims to (partly) eliminate the external
variability that has made mining unique. The external variability results from the nature
of the resource being mined. This type of variability can only be controlled if the resource
base is sufficiently characterized and understood.

Recent developments in sensor technology enable the online characterization of raw
material characteristics and equipment performance. To date, such measurements are
mainly utilized in forward loops for downstream process control. A backward integration
of sensor information into the resource model does not yet occur. Obviously, such a
backward integration would significantly contribute to the progressive characterization
of the resource base.

This dissertation presents a practical updating algorithm to continuously assimilate
recently acquired data into an already existing resource model. The updating algorithm
addresses the following practical considerations. (a) At each point in time, the latest
solution implicitly accounts for all previously integrated data (sequential approach).
During the next update, the already existing resource model is further adjusted to
honour the newly obtained observations as well. (b) Due to the nature of a mining
operation, it is nearly impossible to formulate closed-form analytical expressions de-
scribing the relationship between observations and resource blocks. Rather, the relevant
relationships are merely inferred from the inputs (the resource model realizations)
and outputs (distribution of predicted observations) of a forward simulator. (c) The
updating algorithm is able to assimilate noisy observations made on a blend of material
originating from multiple sources and locations. Differences in scale of support are dealt
with automatically.

The developed algorithm integrates concepts from several existing (geo)statistical
techniques. Co-Kriging approaches for example are designed to integrate both direct
and indirect measurements and are well capable to handle differences in accuracy
and sampling volume. However, they do fail to extract information from blended
measurements and can not sequentially incorporate new observations into an already
existing resource model. To overcome the latter issue, the co-Kriging equations are
merged into a sequential linear estimator. Existing resource models can now be
improved using a weighted sum of differences between observations and model-based
predictions (forward simulator output). The covariances, necessary to compute the

ix
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weights, are empirically derived from two sets of Monte Carlo samples (another sta-
tistical technique); the resource model realizations (input forward simulator) and the
observation realizations (output forward simulator). This approach removes the need to
formulate analytical functions modelling spatial correlations, blending and difference in
scale of support.

The resulting mathematical framework bears some resemblances to that of a dy-
namic filter (Ensemble Kalman filter), used in other research areas, althoughthe under-
lying philosophy differs significantly. Weather forecasting and reservoir modelling, for
example, consider dynamic systems repetitively sampled at the same locations. Each
observation characterizes a volume surrounding the sample locations. Mineral resource
modelling, on the other hand, focuses on static systems gradually sampled at different
locations. Each observation is characteristic for a blend of material originating from
multiple sources and locations. Each part of the material stream is sampled only once,
the moment it passes the sensor.

Various options are implemented around the mathematical framework to either
reduce computation time, memory requirements or numerical inaccuracies. (a) A
Gaussian anamorphosis is included to deal with suboptimal conditions related to non-
Gaussian distributions. The algorithm structure ensures that the sensor precision (mea-
surement error) can be defined on its original units and does not need to be translated
into a normal score equivalent. (b) An interconnected parallel updating sequence
(double helix) can be configured to avoid a covariance collapse (filter inbreeding). This
occurs as degrees of freedom are lost over time due to the empirical calculation of the
covariances. (c) A neighbourhood option is implemented to constrain computation
time and memory requirements. Different neighborhoods need to be considered simul-
taneously as material streams are blended. (d) Two covariance correction options are
implemented to further inhibit the propagation of statistical sampling errors originating
from the empirical computation of covariances.

A case specific forward simulator is built and run parallel to the more generally
applicable updating code. The forward simulator is used to translate resource model
realizations (input) into observation realizations (output). Empirical covariances are
subsequently lifted from both realization sets and mathematically describe the link
between sensor observations and individual blocks in the model. This numerical
inference avoids the cumbersome task of formulating, linearising and inverting an
analytical forward observation model. The application of a forward simulator further
ensures that the distribution of the Monte Carlo samples already reflect the support of
the concerned random values. As a result, the necessary covariances, derived from these
Monte Carlo samples, inherently account for differences in scale of support.

A synthetic experiment is conducted to showcase that the algorithm is capable of
assimilating inaccurate observations, made on blended material streams, into an already
existing resource model. The experiment is executed in an artificial environment,
representing a mining environment with two extraction points of unequal production
rate. A visual inspection of cross-sections shows that the model converges towards
the ”true but unknown reality”. Global assessment statistics quantitatively confirm this
observation. Local assessment statistics further indicate that the global improvements
mainly result from correcting local estimation biases.
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Another 125 artificial experiments are conducted to study the effects of variations in
measurement volume, blending ratio and sensor precision. The experiments investigate
whether and how the resource model and the predicted observations improve over
time. Based on the outcome, recommendations are formulated to optimally design and
operate a monitoring system.

This work further describes the pilot testing of the updating algorithm at the Tropi-
cana Gold Mine (Australia). The pilot aims to evaluate whether the updating algorithm
can automatically reconcile ball mill performance data against the spatial Work Index
estimates of the GeoMet model. The focus here lies on the ball mill since it usually is
the single largest energy consumer at the mine site. The spatial Work Index estimates
are used to predict a ball mill’s throughput. In order to maximize mill throughput
and optimize energy utilization, it is important to get the Work Index estimates right.
At the Tropicana Gold Mine, Work Index estimates, derived from X-Ray Fluorescence
and Hyperspectral scanning of grade control samples, are used to construct spatial
GeoMetallurgical models (GeoMet). Inaccuracies in the block estimates exist due to
limited calibration between grade control derived and laboratory Work Index values. To
improve the calibration, the updating algorithm was tested at the mine during a pilot
study. Deviations between predicted and actual mill performance are monitored and
used to locally improve the Work Index estimates in the GeoMet model. While assim-
ilating about a week of mill performance data, the spatial GeoMet model converged
towards a previously unknown reality. The updating algorithm improved the spatial
Work Index estimates, resulting in a real-time reconciliation of already extracted blocks
and a recalibration of future scheduled blocks. The case study shows that historic and
future production estimates improve on average by about 72% and 26%.





SAMENVATTING

Bestaande mijnen kampen met dalende ertsgraden, extractie op grotere diepten and lan-
gere transport afstanden. Niet genoeg nieuwe mijnen zullen tijdig worden geopend om
de daaruit voortvloeiende tekorten te kunnen compenseren. Er worden te weinig nieuwe
ertslichamen ontdekt door een afname in de zin voor exploratie. De ontwikkelingstijden
nemen in het algemeen toe en de meeste nieuwe projecten zijn afgelegen, hetgeen de
kosten verder te hoogte in zal jagen.

Om deze trends om te keren moet de industrie informatie verzamelen, analyseren
en ernaar handelen met als doel het materiaal efficiënter te ontgraven en te verwerken.
Deze paradigmaverschuiving, gedreven door digitale innovaties, is gericht op het (ge-
deeltelijk) elimineren van de externe variabiliteit die zo kenmerkend is in de mijnbouw.
De externe variabiliteit is inherent verbonden met de aard van de gemijnde natuurlijke
hulpbron. Dit soort variabiliteit kan enkel onder controle worden gehouden wanneer
het ertslichaam voldoende is gekarakteriseerd en begrepen.

Nieuwe ontwikkelingen in de sensortechnologie maken het nu mogelijk om grond-
stofeigenschappen en machineprestaties online te meten. Tot op heden worden derge-
lijke metingen voornamelijk gebruikt in downstream procescontrole. Het integreren van
sensorinformatie in bestaande resource modellen komt nog niet voor. Het is duidelijk
dat zo een integratie significant zal bijdragen tot het steeds beter karakteriseren van het
ertslichaam.

Dit proefschrift presenteert een praktisch updating algoritme om recent verworven
data continu te assimileren in een reeds bestaand resource model. Het updating
algoritme biedt het hoofd aan volgende praktische overwegingen. (a) Op elk tijdstip
dient de laatste oplossing impliciet rekening te houden met alle voordien geïntegreerde
data (sequentiële aanpak). Tijdens de volgende update wordt het reeds bestaande model
verder aangepast zodat het een verklaring biedt voor nieuw verkregen waarnemingen.
(b) Vanwege de complexiteit van een mijnbouwoperatie is het nagenoeg onmogelijk
om een analytische uitdrukking in gesloten vorm te formuleren die de relaties tussen
blokken en waarnemingen beschrijft. In plaats daarvan worden de relevante relaties
afgeleid op basis van slechts de input (resource model realisaties) de output (de verdeling
van voorspelde waarnemingen) van een simulator. (c) Het updating algoritme is in
staat om zeer onnauwkeurige waarnemingen te assimileren die bovendien gemaakt
werden op gemengde materiaalstromen afkomstig van verschillende locaties. Er wordt
automatisch rekening gehouden met verschillen in meetvolumes.

Het ontwikkelde algoritme combineert enkele ideëen van reeds bestaande (geo)sta-
tische technieken. Co-Kriging technieken zijn eerder ontworpen om zowel directe als
indirecte metingen te integreren. Ze zijn bovendien goed in staat om om te gaan met
verschillende meetvolumes en meetnauwkeurigheden. Deze technieken zijn echter
ontoereikend als het gaat om informatie te verwerken, afkomstig van gemengde ma-
teriaalstromen. Het sequentieel aanpassen van resource modellen is ook niet mogelijk.

xiii
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Dit laatste probleem kan opgelost worden door de co-Kriging vergelijkingen samen te
voegen met een sequentiële lineaire schatter. Bestaande resource modellen kunnen
dan worden verbeterd door gebruik te maken van een gewogen som van de verschillen
tussen waarnemingen en voorspellingen (de output van de simulator). De covarianties,
die nodig zijn om de waarden van de gewichten te berekenen, kunnen empirisch
worden afgeleid op basis van de uitkomst van Monte Carlo steekproeven (nog een
andere statistische techniek); de resource model realisaties (input simulator) en de
realisaties van waarnemingen (output simulator). Deze aanpak verwijdert de noodzaak
om analytische functies te formuleren die de ruimtelijke correlaties, het mengen van
materiaal en de verschillen in meetvolumes beschrijven.

Het resulterende wiskundige kader vertoont een aantal gelijkenissen met dat van
een dynamische filter (de Ensemble Kalman filter), die vaak gebruikt wordt in andere
onderzoeksgebieden. Let wel, de onderliggende filosofie verschilt dusdanig. Het
voorspellen van het weer en de exploitatie van reservoirs betreft dynamische systemen
waar herhaaldelijk metingen worden uitgevoerd op dezelfde locaties. Elke meting is
kenmerkend voor een bepaald volume dat het meetpunt omringt. In de mijnbouw
echter gaat het om statische systemen die geleidelijk aan worden bemonsterd op
steeds weer verschillende locaties. Elke waarneming is kenmerkend voor gemende
materiaalstromen afkomstig van meerdere gebieden in de mijn. Elk deel van de
materiaalstroom wordt slechts één enkele keer gemeten op het moment dat het onder
de sensor door beweegt.

Verschillende opties werden tijdens de implementatie toegevoegd aan het wiskundig
kader om de rekentijd, het benodigde geheugen en de numerieke onnauwkeurigheden
te verminderen. (a) Een Gaussische anamorfose is opgenomen om te kunnen omgaan
met de suboptimale omstandigheden die ontstaan door de aanwezigheid van niet-
normale verdelingen. Het ontwerp van het algoritme is verder aangepast zodat de
waarde van de meetfout gedefinieerd kan worden in zijn oorspronkelijke eenheden en
niet hoeft vertaald te worden naar een equivalent in de getransformeerde ruimte. (b)
Twee verbonden updating reeksen kunnen worden geconfigureerd om een “instorting”
van de covariantie te vermijden. Dit fenomeen doet zich voor wanneer covarianties
empirisch worden berekend en is een gevolg van een afname van het aantal vrij-
heidsgraden met de tijd. (c) De berekening kan beperkt worden tot enkele lokale
gebieden, dit om de rekentijd en het benodigde geheugen te beperken. De gebieden
vanwaar de materiaalstromen afkomstig zijn moeten tegelijkertijd worden behandeld in
dezelfde berekening. (d) Verder bestaan er nog twee opties om de numeriek berekende
covarianties te corrigeren en zo de verspreiding van numerieke onnauwkeurigheden
tegen te gaan. Deze onnauwkeurigheden ontstaan tijdens de empirische berekening van
de covarianties.

Een toepassings-specifieke simulator moet worden gebouwd en gedraaid parallel
aan het meer algemeen toepasbare updating algoritme. Deze simulator wordt ge-
bruikt om resource model realisaties (input) te vertalen naar voorspelde waarnemingen
(output). covarianties worden vervolgens empirisch berekend aan de hand van de
beide groepen realisaties. Deze covarianties beschrijven wiskundig de relatie tussen de
sensor waarnemingen enerzijds en individuele blokken in het model anderzijds. Deze
numerieke benadering vermijdt de noodzaak om analytische functies in gesloten vorm
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neer te schrijven en ze vervolgens te lineariseren en inverteren. Het toepassen van een
simulator zorgt er verder voor dat de verdeling van de Monte Carlo waarden kenmerkend
zijn voor het volume van de desbetreffende component. Als gevolg hiervan houden
de covarianties, die empirisch afgeleid worden van de Monte Carlo waarden, impliciet
rekening houden met de verschillen in meetvolumes.

Een synthetisch experiment toont aan dat het algoritme in staat is om onnauw-
keurige waarnemingen van gemengde materiaalstromen te assimileren in een reeds
bestaand resource model. Het experiment is uitgvoerd in een artificiële omgeving
die representatief is voor een mijnbouwoperatie met twee extractiepunten waarvan de
productiehoeveelheden kunnen verschillen. De drawsdoorsneden geven visueel weer
hoe het model convergeert de “werkelijke maar tot dan toe nog onbekende realiteit”.
De berekende globale statistieken bevestigen deze observatie kwantitatief. De lokale
statistieken tonen verder aan dat de globale verbeteringen worden veroorzaakt door het
verbeteren van lokaal schattingsfouten.

Bijkomend worden er 125 experimenten uitgevoerd om het effect van variaties in
meetvolumes, mengverhouding en meetnauwkeurigheid te onderzoeken. De experi-
menten geven inzicht in hoe het resource model en de voorspelde waarnemingen ver-
beteren met de tijd. Op basis van deze resultaten worden aanbevelingen geformuleerd
met als doel het meetnetwerk optimaal te ontwerpen en benutten.

Dit werk beschrijft verder de pilot test die werd uitgevoerd in de Tropicana goudmijn
in Australië. Deze pilot had als doel om na te gaan in welke mate het updating
algoritme in staat is om ruimtelijke hardheidsgetallen automatisch te verbeteren op
basis van de prestatiewaarden van een kogelmolen. De nadruk ligt hier op de kogel-
molen omdat dit in het algemeen de grootste energieverbruiker is in een mijn. De
ruimtelijke hardheidsgetallen worden gebruikt om de doorstroom in de kogelmodel
te voorspellen. Om deze doorstroom te maximaliseren alsook het energieverbruik te
optimaliseren is het gelangrijk dat de hardheidsgetallen correct geschat zijn. De hard-
heidsgetallen, afgeleid op basis van scans van controlemonsters (röntgenfluorescentie
en hyperspectraal), dienen als input voor het maken van ruimtelijke modellen (met
geschatte hardheidsgetallen). De geschatte blokwaarden zijn onbetrouwbaar omwille
van de beperkte kalibratie tussen hardheidsgetallen die enerzijds bepaald zijn op basis
van de scans en anderzijds afkomstig zijn van proeven in een laboratorium. Er werd
nagegaan of het updating algoritme in staat was om de geschatte blokwaarden te
verbeteren. Verschillen tussen voorspelde en daadwerkelijke waarnemingen in de
kogelmolen werden nauwlettend bijgehouden en gebruikt om de hardheidsgetallen
lokaal aan te passen. De resultaten tonen aan dat het ruimtelijk model convergeert
naar een nog eerder ongekende realiteit naarmate een week aan prestatiewaarden van
de kogelmolen worden geassimileerd. Het updating algoritme pas niet enkel de alreeds
gemijnde blokken aan maar verbetert ook de blokken waarvan de extractie ingepland
staat. De studie toont aan dat zowel historische als toekomstige productievoorspellingen
gemiddeld verbeteren met respectievelijk 72% en 26%.
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: operator, includes all available rows or columns
: α the first α columns or rows
∀ for all
∈ in, belonging to the set of

AE absolute error field
At forward simulator, simulation step from t −1 to t
At N x 1 matrix - first order linear approximation of forward simulation

step
Bt K x I matrix - predicted observations

Bt (:, i ) i th realization of all K observations collected at time t - vector
(column)

Bt (k, :) predicted observation k - random vector (row)
Ct ,dd K x K covariance matrix - covariance between individual observations
Ct ,qq K x K covariance matrix - covariance between individual transformed

perturbed predicted observations
Ct ,zz N x N covariance matrix - covariance between individual grid nodes
Ct ,uy N x K covariance matrix - covariance between individual grid nodes

and transformed predicted observations
dt vector with k real observations

E [...] best estimate of ...
E M estimated mean field

E measurement error (chapter 5)
Et K x I matrix - random noise

Et (k, :) vector with random noise for observation k - I elements
F80 80% passing size of the mill feed
F cumulative probability
G standard normal cumulative distribution function
i refers to certain Monte Carlo realization
i ′ rank of corresponding element in sorted Monte Carlo sample
I total number of Monte Carlo realizations
I N x N identity matrix
k refers to specific observation
K total number of observations
L the number of extraction points
n refers to specific block
N total number of blocks in the grid
N ′ subset of blocks, the neighborhood set
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Φt ,xn local Gaussian anamorphosis function at block n
Φt ,k Gaussian anamorphosis function to transform k th observation

P power draw
P80 80% passing size of the mill product
Qt K x I matrix - transformed perturbed predicted observations

Qt (:, i ) i th realization of all transformed perturbed observations at time t -
vector (column)

Qt (k, :) transformed perturbed predicted observation k - random vector (row)
R blending ratio (chapter 5)
R thoughput (chapter 6)

RMSE root mean square error
R K x K matrix - diagional matrix with sensor precision
ρ correlation
ρ̂ estimated correlation

SD standard deviation field
st vector with k transformed real observation
σ standard deviation
σ2 variance
t current time step

t −1 previous time step
Ut N x I matrix - transformed field realizations

Ut (:, i ) i th transformed field realization at time t - vector (column)
Ut (n, :) block n - transformed random vector (row)

V measurement volume (chapter 5)
Wt N x K matrix with Kriging weights
Wis vector of length M , representing one metre long GC samples
Wib

t N x I matrix, GeoMet realizations

Wi f
t K x I matrix, mill feed estimates

wi f
t K x 1 matrix, real mill feed observations

Yt K x I matrix - transformed predicted observations
Yt (:, i ) i th realization of all transformed predicted observations at time t -

vector (column)
Yt (k, :) transformed predicted observation k - random vector (row)

Z∗ N x 1 matrix - true but unknown field
Zt N x I matrix - field realizations

Zt (:, i ) i th field realization at time t - vector (column)
Zt (n, :) block n - random vector (row)



1
INTRODUCTION

The mining industry must try to avoid its short sighted behaviour of ramping up produc-
tion capacity during times of unsustainably high commodity prices. As a growth strategy,
these tactics only go so far. Instead, the industry is urged to develop a more sustainable
alternative to deliver long-term growth. The necessary paradigm shift will most likely be
driven by digital technology innovations bearing promise of a higher resource efficiency.
New technologies can be adopted to collect, analyse and act on information to optimally
extract and process material. In order to make the best possible decisions, it is vital that the
resource model is always entirely up to date. This requires a practical updating algorithm
which continuously assimilates new information into an already existing resource model.

1
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During the preceding mining boom (2001 to 2011), the sky seemed to be the limit.
Rampant Chinese demand and increasing commodity prices (e.g. aluminum, coal,
copper, gold, iron ore, lead, nickel, platinum, silver, tin, zinc) resulted in short sighted
business decisions in favour of a fast buck. While believing China’s demand would
continue to grow, mining companies entered a fierce race to increase production
capacity at any cost. Capital was plunged into new projects, mergers and high-priced
acquisitions, all in preparation to take on the escalating demand (Price Waterhouse
Coopers, 2016; Arndt et al., 2017).

In 2011, the inevitable happened. The demand for bulk commodities started to
decline, at a time of huge spendings to expand supply. Poor capital discipline exposed
many companies to significant write-downs. During the subsequent years, growing
liquidity concerns piled up and investors lost confidence. In 2015, after a pulverizing
downturn, the mining industry grounded to a virtual halt. The Top 40 mining companies
accumulated a first ever recorded aggregate net loss of about $28bn. Over the course of
four years, their combined market capitalization dropped by about 60%, from $1,200bn.
in 2011 to $494bn. in 2015 (Price Waterhouse Coopers, 2016).

In response, operational expenditures have been cut relentlessly in order to match
the depressed price levels. Assets have been up for sale, marginal projects have been
shelved and companies have been holding back on exploration. These restructuring
efforts all aimed to improve debt-burdened balance sheets while avoiding any imminent
bankruptcies. In 2016, a turning point was reached as industry fundamentals began to
improve. Commodity prices rebounded, though not reaching pre-downturn levels, and
the global demand for raw materials started to awake. Credit ratings have been restored,
while investors appreciated the stronger balance sheets resulting in better valuations.
The market capitalization of the top 40 mining companies went up to $748bn. (April
2017), an increase of 50% compared to the rock bottom situation of 2015, but still
$452bn. short of previous highs (Price Waterhouse Coopers, 2017).

Cautious optimism prevails as price levels are bottoming out. With the lessons of
the past in mind, the industry must try to avoid its old habits of investing in production
capacity during a boom followed by a wave of write-offs during the bust that inevitably
follows. Instead, the industry is urged to develop a long-term growth strategy. Failing
to do so, mining companies will remain at the mercy of commodity speculators and
shareholders will probably start reallocating their capital to other more stable and
profitable industries.

Whilst the mining industry is getting back on its feet, other challenges are already
appearing on the horizon. Declining ore grades, extraction at greater depths and
longer hauling distances are putting pressure on maturing mines. Not enough new
mines will be commissioned on time to compensate for the resulting shortages. Ore-
body replacement rates are relatively low due to a reduced appetite for exploration.
Development times are generally increasing and most new projects are remote, possibly
pushing costs further upwards.

To address these upcoming challenges while providing a long-term strategy, the
industry’s focus should shift from “simply” extracting and processing material towards
collecting, analysing and acting on information to extract and process material more
productively (Durrant-Whyte et al., 2015). This paradigm shift, driven by digital inno-
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vations, aims to (partly) eliminate the internal and external variability that has made
mining unique. Please note that the following definitions of internal and external
variability deviate substantially from those commonly used in the field of Geostatistics.

Internal variability, created by miners themselves, results from operating outside
of the plan. The adoption of sensor and communication technology enables a live
recording of equipment state and location. In an operations control room, all live feeds
are analysed simultaneously to ensure compliance to plan. When operational problems
arise, limited deviations will be allowed. One central control room further ensures
that all decisions regarding scheduling, dispatching, blending, and process control are
aimed to improve the operation as a whole (instead of improving the performance
indicators of local silos). A more mechanized operation (e.g. autonomous drilling,
loading and hauling) can further reduce variability in execution (Simonite, 2016; Logan,
2016; Gershgorn, 2016).

External variability results from the nature of the resource being mined. This type
of variability can only be controlled if the resource base is sufficiently characterized
and understood. A first set of algorithms can be applied to turn the vast amounts
of data collected by embedded sensors into new insights. The knowledge of the
resource base should be refined continuously as sensor measurements (equipment
state and mineralogical/chemical characterization) are integrated with already available
geological information. A second set of algorithms is used to continuously re-evaluate
the relevant operational decisions using the most up-to-date understanding of the
resource. Optimal executable mine plans and process control parameters are generated
avoiding variability and quality issues at the source.

At the time of writing, companies are already actively mitigating internal variability
as part of their continuous efforts to reduce operational costs and improve productivity.
A comprehensive management of external variability during operations is currently
more of a research theme. An integrated practical application has yet to be observed.

The following section discusses how the “closed-loop resource management” frame-
work, adopted from the oil and gas industry, can be applied to understand and control
external variability.

1.1. CLOSED-LOOP RESOURCE MANAGEMENT
The “Closed-Loop Resource Management” framework aims to exploit mineral deposits
more efficiently, by making the best possible operational decisions over and over again,
given all available information (Fig. 1.1). The proposed framework is an adapted version
of the “Closed-Loop Reservoir Management” framework originally developed for the oil
and gas industry by Jansen et al. (2009).

The framework essentially consists of an actual mining operation (the system) and
a virtual representation thereof (the system models). The so-called system models are
constructed during the exploration campaign and subsequent development phases. A
first set of system models describes the current understanding of the resource and is
based on geological, geotechnical and metallurgical data collected during exploration
drilling. Due to economic constraints, the number of exploration holes and corre-
sponding laboratory analyses are rather limited. The sparse data impede a conclusive
characterization of the elements in the three dimensional resource model. Despite
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Figure 1.1: Closed-Loop Resource Management. Adapted from Jansen et al. (2009).

all exploration efforts, many of the elements remain rather poorly defined. Once the
operation commences, data collected during grade control drilling are used to further
refine the resource model and reduce its inherent uncertainty (grade control drilling is
optional and not universally applied).

The resource model is one of two system models in the framework. The second
model is a collection of forward simulators (Fig. 1.1). These simulators are but
a virtual representation of the actual mining and processing operation. Simulators
are used to study the effects of different development (long-term) and operational
(short-term) scenarios on the overall performance of the mine. Short-term simulator
behaviour can potentially be improved as additional operational data are taken into
account (e.g. equipment state and performance measurements, GPS locations, executed
schedules,...).

Once the system models are available, development and operational scenarios are
translated into key performance indicators (Net Present Value, total metal or minerals
produced, throughput, average head grade,...). A development scenario is mainly
defined through its corresponding long-term mine schedule. An operational scenario
concerns a combination of a short-term mine schedule, dispatch decisions, blending
policies and process control setting. Algorithms are subsequently used to optimize
either the development or operational scenario (blue optimization loop, Fig. 1.1).

The optimized scenario, i.e. the collection of related decisions, constitutes the input
to control the actual “mining system”. The “mining system” comprises a resource,
mining equipment and a processing facility (Fig. 1.1). The final system outputs are
the same key performance indicators which were simulated before to select optimal
controllable inputs.

The measured performance indicators commonly deviate from their target values
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(resulting from optimized short- or long-term scenarios) due to internal and external
variability. Assuming decisions and plans are executed correctly (mitigation of internal
variability), most of the deviation directly results from our incomplete understanding
of the resource base. All decisions taken thus far are merely optimal if the resource
model exactly represents reality. The more the resource model deviates from reality, the
worse are all congruent decisions and schedules. This is an important reason to keep the
resource model up-to-date using all available sources of information.

Conventionally, the resource model is only reconciled quarterly against the mea-
sured performance indicators. The reconciliation techniques are fairly ad-hoc and
limited to applying some overall correction factors. A balanced and careful integration
of the intermediate system output does not generally occur. This intermediate system
output is classified into two groups. The first group consists of equipment state
and performance measurements. The second group consists of rapid non-destructive
characterizations of material streams. The framework proposes to use algorithms to
continuously extract hidden information from the resulting data streams and update the
resource model where necessary (red updating or data assimilation loop, Fig. 1.1).

At the time of writing, the framework in its entirety has not been applied in the
minerals industry. The colours in Fig. 1.1 refer to different development levels.
Obviously, the “mining system” itself is considered to be given (at least with respect to
this framework). Sufficient geostatistical and simulation-based techniques are available
to construct reasonable models of the “mining system”. However, the existing system
models do not sufficiently account for the impact of geology and mineralogy on down-
stream processing steps. Further developments within the area of geometallurgy are
necessary to establish such a link. Sensor technologies to monitor equipment state and
performance are rather mature. The sensors for material characterization still require a
lot of development and algorithms need to be designed to interpret the corresponding
data streams. The optimization methodologies with respect to long-term scheduling
are well established. Algorithms for the joint-optimization of the various short-term
operational decisions can be significantly improved. Finally, practical algorithms,
for real-time updating of resource models based on online sensor measurements, do
not exist. The lack of a real-time updating algorithm is a major impediment to the
application of the proposed “Closed-Loop Resource Management” framework.

1.2. RESEARCH OBJECTIVES
The aim of this research is to initiate the development of the previously outlined data
assimilation loop (red loop, Fig. 1.1). During operation, this loop continuously improves
local predictions in the resource model based on detected deviations between predicted
and measured system output. The following four components need to be considered
jointly:

• Resource Model (System Model A): The resource model is a combination of differ-
ent spatial stochastic models, all describing the spatial variability and geological
uncertainty of their concerned attributes (e.g. grade, hardness, recovery, ...).
Suitable simulation techniques are selected to generate the equally probable re-
alizations of the in-situ orebody variability. All realization sets are conditioned on
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scarce but accurate exploration data. Contrary to a set of single estimated models,
the realization sets inherently describe uncertainty and correlations (empirical
calculation of covariances, to be discussed later on).

• Forward Simulator (System Model B): For each unique application, a case specific
forward simulator has to be built. The forward simulator is a virtual representation
of the actual mining and processing operation, describing which resource blocks
are extracted, processed and measured within a specific time interval. Once
built, the simulator computes intermediate and final system outputs based on
the corresponding inserted resource realization. Eventually the entire set of
resource realizations is propagated through the forward simulator and converted
into distributions of predicted system outputs. These computed distributions are
essential in determining how individual resource blocks are to be updated based
on online sensor measurements.

• Updating Algorithm: In principle, the updating algorithm needs to solve an
inverse problem. That is, the algorithm is tasked with inferring attributes of
individual blocks based on time-averaged sensor observations. Initially, the
mathematical problem is ill-posed, meaning that individual block attributes can
be adjusted in a multitude of different ways to account for the sensor observations.
Fortunately, the simulator output and the notion of in-situ correlation structures
provide sufficient information to obtain a unique solution. To this end, an
updating algorithm will be developed utilizing a Kalman filter-based approach to
link forward propagated realizations (predicted system output) with real sensor
observations to locally improve the resource model.

• Online Sensor Measurements: A variety of sensors embedded in the mine value
chain continuously monitor intermediate system outputs such as equipment per-
formance or material composition. The selected sensor data differs significantly
from previously considered exploration data. (a) Whereas exploration data mainly
result from a more accurate laboratory analysis, sensor data are significantly more
noisy and recorded online in an operational environment. (b) An exploration
data point can often be attributed to a single specific localized volume with a
relatively high degree of accuracy (e.g. a core sample, one-to-one relationship).
Sensor observations on the other hand potentially characterize blended material
originating from multiple blocks, benches and even pits (a sensor observation
characterizes the average property of multiple blended resource blocks, one-to-
many relationship). Obviously, connecting a sensor observation to its constituent
source material is more challenging. (c) The support of the exploration samples
(i.e. the volume of the physical sample) generally remains constant and is rather
small compared to the support of blocks in the spatial model. In contrast, a
sensor observation characterizes blended material with a total volume that may
well exceed the support of a single block. The support of a sensor observation
depends on the selected interval to compute a time-averaged reading.

The research, presented in this thesis, is mainly focused on the development of
an updating algorithm, capable of sequentially integrating sensor observations into an
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already existing resource model. The resource model, the forward simulator and the
online sensor observations are briefly discussed in the context of some case studies.

To structure and guide the development of the required updating algorithm, the
following objectives were formulated:

1. Evaluate available geostatistical and data assimilation techniques and assess their
applicability in the context of real-time updating. Select a method that meets the
following requirements.

(a) A sequential updating approach is preferred over a geostatistical resimula-
tion technique. The former incorporates recently available sensor obser-
vations into the resource model without explicitly requiring the full data
collection history. Before every update, the resource model should already
implicitly account for all previously integrated data (both exploration and
production). Each update should then be designed to adjust the resource
model to take the newly obtained observations into account as well. Instead,
a resimulation technique remodels the resource base using all data ever
recorded. This approach would stretch the memory requirements as the
amount of available data keeps growing.

(b) Due to the nature of the mining operation, it is nearly impossible to formu-
late a closed-form analytical expression describing the link between the re-
source model and the observations. The absence of a closed-form expression
excludes all techniques requiring the inversion of an (approximate) forward
prediction model. Instead, the selected mathematical technique has to infer
such a relationship based on merely the input (the resource model) and
output (predicted observations) of the forward simulator. Such an approach
would introduce great flexibility regarding the use of case specific simulators.

(c) The selected mathematical framework must be able to handle the unique
characteristics of the sensor observations. (i) A sensor observation is no
longer attributable to a unique spatial volume but instead represents a blend
of material originating from multiple sources and locations. (ii) Collected
observations are less accurate due to imprecise sensors. (iii) Differences
in scale of support will have to be dealt with, preferably without resorting
to complex co-regionalization models. The support of the observations
themselves might vary across time. Furthermore, the support of each
observation might differ significantly with the support of the blocks in the
resource model.

2. Based on the selected mathematical framework, design a computationally effi-
cient algorithm specifically tailored to the requirements of the mining industry.
That is, the algorithm should additionally cope with indirect observations, non-
Gaussian distributions and large grids.

3. Once the algorithm is designed and implemented, conduct an extensive test in a
synthetic environment to evaluate its performance. Monitor several assessment
statistics while updating to ensure that the algorithm is operating as designed.
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4. Study the relation between the monitoring system control parameters and al-
gorithm performance. Investigate how differences in measurement volume,
blending ratios and sensor precision affect the overall updating behaviour.

5. Apply the updating algorithm during a pilot study using data from an actual min-
ing operation. Construct the necessary forward simulator and run the updating
algorithm to assimilate online production data into the resource model. Evaluate
how historic and future production estimates improve.

1.3. THESIS OUTLINE
The outline of this dissertation reflects the previously formulated research objectives.

Chapter 1 illustrates the relevance of digital innovation in proving a long-term
growth strategy. The chapter presents the concept of a ‘Closed-Loop Resource
Management” framework and explains why a lacking updating algorithm is a
major impediment to its application. The chapter further presents some research
objectives to guide the development of the necessary algorithm. The chapter
finally concludes with a thesis outline.

Chapter 2 provides a brief theoretical background on topics related to the up-
dating or conditioning of spatial models based on additional production data.
Several geostatistical techniques are reviewed, individually capable of solving at
least one but not all of the practical problems identified (ref. research objective 1).
The chapter further proves why the equations of a dynamic filter (the Ensemble
Kalman Filter) would be suitable to solve the problem at hand. The chapter
frames the underlying equations of the dynamic filter into a new static context
and discusses the link with existing geostatistical concepts. The chapter further
discusses how an application in the minerals industry differs significantly from
those in various other research areas, particularly the fields of numerical weather
forecasting, oceanography, physical geography and more recently in reservoir
engineering.

Chapter 3 elaborates on the design of the updating algorithm, while presenting
an overall mathematical formulation. Several additional features and options are
highlighted. One of the first topics discussed is the rationale behind the Gaussian
anamorphosis option. This option is implemented to deal with non-Gaussian
distributions and indirect observations. The specific implementation, allowing
for an intuitive treatment of measurement error, is explained. Subsequently, a
computationally efficient strategy for solving the updating equations is provided.
The presentation is generic, in that it includes an option to configure a parallel
updating sequence (helix) reducing the effects of inbreeding (covariance collapse).
The third subsection discusses the neighbourhood option which can be activated
to further reduce computation times and memory requirements. Thereafter, two
covariance correction techniques are introduced to contain the propagation of
statistical sampling errors originating from their empirical computation. The fifth
and last subsection presents the pseudocode which illustrates how the individual
functional components are integrated.
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The synthetic experiment, presented in Chapter 4, demonstrates that the algo-
rithm is capable of improving the resource model based on inaccurate observa-
tions made on blended material streams. In order to conduct the experiment,
an artificial environment is created, representing a mining operation with two
extraction points of unequal production rate. The performance of the algorithm
during the experiment is evaluated using three sets of criteria. (i) Horizontal and
vertical cross-sections are visually inspected and compared with the “true but
unknown” reality. (ii) Global assessment statistics are computed to study how
the overall quality of the resource model evolves over time as production data are
being assimilated. (iii) Local assessment statistics are computed to ensure that the
observed global improvements also result in the correction of the local estimation
biases.

Chapter 5 studies how the design and operational control of the monitoring
system influences the overall performance of the updating algorithm. A total
of 125 experiments are conducted to quantify the effects of variations in mea-
surement volume, blending ratio and sensor precision. The following questions
are addressed to compare behaviour across experiments. (i) Does the resource
model improve over time? (ii) Does the accuracy of the predicted system output
improve over time? (iii) Does the predicted system output in the future 24h
improve after updating? Based on the outcome, recommendations are formulated
to optimally design and operate the monitoring system, guaranteeing the best
possible algorithm performance.

Chapter 6 describes the pilot testing of the entire updating concept (including the
updating algorithm) at the Tropicana Gold Mine in Australia. The aim of the study
is to evaluate whether the developed updating algorithm can be used to update
spatial Work Index estimates based on actual ball mill performance data. The
chapter starts with a detailed explanation of the practical problem. Thereafter,
the updating equations are briefly reviewed and reformulated taking account of
the problem specific terminology. The chapter further provides some background
information regarding the geology at Tropicana, the operation and the available
data. Subsequently, some insights are given regarding the construction of the
application specific forward simulator. Then, results are presented illustrating
improvements in both historic and future production estimates. The chapter
finally concludes with an extensive discussion on modelling assumptions and
potential improvements.

Chapter 7 is the last chapter of the dissertation and presents a brief overview of
the general conclusions from this research. Thereafter, the chapter lists future
recommendations and potential research areas to further improve and develop
the “updating loop” within the overall “Closed-Loop Resource Management”
framework. Note that specific conclusion and recommendations are provided at
the end of most chapters.
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2
LITERATURE REVIEW

This chapter provides a brief theoretical background on topics related to the updating or
conditioning of spatial models based on additional production data. Several geostatistical
techniques are reviewed, individually capable of solving at least one but not all of the
practical problems identified (ref. research objective 1). The chapter further proves why
the equations of a dynamic filter (the Ensemble Kalman Filter) would be suitable to solve
the problem at hand. The chapter frames the underlying equations of the dynamic filter
into a new static context and discusses the link with existing geostatistical concepts. The
chapter further discusses how an application in the minerals industry differs significantly
from those in various other research areas, particularly the fields of numerical weather
forecasting, oceanography, physical geography and more recently in reservoir engineering.

Parts of this chapter have been published in Mathematical Geosciences 49, 1 (Wambeke and Benndorf,
2017) and in Proceedings of the 17th annual conference of the international association for mathematical
geosciences (Wambeke and Benndorf, 2015).
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Traditionally the mining industry has had mixed successes in achieving the production
targets it has set out. Several projects have been identified where mineral grades
are not as expected, schedules and plans are not met and recovery is lower than
forecasted (Ward and McCarthy, 1999; Vallee, 2000; Tatman, 2001; McCarthy, 2003). The
deviations of produced tonnages and grades from model-based expectations result from
a mismatch between the scale of the exploration data and the short-term production
targets (Benndorf, 2013). In other words, it is challenging to accurately define the
characteristics of e.g. a few truck loads, designated to be transported to the processing
plant, based on data gathered at relatively wide grids. For certain commodities, it is
common to perform grade control (GC) drilling to further reduce the uncertainty (Peattie
and Dimitrakopoulos, 2013; Dimitrakopoulos and Godoy, 2014). However, GC drilling is
expensive and almost exclusively focused on sampling grades. Metallurgical properties
are often ignored.

The mineral industry is increasingly looking for effective methods for monitoring
and reconciling estimates and actual observations at different stages of the resource
extraction process (Morley, 2014). Recent developments in sensor technology enable the
on-line characterization of production performance and raw material characteristics. To
date, sensor measurements are mainly utilized in forward loops for downstream process
control and material handling (Zimmer, 2012; Lessard et al., 2014; Nienhaus et al.,
2014). A backward integration of sensor information into the GC model to continuously
improve the production forecasts and dispatch decisions does not yet occur.

The application of sensors carries a large potential regarding process improvements.
Sensor responses could be used to progressively increase the knowledge about the in-
situ material characteristics. This has two main consequences. First, the frequency of
misallocation could decrease, i.e. a smaller amount of actual ore is incorrectly allocated
to the waste dump and a smaller amount of actual waste enters the processing plant.
Second, an improved characterization of metallurgical properties could lead to a better
selection of process parameters. For example, the throughput of the comminution
circuit can be reduced upfront when harder ore is expected to ensure that the resulting
grain sizes stay within acceptable limits. A proactive selection of process parameters
in combination with the elimination of low value material from the processing plant will
further result in a reduction of dilution, an increase of concentrator recovery and a larger
annual metal production.

The potential of real-time updating is obvious. In order to apply it in practice, algo-
rithms need to be developed capable of assimilating direct and indirect measurements
into the GC model. Thus, at any point in time when new observations become available,
the following inverse problem needs to be solved (Tarantola, 2005; Oliver et al., 2008):

z =A −1(d), (2.1)

where A is a forward observation model (linear or non-linear) that maps the spatial
attributes z of the GC model onto sensor observations d. The observations result from
either direct or indirect measurements. The following challenges are identified; (i) the
latest solution should account for previously integrated data (sequential approach); (ii)
due to the nature of a mining operation, it is nearly impossible to formulate an analytical
approximation of the forward observation model, let alone compute its inverse and (iii)
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observations are made on blended material streams originating from multiple extraction
points. The objective of this chapter is to present a new algorithm to assimilate sensor
observations into the grade control model, specifically tailored to the requirements of
the mining industry.

Kitanidis and Vomvoris (1983) introduced a geostatistical approach to the inverse
problem in groundwater modelling. Both scarce direct (local log conductivity) and more
abundant indirect (hydraulic head and arrival time) measurements are used to estimate
the hydraulic conductivity in geological media through a linear estimation procedure
known in the geostatistical literature as co-Kriging (Deutsch and Journel, 1998; Journel
and Huijbregts, 2003). In the Bayesian literature, the same procedure is referred to
as updating or conditioning (Schweppe, 1973; Wilson et al., 1978; Dagan, 1985). The
geostatistical approach received considerable attention (Hoeksema and Kitanidis, 1984;
Rubin and Dagan, 1987; Yates and A.W. Warrick, 1987; Sun and Yeh, 1992; Harter and Yeh,
1996; Tong, 1996).

Later, several simultaneous and independent developments resulted in a method
to recursively incorporate subsets of data one at a time (Evensen, 1992; Harvey and
Gorelick, 1995; Yeh and Zhang, 1996). The proposed sequential estimator improves
previous subsurface models by using linearly weighted sums of differences between
observations and model-based predictions

zt = zt−1 +Wt (dt −At (zt−1)), (2.2)

where the vector zt contains estimates of the spatial attributes after t updates; the
vectors dt and At (zt−1) respectively hold actual observations and model-based pre-
dictions at time t and Wt is a matrix with Kriging weights defining the contribution
of the detected deviations to the updated subsurface model. If the vector dt only
contains direct local measurements, then the linear estimator corresponds to simple
Kriging, that is Kriging with a known mean. On the other hand, if also indirect
measurements are included, then a single update results from solving a system of co-
Kriging equations (Goovaerts, 1997; Chiles and Delfiner, 2012). The sequential linear
estimator bears a remarkable resemblance to Kalman filter techniques (Evensen, 1992;
Kalman, 1960; Bertino et al., 2002). The Kriging weights are computed from the forecast
and observation error covariance matrices, Ct−1,zd and Ct−1,dd :

Wt = Ct−1,zd C−1
t−1,dd (2.3a)

= Ct−1,zz AT
t (At C−1

t−1,zz AT
t +R)−1, (2.3b)

where Ct−1,zz is the prior error covariance matrix of the attribute field; R is a diagonal
matrix which specifies the sensor precision (a large sensor precision corresponds to a low
value on the diagonal) and At is a first order approximation of the non-linear observation
model At (Evensen, 1992; Yeh and Zhang, 1996). If both the prior error covariance matrix
and the sensor precision tend to be large then the Kriging weights tend to increase,
indicating that a significant portion of the detected deviations are taken into account
to update the attribute field. For completeness, the posterior error covariance matrix of
the attribute field after one assimilation step is also given

Ct ,zz = (I−Wt At )Ct−1,zz . (2.4)
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Vargas-Guzmán and Yeh (1999) provided the theoretical evidence that under a linear
observation model sequential Kriging and co-Kriging are equivalent to their traditional
counterpart which includes all data simultaneously. In the case of a nonlinear observa-
tion model, a sequential incorporation of data increases the accuracy of the first-order
(linear) approximations At since they are calculated around a progressively improving
attribute field (Evensen, 1992; Harvey and Gorelick, 1995). The linear estimator thus
propagates the conditional mean and covariances from one update cycle to the next.

At time zero, a global covariance model suffices to describe the degree and scale of
variability in the attribute field. The covariance matrix C(0,zz) is stationary. At any other
time, the updated covariances reflect the assimilation history and indirectly depend on
the location of the material sources (Harvey and Gorelick, 1995). This nonstationarity
of the updated covariances results in perhaps the greatest limitation of the method,
i.e. the necessity of storing large covariance matrices. Despite the promising results,
the above mentioned techniques were yet not considered for resource modelling and
reconciliation.

Thus far the discussion has focused on the sequential updating of a single best
estimate. In geostatistics, it is common to simulate a set of realizations to assess uncer-
tainty (Dowd, 1994; Dimitrakopoulos, 1998; Rendu, 2002). The propagated conditional
mean and covariance provide an intuitive description of statistics required to perform
geostatistical simulations. For example, a single realization can be generated through
the combination of the propagated mean with the product of a decomposed covariance
matrix (LU decomposition) and a vector filled with white noise (Davis, 1987; Alabert,
1987). Gomez-Hernandez and Cassiraga (2000), Hansen et al. (2006) and Hansen
and Mosegaard (2008) opt for a different approach. They propose to use the entire
collection of measurements simultaneously in combination with a co-Kriging based
version of sequential Gaussian simulation. As time progresses, such an approach results
in significant memory usage due to the substantial growth of available production data.
The simulation approaches discussed thus far all require that the simulation algorithm
is completely rerun after each timestep.

Vargas-Guzmán and Dimitrakopoulos (2002) presented an approach that can facil-
itate fast-updating of generated realizations based on new data, without repeating the
full simulation process. The approach is termed conditional simulation of successive
residuals and was designed to overcome the size-limitations of LU decomposition. The
lower triangular matrix is obtained through a novel column partitioning, expressed
in terms of successive conditional covariance matrices. The partitioning requires the
specification of a sequence of (future) data locations. A stored L matrix can then facilitate
the conditional updating of existing realizations if and only if the sequence of visited
subsets and used production data are the same as the one used for generating the initial
realizations (Jewbali and Dimitrakopoulos, 2011; Dimitrakopoulos and Jewbali, 2013).

A major limitation of the techniques discussed thus far results from the necessity to
store and propagate the conditional nonstationary covariances. A significant portion
of memory needs to be allocated to hold a collection of elements, the size of the
square of the number of grid nodes. The very large grids commonly encountered in
the mining industry make such approaches infeasible. To circumvent these limitations,
the previously discussed sequential (linear) estimator (Eq. 2.2) can be integrated into a
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Monte Carlo framework (Evensen, 1994). At each time step, a finite set of realizations is
updated on the basis of sensor observations collected at time t :

Zt (:, i ) = Zt−1(:, i )+Wt (dt −At (Zt−1(:, i ))+Et (:, i )) ∀i ∈ I (2.5)

where the observation errors Et (:, i ) are randomly drawn from a normal distribution with
a zero mean vector and a diagonal covariance matrix R. The conditional forecast and
observation error covariances, Ct−1,zd and Ct−1,dd , are computed empirically from both
sets of model-based predictions At (Zt−1(:, i )) and field realizations Zt−1(:, i ). Due to the
applied Monte Carlo concept, the first-order approximation of the forward observation
model can be avoided (Evensen, 1997; Burgers et al., 1998). The initial set of realizations
can be generated using techniques of conditional simulation. Aside from the empirical
calculation of the covariances, the Monte Carlo based sequential conditioning approach
bears some resemblance to the equations for conditioning simulations as presented in
Journel and Huijbregts (2003). Applications of the sequential conditioning approach in
a geoscientific context can be found in many documented studies (Bertino et al., 2002;
Jansen et al., 2009; Aanonsen et al., 2009; Hou et al., 2015; Benndorf and Jansen, 2017;
Heidari et al., 2011; Hendricks Franssen et al., 2011; Hu et al., 2013). These other research
disciplines refer to this technique as the Ensemble Kalman-Filter.

Before proceeding, it is important to comprehend the subtle differences to previ-
ous applications of the (Ensemble) Kalman-Filter. Weather forecasting and reservoir
modelling (oil, gas and water) consider dynamic systems repetitively sampled at the
same locations. Generally, each observation characterizes a volume surrounding a
sample location. These local volumes are sampled repetitively in time. Mineral resource
modelling on the other hand focuses on static systems gradually sampled at different
locations. Each observation is characteristic for a blend of material originating from one
or more extraction points. Each part of the material stream is sampled only once, at the
moment it passes the sensor in the production chain. Although virtually the same, the
terminology of sequential updating is preferred over (Ensemble) Kalman-Filtering. This
is to stress the absence of dynamic components and to highlight its link to the field of
geostatistics.

Benndorf (2015) was the first to recognize the potential of sequential updating in a
context of mineral resource extraction. His preliminary work provides a mathematical
description linked to the unique configurations of the mining industry (as discussed
above). However the practicality of the description is limited due to the need for an
explicit formulation of the At matrix. The presented description is based on 2.3b, which
requires an empirical computation of the full Ct−1,zz matrix together with its inverse.
Hence the description results in high computational costs and memory requirements.
Moreover the diagonal R matrix characterizing the sensor precision needs to be for-
mulated in the computation domain, which is straightforward when all distributions
involved are Gaussian, but is much less intuitive when transformations are applied.

This contribution presents an algorithm based on Eq. 2.3a. The forward observation
model A is excluded from the computer code (Fig 2.1). Instead, a forward simulator is
used to convert field realizations into model-based predictions (A is applied to fields
individually rather than to the covariance matrix). The use of a forward simulator
overcomes the challenges of formulating an analytical approximation linking each



2

16 REFERENCES

Figure 2.1: Overview of the interaction between the updating algorithm and the forward simulator

sensor observation to the grade control model. The necessary forecast and observation
error covariances, Ct−1,d z and Ct−1,dd , can now be computed empirically. Differences in
scale of support are inherently accounted for.

The following concepts are integrated into the algorithm and will be discussed in
detail in Chapter 3:

• A Gaussian anamorphosis option is implemented to deal with suboptimal condi-
tions related to indirect observations and non-Gaussian distributions.

• A specific algorithm structure ensures that the measurement error can be defined
on its original units and does not need to be translated into a normal score
equivalent.

• An interconnected parallel updating sequence (double helix) can be configured to
reduce the effects of filter inbreeding (covariance collapse).

• A neighbourhood option can be activated to further reduce computation times
and memory requirements.

• Two covariance correction strategies are implemented to contain the propagation
of statistical sampling errors originating from the empirical computation of co-
variances.
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3
ALGORITHM

This chapter further elaborates on the design of the algorithm and its specific options. The
first section discusses the rationale behind the Gaussian anamorphosis. The implementa-
tion, allowing for an intuitive treatment of measurement error, is explained. The second
section provides a computationally efficient strategy for solving the updating equations.
The presentation is generic, in that it includes the option to configure a parallel updating
sequence (double helix). The third section discusses the neighbourhood option. The fourth
section provides some insight into the covariance correction techniques. The fifth section
presents the pseudocode of the updating algorithm. The pseudocode illustrates how the
individual functional components are integrated.

Parts of this chapter have been published in Mathematical Geosciences 49, 1 (Wambeke and Benndorf,
2017) and in Proceedings of the 17th annual conference of the international association for mathematical
geosciences (Wambeke and Benndorf, 2015).
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3.1. GAUSSIAN ANAMORPHOSIS
The updating approach presented in Benndorf (2015) is only optimal if all involved
variables are multivariate Gaussian and if the forward observation model A is linear.
Commonly, global normal score transformations are used to mitigate the effects of mul-
tivariate distributions which are not Gaussian (Goovaerts, 1997; Deutsch and Journel,
1998). However due to the developing non-stationarity, the underlying assumptions get
violated. That is, after a few updates, the global cumulative field distribution does not
anymore represent the local updated conditions. Instead, grid nodes are individually
transformed according to node specific Gaussian anamorphosis functions (Béal et al.,
2010; Simon and Bertino, 2009). This approximation just renders marginal distributions
as univariate Gaussian. Multivariate distributions are not explicitly corrected. Yet, the
random vectors are closer to being multivariate Gaussian than prior to the univariate
transformations (Zhou et al., 2011). First the univariate transformation of grid nodes is
discussed. The transformation of observations and the treatment of measurement error
is addressed later on.

At each grid node xn , a local Gaussian anamorphosis function Φxn is built and used
to forward transform the Monte Carlo representation of the random vector z(xn):

Ut (n, i ) =Φt ,xn (Zt (n, i )) (3.1a)

=G−1(F (Zt (n, i ))) ∀i ∈ I , (3.1b)

where I refers to the total number elements in the Monte Carlo sample. A two step
procedure is used for the implementation of the forward transformation. (i) The
cumulative probability F (Zt (n, i )) is estimated based on the rank i ′ of the corresponding
element in the full Monte Carlo sample ( i ′−0.5

I ). (ii) The resulting cumulative probability
is mapped onto its corresponding standard normal score value. In other words, the
inverse of the standard normal cumulative distribution function G is computed. The
left hand side of Figure 3.1 shows the procedure for the univariate transformation of grid
nodes.

Figure 3.1: Univariate transformation of grid nodes, perturbed predicted observations, predicted observations
and actual observations
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The necessity and added value of a transformation of observations depends partially
on the considered updating scheme (Eq. 2.3a versus Eq. 2.3b). To further clarify this
statement, a situation with transformed grid nodes is assumed and the impact of non-
Gaussian observations on both updating schemes is analysed.

A study of Eq. 2.3b learns that the Kriging weights Wt can be computed without
explicitly considering the predicted observations. The transformed grid nodes U(n, :)
are used to compute the empirical field error covariances Ct−1,uu . Both forecast error
and observation error covariances are then written as linear combinations hereof. The
resulting matrices, Ct−1,uu AT

t and At C−1
t−1,uu AT

t +R are fully described in a normal score
space. As a consequence, sensor precisions need to be characterized in the normal score
domain as well (R matrix). In conclusion, non-Gaussian observations thus have a limited
impact on the computation of the weights Wt when using updating scheme 2.3b.

In contrast, due to the specific formulation of updating scheme 2.3a, predicted
observations and their distributions do have a direct and significant impact on the
computation of the weights Wt . The forecast error and observation error covariances are
after all empirically calculated based on untransformed predicted observations. They
are no longer expressed as linear combinations of field error covariances, computed
from transformed grid nodes. The use of a flexible forward simulator thus results in a
less far-reaching effect of transformed grid nodes when computing the weights Wt .

Since updating scheme 2.3a is less robust against non-Gaussian observations, a
transformation is warranted. This will further increase the performance of the sequential
updating technique inasmuch as all involved variables, including the observations,
better approximate a multivariate Gaussian distribution. Moreover, a Gaussian anamor-
phosis of the observations leads to an apparent pseudolinearization of the forward
observation model in the normal score domain (Schöniger et al., 2012). This pseudo-
linearization can be more accurately exploited by the linear updating equations.

The K predicted observations at time step t are defined as

Bt (:, i ) =At (Zt−1(:, i )) ∀i ∈ I , (3.2)

where K refers to the number of measurements taken over a period [t −1, t ] and At

represents a forward simulator translating single field realizations Zt (:, i ) into vectors
Bt (:, i ) with K predicted observations. In order to account for measurement error, the
predicted observations are randomly perturbed, that is I vectors Et (:, i ) drawn from
N (0,R) are added to the columns Bt (:, i ). Note that the diagonal R matrix directly
describes the measurement error in the original domain, so that a translation to a normal
score space is not needed. The rows of the resulting perturbed predicted observation
matrix are transformed individually by evaluating K Gaussian anamorphosis functions
(Fig. 3.1)

Qt (k, i ) =Φt ,k (Bt (k, i )+Et (k, i )) ∀i ∈ I . (3.3)

The addition of random noise Et (:, i ) results in a kernel smoothing effect making the
estimation of the empirical CDF more robust, even for small sample sizes (Cheng
and Parzen, 1997). Each of the K actual inaccurate observations are assumed to
originate from a distribution described by its corresponding Monte Carlo sample of
perturbed predicted observations (Bt (k, :)+Et (k, :)). Hence, the actual observations are
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transformed according to the previously constructed anamorphosis functions (Fig. 3.1)

st (k) =Φt ,k (dt (k)). (3.4)

The integration of measurement noise into the transformations allows for a smooth
computation of covariances and deviations, without the need to further consider mea-
surement error in the normal score domain. The normal score equivalent R matrix is
implicitly accounted for when computing observation error covariances from the rows
of the Qt matrix. Previously, a noise vector had to be explicitly added to the deviations
between predicted and actual observations (Eq. 2.5). Now, a normal score equivalent is
automatically inserted into the differences between st and the columns Qt (:, i ).

The currently available transformed data would not allow for a correct empirical
computation of the forecast error covariances. A pairwise consideration of rows from
the U and Q matrix would result in overestimated forecast error covariances. This is
because the forecast error covariances should be computed without the consideration
of measurement noise. Therefore, the previously constructed anamorphosis functions
Φt ,k are used once more to transform unperturbed predicted observations (Fig. 3.1)

Yt (k, i ) =Φt ,k (Bt (k, i )) for i = 1,2, . . . , I . (3.5)

After the updating step, the grid nodes are back transformed using the inverse
of the grid node specific anamorphosis functions Φ−1

t ,xn
. Back transformation of the

observations is not required. Instead updated predicted observations are obtained from
a subsequent run of the forward simulator.

3.2. SOLVING THE UPDATING EQUATIONS
The following provides an efficient strategy for solving the updating equations. The
presentation is generic in that it includes an option to configure a pair of connected
updating cycles (double helix). This option can be activated to avoid problems of
inbreeding. Inbreeding is essentially caused by the empirical estimation of covariances
from Monte Carlo samples of limited size (Zhou et al., 2011). When occurring, the spread
in the Monte Carlo sample becomes unrealistically small, in particular the spread would
be smaller than the difference between the sample mean and the unknown truth (Zhou
et al., 2011). The problem generally arises when a group of grid nodes is being updated
frequently during a certain period of time.

The idea of configuring a pair of sequential updating cycles originates from Houte-
kamer and Mitchell (1998), who argued that the computation of the weights Wt and the
evaluation of their quality (diagonal elements in Ct+1,uu) would be based on exactly
the same information when using a single Monte Carlo sample. As the assimilation
cycle proceeds, the propagation of this dependent quality test might eventually result
in a collapse of the Monte Carlo sample. In order to maintain sufficient spread, two
connected updating cycles can be configured. The weights Wt computed from one cycle
are used to assimilate data into the other cycle. In this way, each of the two cycles uses
different Monte Carlo samples to estimate the weights and to evaluate the quality of an
update. As such, the concept bears some structural resemblance to the double helical
structure of nucleic acids such as DNA. The two updating cycles represent the double
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stranded molecules typically found in DNA. The cross-over of the Kriging weights (Wt )
are then represented by the base pairs holding together the double helical structure.

To configure two connected updating cycles, the previously transformed Monte
Carlo samples need to be split into two subsets. The constructed matrices with I
columns (U, Q and Y) are subdivided into two new matrices with respectively α and
I−α columns. Considering an original matrix X, the new matrices are denoted by X(:, : α)
and X(:,α :). The operators : α and α : refer respectively to the first α and the last I −α

columns. The default value of the integer parameter α is set to I /2. Note that the two
subsets do not necessarily have to be of equal size.

Once the Monte Carlo samples are split, all necessary covariances are empirically
calculated. First two K x K matrices with observation error covariances are constructed:

C1
t ,qq (k,k) = E [(Qt (k, : α)−E [Qt (k, : α)])(Qt (k, : α)−E [Qt (k, : α)])] (3.6a)

C2
t ,qq (k,k) = E [(Qt (k,α :)−E [Qt (k,α :)])(Qt (k,α :)−E [Qt (k,α :)])] (3.6b)

The observation error covariances are computed from transformed perturbed predicted
observations and as such implicitly account for a normal score equivalent of the
diagonal R matrix. Likewise, two N x K matrices with forecast error covariances are
constructed:

C1
t ,uy (n,k) = E [(Ut (n, : α)−E [Ut (n, : α)])(Yt (k, : α)−E [Yt (k, : α)])] (3.7a)

C2
t ,uy (n,k) = E [(Ut (n,α :)−E [Ut (n,α :)])(Yt (k,α :)−E [Yt (k,α :)])] (3.7b)

It is important to stress that the transformation of the unperturbed predicted observa-
tions (Eq. 3.5) is only performed to calculate the forecast error covariances.

A significant speedup of the updating operation can be achieved by solving the equa-
tions first in the K dimensional ‘observation space’ and then projecting the solutions
into the N dimensional ‘field space’ (Evensen and van Leeuwen, 1996; Cohn et al., 1998).
A Cholesky decomposition of the two observation error covariance matrices results in
considerable computation savings when solving following equations:

C2
t ,qq T(:, i ′) = st −Qt (:, i ′) ∀i ′ ∈ [1,α], (3.8a)

C1
t ,qq T(:, i ′′) = st −Qt (:, i ′′) ∀i ′′ ∈ [α, I ]. (3.8b)

The two resulting lower triangular matrices are combined with deviations between
transformed actual and predicted observations of the complementary subset to calcu-
late a series of solution vectors T(:, i ). Both series of solution vectors are subsequently
combined with previously calculated forecast error covariances to update existing real-
izations:

Ut+1(:, i ′) = Ut (:, i ′)+C2
t ,uy T(:, i ′) ∀i ∈ [1,α], (3.9a)

Ut+1(:, i ′′) = Ut (:, i ′′)+C1
t ,uy T(:, i ′′) ∀i ′′ ∈ [α, I ]. (3.9b)

Finally the Monte Carlo samples of grid nodes are recombined and transformed back
using the grid node specific anamorphosis functions which were stored in memory:

Zt+1(n, i ) =Φ−1
t ,xn

(U(n, i )) ∀i ∈ I . (3.10)
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3.3. NEIGHBOURHOOD
Often it is impractical (especially for large grids) to consider all N grid nodes simultane-
ously for updating, when K observations become available. Since the spatial correlation
generally decreases with distance, it is sufficient to only include a node when it is
located in the near vicinity of one of the L extraction points. A search algorithm
based on a space-partitioning tree structure is implemented to allocate grid nodes to
a neighbourhood set N ′ replacing the full grid N in all subsequent computations. A local
neighbourhood approach is not new. However, the current implementation requires
that neighbourhoods around active extraction points are considered simultaneously.
For example, due to measurements on blended material streams, an observation can
be correlated to multiple nodes from different neighbourhoods.

The subset N ′ is constructed prior to performing the transformations. As a result,
the order of the U matrices in Eq. 3.1, 3.7, 3.9 and 3.10 greatly reduces permitting
a substantial computational economy to be realized. A local neighbourhood strategy
also reduces the effects of spurious correlations which may arise between observations
and remote grid nodes. Eventually, spurious correlations might lead to an update of
several remote nodes based on unrelevant information. To avoid such a fallacy, a
neighbourhood strategy can be used to exclude remote nodes from the analysis.

3.4. COVARIANCE ERROR CORRECTION
The previous sections already touched upon some of the issues related to the empirical
estimation of covariances from finite Monte Carlo samples. Statistical theory states that
the correlation between two normal distributions can be estimated with the following
accuracy when using I Monte Carlo pairs:

E [(ρ− ρ̂)2] ≈ (1− ρ̂)2

I
, (3.11)

where ρ and ρ̂ are respectively the unknown and estimated correlation. The term
E [(ρ − ρ̂)2] expresses the variance around the estimate. It follows that an accurate
estimation of weak correlations (or covariances) would in any case require very large
samples with thousands of realizations. When due to practical considerations the Monte
Carlo samples are rather limited, numerical inaccuracies may arise. To mitigate possible
numerical inaccuracies, two covariance correction techniques are implemented; an
error correction and a localization correction. Both techniques apply a differential
correction to the individual elements of the forecast error covariance matrix Cuy .
The magnitude of the correction (indirectly) depends on the estimated value of each
covariance element.

The localization correction is based on the notion that spatial covariance generally
decreases with distance. Equation 3.11 indicates that the accuracy of a covariance
estimate reduces accordingly. To account for distant dependent numerical inaccuracies,
the forecast error covariance matrix Ct ,uy is localized. The concept of localization
requires observations which can be attributed to a certain spatial location. As a
result, a physically sensible distance between an observation k and a grid block n
can be calculated (Sakov (2011)). Given a taper function ρ, a correction factor ρ(n,k)
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is computed and used to correct the corresponding covariance (Ct ,uy (n,k) ∗ ρ(n,k)).
Since in mining applications observations are made on blended material streams, the
conventional implementation had to be adjusted. The following assumes that the
locations of the L simultaneous extraction points are known. The localized element of
the Cuy matrix can then be written as a sum of the product between grid realization
anomalies (Ut (n, :)−E [Ut (n, :)]) tapered around extraction location l and observation
anomalies (Yt (k, :)−E [Yt (k, :)]):

Ct ,uy (n,k) =
L∑

l=1

(
E

[
ρ(n, l )∗ (Ut (n, :)−E [Ut (n, :)])∗

(Yt (k, :)−E [Yt (k, :)])
])

.

(3.12)

The Gaspari-Cohn correlation function is used for tapering the grid realization anoma-
lies (Gaspari and Cohn, 1999). Its use requires the definition of three range parameters
(x, y, z direction). A good choice for the range parameters is based on the number
of realizations and the prior covariance (Chen and Oliver, 2010). As the number of
realizations increase, the accuracy of covariance estimates increase and thus larger range
parameters can be selected.

The error correction technique uses an offline Monte Carlo simulation to charac-
terize the potential variations between unknown and estimated correlations (Eq. 3.11).
A lookup table is constructed linking estimated correlations with correction factors
between 0 and 1 (Anderson (2012)). The use of lookup table requires a fixed value
range ([−1,1]), hence covariances are replaced by correlations without any further
consequences. The procedure for constructing the lookup table goes as follows. For
every discrete correlationρm in the range [−1,1], a Monte Carlo experiment is performed
to compute the corresponding correction factor. Each Monte Carlo experiment consists
of five steps. (i) Define a bivariate normal distribution with zero mean and covariance
[[1,ρm], [ρm ,1]]. (ii) Draw I times two values from this distribution. Compute the
correlation coefficient based on the I pairs. (iii) Repeat (ii) P times. (iv) Compute the
mean ρ̂m and standard deviation σm of the P estimated correlation values. (v) Define
α as (ρ̂m/σm)2. The correction factor (CF) for an estimated correlation of ρm is then
computed as

C F (ρm) = α

1+α
∗ ρ̂m

ρm
. (3.13)

The described Monte Carlo experiment needs to be repeated M times in order to
construct the lookup table. The parameters M and P are respectively set to 201 and 106.
I should equal the number of realizations used to estimate the empirical correlations.

The selected M value results in 201 discretized correlation values ranging from −1
to 1, each 0.005 apart (a value of 201, compared to 200, results in a nicer spread of
discretization points: [−1.0,−0.995,−0.99, ...−0.005,0,0.005, ...0.990,0.995,1.0]). The 201
discretization points were deemed to be sufficient to map the relationship between the
estimated correlation coefficient (ρ̂m) and the accuracy of that estimate (σm). The
P value (106), on the other hand, refers to the number of experiments conducted to
measure the accuracy of the estimated correlation (σm). That is, the million experiment
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values are used to compute the mean (ρ̂m) and standard deviation (σm) of an underlying
normal distribution.

Once a lookup table is constructed or read from file, the error correction can be
applied to the Ct ,uy matrix

Ct ,uy (n,k) =C F

(
Ct ,uy (n,k)

St ,uu(n,n)St ,y y (k,k)

)
∗Ct ,uy (n,k). (3.14)

This requires the additional computation of the empirical standard deviation at N grid
nodes (St ,uu(n,n)) and K observations (St ,y y (k,k)).

3.5. PSEUDOCODE
The following pseudocode illustrates how the previously discussed functional compo-
nents are integrated in one updating procedure (Algm. 1, p. 29). The option of using two
interconnected updating cycles has been omitted to avoid unnecessary complexity. In
order accommodate for this option, lines 26 to 44 (Algm. 1, p. 29) have to be adjusted
based on Eq. 3.6 to 3.9.



3.5. PSEUDOCODE

3

29

Algorithm 1 Updating Algorithm

1: procedure UPDATE(Zt ,dt ,Bt ,Σ) ◃ Σ holds L extraction locations xl

2: tr ee ← CONSTRUCTTREE(Zt )
3: for xl in Σ do ◃ collect nodes around xl

4: Zl
t ← SEARCHTREE(tr ee, xl ) ◃ Zl

t is a subset of Zt

5: ZΣ
t ← UNION(ZΣ

t , Zl
t ) ◃ combine subsets

6: Ut ← INITIALIZE(N ′, I ) ◃ N ′ nodes in combined subsets
7: for n in N ′ do
8: Φt ,xn ← CONSTRUCT(ZΣ

t (n, :))
9: for i in I do

10: Ut (n, i ) ←Φt ,xn (ZΣ
t (n, i ))

11: Qt ← INITIALIZE(K , I ) ◃ K observations
12: Yt ← INITIALIZE(K , I )
13: st ← INITIALIZE(K ,1)
14: Et ← GENERATE(sensor accuracy) ◃ K x I matrix with white noise
15: Ft ← Bt +Et

16: for k in K do
17: Φt ,k ← CONSTRUCT(Ft (k, :))
18: for i in I do
19: Qt (k, i ) ←Φt ,k (F(k, i )) ◃ transform perturbed predictions
20: Yt (k, i ) ←Φt ,k (B(k, i )) ◃ transform predictions
21: st (k) ←Φt ,k (dt (k)) ◃ transform real observations

22: Ct ,qq ← INITIALIZE(K , K )
23: for ki in K do
24: for k j in K do
25: Ct ,qq (ki ,k j ) ← COV(Qt ,qq (ki , :),Qt ,qq (k j , :)) ◃ Eq. 3.6
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Algorithm 1 Updating Algorithm (continued)

26: Ct ,uy ← INITIALIZE(N ′,K )
27: for n in N ′ do
28: for k in K do
29: if CovarianceLocalization is FALSE then
30: Ct ,uy (n,k) ← COV(Ut (n, :),Yt (k, :)) ◃ Eq. 3.7
31: else if CovarianceLocalization is TRUE then
32: Ct ,uy (n,k) ← COVLOC(Ut (n, :),Yt (k, :),Σ) ◃ Eq. 3.12

33: if ErrorCorrection is TRUE then
34: for n in N ′ do
35: St ,uu(n,n) ← STANDARDDEVIATION(Ut (n, :))
36: for k in K do
37: St ,y y (k,k) ← STANDARDDEVIATION(Yt (k, :))
38: ρ ← Ct ,uy (n,k)/(St ,uu(n,n)∗St ,y y (k,k))
39: C F ← LOOPUP(ρ) ◃ from table
40: Ct ,uy (n,k) ← C F ∗Ct ,uy (n,k) ◃ correct & replace, Eq. 3.14

41: T ← INITIALIZE(K , I )
42: for i in I do
43: T(:, i ) ← SOLVE(Ct ,qq T(:, i ) = st −Qt (:, i ))
44: Ut+1(:, i ) ← Ut (:, i )+Ct ,uy T(:, i )

45: for n in N ′ do
46: for i in I do
47: ZΣ

t+1(n, i ) ←Φ−1
t ,xn

(Ut+1(n, i ))

48: Zt+1 ← OVERWRITE(ZΣ
t+1,Zt ) ◃ Overwrite the N ′ selected nodes

49: Return Zt+1
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3.6. CONCLUSIONS
This thesis presents a new algorithm to automatically assimilate online data from a
production monitoring network into the grade control model. The practicality of the
algorithm mainly results from the design decision to exclude the forward observation
model from the computer code. Instead, for each unique application, a case specific
forward simulator is built and used independently from the existing code. This results
in great flexibility, allows for a better integration of expert knowledge and facilitates
interdisciplinary cooperation.

Once built, the forward simulator is run to translate grade control realizations
into observation realizations. The resulting realization sets are subsequently used to
compute empirical covariances. These covariances mathematically describe the link
between sensor observations and blocks from the grade control model. This eliminates
the need to formulate and linearise an analytical forward observation model, let alone to
compute its inverse. The forward simulator further ensures that the distribution of the
Monte Carlo samples already reflects the support of the concerned random values. As
a result, the necessary covariance, derived from these Monte Carlo samples, inherently
accounts for differences in scale of support.

A Gaussian anamorphosis option is implemented to deal with suboptimal conditions
related to non-Gaussian distributions. A specific algorithm structure ensures that the
sensor precision (measurement error) can be defined on its original units and does not
need to be translated into a normal score equivalent.

When, due to practical considerations, the number of Monte Carlo samples is
rather limited, numerical inaccuracies may arise. An interconnected parallel updating
sequence (double helix) can be configured to reduce the effects of filter inbreeding.
Due to the empirical computation of the covariance, degrees of freedom are lost over
time. Eventually this might result in a collapse of covariances. A neighbourhood
option is implemented to constrain computation time and memory requirements.
Since observations are collected on blended material streams originating from multiple
extraction zones, different neighbourhoods need to be considered simultaneously.
A neighbourhood strategy also partially reduces the effect of spurious correlations.
Two covariance correction options are implemented to contain the propagation of
statistical sampling errors originating from the empirical computation of covariances.
The localization correction is based on the assumption that the accuracy of a covariance
estimate decreases with distance from an extraction point. Hence, grid anomalies
are tapered around central extraction locations. The error correction uses an offline
Monte Carlo simulation to precompute the accuracy of a certain correlation estimate.
Corresponding correction factors are stored in lookup table and used to adjust the
elements of the forecast error covariance matrix.
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4
SYNTHETIC EXPERIMENT: 2D CASE

STUDY

The synthetic experiment, presented in this chapter, demonstrates that the algorithm is ca-
pable of improving the resource model based on inaccurate observations made on blended
material streams. In order to conduct the experiment, an artificial environment is created,
representing a mining operation with two extraction points of unequal production rate.
The performance of the algorithm during the experiment is evaluated using three sets of
criteria. (i) Horizontal and vertical cross-sections are visually inspected and compared
with the “true but unknown” reality. (ii) Global assessment statistics are computed to
study how the overall quality of the resource model evolves over time as production data
are being assimilated. (iii) Local assessment statistics are computed to ensure that the
observed global improvements also result in the correction of the local estimation biases.

Parts of this chapter have been published in Mathematical Geosciences 49, 1 (Wambeke and Benndorf, 2017).
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4.1. METHODOLOY
A synthetic experimental environment is created to demonstrate the performance of the
developed algorithm. The synthetic environment represents a mining operation with
two extraction points of unequal production rate. The resulting material streams are
blended and intentionally inaccurate observations are made. The goal of the experiment
is to test whether the algorithm is capable of improving the Grade Control (GC) model
based on unequally blended inaccurate observations. In order to stress the synthetic
nature of the experiment, units for the modelled attribute are omitted.

4.1.1. REFERENCE FIELD
During the course of the artificial experiment a true but unknown state is sampled twice.
First, small point samples are collected on a regular grid prior to the construction of the
GC model (exploration phase). Second, observations are made on a blend of multiple
mining blocks (operational phase). To correctly account for both scales of support, two
representations of the true but unknown field are constructed. Both the high resolution
point and the lower resolution block reference field characterize the true state over an
area of 300m x 300m using a different level of discretization.

The high resolution point reference field is constructed on a discretized grid with
300 x 300 cells of size 1m x 1m. This reference field is generated using a random field
simulation algorithm (sequential Gaussian simulation). Attribute values are drawn from
a standard normal distribution (centered around 0). The reference field is simulated
based on an isotropic exponential covariance function with a variance of 1.0 and a
range of 100m (units of the modelled attributes are omitted to stress their synthetic
nature). Due to field dimensions which are relatively small compared to the range of the
covariance model (300m versus 100m), a four times larger simulation grid is used (600 x
600 cells of size 1m x 1m). Eventually only the South-West quarter of the grid is retained
(300 x 300 cells of size 1m x 1m). The resulting field has an average of −0.251(−0.052) and
a variance of 0.862(1.006). The 5% and 95% quantiles are respectively −1.733(−1.733)
and 1.312(1.518). The values between brackets refer to those computed from the larger
simulation grid (the desired field statistics, e.g. the variance and mean, are reproduced
within the larger simulation grid but not in the smaller one - ref. ergodicity assumption
in geostatistics).

The low resolution block reference field is constructed on a discretized grid with 60
x 60 cells of size 5m x 5m. This second reference field is obtained from reblocking the
previous point field. Values of 5 x 5 1m x 1m cells are averaged and assigned to larger 5m
x 5m blocks. The resulting block reference field has an average of −0.251 and a variance
of 0.792. The 5% and 95% quantiles are respectively −1.696 and 1.246. As expected, the
variability reduces due to reblocking. The final block reference field is displayed in Fig.
4.1a.

4.1.2. PRIOR SET OF REALIZATIONS
A set of field realizations is used throughout to characterize the spatial variability
and to quantify the geological uncertainty of the study environment. The geological
uncertainty originates from the limited amount of data available. Prior to the operation,
the study prescribes the availability of exploration data collected on a 50m x 50m
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(a) (b)

Figure 4.1: True but unknown field (a) block representation, 60 x 60 blocks of size 5m x 5m colour coded
according to their average block value (b) location of point samples on 50m x 50m exploration grid - point
samples have a support of 1m x 1m

sampling grid. This medium dense sampling grid (spacing equals half the range of the
covariance model) results in a prior set of realizations with a realistic level of uncertainty
and error.

A prior set of 200 realizations is simulated on a discretized grid with 600 x 600 1m
x 1m cells. Again, the simulation grid is four times larger than the studied area for
reasons of small field dimensions compared to the range of the covariance model. A
total of 144 sampling points are provided as conditioning data (sampled on a 50m x 50m
exploration grid from the previous point simulation on the large 600 x 600 grid with 1m
x 1m cells). From the 144, only 36 sampling points are actually located inside the study
area (Fig. 4.1b). The covariance model of the true field is assumed to be known and was
not inferred from the sampling points (isotropic exponential function with a variance
of 1.0 and a range of 100m). The effect of an incorrectly inferred covariance model is
discussed in Sections 5.7 (last paragraph) and 7.2.2 (second paragraph).

Once simulated, only the South-West quarter of the grid is retained (300 x 300 cells of
size 1m x 1m). Subsequently, the 200 point simulations are reblocked onto a grid with 60
x 60 blocks of size 5m x 5m. Figure 4.2 displays four arbitrarily chosen block realizations.

Only the block realizations on a discretized grid with 60 x 60 blocks of size 5m x 5m
are further considered (one reference field Z∗ and 200 prior block realizations Z0(:, i )).
All previous point simulations were just an aid to this end.

Figure 4.3a and 4.3b display a mean and standard deviation (SD) field computed
from the 200 prior realizations. The mean field, representing the current best block
estimate, is considerably smoother than the reference field (compare Fig. 4.1a and
4.3a). The general larger scale patterns are nevertheless reasonably reproduced. This
is due to the availability of sufficient conditioning data (on a point support). The
approximate locations of the sampling points are marked by a lower block standard
deviation (compare Figs. 4.3b and 4.1b). Due to effects of differences in scale of support,
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(a) (b)

(c) (d)

Figure 4.2: Four arbitrarily chosen block realizations (no. 39, 56, 125 and 183), 60x60 blocks of size 5m x 5m
colour coded according to their average block value
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(a) (b)

(c)

Figure 4.3: Grid with 60 x 60 blocks of size 5m x 5m colour coded according to the a computed statistic (a)
mean (b) standard deviation (c) absolute error

the SD of 5m x 5m blocks does not entirely reduce to zero when conditioning based
on cells of size 1m x 1m. The minimum and maximum observed SD amount to 0.283
and 0.907. Figure 4.3c displays the absolute difference between true but unknown and
estimated block values. The absolute error (AE) field is nothing more than the absolute
difference between Fig. 4.1a and Fig. 4.3a. The figure illustrates that large deviations
do occur locally, despite the considerable exploration effort. For example, the absolute
error is consistently larger than 1.5 in an area bounded by [25m,75m] x [175m,225m] (in
this particular area, the absolute error exceeds 2.0 in the majority of blocks, Fig. 4.5a).

Figure 4.4a and 4.4b depict respectively a North-South (x = 57.5m) and East-
West section (y = 167.5m) across the prior realizations and the reference field. The
information contained in the prior realizations is visualized as a combination of a most
expected mean field (blue line) and a 90% confidence interval (blue area). The width
of the 90% confidence interval is nearly uniform across both section lines (i.e. the
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(a)

(b)

Figure 4.4: Sections across prior realizations and reference field (a) North-South section at x = 57.5m (b) East-
West section at y = 167.5m

influence of nearby sampling points is not immediately visible). The confidence interval
of the North-South and East-West section encloses the reference field at respectively 44
(73.33%) and 53 (88.33%) blocks (Fig 4.4). Considering the entire grid, 3,225 out of 3,600
blocks (89.58%)are characterized by a confidence interval enclosing the reference value.

Figure 4.5a and 4.5b display respectively a North-South (x = 57.5m) and East-
West section (y = 167.5m) across the AE (purple solid) and SD (orange dashed) field.
A comparison between Fig. 4.4 and 4.5 shows that a severe misalignment between
reference field and confidence interval directly results in an AE which is consistently
larger than 1.0. The three peaks of large AE in the North-South section (Fig. 4.5a) result
from a severe but local estimation bias (overestimation around y = 150m and y > 250m,
underestimation at 175m < y < 225m, Fig. 4.4a). The two smaller peaks of AE in the East-
West section (Fig. 4.5b) originate from a relatively large region with a smaller estimation
bias (consistent underestimation between 125m < x < 250m). The SD, which provides
an alternative representation of remaining uncertainty, does not change significantly
across both selected sections (slight decrease in the proximity of sampling points, Fig.
4.5b).
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(a)

(b)

Figure 4.5: Sections across absolute error (AE, purple solid) and standard deviation (SD, orange dashed) field
(a) North-South section at x = 57.5m (b) East-West section at y = 167.5m
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Figure 4.6: Outline of extraction zone I ([50m,150m] x [90m,270m]) and II ([150m,150m] x [270m,190m])

4.1.3. EXPERIMENTAL SCENARIO
A mining operation with two extraction points of unequal production rate is simulated
and monitored. Figure 4.6 displays the outline of extraction zone I (40m x 120m) and
zone II (120m x 40m). Each extraction zone has an area of 4,800m2 and contains
192 blocks. From this point forward, it will be assumed that the previous constructed
block realizations have a thickness of 3m. Considering a rock density of 2.8t/m3, it
is not unreasonable to assume that each 75m3 block is transported by a truck with a
payload capacity of 210t . Hence the terms block and truckload are used interchangeably.
The duration of the experiment equals the time T needed to excavate and process all
384 blocks from both extraction zones. This total time is subdivided into 12 discrete
timesteps d t of equal length (T = 12 ∗ d t ). Since the total production rate is kept
constant, 32 truckloads are processed during a single timestep.

Figure 4.7 provides a schematic overview of the extraction sequence and monitoring
setup (forward simulator). The extraction sequence is visually prescribed through the
numbers inside the demarcated digging blocks. During the first half time step ([0,d t/2]),
a small digging block is extracted from mining zone I (1a, [30m,150m] x [40m,160m],
4 truckloads). Simultaneously, a large digging block is removed from mining zone II
(1a, [150m,130m] x [165mx170m], 12 truckloads). During the second half timestep
([d t/2,d t ]), a small (1b, [40m,150m] x [50m,160m]) and large (1b, [165m,130m] x
[180m,150m]) digging block are respectively extracted from mining zone I and II. A
similar generic approach applies for the remaining timesteps. Generally, during each
half timestep, 4 and 12 truckloads are extracted always from complementary mining
zones (4 from one, 12 from the other). As a result, the total production rate remains
constant; 16 truckloads per half timestep. Figure 4.7 however illustrates that the local
production rates (4 or 12 truckloads per half timestep) reverse after every 3th timestep.

The monitoring setup is strongly related to the extraction sequence. Every timestep
yields two observations, each an average of 16 blended truckloads. The composition
of the blend is prescribed by the defined extraction sequence. This is at time t , two
observations become available, characterizing the blend resulting from the extraction
during respectively periods [t −1, t −1+d t/2] and [t −1+d t/2, t ]. A forward simulator
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Figure 4.7: Schematic overview of extraction sequence and monitoring setup - during each half timestep d t , 4
and 12 blocks are extracted from complementary zones (X and X’) and blended
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is implemented based on the described extraction sequence and measurement setup.
The forward simulator At translates each (prior) realization Zt−1(:, i ) into a vector Bt (:, i )
with two observations (Fig. 2.1).

Obviously in practice, the real observation vector dt results from actual measure-
ments with inaccurate sensors. However, due to the synthetic nature of the experiment,
a second forward simulator A ∗

t needs to be built to mimic the behaviour of a real
monitoring network. This simulator generates inaccurate but true observations dt based
on the reference field Z∗ (dt = A ∗

t (Z∗)). The previous constructed simulator At is
adjusted to suit this purpose. Two main modifications are made. First, the reference
field Z∗ is propagated through the simulator and not one of the realizations Zt−1(:, i ).
Second, random noise is added onto the resulting observations to mimic the behaviour
of an inaccurate sensor. The random noise is drawn from a normal distribution with zero
mean and a standard deviation of 0.0625 (0.25/

p
16). The reported standard deviation

defines the measurement accuracy over a volume of 16 truckloads (1,200m3). The
applied sensor has a rather low accuracy. The corresponding accuracy of one truckload
measurement would be 0.25, merely a quarter of the accuracy of a block estimate (block
standard deviation varies between 0.283 and 0.907). In real applications, the observation
and related accuracy would result from a time average of a continuous sensor response.

The described experimental scenario is executed in 29 seconds on a standard laptop
(Intel Core i7-3520M CPU @ 2.90Ghz, 8Gb RAM memory). A single update is completed
in less than 2.5 seconds. The computation time is expected to only slightly increase
when applying this technique to ongoing operations. It is important to understand
that the time needed to solve the updating equations is only dependent on the number
of grid nodes in the neighbourhood subset. The size of the neighbourhood subset is
more determined by the geological scale of correlation and the number of extraction
locations than by e.g. the total number of nodes in a typical application problem (can
be up to a billion). Larger grids though will impact the time needed to construct the
neighbourhood subset. Considering L extraction locations and a space-partitioning
search tree, the time to construct a neighbourhood subset will be in the order of
L log2(N ). Therefore, it is to be expected that the time needed to complete a single
update in real applications will be an order of magnitude smaller than the time needed
to collect time-averaged measurements (a few minutes versus a few hours).

4.2. RESULTS

The performance of the algorithm is evaluated using three sets of criteria. (i) Fields
and cross sections are visually inspected. Mean and reference fields are compared, the
reliability of the 90% confidence interval is assessed and the evolution of the AE and SD
is studied. (ii) Global assessment statistics are computed. The overall quality of a set of
realizations is evaluated by the magnitude of two single value measures; the Root Mean
Square Error (RMSE) and the spread. (iii) Local assessment statistics are computed for
14 different areas. RMSE and spread are calculated per local area to aid a quantitative
comparison. Scatterplots, boxplots and empirical probability plots are drawn to visually
evaluate local improvements.
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4.2.1. VISUAL INSPECTION

Figure 4.8 displays how the mean field changes through time when assimilating sensor
observations from the production chain. The two large rectangular outlines demarcate
the extent of both extractions zone (I and II). The four smaller rectangles delineate
the digging blocks which were extracted, blended and measured during the considered
time interval. A comparison of Fig. 4.8a to 4.8l with the prior mean field (Fig. 4.3a)
and the reference field (4.1a) indicates that the mean field (the current best estimate)
continuously improves in and around both extraction zones.

Figure 4.9a and 4.9b depict respectively a North-South (x = 67.5m) and East-West
(y = 167.5m) section across the reference field and final realizations (after 12 updates).
Both figures support the previous conclusion. The mean field in the neighbourhood of
both extraction zones (150m < y < 270m and 150m < x < 270m) considerably improved
compared to the initial model (Fig. 4.4). Two out of the three occurrences of severe
local estimation bias in the North-South section are corrected (175m < y < 225m and
y > 250m, Fig. 4.4a and 4.9a). The third occurrence, an overestimation bias around
y = 150m, could not be corrected. This local deviation did go undetected because
large positive deviations of small digging blocks were blended with smaller negative
deviations of larger digging blocks (1a and 1b from zone I mixed with 1a and 1b from
zone II, Fig 4.7). The two local corrections along the North-South section can also be
observed in Fig. 4.8f and 4.8j (increase mean field, 175m < y < 225m) and 4.8k (decrease
mean field, y > 250m). The algorithm further corrected the underestimation bias in the
East-West section (Fig. 4.4b - 4.9b, 125m < x < 250m). The observed correction in the
East-West section corresponds to a higher mean field in mining zone II (e.g. compare
Fig. 4.8l and 4.8a).

Figure 4.10a and 4.10b display a North-South (x = 57.5m) and an East-West (y =
167.5m) section across the initial and final AE field. The 12 updates result in a significant
reduction of the absolute error around the extraction zones. Two of the three peaks of
large AE in the North-South section have disappeared (Fig. 4.10a, 175m < y < 225m and
y > 250m). In the corresponding areas, a reduction in AE from 2.0 to 0.5 is observed.
The height of the third peak however slightly increases from about 1.6 to 2.3 (Fig. 4.10a
y = 150m). A plausible explanation for this behaviour has been provided previously.
The correction of the underestimation bias around mining zone II causes a reduction
of AE in the East part of the East-West section (Fig. 4.10b, 125m < x < 250m). The
increase of AE in the West part of this section is directly related to the discussed local
underperformance of the algorithm at the Southern border of mining zone I (Fig 4.8a
y = 167.5m, Fig. 4.8b x = 57.5m).

The assimilation of sensor observations also results in an adjustment of the un-
certainty model. The width of the 90% confidence interval is approximately halved
within both extraction zones (compare Fig. 4.4 and 4.9, 150m < y < 270m and <
150m < x < 270m). The remaining uncertainty inside the excavated areas is attributed
to a combination of measurement error and scale of support effects. In other words,
average inaccurate measurements of blended truckloads are not sufficient to uniquely
characterize individual blocks without any remaining uncertainty. The evolution of the
SD field through time illustrates that the remaining uncertainty is not uniformly adjusted
across the excavated areas (Fig. 4.11). The updating algorithm seems to assign a lower
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.8: Evolution of mean field through time, from update 1 (a) to 12 (l) - grid with 60 x 60 blocks of size 5m
x 5m colour coded according to the computed average block value
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(a)

(b)

Figure 4.9: Sections across updated realizations (after update 12) and reference field (a) North-South section
at x = 57.5m (b) East-West section at y = 167.5m
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(a)

(b)

Figure 4.10: Sections across absolute error before (dashed red) and after 12 updates (solid purple) (a) North-
South section at x = 57.5m (b) East-West section at y = 167.5m
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uncertainty (lower SD) to the larger digging blocks. The SD of updated blocks in large
digging areas varies between 0.25 and 0.45 (Fig. 4.11). The SD of updated blocks in
small digging areas is significantly higher, values between 0.55 and 0.75 are observed.
A comparison of the SD fields across Fig. 4.11 indicates that the adjustment of the
uncertainty model is not only limited to already excavated areas. For example, Figs.
4.11a and 4.11b show that the uncertainty near the middle of mining zone II reduces
from somewhere around 0.7 to 0.5. This reduction occurs during the second update
when none of the material near the middle of mining zone II has already been excavated.
Fig. 4.11 and 4.3b illustrate that a reduction in uncertainty is observed up to a distance
of 30m from the border of a digging block.

Figures 4.12a and 4.12b depict respectively a North-South (x = 67.5m) and East-West
(y = 167.5m) section across the prior (Fig. 4.3b) and final (4.11l) SD field. The North-
South section shows that the reduction of the SD is lower in the smaller digging areas
(150m < y < 180m) compared to the larger ones (180m < y < 270m). North of the
Northern border of extraction zone I (y > 270m), the SD increases from 0.25 (inside,
180m < y < 270m) towards 0.75 over a distance of about 30m. The uncertainty as well
reduces up to 30m away from the Southern border (120m < y < 150m), though this
reduction is less remarkable due to the larger SD values in the smaller digging areas
(150m < y < 180m). The East-West section primarily intersects large digging areas
(except for 50m < x < 70m), hence the SD inside both extraction zones generally reduces
to values between 0.25 and 0.35 (Fig. 4.12a). The SD inside the smaller digging areas
(50m < x < 70m) reaches values near 0.65. The effects of a reduction in uncertainty are
again observed up to 30m away from the boundaries of both extraction zones (zone I -
x < 50m and x > 90m; zone II - x < 150m and x > 270m). The differences between the
prior and final SD field displayed in the East-West section (Fig. 4.12b) are less striking
compared to those in the North-South section (Fig. 4.12a). This is due to a lower and
more variable prior SD field in the East-West section (larger effect of nearby sampling
points) and has nothing to do with the updating results which are similar for both cross
sections.

4.2.2. GLOBAL ASSESSMENT STATISTICS
The RMSE and spread are single value measures expressing the global quality of a set
of realizations. As such, they allow for a more convenient comparison of realization
sets across different timesteps. The RMSE measures the overall deviation between the
reference field (Z∗) and the mean field (Ẑt ) at a given timestep. The RMSE is defined
as the root of the average squared differences between all available true and estimated
block values:

RMSEt =
√√√√ 1

N

N∑
n=1

[Z∗(n)− Ẑt (n)]2. (4.1)

The spread summarizes the overall estimated uncertainty and is calculated as the square
root of the average block variance:

SPRE AD t =
√√√√ 1

N

N∑
n=1

V AR(Zt (n, :)). (4.2)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.11: Evolution of SD field through time, from update 1 (a) to 12 (l) - grid with 60 x 60 blocks of size 5m
x 5m colour coded according to the computed block standard deviation
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(a)

(b)

Figure 4.12: Sections across standard deviation before (dashed green) and after 12 updates (solid orange) (a)
North-South section at x = 57.5m (b) East-West section at y = 167.5m
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Figure 4.13: Evolution of RMSE and spread through time

In both formulations (Eq. 4.1 and 4.2) n iterates over all 3600 blocks in the grid. Ideally,
the RMSE reduces as a function of the number of incorporated measurements. During
the course of the experiment the uncertainty model is adjusted as well to account for the
remaining error. Hence the need for a spread which approximates the RMSE.

Figure 4.13 shows the evolution of the global RMSE and spread through time. The
RMSE of the prior realizations amounts to 0.708, while the prior spread is 0.690. Over
the course of the experiment, the global RMSE drops by about 11% (from 0.708 to 0.630).
The spread decreases accordingly, a reduction of 5% is observed (from 0.690 to 0.649).
Figure 4.13 indicates that the spread decreases at a constant rate. This was to be expected
since a constant material volume is measured during each timestep. There is no reason
to assume that the information value of similar observations would be different over
time. Figure 4.13 illustrates that the RMSE tends to reduce at the same rate. The more
volatile behaviour is possibly caused by its large sensitivity to local improvements. For
example, the rate of reduction in RMSE from timestep 5 to 6 is exceptionally large and
inconsistent with the general pattern. This exceptionally large reduction originates from
a local correction of an anomalous area. Figure 4.3c already indicated that the prior
AE was consistently larger than 1.5 in an area bounded by [25m,75m] x [175m,225m].
During the 6th timestep a significant part of this area is excavated and measured. The
algorithm detects this local anomaly and performs a correction. Figure 4.8e and 4.8f
clearly show that the mean field in this local area is lifted during the 6th timestep.

4.2.3. LOCAL ASSESSMENT STATISTICS
The previously reported global statistics are computed over all available 3600 blocks.
During an update, only a fraction of this number is adjusted. The effects of local
improvements are thus smeared out when computing a measure of global quality. The
following presents a more local assessment to better comprehend the effects of an
updating sequence.

A total of 14 local areas are defined and displayed in Fig. 4.14. Two local areas (I0
and II0) coincide with the previous demarcated extraction zones (zone I and II, Fig. 4.6).
Antoher six frames, all 5m wide, are laid out around mine zone I and II(I1 to I6 and II1 to
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Figure 4.14: Outline of 14 local areas, 2 extraction zone of 4,800m2, 12 surrounding frames with a width of 5m

II6).
For each local area, a true value is computed by averaging blocks of the reference

field located inside the corresponding boundary. Similarly, each realization is converted
into 14 local area values. Upon completion, 200 simulated local area values are collected
and further used to compute a best estimate (i.e. mean) and quantile values. Figure
4.15 displays the true local area values versus their best estimates before and after 12
updates. A zero distance between a point and the bisector refers to a perfect alignment of
a true and estimated value. The scatterplot indicates that the quality of the prior model
(blue dots) is location dependent. In general, local area estimates deviate more from
their reference values in and around mining zone II (open markers) than they do in and
around mining zone I (filled markers). The 12 updates alter the realizations such that the
estimated area values in and around zone II are shifted towards the bisector (red squares,
Fig. 4.15). This corresponds to a general increase in mean field in the vicinity of zone II
(compare Fig. 4.8a and 4.8l). Notice the large change in area value II0 and II1, both
change respectively from 0.062 to 0.547 (0.673) and from −0.199 to 0.236 (0.427). Their
corresponding reference values were indicated between brackets. The best estimates in
mining zone I do not experience such drastic changes.

Figure 4.16 depicts boxplots constructed from the computed local area quantiles.
The boxplots indicate that the prior uncertainty model partially accounts for the pre-
viously observed initial deviations (Fig 4.16a). For about 10 of the 14 local areas, the
reference field is located inside the 90% confidence interval. The mismatch between
reference value and confidence interval is remarkable in areas II0 to II4. After updating
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Figure 4.15: Scatterplot of true versus estimated area values before (blue dots) and after 12 updates (red
squares) - filled markers refer to areas in mining zone I, open markers refer to areas in mining zone II

12 times, the boxplots characterizing local areas in mining zone II are shifted upwards
and become shorter. Those characterizing mining I undergo a similar transition,
although their upward shift is much more subtle. A uniform shift refers to a correction
of bias, while shorter boxplots indicate a reduction of uncertainty.

The previously defined RMSE and spread can also be computed locally. In Eq. 4.1
and 4.2, n then refers to blocks confined to one of the specified local areas. Figure 4.17
displays the prior and posterior RMSE and spread per local area. Apparently, the prior
RMSE of the local areas in mining zone I are slightly larger than those in mining zone
II (Fig. 4.17a). This might seem contradictory, since previously the larger deviations
between local area estimates and reference values were observed in mining zone II, and
not in zone I (Fig. 4.15). The contradiction directly results from the effect of different bias
mechanisms on the computed statistics. In mining zone I, three occurrences of a severe
local under- or overestimation of the prior model are observed (zone I, Fig. 4.1a, 4.3a and
4.8l). When computing an area estimate, the local deviations are averaged out. However
due to the squared difference in 4.1, these local large deviations do have a significant
impact on the resulting RMSE value. The prior model in zone II is affected by a medium
single bias extending over a larger area (zone II, Fig. 4.1a, 4.3a and 4.8l). This regional
bias is not averaged out, hence the larger deviation between an area estimate and the
reference value. Since the regional bias is of medium magnitude, the resulting RMSEs
are not as large as those of mining zone I.

After 12 updates, the RMSEs of local areas I0 and II0 drop by about 38% and 45%
(I0: from 0.984 to 0.608, II0: from 0.811 to 0.447, Fig. 4.17a). The first three local areas
around mining zone I (I1, I2, I3, Fig. 4.14) observe a reduction in error of about 24%, 17%
and 13%. The posterior RMSE values are respectively 0.833 (I1), 0.839 (I2) and 0.790 (I3).
In the three frames surrounding mining zone II (II1, II2, II3, Fig. 4.14), the RMSE drops
by about 39%, 27% and 19%, reaching posterior RMSE values of 0.547 (II1), 0.569 (II2)
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(a)

(b)

Figure 4.16: Boxplots constructed from the computed local area quantiles at timestep 0 (a) and timestep 12
(b) - reference values are indicated as red crosses, box and whiskers refer respectively to the 50% and 90%
confidence interval
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(a)

(b)

Figure 4.17: Barcharts displaying the local area RMSE (a) and spread (b) of the prior (red) and updated
realizations (blue)
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and 0.620 (II3). Around mining zone II, a significant improvement is observed and small
posterior RMSE values are attained (0.55 to 0.60). The updates are still successful around
mining zone, although medium RMSE values are obtained (0.80).

Figure 4.17b displays the prior and posterior spread per local area. The prior spread
is more or less uniform across the areas and varies between 0.647 and 0.724. After 12
updates, the spread of local areas I0 and II0 drop by about 40% and 41% (I0: from 0.663
to 0.396, II0: from 0.677 to 0.0.401). The first local areas surrounding both extraction
zones (I1 and II1) observe a reduction in spread of about 24% and 26% (I1: from 0.704 to
0.533, II1: from 0.724 to 0.539). The spread in local areas I2 and II2 reduces by about 15%
and 16% (I2: from 0.696 to 0.591, II2: from 0.720 to 0.607). A reduction of 9% and 10% is
observed in local areas I3 and II3 (I3: from 0.687 to 0.624, II3: from 0.714 to 0.646). The
reported spread values indicate that the uncertainty gradually increases as a function
of the distance from the extraction zones. The initial bias does not seem to affect the
posterior spread values. Further notice the similarities between the reduction of RMSE
in mining zone I and the overall spread reduction.

In order to conclude the discussion of the experimental results, global and local
empirical probability curves are presented and analysed. For each block included in the
analysis, empirical quantiles are computed according to a predefined set of theoretical
probabilities (e.g. 0.025 to 0.975). For a given theoretical probability, corresponding
block quantiles are retrieved and compared against the reference values. The proportion
of reference values not exceeding the block quantiles is referred to as the empirical
probability. The procedure is repeated for all predefined theoretical probabilities. The
interested reader is referred to Olea (2012). A good uncertainty model would results in
probability pairs located along the bisector. This would for example imply that for 10%
of the investigated blocks (empirical probability) the reference value is lower than the
corresponding 10% quantile (the 10% here refers to the theoretical probability).

Figure 4.18a displays the global empirical probability curves computed from prior
and updates realizations. The curve confirms a global good agreement between devi-
ations (error) and uncertainty (spread) in the prior model (due to the medium dense
sampling grid). Updating results in an even better alignment of the global probability
curve with the bisector.

Figure 4.18b, 4.18c and 4.18d all display two prior and two posterior local probability
curves computed from blocks in respectively local areas I0 and II0, local areas I2 and II2
and local areas I4 and II4 (Fig. 4.14). The figures illustrate that the regional deviations in
mining zone II are not accounted for in the prior uncertainty model (purple triangles).
The occurrence of low values is severely overestimated. For example in only 6% of the
blocks in area I0 , is the reference value below the computed 40% quantile value. The
prior probability curves for areas II0, II2 and II4 indicate that the block distributions
in and around extraction zone II are centred around values which are too low (purple
triangles, Fig. 4.18b, 4.18c and 4.18d). Updating causes a significant upward shift of the
corresponding distributions (orange pentagons, Fig. 4.18b, 4.18c and 4.18d). However,
the posterior empirical probability curves indicate that the upward shift could have been
slightly larger. Figure 4.16b confirms this conclusion. A slightly higher position of the
boxplots, representing local areas II0 to II4, would result in reference values located
inside the 50% confidence interval. The prior empirical probability curves of areas I0,
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(a) (b)

(c) (d)

Figure 4.18: Empirical versus theoretical probabilities computed over prior and updates realizations - (a) entire
grid (b) local area I0 and II0 (c) local areas I2 and II2 (d) local areas I4 and II4

I2 and I4 approve the overall quality of the prior uncertainty model around mining zone
I (red circles, Fig. 4.18b, 4.18c and 4.18d). A more detailed analysis reveals that the tails
of the distributions are a bit too long. Such a conclusion can be drawn from the fact
that the occurrence of low values and high values is slightly overestimated (’S’ shape
instead of straight line). Updating generally results in a better alignment of the posterior
curves with the bisector (green squares, Fig. 4.18b, 4.18c and 4.18d). This corresponds
to shorter confidence interval, as observed in Fig. 4.16b.

4.3. CONCLUSIONS
An artificial experiment is conducted to demonstrate the capabilities of the developed
algorithm. A mining operation with two extraction points of unequal production rate
is simulated. The resulting material streams are blended and intentionally inaccurate
observations are made. A total of 12 updates is performed, each one based on 2
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inaccurate observations of 16 blended blocks. The performance of the algorithm is
evaluated using various criteria.

(1) A visual inspection indicates that the mean field continuously improves in and
around both inspection zones. Occurrences of severe local estimation bias are generally
corrected. Only when individual block deviations were averaged out in the blend (large
positive deviations associated with small digging blocks are cancelled against smaller
negative deviations of larger digging blocks), did the local deviation go undetected. The
assimilation of sensor observations also resulted in an adjustment of the uncertainty
model. The confidence interval in the cross sections and the standard deviation fields
show that the remaining uncertainty is not uniformly distributed across the excavated
areas. Regions who contribute more material to the blend are estimated with a higher
confidence (lower SD, smaller confidence interval). The adjustment of the uncertainty
model extends beyond the already excavated areas.

(2) The global statistics demonstrate how the overall quality of the model evolves as
production data are being assimilated. Over the course of the experiment, the global
RMSE drops by about 11%. The displayed evolution is somewhat volatile, reflecting
the relative importance of a few local improvements. The spread, on the other hand,
decreases with a constant rate. After all, the information value of similar observations
do not change over time.

(3) An assessment of local statistics provides a better comprehension of the effects
of an updating sequence. Prior to updating, the quality of the model is largely location
dependent. Local biases do exist and the confidence interval only partially accounts
for the observed deviations. As a result, certain areas are more drastically updated than
others. The modifications in mining zone I are limited to a correction of the uncertainty
model (to account for the assimilated observations). Mining zone II, on the other hand,
experiences a significant alteration to correct the local estimation bias. The RMSE in
zone I and II drops with 38% and 45% respectively. Improvements of 24%, 17% and 13%
are observed within the first three local areas surrounding zone I. The corresponding
values for zone II amount to 39%, 27% and 19%.

The next chapter focusses on the influence of the monitoring network on the perfor-
mance of the algorithm. A series of experiments is conducted to measure the effects of
different sensor precisions, measurement volumes, update intervals and blending ratios.
The results the study is used to formulate recommendations for designing an optimal
monitoring network, guaranteeing optimal algorithm performance. The author expects
that for a given blending ratio the order of extraction does not significantly impact the
final results. This assumption has not been proven and should be verified.

It is also important to understand the limitations of the algorithm regarding the
geological environment and the prior model hereof. The question still remains whether
good performance can be achieved when the prior model and the reality differ substan-
tially. Also the effects of different spatial correlation structures is not yet understood
(different covariance models, ranges, nugget, ...). Another possible point of attention
could be the further improvement of the localization error correction option. The
current implementation (Gaspari-Cohn correlation function) results in a differential
covariance correction of blocks inside the same digging area. Blocks near the extraction
point receive a lower correction factor than blocks slightly further away. Especially when
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considering large measurement volumes (digging blocks), a tapering function with a
plateau might be more suitable. The function should be defined such that all blocks
inside the digging area are not corrected (correction factor of 1) and that tapering starts
from the border of the digging areas.
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5
SENSITIVITY ANALYSIS

This chapter studies how the design and operational control of the monitoring system
influences the overall performance of the updating algorithm. A total of 125 experiments
are conducted to quantify the effects of variations in measurement volume, blending ratio
and sensor precision. The following questions are addressed to compare behaviour across
experiments. (i) Does the resource model improve over time? (ii) Does the accuracy of
the predicted system output improve over time? (iii) Does the predicted system output
in the next 24h improve after updating? Based on the outcome, recommendations are
formulated to optimally design and operate the monitoring system, guaranteeing the best
possible algorithm performance.

Parts of this chapter have been submitted for publication in Mathematical Geosciences accepted with
revisions (Wambeke and Benndorf, 2017a).
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The previous chapter illustrates the potential of the developed real-time updating
algorithm. In order to apply the concept in practice, a set of estimates At (Zt−1(:, i ))
needs to be generated and the corresponding measurements dt are to be collected. At
the beginning of each time interval [t −1, t ], a set of estimates At (Zt−1(:, i )) is obtained
by individually propagating the GC model realizations through a forward simulator At

(a simulation based approach to characterize uncertainty). The forward simulator is
a virtual model of the actual operation and describes which GC blocks are extracted,
processed and measured between t − 1 and t . Based on the provided GC model
realizations, the forward simulator provides a set of estimates for the upcoming actual
observation dt . This forward prediction step is essential in linking a specific observation
dt to its constituent GC blocks.

Figure 5.1 illustrates how actual observations dt are collected. The figure shows
an example of a monitoring system in an open pit mining operation. In this example,
material is extracted from two benches with different local production rates. After
hauling, material is tipped into a comminution circuit. Inside the comminution circuit,
a sensor continuously records the properties of the crushed material. As soon as a time
period ends, an average measurement dt is computed based on the recorded sensor
response. This average measurement characterizes all material that passed the sensor
between t −1 and t (Fig. 5.1). The algorithm subsequently updates the GC model based
on the differences between the estimates and the actual measurement (Eq. 2.5).

The performance of the algorithm directly depends on following three system pa-
rameters. (i) The measurement volume Vt equals the amount of material that has
been characterized between t − 1 and t . The measurement volume is controlled by
adjusting the interval duration ([t − 1, t ]) and the local production rates (Fig. 5.1). (ii)
The blending ratio Rt ,X , formulated as a percentage, defines how much material in the
measurement volume originates from Bench X . The blending ratios are determined by
the local production rates. (iii) The measurement error Et represents the accuracy of
the applied sensor. Once installed, the sensor accuracy can hardly be adjusted. The
objective of this paper is to study the influence of these three system parameters on the
overall performance of the algorithm. A total of 125 experiments are conducted to derive
some general recommendations to optimally operate the monitoring system.

5.1. METHODOLOGY

5.1.1. GENERAL SETUP

The 125 experiments represent a mining operation with two extraction zones located
in different benches. Material streams originating from both benches are blended and
inaccurate observations are made (Fig. 5.1).

The experiments are conducted using the following boundary conditions; (a) the
true but unknown geological reality does not change across the experiments, (b) each
experiment starts with the same prior model of this geological reality, (c) the global
production rate is assumed constant across all timesteps and experiments, (d) the
duration of each experiment is the same.

Albeit exactly the same material is excavated, processed and measured during the
course of each experiment, the configuration of the monitoring system significantly
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Figure 5.1: Monitoring setup in an open pit mining operation - the coloured blocks refer to material that has
been extracted during the studied time interval (t −1 to t )
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influences the end results. From this point forward, the measurement volume Vt is
expressed in number of GC blocks. Measurement volumes of 8 (1), 16 (2), 32 (4), 48 (6)
and 64 (8) GC blocks are considered. The values between brackets refer to corresponding
time units. Note, the production rate remains constant at 8 GC blocks per time unit.

The blending ratio Rt ,A defines how many of the blocks in the measurement volume
originate from bench A. Consequently, the remaining blocks originate from bench B .
For example, a blending ratio of 75% and a measurement volume of 48 blocks prescribe
that each single blended measurement is composed of 36 blocks from bench A (NA) and
12 blocks from bench B (NB ). Blending ratios of 100%, 87.5%, 75%, 62.5% and 50% are
considered.

The measurement error Et , defined as the standard deviation of a zero mean normal
distribution, represents the precision of the applied sensor. Measurement errors of 0.05,
0.25, 0.5, 0.75 and 1.00 are considered. The reported standard deviations define the
measurement error on the scale of a single GC block (discussed later on).

The following presents more details regarding the construction and execution of
the experiments. Units of the modelled attributes are omitted to stress their synthetic
nature.

5.1.2. GEOLOGY

TRUE BUT UNKNOWN FIELD

During the course of an experiment, a true but unknown geological state is sampled
twice. First, small point samples are collected on both benches prior to the construction
of the GC model (exploration phase). Second, observations are made on a blend of mul-
tiple GC blocks, which do not necessarily originate from the same bench (operational
phase). To correctly account for both scales of support, two representations of the true
but unknown state are constructed. Both the high-resolution point and lower-resolution
block reference fields characterize the true but unknown geological state in two benches
of 300m x 300m using a different level of discretization.

The high resolution point representation is constructed on two discretized grids,
each with 300 x 300 cells of size 1m x 1m. The origins of bench A and B are located in
(0m, 0m) and (1000m, 1000m) respectively. The two reference fields are generated using
a random field simulation algorithm (sequential Gaussian simulation). Attribute values
are drawn from a standard normal distribution (centred around 0). The correlation
between attribute locations is described using an isotropic exponential function with
a variance of 1.0 and a range of 100m. Each attribute value thus reflects the direction
(-/+) and magnitude of a deviation from a global mean.

Due to field dimensions which are relatively small compared to the range of the
covariance model (300m versus 100m), four times larger simulation grids are used (600
x 600 cells of size 1m x 1m). Eventually only the south-west quarter of the grids are
retained. The resulting field in bench A has an average of −0.145 (−0.038) and a variance
of 0.728 (1.025). The 5% and 95% quantiles are −1.500 (−1.709) and 1.271 (1.618). The
values between brackets refer to those computed from the larger simulation grid. The
resulting field in bench B has an average of −0432 (−0.079) and a variance of 1.089
(0.987). The 5% and 95% quantiles are −2.130 (−1.703) and 1.266 (1.569).

The low-resolution block representation is constructed on two discretized grids, each



5.1. METHODOLOGY

5

65

Figure 5.2: Block representation of true but unknown geological state in bench A (left) and bench B (right) -
60 x 60 blocks of size 5m x 5m colour coded according to their average block value - black crosses indicate the
locations of the sampling points collected on a 60m x 60m exploration grid - point samples have a support of
1m x 1m

with 60 x 60 cells of size 5m x 5m. This second set of reference fields is obtained from
reblocking the previous point fields. Values of 5 x 5 1m x 1m cells are averaged and
assigned to larger 5m x 5m blocks. The resulting block reference field in bench A has
an average of −0.145 (unchanged) and a variance of 0.659. The 5% and 95% quantiles
are −1.444 and 1.181. The resulting block reference field in bench B has an average of
−0.432 (unchanged) and a variance of 1.012. The 5% and 95% quantiles are −2.068 and
1.209. As expected, the variability reduces due to reblocking. The final block reference
fields of bench A and B are displayed in Fig. 5.2.

PRIOR MODEL

Two sets of field realizations are used throughout to characterize the spatial variability
and quantify the geological uncertainty of the study environment in bench A and B .
Prior to the operation, the study prescribes the availability of exploration data collected
on a 60m x 60m sampling pattern. This sampling density results in two prior sets of
realizations with a realistic level of uncertainty and error.

Two prior sets of 100 realizations are generated on discretized grids with 600 x 600
cells of size 1m x 1m using a sequential Gaussian simulation algorithm (same as before).
Again, the simulation grids are four times larger than the studied areas for reasons of
small field dimensions compared to the range of the covariance model. A total of 200
sampling points are provided as conditioning data (100 per grid, sampled on a 60m x
60m pattern from the previous point simulations on the large 600 x 600 grids with 1m x
1m cells). From the 200, only 50 sampling points are actually located inside one of both
study areas (Fig. 5.2). The covariance model of the true state is assumed to be known
and was not inferred from the sampling points (isotropic exponential function with a
variance of 1.0 and a range of 100m). The effect of an incorrectly inferred covariance
model is discussed in Sections 5.7 (last paragraph) and 7.2.2 (second paragraph). Once
simulated only the south-west quarter of grid A and grid B are retained (300 x 300 cells
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Figure 5.3: Bench A (left) and bench B (right) with 60 x 60 blocks of 5m x 5m colour coded according to
computed mean field (EM)

of size 1m x 1m). Subsequently, the 100 point simulation are reblocked onto a grid with
60 x 60 blocks of size 5m x 5m.

Only the block realizations are further considered (one reference field Z∗ and 100
prior block realizations Z0(:, i ) per bench). All previous point simulations were just an
aid to this end.

Figure 5.3 displays the mean field (EM) computed from the 100 prior realizations.
The mean fields of bench A and B are considerably smoother than the true state (com-
pare Figs. 5.2 and 5.3). The general larger-scale patterns are nevertheless reproduced.

5.1.3. EXPERIMENTAL SCENARIOS
From this point forward, it will be assumed that the previously constructed block
realizations have a thickness of 5m. Considering a rock density of 2.8g /t , it is not
unreasonable to assume that each 125m3 GC block is transported by a truck with a
payload capacity of 350t . Hence the terms GC block and truck are used interchangeably.

During each experiment, a total of 403200t is blasted, excavated, processed and
monitored. The corresponding 1152 GC blocks originate from two possible extraction
zones in bench A or B (Fig. 5.4). Each experiment terminates after 114h. This is the
time needed to remove all GC blocks from the designated extraction zones assuming a
constant global production rate of 2800t/h (8 GC blocks per time unit). For the sake
of simplicity, blending and movement due to blasting are not being considered in this
chapter (blast movements are accounted for in Chapter 6). Consequently, the position
of a certain excavated volume corresponds directly to the original voume in the block
model (no corrections have to be applied). The blending referred to here, in the this
chapter, solely results from mixing material from two production areas.

COMPOSITION MEASUREMENT VOLUME

The extraction zones are further subdivided into 36 20m x 20m digging blocks. The
numbers in Fig. 5.4 indicate the order in which digging blocks are extracted from a
bench. The same sequential pattern is used to extract 16 5m x 5m x 5m GC blocks from
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Figure 5.4: Extraction zones (120m x 120m x 5m) and digging blocks (20m x 20m x 5m) in bench A (left) and
bench B (right) - the numbers indicate the order in which digging blocks are extracted from a bench

each 20m x 20m x 5m digging block (move a row from bottom to top, move within a
row from left to right). Both extraction patterns are combined to construct two nested
queues (one for each bench). Each nested queue uniquely defines the order in which
GC blocks are removed from a particular bench. The order of extracting GC blocks from
each bench does not change across the 125 experiments.

The specific time when a GC block is extracted, processed and measured does change
across experiments. Algorithm 2 (p. 68) fully describes the composition of the blend at
discrete timesteps given a measurement volume Vt and a blending ratio Rt ,A . A blend
refers to a collection of GC blocks passing the sensor between t −1 and t . Note that the
blending ratio Rt ,A is changed to 100−Rt ,A when 576 GC blocks are extracted (lines 19-
20, Algm. 2, p. 68). This to ensure that both extraction zones are fully depleted at the end
of each experiment.

Figures 5.5, 5.6 and 5.7 display the composition of the blend at 36, 42 and 48
hours given three different blending ratios (75%, 62.5% and 50%) and a measurement
volume of 48 GC blocks. The complexity of the corresponding mining schedules
differs significantly across the various blending scenarios (compare Fig. 5.5 and 5.7).
The digging outlines defined by blending scenario 43E (Fig. 5.5) do not immediately
resemble an obvious pattern. Occasionally, scheduled GC blocks are even dispersed
across the bench (Fig. 5.5a). In contrast, blending scenario 54E consistently yields two
L-shaped digging outlines.

Table 5.1 provides an overview of the 25 different blending scenarios. Note that the
measurement volume determines the time between updates and therefore also the total
number of possible updates within each experiment.

5.1.4. FORWARD SIMULATOR AND SENSOR RESPONSE

Based on a defined blending scenario, a forward simulator At is implemented. The
forward simulator is constructed based on the assumption that an actual measurement
dt would result from a time-averaged sensor response characterizing the composition of
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Algorithm 2 Blending algorithm

1: procedure BLEND(Vt , Rt ,A)

2: Queue A ;QueueB ← NESTEDQUEUES

3: Di g A ;Di gB ← POP(Queue A); POP(QueueB )
4: NA ; NB ←Vt ∗Rt ,A ;Vt ∗ (100−Rt ,A)
5: Ntot ← 0

6: while Ntot ̸= 1152 do
7: Blend ← EMPTYBLEND

8: for i ← 1, NA do
9: if LEN(Di g A) = 0 then

10: Di g A ← POP(Queue A)

11: Block ← POP(Di g A)
12: Blend ← APPEND(Blend ,Block)

13: for j ← 1, NB do
14: if LEN(Di gB ) = 0 then
15: Di gB ← POP(QueueB )

16: Block ← POP(Di gB )
17: Blend ← APPEND(Blend ,Block)

18: Ntot ← Ntot +Vt

19: if Ntot = 1152/2 then
20: NA , NB ← NB , NA

21: WRITEBLOCKIDS(Blend)
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(a) 36h

(b) 42h

(c) 48h

Figure 5.5: GC blocks from bench A (left) and bench B (right) in blend at 36 (a), 42 (b) and 48 (c) hours -
measurement volume of 48 blocks and blending ratio of 75% - blending scenario 43E
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(a) 36h

(b) 42h

(c) 48h

Figure 5.6: GC blocks from bench A (left) and bench B (right) in blend at 36 (a), 42 (b) and 48 (c) hours -
measurement volume of 48 blocks and blending ratio of 62.5% - blending scenario 44E
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(a) 36h

(b) 42h

(c) 48h

Figure 5.7: GC blocks from bench A (left) and bench B (right) in blend at 36 (a), 42 (b) and 48 (c) hours -
measurement volume of 48 blocks and blending ratio of 50% - blending scenario 45E
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Table 5.1: Blending scenarios defined by measurement volumes Vt and blending ratios Rt ,A - Upd . is number
of updates within an experiment, d t is time between updates - Na and Nb are the number of blocks from bench
A and bench B constituting a blended measurement - the E in the experiment code refers to an unassigned
measurement error

Exp. V [#] Upd .[#] d t [h] R[%] NA[#] NB [#]
11E 8 144 1 100 8 0
21E 16 72 2 100 16 0
31E 32 36 4 100 32 0
41E 48 24 6 100 48 0
51E 64 18 8 100 64 0
12E 8 144 1 87.5 7 1
22E 16 72 2 87.5 14 2
32E 32 36 4 87.5 28 4
42E 48 24 6 87.5 42 6
52E 64 18 8 87.5 56 8
13E 8 144 1 75 6 2
23E 16 72 2 75 12 4
33E 32 36 4 75 24 8
43E 48 24 6 75 36 12
53E 64 18 8 75 48 16
14E 8 144 1 62.5 5 3
24E 16 72 2 62.5 10 6
34E 32 36 4 62.5 20 12
44E 48 24 6 62.5 30 18
54E 64 18 8 62.5 40 24
15E 8 144 1 50 4 4
25E 16 72 2 50 8 8
35E 32 36 4 50 16 16
45E 48 24 6 50 24 24
55E 64 18 8 50 32 32
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the blend. To mimic this behaviour, the forward simulator translates a set of realizations
Zt−1(:, i ) into a set of estimated observations At (Zt−1(:, i )) by averaging a selection of GC
block values. The relevant blocks are selected with the aid of Algm. 2 (p. 68). The values
to be averaged are obtained from the relevant GC model realization. The time between
consecutive runs (time between t −1 and t ) is determined by the measurement volume
(Tab. 5.1).

Due to the synthetic nature of the experiment, a second forward simulator A ∗
t is

built to mimic the behaviour of a real monitoring network. This simulator generates
inaccurate but true observations dt based on the reference field Z∗ (dt = A ∗

t (Z∗)).
The previous constructed simulator At is adjusted to suit this purpose. Two main
modifications are made. First, the reference field Z∗ is propagated through the simulator
and not one of the realizations Zt−1(:, i ). Second, random noise is added onto the single
GC block responses (individual GC block values). The random noise is drawn from
a zero mean normal distribution with a standard deviation Et , previously referred to
as the measurement error (in order to compare results across experiments, the same
random seed is used throughout). Once the noise is added onto the sensor response
(GC block value), a time-averaged measurement dt is computed. For further reference,
the accuracy of the time-averaged measurement amounts to Et /

p
Vt (Vt , expressed in

number of GC blocks).

Given the reference field, the prior set of realizations and both forward simulators, a
total of 125 experiments are conducted based on different V -R-E combinations (5x5x5).
Each experiment is given a unique three digit code. The first two digits refer to the
blending scenario as indicated in Tab. 5.1. The third digit indicates the precision of the
applied sensor (1 for an E of 0.05, 5 for an E of 1.00).

5.2. ASSESSMENT STATISTICS
The raw data of the 125 experiments is further processed. An assessment statistic, the
root mean square error (RMSE), is computed on several subsets of data to address the
following questions. (1) Does the GC model improve over time? (2) Does the accuracy
of all predicted measurements improve over time? (3) Do predicted measurements in
the next 24h improve after updating? Based on these questions, the behaviour across
experiments is compared (next section). This section illustrates, based on results from a
single experiment, how the necessary assessment statistics are calculated.

The computed assessment statistics are subdivided into two groups. (a) Field
statistics are derived from spatial GC models, and are used to answer the first question.
(b) Production statistics are computed based on predicted measurements, and used to
address the second and third question. Experiment 223 is used as an example. As a
reminder, experiment 223 is based on a measurement volume of 16 GC blocks (5600t ), a
blending ratio of 87.5% and a measurement error of 0.50.

5.2.1. FIELD STATISTICS

Figure 5.8 displays how the mean fields of bench A and B change through time when
assimilating time-averaged sensor responses. The 16 smaller rectangles demarcate the
GC blocks which were extracted, blended and measured during the considered time
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interval. A comparison of Figs. 5.8a to 5.8h with the prior mean field (Fig. 5.3) and the
true state (Fig. 5.2) indicates that the mean field (the current best estimate) continuously
improves in and around both extraction zones.

It is hardly feasible to visually compare the evolution of spatial fields across a
multitude of experiments. Instead a more quantitative measure such as the RMSE is
computed. The RMSE describes the overall deviation at time t between true (Z∗(n))
and estimated block values (E

[
Zt (n, :)

]
):

RMSEt =
√√√√ 1

N

N∑
n=1

(
Z∗(n)−E

[
Zt (n, :)

])2
. (5.1)

Two time series of RMSE are computed, one for each extraction zone. In this case, n
only iterates over the 576 blocks located inside one of both studied extraction zones (Fig.
5.4). Both times series are further processed. The change in RMSE quantifies obtained
improvements (positive) or deteriorations (negative) relative to time 0:

∆RMSEt = RMSE0 −RMSEt (5.2)

Ideally, the ∆RMSE increases as more measurements are incorporated. Figure 5.9
displays the evolution of the ∆RMSE through time. The RMSE of the prior model inside
the extraction zones of bench A and B amounts to 0.718 and 0.781 respectively. Over the
course of the experiment, the RMSE inside both extraction zones drops by about 45%
(45.34% and 44.19%).

Figure 5.9 indicates that the RMSE decreases approximately at a semi-constant rate
during the first (0h to 72h) and second half (72h to 144h) of the experiment. The
inflection point of both ∆RMSE curves lies at 72h, i.e. when the blending ratio is
reversed (lines 19-20, Algm. 2, p. 68). The blending scenario clearly influences the rate
of reduction of the RMSE in a bench. The period of steep incline (faster reduction in
RMSE) coincides with a larger local production rate (2450t/h, 14 GC blocks per 2h). A
lower local production rate (350t/h, 2 GC blocks per 2h) results in a more gentle incline.
Note that the global production rate remains constant across the experiment (2800t/h,
8 GC blocks per h).

The somewhat volatile behavior results from a larger impact of a few local improve-
ments (Fig. 5.9). For example, the exceptionally large reduction between 28h and 34h at
bench A originates from a correction of the anomalous central area (compare Figs. 5.8a
and 5.8b). A similar exceptionally large reduction in RMSE occurs in Bench B between
72h and 74h (Fig. 5.9, decreasing mean field near x = 1175m and y = 1125m, compare
Figs. 5.8d and 5.8e).

5.2.2. PRODUCTION STATISTICS
Figs. 5.10a to 5.10i display predicted measurements At (Zt−1(:, i )) (blue boxplots) com-
puted from the most recent GC model at nine different timesteps (refer to time label
in top left corner). The figures further show time-averaged sensor responses (dt , green
cross) and true but unknown averages (red dots). Each plot displays the average
composition of 72 2h blends (16 GC blocks, 5600t per blend). Some blends are already
processed and measured (grey area), one is currently being characterized (yellow bar)
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(a) 18h (b) 36h

(c) 54h (d) 72h

(e) 90h (f) 108h

(g) 126h (h) 144h

Figure 5.8: Mean field in bench A (left) and bench B (right) at 18h (a), 36h (b), 54h (c), 72h (d), 90h (e), 108h
(f), 126h (g) and 144h (h) - experiment 223, measurement volume of 16 GC blocks (5600t ), blending ratio of
87.5% and measurement error of 0.5
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Figure 5.9: Changes in RMSE as a function of time, computed over the extraction zones in bench A (top) and
bench B (bottom) - results from experiment 223 are displayed



5.2. ASSESSMENT STATISTICS

5

77

and others still have to be extracted (right of yellow bar). Once a new time interval ends,
a new inaccurate measurement becomes available (green cross in the yellow bar) and
an update is performed. Before moving to the next time interval, the forward simulator
readjusts all predicted measurements.

In practice, inaccurate measurements are not yet available ahead of the current time
interval (no green crosses right of the yellow bar). Moreover, due to sensor inaccuracies,
the true averages of the blends (red dots) are never known.

Due to the artificial nature of the experiments, the true averages of the blends are
known and production assessment statistics can be computed. The bottom axes in Figs.
5.10a to 5.10i display the differences in absolute error (DAE) between best estimates
(blue horizontal lines in boxplots) and true averages (red dots) relative to time 0. For
example, a DAE value of 0.5 indicates that the best estimate moved 0.5 units towards the
true average. The bars are coloured green in case of improvements and red otherwise.
Figures 5.10a to 5.10i show that deteriorations (red bars) are relatively rare and that their
magnitudes stay within acceptable limits. The figures further illustrate that GC model
updates do not only result in reconciled historic production data (grey area), but also
improve future predictions (right of yellow bar).

Two sets of ∆RMSE curves are computed to describe the evolution of predicted
measurements. The first set is based on all available data within a fixed 144h time
window. That is, both historic and future predictions are jointly considered. The second
set describes adjustments in error during the next 24h (moving window, purple area
right of yellow bar). The calculation proceeds as follows: (a) at time t , construct time
interval - either [0h,144h] or [t , t + 24h], (b) select predicted and real measurements
within this time interval (c) compute RMSE based on selected data (similar to Eq. 5.1),
(d) repeat b-c, but use prior predicted measurements (derived from GC model at time
0h), (e) compute ∆RMSEt , (f) go to (a) and increase t to t +d t .

The two resulting curves are displayed in Fig. 5.11. The RMSE of all prior predicted
measurements (144h window) amounts to 0.546 (Fig. 5.11, top). Over the course of
the experiment, the RMSE drops by about 74%. The top graph in Fig. 5.11 indicates
that the RMSE of all predicted measurements tends to reduce at a nearly constant rate.
The two exceptionally large reductions between 28h−34h and 72h−74h originate from
significant GC model corrections in bench A and B respectively (previously discussed).
The cumulative improvement in error mainly results from the increasing number of
reconciled historic measurements in the static 144h window (Figs. 5.10a to 5.10i, larger
grey area). Consequently, as time progresses fewer future predictions influence the
assessment statistics.

Advancing a 24h time interval while updating yields a different kind of behaviour
(Fig. 5.11, bottom). The ∆RMSE fluctuates around a constant value. The absence of a
cumulative increase can be explained by a lack of historic reconciled measurements. At
every point in time, the sample set is composed of an equal number of future predicted
measurements, all derived from unsampled scheduled GC blocks. The RMSE in future
24h windows drops on average by about 12% (E [∆RMSEt

RMSE0
]). Improvements in error of over

0.1 do not seem to be uncommon. Between 44h and 48h, the predicted future outlook
severely deteriorates (RMSE increases with 0.066, 0.078 and 0.037). Towards the end
of the experiment, between 112h and 118h, the RMSE slightly increases between 0.008
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(a) 0h

(b) 18h

(c) 36h

Figure 5.10: Predicted measurements (blue), time-averaged inaccurate sensor responses (green cross) and true
but unknown averages (red dot) at 0h (a), 18h (b), 36h (c), 54h (d), 72h (e), 90h (f), 108h (g), 126h(h) and 144h
(i)
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(d) 54h

(e) 72h

(f) 90h

Figure 5.10: CONTINUED - Predicted measurements (blue), time-averaged inaccurate sensor responses (green
cross) and true but unknown averages (red dot) at 0h (a), 18h (b), 36h (c), 54h (d), 72h (e), 90h (f), 108h (g),
126h(h) and 144h (i)
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(g) 108h

(h) 126h

(i) 144h

Figure 5.10: CONTINUED (2) - Predicted measurements (blue), time-averaged inaccurate sensor responses
(green cross) and true but unknown averages (red dot) at 0h (a), 18h (b), 36h (c), 54h (d), 72h (e), 90h (f), 108h
(g), 126h(h) and 144h (i)
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Figure 5.11: Changes in RMSE as a function of time, computed from predicted measurements within fixed 144h
time window (top) and a moving 24h future outlook (bottom) - results from experiment 223 are displayed
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and 0.019. No results are displayed from 120h onwards due to incomplete 24h windows.
For example, Fig. 5.10h illustrates that at 126h, only 18h of future measurements remain
to be predicted.

5.3. RESULTS - SINGLE PARAMETER VARIATION
This section compares behaviour across experiments based on the previously intro-
duced assessment statistics. The first subsection elaborates on the effects of variations in
either the measurement volume, blending ratio or measurement error (single parameter
variations). The second subsection investigates the impact of a simultaneous variation
of two system parameters.

5.3.1. MEASUREMENT VOLUME

Figures 5.12 and 5.13 display results from five selected experiments, all conducted using
a blending ratio of 100% and a measurement error of 0.05 (ref. sec. 5.1.1 for definition
blending ratio). The measurement volume increases from 8 to 16, 32, 48 and 64 GC
blocks (from 2800t to 22400t ).

Figure 5.12 displays how the RMSE changes as a function of time inside the ex-
traction zones of bench A and B . An 8 times larger measurement volume results in
approximately half of the initial RMSE reduction. The 144 updates in experiment
111 reduce the RMSE in bench A and B to 0.464 (64.56%) and 0.475 (60.78%). In
comparison, the 18 updates in experiment 511 result in a RMSE reduction of 0.237
(32.96%) and 0.224 (28.26%).

The parabolic reduction in RMSE reflects the exceptionally large significance of a
few local improvements. These significant improvements occur when the algorithm
detects and corrects local anomalies. When excavating a new area, local anomalies are
generally detected and corrected early on. The other updates merely result in smaller
incremental improvements. Hence the parabolic behaviour.

Larger measurement volumes apparently lead to fewer but more significant updating
events. In experiment 111, five large updating events occur improving the model of
bench A (Fig. 5.12 top, t = 16h,18h,39h,40h,47h). On average, the five updates yield
individual improvements of about 0.053 (ranges from 0.030 to 0.098). Combined, they
account for more than half of the total obtained improvement (0.265 versus 0.464).
Contrarily, the 4th update (32h) in experiment 511 is solely responsible for a reduction
in RMSE of 0.233 (Fig. 5.12, top). This single update is almost entirely responsible for
the final obtained improvement in bench A. Similar observations can be made in bench
B .

The top graph of Fig. 5.13 displays the ∆RMSE curves derived from predicted
measurements and true averages (Ref. Fig. 5.10). Historic and future predicted mea-
surements are jointly considered within a fixed 144h time window (entire experiment
duration). The overall reduction in RMSE decreases with an increase in measurement
volume (∆RMSE , from 0.651 in exp. 111 to 0.340 in exp 511). However, some caution
is needed in interpreting production related results. As measurement volumes grow
larger, the RMSE of predicted measurements is lower to start with (RMSE0, 0.673 in
exp. 111, 0.407 in exp. 511). As a result, the relative improvements barely vary across the
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Figure 5.12: Changes in RMSE as a function of time, computed over the extraction zones in bench A (top)
and bench B (bottom) - measurement volumes amount to 8 (111), 16 (211), 32 (311), 48 (411) and 64 (511) GC
blocks - blending ratio and measurement error are fixed (100% and 0.05)
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Figure 5.13: Changes in RMSE as a function of time, computed from predicted measurements within a static
144h time window (top) and a moving 24h future outlook (bottom) - measurement volumes amount to 8 (111),
16 (211), 32 (311), 48 (411) and 64 (511) GC blocks - blending ratio and measurement error are fixed (100% and
0.05)

experiments. During most experiments, the RMSE drops by about 95%.
The bottom graph of Fig. 5.13 depicts improvements in future predicted measure-

ments (next 24h). The ∆RMSE curves describe at time t , the reduction in error of
upcoming predicted measurements in the time interval [t , t+24h]. Figure 5.13 illustrates
that improvements diminish with larger measurement volumes. In experiment 111, the
RMSE decreases on average by 13.55%. These relative improvements drop to 2.32%
when the measurement volume increases from 8 to 64 GC blocks (exp. 511). Note that
the average prior RMSE also reduces with a larger measurement volume (avg. RMSE0,
0.678 in exp. 111, 0.361 in exp. 511).

5.3.2. BLENDING RATIO
Figures 5.14 and 5.15 display results from five selected experiments, all conducted using
a measurement volume of 8 GC blocks and a measurement error of 0.05. The blending
ratio is gradually reduced from 100% to 50% with steps of 12.5% (ref. sec. 5.1.1 for
definition blending ratio).

A lower blending ratio results in a lower reduction of the RMSE inside both extrac-
tion zones (Fig. 5.14). During all five experiments, 144 measurements are assimilated.
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Figure 5.14: Changes in RMSE as a function of time, computed over the extraction zones in bench A (top) and
bench B (bottom) - blending ratios amount to 100% (111), 87.5% (121), 75% (131), 62.5% (141) and 50% (151) -
measurement volume and measurement error are fixed (8 GC blocks and 0.05)

In experiment 111, the 8 GC blocks in the blend always originate from the same bench.
This particular configuration yields improvements of 0.464 (64.56%, bench A) and 0.475
(60.78%, bench B). Improvements drops to about 0.162 (22.62%, bench A) and 0.211
(26.97%, bench B) when half of the blocks originate from the other bench (experiment
151).

When both areas contribute an equal number of blocks to the blend, it becomes
harder to pinpoint the source of the detected deviation. The algorithm updates more
cautiously leading to a longer sequence of smaller incremental improvements. Local
anomalies are easier to detect if the blended material originates from a single area.
The observed difference between predicted and recorded measurements can be easily
attributed to a single area with a higher level of confidence. Hence, the algorithm
corrects more aggressively.

The corresponding larger blending ratio further result in abrupt changes in local
production rates (lines 19-20, Algm. 2, p. 68). These abrupt changes significantly
influence the overall shape of the ∆RMSE curves. Periods of steep incline coincide with
larger local production rates (e.g. exp. 121 - bench A, 2450t/h between 0h and 72h).
Lower local production rates result in more gentle slopes (e.g. exp. 121 - bench A, 350t/h
between 72h to 144h).
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Figure 5.15 displays the ∆RMSE curves derived from all predicted measurements
within a static 144h time window (top graph). As somewhat expected, the prior RMSE
generally decreases with a lower blending ratio (RMSE0, 0.673 in exp. 111, 0.477 in
exp. 141). Lower ratios often result in a lesser degree of correlation between the
blended blocks (blocks from uncorrelated areas). More extreme block values (difficult
to estimate) are likely to be averaged out, as are their larger associated errors. If
the GC blocks in the blend originate from a single area (large blending ratio), their
corresponding values are going to be correlated. Extreme values are no longer averaged
out, nor are their associated larger errors.

The overall reduction in RMSE also tends to be larger in experiments with larger
blending ratios (∆RMSE of 0.651 in exp. 111, 0.396 in exp. 141). Generally the
performance improves with a lesser amount of blending. The differences expressed in
terms of relative improvements are less significant. The RMSE drops between 82% and
97%.

Contrary to what has been previously assumed, the blending ratio in itself does
not always provide a suitable explanation of an observed phenomenon. In order to
understand improvements in future predicted measurements (next 24h), the more
detailed underlying mining schedules need to be analysed instead. Two specific features
are of importance. (1) A lower degree of correlation between blended blocks leads
to a less informative time-averaged sensor response. The algorithm updates more
cautiously. The errors in the GC model remain relatively high. Errors in subsequently
derived future predictions do not significantly change (negative effect associated with
lower blending ratios). (2) A smaller distance between extracted and scheduled blocks
results in better informed future predictions (positive effect associated with lower
blending ratios).

Two mining schedules are compared to demonstrate the interaction between both
features. All 8 GC blocks, extracted at 24h according to schedule 11E , originate from a
single 20m x 10m rectangular area (Fig. 5.4, top half digging block 12). The 8 blended
blocks will be correlated. The 192 GC blocks, scheduled to be extracted within the
next 24h, are located in digging blocks 13 to 24 of bench A (Fig. 5.4). Only half of the
GC blocks (digging blocks 13 to 18) lie within a distance of 20m of the nearest mining
face (horizontal line at y = 130m). In contrast, schedule 15E describes a simultaneous
extraction from two mining faces; one at y = 130m in bench A, the other at y = 1130m
in bench B (Fig. 5.4). The next 192 scheduled GC blocks all fit within the next row of
digging blocks in either bench A or B . Consequently, all 192 blocks lie within a distance
of 20m from the nearest mining face. However, schedule 15E results in a lower degree of
correlation between the blended blocks. The 4 blocks extracted from bench A will hardly
be correlated with the 4 blocks from bench B .

Figure 5.15 illustrates how both opposing features impact performance. During
experiment 111, the RMSE drops on average by 13.55% (Fig. 5.15, bottom). The
average reduction in RMSE in experiment 151 more than doubles (30.75%). Despite
the additional extraction point, the performance improves due to a reduced average
distance between extracted and scheduled blocks (feature 2 is dominant). This kind
of performance gain is untenable when average distances increase. The degree of
correlation between the blended blocks becomes the impetus behind the observed
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Figure 5.15: Changes in RMSE as a function of time, computed from predicted measurements within a static
144h time window (top) and a moving 24h future outlook (bottom) - blending ratios amount to 100% (111),
87.5% (121), 75% (131), 62.5% (141) and 50% (151) - measurement volume and measurement error are fixed (8
GC blocks and 0.05)

RMSE reduction (feature 1). During experiment 121, 131 and 141, the RMSE drops by
11.00%, 10.47% and 5.84%.

Experiment 111 further demonstrates that large errors in future predicted measure-
ments are not necessarily corrected on time (Fig. 5.15, bottom, between 60h and 72h).
During the last 12h of excavation in bench A, the majority of predicted measurements in
the next 24h are based on block estimates from bench B . Until the processing of material
from bench B actually commences, there is no way in knowing that the GC model needs
to be locally corrected. Hence very little improvements are observed between 60 and
72h (∆RMSE ≈ 0). As soon as data become available, the GC model is updated and the
corresponding future predictions are corrected (eventually predictions are nearly always
reconciled against measurements, ref. grey areas in Fig. 5.10). No such unpleasant
surprises occur during experiment 151. Future predicted measurements are always
corrected on time. Since both benches are extracted simultaneously, scheduled GC
blocks are continuously better informed due to the proximity of localized production
data (measurement attributed to one or multiple source areas). Hence, the RMSE drops
consistently around 30% within all 24h production windows (Fig. 5.15).



5

88 5. SENSITIVITY ANALYSIS

Figure 5.16: Changes in RMSE as a function of time, computed over the extraction zones in bench A (top) and
bench B (bottom) - measurement errors amount to 0.05 (111), 0.25 (112), 0.50 (113), 0.75 (114), 1.00 (115) -
measurement volume and blending ratio are fixed (8 GC blocks and 100%)

5.3.3. MEASUREMENT ERROR
Figures 5.16 and 5.17 display results from five selected experiments, all conducted using
a measurement volume of 8 GC blocks and a blending ratio of 100%. Sensors with
measurement errors of 0.05, 0.25, 0.50, 0.75 and 1.00 are used during the experiments.
The selected standard deviations define the measurement error Et on a scale of a single
GC block. To put the given numbers in perspective, the standard deviations of all
prior GC block estimates vary between 0.284 (near exploration holes) and 1.033. The
accuracy of the time-averaged sensor response characterizing 8 GC blocks then amounts
to Et /

p
8.

Figure 5.16 displays how the RMSE changes as a function of time inside the ex-
traction zones of bench A and B . The algorithm updates more cautiously when the
measurement error is larger. Individual smaller updates accumulate into lower final
∆RMSE values (Fig. 5.16). For example, the RMSE reduction observed over the course
of experiment 111 amounts to 0.464 (64.56%, bench A) and 0.475 (60.78%, bench B).
During experiment 115, the RMSE in bench A and B drops by 0.356 (49.62%) and 0.367
(46.98%) respectively. Despite the 20 times larger measurement error, the performance
loss remains manageable.

Figure 5.17 displays the ∆RMSE curves derived from all predicted measurements
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Figure 5.17: Changes in RMSE as a function of time, computed from predicted measurements within a static
144h time window (top) and a moving 24h future outlook (bottom) - measurement errors amount to 0.05 (111),
0.25 (112), 0.50 (113), 0.75 (114), 1.00 (115) - measurement volume and blending ratio are fixed (8 GC blocks
and 100%)

within a static 144h time window (top graph). The blending ratio and measurement
volume do not change across the five experiments, hence the constant prior RMSE
(0.673). The performance drops considerably when increasing the measurement error.
Conducting an experiment with a measurement error of 0.05 results in a 96.76% RMSE
reduction (exp. 111). The observed improvement drops to 62.07% when employing a
sensor with a measurement error of 1.00 (exp. 115).

The bottom graph of Fig. 5.17 illustrates that relative improvements in future
predicted measurements (next 24h) are not significantly influenced by the magnitude of
the measurement error. In experiment 111, the RMSE decreases on average by 13.55%.
Despite a 20 times larger measurement error, the average observed improvement during
experiment 115 still amounts to 10.05%.

5.4. RESULTS - DOUBLE PARAMETER VARIATION

5.4.1. MEASUREMENT VOLUME AND MEASUREMENT ERROR

Figures 5.18 and 5.19 display results from six selected experiments, all conducted using
a blending ratio of 75%. Measurement errors are either very low (0.05, accurate sensor,
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V 31) or very high (1.00, noisy sensor, V 35). The measurement volume increases from
8 (13E) to 32 (33E) and 64 (53E) GC blocks. As a reminder, the accuracy of the time-
averaged sensor response can be computed as Et /

p
Vt .

Figure 5.18 displays the evolution of the ∆RMSE inside the extraction zones of
bench A and B . An increase in measurement volume while applying an accurate sensor
(131-331-531) leads to a severe deterioration in performance. Experiment 131 yields
RMSE reductions of 0.418 (53.85%, bench A) and 0.433 (52.94%, bench B). The RMSE
reductions observed over the course of experiment 531 only amount to 0.214 (29.76%,
bench A) and 0.234 (30.01%, bench B). An increase in measurement volume while
applying a noisy sensor results in a very different behavior (135-335-535). Initially a
larger measurement volume seems to result in a stagnating performance (135-335). The
final RMSE reduction barely differs. The RMSE reduction changes from 0.217 (30.18%)
to 0.223 (30.97%) in bench A and from 0.239 (30.58%) to 0.256 (32.77%) in bench B . This
was somewhat expected since the overall accuracy of recorded measurements (Et /

p
Vt )

increases as noisy sensor responses are averaged over larger volumes or periods of time
(larger Vt ). Further increasing the measurement volume from 32 to 64 GC blocks (335-
535) eventually causes the expected lower performance. The RMSE reduction in bench
A and B drop respectively from 0.223 (30.97%) to 0.177 (24.69%) and from 0.256 (32.77%)
to 0.207 (26.52%). Apparently, more accurate measurements (1.00/

p
64 versus 1.00/

p
32)

are not sufficient to counteract the adverse effects associated with larger volumes.

When applying an inaccurate sensor, an optimal measurement volume seems to
exist. A volume too low increases the influence of individual errors on a time-averaged
sensor response. A volume too large makes it harder to pinpoint the exact source of the
detected deviation. An optimal volume is just large enough to average out individual
errors, while still being small enough to yield sufficiently local updates.

The top graph of Fig. 5.19 displays the ∆RMSE curves derived from all predicted
measurements within a static 144h window. Averaging accurate sensor measurements
over larger volumes (131-331-531) leads to lower RMSE reductions. Measurement
volumes of 8, 32 and 64 GC blocks yield reductions of 0.448, 0.403 and 0.384. The relative
improvements over the course of these three selected experiments are all approximate
by 88.50%. An increase in measurement volume while applying a noisy sensor (135-
335-535) does seem to have the opposite effect. The reduction in RMSE gets larger as
the measurement volume increases (0.237-0.281-0.285). An 8 times larger measurement
volume (from 8 to 64 GC blocks) yields a 1.5 times larger relative improvement (from
46.48% to 65.54%).

The bottom graph of Fig. 5.19 depicts improvements in future predicted mea-
surements (next 24h). An increase in measurement volume, in combination with a
low measurement error, leads to a loss of performance (131-331-531, from 10.47% to
5.51%). The performance barely reduces when increasing the measurement volume in
combination with a high measurement error (135-335-535, from 7.83% to 7.48%). In
certain circumstances, a larger measurement error seems to allow for more accurate
future predictions (compare exp. 331-335 and 531-535).
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Figure 5.18: Changes in RMSE as a function of time, computed over extraction zones in bench A (top) and
bench B (bottom) - blending ratio fixed at 75% (V 3E) - measurement volumes amount to 8 (13E), 32 (33E) and
64 (53E) GC blocks - measurement error is either very low (0.05, V 31) or very high (1.00, V 35)
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Figure 5.19: Changes in RMSE as a function of time, computed from predicted measurements within a static
144h time window (top) and a moving 24h future outlook (bottom) - blending ratio fixed at 75% (V 3E) -
measurement volumes amount to 8 (13E), 32 (33E) and 64 (53E) GC blocks - measurement error is either
very low (0.05, V 31) or very high (1.00, V 35)
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Figure 5.20: Changes in RMSE as a function of time, computed over the extraction zones in bench A (top) and
bench B (bottom) - measurement error fixed at 0.05 - measurement volumes amount to 8 (1R1) and 32 (3R1)
GC blocks - blending ratios amount to 100% (V 11), 75% (V 31) and 50% (V 51)

5.4.2. MEASUREMENT VOLUME AND BLENDING RATIO
Figures 5.20 and 5.21 display results from six selected experiments all conducted using
an accurate sensor (0.05). Measurement volumes are either small (8 GC blocks, 1R1) or
medium (32 GC blocks, 3R1). The blending ratio is gradually reduced from 100% to 50%
with steps of 25% (V 11-V 31-V 51).

Figure 5.20 displays how the RMSE changes as a function of time inside the extrac-
tion zones of bench A and B . A significant performance loss occurs as local production
rates converge, while averaging sensor responses over a relatively short period of time
(111-131-151). During experiment 111, when blocks in the blend originate from a single
area, the reduction in RMSE amounts to 0.464 (64.65%, bench A) and 0.475 (60.78%,
bench B). When both areas contribute an equal number of blocks to the blend, the
RMSE only drops 0.162 (22.62%, bench A) and 0.211 (26.97%, bench B). The effects
of an increased amount of blending in combination with a larger measurement volume
is less profound (311-331-351). The improvements in bench A and B reduce from 0.262
(36.42%) to 0.187 (26.07%) and from 0.323 (41.43%) to 0.243 (31.11%) respectively.

Figure 5.21 displays the ∆RMSE curves derived from all predicted measurements
within a static 144h time window (top graph). Blending more, while considering a small
measurement volume (111-131-151) does not necessarily result in a lower reduction
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Figure 5.21: Changes in RMSE as a function of time, computed from predicted measurements within a
static 144h time window (top) and a moving 24h future outlook (bottom) - measurement error fixed at 0.05
- measurement volumes amount to 8 (1R1) and 32 (3R1) GC blocks - blending ratios amount to 100% (V 11),
75% (V 31) and 50% (V 51)

of the RMSE . The performance loss in experiment 131 is for example larger than in
experiment 151 (∆RMSE of 0.448 versus 0.524). Blending within larger measurement
volumes (311-331-351) does not seem to yield any different behaviour. Once again,
the experiment with a blending ratio of 50% performs better than one with a ratio of
75%. Obviously, the magnitude of the RMSE reductions are lower due to the larger
measurement volume.

The bottom graph of Fig. 5.21 depicts improvements in future predicted measure-
ments (next 24h). As explained earlier, improvements in future predicted measurements
rather result from an underlying mining schedule than from the actual values of the
blending ratio. Figure 5.21 (bottom graphs) once again confirms that the mining
schedules resulting from equal local production rates (blending ratio of 50%) are the ost
optimal (with respect to future predictions). During experiment 151 and 351, the RMSE
reduces on average by 30.75% and 22.77%. In comparison, during experiment 111 and
311, the RMSE reduces on average by 13.55% anf 10.35%. The results further indicate
that an increase in measurement volume leads to a reduction in performance (compare
111-311 and 151-351).
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Figure 5.22: Changes in RMSE as a function of time computed over the extraction zones in bench A (top) and
bench B (bottom) - measurement volume fixed at 8 GC blocks - blending ratios amount to 100% (11E), 75%
(13E) and 50% (15E) - measurement error is either very low (0.05, 1R1) or very high (1.00, 1R5)

5.4.3. BLENDING RATIO AND MEASUREMENT ERROR
Figures 5.22 and 5.23 display six selected experiments, all conducted using a measure-
ment volume of 8 GC blocks (1RE). Measurement errors are either very low (0.05, 1R1)
or very high (1.00, 1R5). The blending ratio gradually reduces from 100% to 50% with
steps of 25% (11E-13E-15E).

Figure 5.22 displays how the RMSE changes as a function of time inside the extrac-
tion zones of bench A and B . A decrease in blending ratio, while applying an accurate
sensor (111-131-151) leads to a severe loss of performance. The RMSE reductions in
bench A and B drop from 0.464 (64.65%) to 0.162 (22.62%) and from 0.475 (60.78%) to
0.211 (26.97%). The use of a noisy sensor does not change this general pattern (115-135-
155). The reduction in RMSE in bench A and B decreases from 0.356 (49.62%) to 0.117
(16.34%) and from 0.367 (46.98%) to 0.250 (32.03%).

The top graph in Fig. 5.23 displays the ∆RMSE curves derived from all predicted
measurements within a static 144h time window. Increasing the amount of blending
while applying an accurate sensor (111-131-151) does not necessarily result in a lower
reduction of the RMSE . The performance loss in experiment 131 is for example larger
than in experiment 151 (∆RMSE of 0.448 versus 0.524). Blending highly inaccurate
sensor observations does not directly result in any different behaviour. Again, the
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Figure 5.23: Changes in RMSE computed from predicted measurements within a static 144h time window
(top) and a moving 24h future outlook (bottom) - measurement volume fixed at 8 GC blocks - blending ratios
amount to 100% (11E), 75% (13E) and 50% (15E) - measurement error is either very low (0.05, 1R1) or very
high (1.00, 1R5)

experiment with a blending ratio of 50% performs better than one with a ratio of
75%. Obviously, the magnitude of the RMSE reductions are lower due to the larger
measurement error.

The bottom graph in Fig. 5.23 depicts relative improvements in future predicted
measurements (next 24h). Figure 5.23 illustrates that a 20 times larger measurement
error still results in manageable performance reductions (compare 111-115, 131-135
and 151-155). The mining schedules, defined by underlying blending ratios (and
measurement volumes), do have a more significant impact on the obtained RMSE
reductions. Experiments with blending ratios of 50% perform consistently better. During
experiments 151 and 155, the RMSE drops on average by 30.75% and 25.14%. In
contrast, over the course of experiments 111 and 115, the RMSE reduces on average
by 13.55% and 10.05%.

5.5. DISCUSSION
The aim of this section is to translate previous observations into three sets of practical
recommendations. The first set describes how to maximize the RMSE reduction in the
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Figure 5.24: Aggregate change in RMSE computed for the extraction zones in bench A and B - blending
scenarios are indicated on the x-axis (Tab. 5.1) - markers refer to the measurement error - 10 best (red) and 10
worst (green) performing experiments are coloured

GC model. The second set provides some guidelines to optimize the reconciliation of
production data (match predicted measurements with actuals). The third set directs
actions towards obtaining the most accurate future predictions. The section concludes
with some practical implications.

5.5.1. OBJECTIVE 1 - MAXIMIZE ERROR REDUCTION IN GC MODEL

System parameters are considered most optimal when leading to a maximum error
reduction in the GC model. Instead of analysing two ∆RMSE values (one per bench),
an aggregate measure is computed ((∆RMSE A +∆RMSEB )/2). Figure 5.24 provides a
visual overview of this performance measure recorded at the end of each experiment.
The experiments are grouped according to their blending scenario (Tab. 5.1). Within
each group, a marker refers to the precision of the applied sensor. The 10 best and 10
worst performing experiments are coloured red and green respectively.

Controlling system parameters to improve algorithm performance is only worth the
effort if local production rates are allowed to be unequal. Figure 5.24 illustrates that
variations in interval duration (time between t −1 and t ) and/or sensor precision have
little to no impact if both areas contribute an equal number of blocks to the blend (Fig.
5.24, 25 rightmost experiments). As soon as local production rates are unequal, one of
the most effective measures to increase performance is to reduce the interval duration. If
possible, local production rates should be adjusted such that the majority of the blended
material originates from a single area. Furthermore, investing in accurate sensors only
seems to pay off when the interval durations are kept small.
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Figure 5.25: Change in RMSE computed at the end of each experiment from all available predicted
measurements - blending scenarios are indicated on the x-axis (Tab. 5.1) - markers refer to the measurement
error - 10 best (red) and 10 worst (green) performing experiments are coloured

5.5.2. OBJECTIVE 2 - OPTIMIZE RECONCILIATION OF PRODUCTION DATA
The first objective aims to minimize the error at the input side of the forward simulator
(the GC model, Zt−1(:, i )). The second objective however is directed towards maximizing
the error reduction at its output side. In other words deviations between actual and
predicted measurements are to be reduced as much as possible (dt −At (Zt−1(:, i ))).
Figure 5.25 displays, per experiment, the last recorded ∆RMSE values computed from
predicted measurements within static 144h windows (ref. 5.10i).

A lower interval duration generally results in a larger RMSE reduction. Caution is
advised as under certain circumstances the intended effect is limited or even reversed
(converging local production rates - R of 75%, 62.5% or 50% and highly inaccurate
sensors - E of 0.75 and 1.00). Opting for accurate sensors is generally more effective
(larger ∆RMSE when E is lower). Adjusting the local production rates further affects the
RMSE reductions. Results are better when production rates are either very alike or very
different (blending ratio of 100%, 82.5% and 50%).

Interestingly, the system parameters considered optimal in terms of reconciled
production data do not necessarily lead to the best GC model improvements (compare
Figs. 5.25 and 5.24). In other words, minimizing the error at the output side of the
forward simulator does not necessarily result in a minimum amount of error at the input
side.

5.5.3. OBJECTIVE 3 - MAXIMIZE ERROR REDUCTION IN FUTURE PREDIC-
TIONS

Thus far, system parameters have been selected to either optimize GC model improve-
ments or production reconciliations. The related assessment statistics, quantifying one
of both objectives, nearly always improved over time. As a result, the last recorded values
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Figure 5.26: Average change in RMSE computed from predicted measurements within moving 24h windows
- blending scenarios are indicated on the x-axis (Tab. 5.1) - markers refer to the measurement error - 10 best
(red) and 10 worst (green) performing experiments are coloured

could be used to describe and assess the overall performance during the experiments.
A last recorded statistic would not suffice to evaluate the overall quality of future
predictions (next 24h). Instead, an average ∆RMSE is computed, summarizing the
performance across all available 24h windows.

The average reduction in RMSE (avg. ∆RMSE) needs to be maximized to optimally
improve future predictions. Equal local production rates seem to lead to exceptional
performances (Fig. 5.26, blending ratio of 50%). As local production rates converge,
distances between scheduled and extracted GC blocks reduce. Reduced distances
however can only partially account for the observed phenomenon. After all, experiments
with blending ratios of 82.5%, 75% and 62.5% do perform worse and not better than
their counterparts with a blending ratio of 100%. A reasonable explanation follows
from a detailed study of the various mining schedules. Presumably, converging local
production rates only result in a performance gain if the average distance is sufficiently
low (feature 2). As long as this threshold is not reached, the performance drops due to
the ever lower correlation between the blended blocks (feature 1). Essentially, in order
to optimize future predictions, an optimal schedule has to be found.

Figure 5.26 further illustrates that a lower interval duration generally results in larger
RMSE reductions. When interval durations are small, more accurate sensors definitely
add value. The outcome of installing better sensors is less predictable as soon as interval
durations start to increase. Within a minority of blending scenarios, more accurate
sensors surprisingly result in lower RMSE reductions. During 10 out of 125 experiments
the error in future predictions even slightly increases.
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5.6. PRACTICAL IMPLICATIONS
Nearly all results have shown that shorter interval durations and smaller measurement
volumes improve algorithm performance, regardless of the considered metric. Due to
the complexity of the material handling process, it might be challenging to construct a
forward simulator accurate enough to track material on a scale as small as 8 GC blocks
(2800t ). A larger time interval might have to be selected to ensure that a forward pre-
dicted measurement and a time-averaged sensor response are actually characterizing
roughly the same material. A representative forward prediction is essential in linking
specific observations to their constituent GC blocks. As measurement volumes grow too
large (64 GC blocks), the opportunity to improve future predictions might be lost.

It further would be advisable to install by default the most accurate sensor within
the available budget (note the selected sensor also has to meet certain reliability
requirements). First of all, a more accurate sensor significantly improves the reconcil-
iation of production data (objective 2). Secondly, even in combination with medium
measurement volumes (16 and 36 GC blocks), GC model improvements increase when
more accurate sensors are applied.

In practice, it will be nearly impossible to control local production rates for the
sake of improving the algorithm performance. Instead, local production rates are to be
considered as external input and will very likely change over time. The previous results
nevertheless can be used to predict how the algorithm performance will change as local
production rates are adjusted. Diverging local production rates will always result in
higher GC model improvements. Due to a better GC model, future predictions improve
as well. Converging production rates generally harm algorithm performance. Errors in
GC block estimates and future predicted measurements are less well corrected. However,
at some point, the average distance between extracted and scheduled GC blocks reaches
a critical threshold. If this happens, future predictions undergo exceptional improve-
ments.

5.7. CONCLUSIONS
Recently, a new algorithm has been developed to repeatedly update the grade control
model based on online data from a production monitoring system. The added value
of the presented algorithm results from its ability to handle inaccurate observations
made on blended material from two or more extraction points. A total of 125 artificial
experiments are conducted to evaluate the influence of system parameters on the overall
algorithm performance.

Each experiment mimics a virtual mining operation with two extraction points. Over
the course of a 144h long experiment, a total of 403200t is excavated, processed and
measured. Despite their mutual differences, all mining schedules ensure that at the
end of each experiment the same 1152 GC blocks are extracted. Local production rates
and interval durations do however vary significantly across the experiments. Moreover
various sensors with a different precision are applied.

Results regarding GC model improvements are promising. Under fairly optimal
conditions, the RMSE in the GC model drops by around 60%. Optimal conditions occur
when small operational volumes are extracted from a single location and characterized
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with a relatively accurate sensor (8 GC blocks - 2800t , blending ratio of 100%, sensor
precision of 0.05). Even when conditions are far from optimal, the RMSE in the GC
models can still be reduced by about 20%. This is remarkable, especially considering
the large measurement volumes, the amount of blending and the extremely inaccurate
sensor (64 GC blocks - 22400t , blending ratio of 50%, sensor precision of 1.00). The
results indicate that even global inaccurate blended averages have some information
potential to further improve the GC model.

The experiments further illustrated the outstanding reconciliation capabilities of the
updating algorithm. The RMSE between historic predicted and actual measurements
decreased between 46% and 97% over the course of an experiment. More accurate
sensors improved the reconciliation behavior. Larger RMSE reductions were further ob-
served when local production rates were sitting at either end of the spectrum (blending
ratio of 100% or 50%). Interval duration did not significantly impact results.

Improvements regarding future predicted measurements (next 24h) turned out to
be less robust against variations in system parameters. Average RMSE reductions vary
between −5% and +30%. Two very different regimes were observed. As long as the
average distance between scheduled and extracted GC blocks did not reach its lower
threshold, performance drops as interval duration increase and local production rates
start to converge. However, once an average distance threshold is reached, the RMSE
reduction becomes exceptionally high.

A clear distinction needs to be made between the GC model and production related
improvements. On one hand, previous results clearly show that a single-value measure,
such as the blending ratio, is sufficient to predict the behaviour of GC model updates.
The blending ratio in itself can act as a proxy for the information content of a time-
averaged sensor response. A high value refers to large correlations between all blended
blocks and indicates that GC model updates will be more successful.

On the other hand, the value of the blending ratio does not explain variations in
production related performance. The best performing experiments, related to rec-
onciliation and future predicted measurements, are sitting on opposing sides of the
blending ratio spectrum (either 50% or 100%). A plausible explanation is provided.
The explanation is however not conclusive. Future research should be conducted to
determine the influence of the correlation between extracted and scheduled blocks. A
single-value statistic needs to be devised describing the updating potential of a mining
schedule at a discrete timestep. Three types of correlations need to be considered; cross-
correlations between recently excavated blocks, cross-correlations between near-term
scheduled blocks and correlations between recently extracted and near-term scheduled
blocks. All this information could possibly be captured in some sort of signal-to-noise
ratio. A large ratio would predict a good amount of improvement in future predictions.

Future research should further focus on how the prior realizations impact local
anomaly corrections later on. The empirical covariances lifted from the prior real-
izations largely determine the extent of updates in neighbouring block values. When
the covariances between measurements and neighbouring blocks are overestimated,
attribute values are corrected too aggressively, causing erroneous updates. A correc-
tive localization technique is integrated into the algorithm to prevent such behaviour
(Wambeke and Benndorf, 2017b). Underestimated covariances on the other hand yield
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updates which are too modest. Certain local anomalies remain partly uncorrected. In
reality, the correlation structure of the true field is obviously unknown. Several parallel
updating tracks could be ran simultaneously, all initiated with a specific set of prior
realizations (each set could be generated using a different variogram model and/or
simulation technique). Error statistics, collected during an initial training period, could
eventually be compared to select the most ‘correct’ realization set, best describing the
true spatial correlation.
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6
PILOT STUDY

This chapter describes the pilot testing of the entire updating concept (including the
updating algorithm) at the Tropicana Gold Mine in Australia. The aim of the study is to
evaluate whether the developed updating algorithm can be used to update spatial Work
Index estimates based on actual ball mill performance data. The chapter commences with
a detailed explanation of the practical problem. Thereafter, the updating equations are
briefly reviewed and reformulated taking account of the problem specific terminology.
The chapter further provides some background information regarding the geology at
Tropicana, the operation and the available data. Subsequently, some insights are given
regarding the construction of the application specific forward simulator. Then, results
are presented illustrating improvements in both historic and future production estimates.
The chapter finally concludes with an extensive discussion on modelling assumptions and
potential improvements.

Parts of this chapter have been submitted for publication in Transactions of the Institutions of Mining and
Metallurgy, SectionA - Mining Technology accepted, in press (Wambeke et al., 2017).
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6.1. INTRODUCTION
Traditionally, the mining industry has had mixed success in achieving the production
targets it has set out. Produced tonnages (and grades) nearly always deviate from model-
based expectations due to ever present geological uncertainties. Even when numerous
exploration samples are collected, it remains challenging to accurately characterize
short-term production units equivalent to a few truckloads (Benndorf, 2013). In certain
commodities, Grade Control (GC) drilling is performed to further reduce uncertainties
(Peattie and Dimitrakopoulos, 2013; Dimitrakopoulos and Godoy, 2014). GC drilling is
expensive and almost exclusively focused on sampling grades.

At the Tropicana Gold Mine, GC samples are collected at one meter intervals
during Reverse Circulation drilling. Once collected, the samples are sent to an on-
site laboratory for a semi-automated analysis. An autonomous system crushes, splits
and pulverises the sample material prior to X-Ray Fluorescence (XRF) and Hyper-
Spectral (HS) scanning. Conventional fire assaying techniques are used to determine the
gold grade in a final prepared pulp. Calibrated relationships are subsequently applied
to translate the obtained proxy measurements (XRF and HS) into geometallurgical
estimates (e.g. work index, hardness or recovery). At this stage, the geometallurgical
estimates describe the properties of one metre long cylindrical volumes, virtually located
at the original down-hole positions of the GC samples. Geostatistical techniques are
used at a later stage to convert the scattered interval data into metallurgical estimates
for contiguous block volumes in the GeoMet model (Catto, 2015).

The calibrated relationships, vital in obtaining the metallurgical interval data, are
largely untested. A larger number of metallurgical tests to improve the calibration is
simply economically infeasible. Hence, despite all efforts, the derived geometallurgical
block estimates remain (largely) inaccurate.

The Bond Ball Mill Work Index (W i ) is one such spatial estimate which remains
difficult to infer correctly. The W i defines the specific energy (kWh/t) required in
grinding a ton of ore in the ball mill from a very large size (infinite) to 100 µm (Lynch
et al., 2015). At the time of writing, this variable is of particular interest for the
following two reasons. (1) Collecting large datasets of W i values is very expensive due
to labour-intensive and time consuming laboratory work. It is worthwhile to investigate
alternative options for improving the calibration of the concerned relationship. (2) Ball
mill throughput could potentially be optimized by improving the W i estimates of the
mill feed. Both reasons justify the exclusive focus on improving W i estimates during the
remainder of the text. Before proceeding, a clear distinction is made between various
types of W i estimates.

1. Wis (m): W i estimates describing one metre long cylindrical GC samples. Wis is
a column vector with M W i estimates. Each estimate m is centred at the original
down-hole position of its corresponding GC sample.

2. Wib
t (n, i ): W i estimates describing block volumes in the GeoMet model. The

N rows in the Wib
t matrix each refer to a unique block in the GeoMet model.

The I columns contain different spatial realizations characterizing geological
uncertainty (Monte Carlo approach, each realization represents an equally plau-
sible scenario). The block estimates do change in time as new information is
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assimilated into the GeoMet model, hence the subscript t .

3. Wi f
t (1, i ): W i estimates describing the mill feed between t −1 and t . Wi f

t (1, i ) is a
row vector containing I realizations. The I realizations approximate a distribution
describing a best estimate (mean) and its related uncertainty (spread). The mill
feed estimates are no longer attributable to a single spatial coordinate (the mill
feed typically represents a blend of ore from multiple sources and locations).

The mill feed estimates Wi f
t (1, i ) are substituted in the following formula to compute

the energy required in grinding a ton of ore in the mill from a known feed size to a
required product size (Lynch et al., 2015):

P

R
= Wi f

t (1, i )(
10p
P80

− 10p
F80

) ∀i ∈ I . (6.1)

Assuming a constant power draw (P in kW ), the energy delivered per ton is controlled by
adjusting the mill throughput (R in t/h). The F80 and P80 represent the 80% passing sizes
of the feed and product respectively (F80 and P80 in µm). To maximize mill throughput

and optimize energy utilization, it is important to get the Wi f
t estimates right.

When the ore is softer than expected (Wi f
t is overestimated), the amount of energy

transferred into each ton of material is too large and the resulting product will be too
fine. This situation does not harm downstream recovery but rather results in an amount
of wasted energy (the larger recovery due to a smaller product size does not outweigh the
additional milling costs). An increase in throughput R would lead to a better distribution
of energy per ton of material.

When the ore is harder than expected (Wi f
t is underestimated), not enough energy

is transferred into each ton of ore. The resulting product will be too coarse. A larger
proportion of the product stream will be separated by a hydrocyclone (based on particle
size) and recirculated as mill feed. A lower throughput R would reduce the amount
of recirculated material, which in turn would result in an increased effective mill
throughput (note the paradox).

Installed sensors continuously monitor throughput, power draw, feed and product
sizes in the ball mill (Fig. 6.1). The sensor responses have the potential to be used in

real-time to derive an actual Operating Work Index value wi f
t of the material residing in

the mill (Eq. 6.1). The lower case notation refers to an actual measurement (single value),
whereas the upper case notation, previously used, indicates an estimate (multiple values

in a row vector to characterize uncertainty). The observation wi f
t characterizes all

material that went through the ball mill between t −1 and t . Typically this material will
represent a blend of ore from multiple sources and locations.

The online computation of wi f
t carries a large potential as demonstrated in the pilot

study. Mill observations of wi f
t are used to progressively improve the block estimates

Wib
t (n, i ) in the GeoMet model. This backward integration has only been made possible

through material tracking initiatives. Data, from both the fleet management and process
monitoring system, are used to link mill observations with their constituent GeoMet
blocks. A developed algorithm subsequently updates selected blocks based on the noisy
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Figure 6.1: Simplified representation of the monitoring setup at the Tropicana Gold Mine. Research question:
is it possible to use the ball mill performance measurements to better inform spatial W i estimates?
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time-averaged mill observation. The strength of the algorithm lies in its capability to
differentiate between the more and less accurate block estimates constituting the mill
feed. Updates aim to more aggressively correct the less accurate block estimates and
their surroundings.

In the future, the updating algorithm can be expanded to integrate additional
performance data back into the GeoMet model (e.g. recovery and reagent consumption).
The methodology eventually could lead to a better and automated selection of ores
for blending whilst providing advanced information for process control. For example,
the throughput of the comminution circuit can be reduced/increased upfront when
harder/softer ore is expected to ensure the most optimal energy utilization, while
achieving a grind required for maximising gold recovery in the leach circuit.

This paper demonstrates an algorithm for continuous reconciliation of mill derived

observations (wi f
t ) against block estimates in the GeoMet model (Wib

t ). First, the
updating algorithm, as presented in Wambeke and Benndorf (2017), is briefly reviewed.
Then, background information is provided regarding the geology at Tropicana, the
operation and the available data. Thereafter, a forward simulation model is constructed

to convert (updated) block estimates (Wib
t ) into mill feed estimates (Wi f

t ). The forward

simulation step is essential in linking a specific observation (wi f
t ) back to its constituent

GeoMet blocks, while providing for a flexible approach to overcome a number of
mathematical challenges and material tracking limitations (implementation details, to
be discussed later on). Using the forward simulator, the spatial GeoMet models are
updated every 4h over the course of one week. It is shown that the updates do not
only result in a real-time reconciliation of extracted blocks but also significantly improve
estimates of scheduled blocks. The paper concludes with an extensive discussion on
modelling assumptions and potential improvements.

6.2. UPDATING ALGORITHM

At any point in time, when a new mill observation wi f
t becomes available, the updating

algorithm needs to solve the following inverse problem:

Wib
t = E−1

t (wi f
t ), (6.2)

where E is a forward observation model (linear or non-linear) that maps block estimates

Wib
t onto mill feed estimates Wi f

t . In other words, the algorithm is tasked with inferring
attributes of individual blocks based on time-averaged mill observations.

The algorithm essentially solves the previous inverse problem using a sequential
estimator within a Monte Carlo framework. At time zero, an initial set of I Monte
Carlo realizations Wib

0 (:, i ) is generated using techniques of conditional simulation. All
exploration information is inherently accounted for within these initial realizations; (a)
sample values are approximated at their respective locations (no exact reproduction in
order to account for measurement error), (b) the degree and scale of variability in the
realizations follows a pattern described by a covariance model derived from the GC data
(Wis ).
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Figure 6.2: Closed-loop reconciliation framework to integrate ball mill performance measurements into the
GeoMet model

Once collected, a mill observation wi f
t is assimilated into the GeoMet model:

Wib
t (:, i ) = Wib

t−1(:, i )+Kt (wi f
t −Wi f

t (1, i )) ∀i ∈ I . (6.3)

Each realization Wib
t−1(:, i ) is updated based on a weighted difference between a mill

observation wi f
t and a mill feed estimate Wi f

t (1, i ) =Ft (Wib
t−1(:, i )). A mill feed estimate

results from running a forward simulator Ft based on a most recent GeoMet realization
Wib

t−1(:, i ) (to be discussed later on). The latest solution set Wib
t (:, i ) (∀i ∈ I ) accounts for

all previously collected exploration and production data (Wis and wi f
t ,∀t ∈ [0, t ]).

The simulation-based approach (Monte Carlo framework) avoids the near impossi-
ble task of formulating an analytical approximation of the forward observation model Et

(and calculating its inverse, Eq. 6.2). Due to the complexity of the material handling
process, it would indeed be very challenging to describe the link between individual
blocks and a blended measurement as a single equation. Instead, for each unique
operation, a case specific forward simulator F is built and run parallel to the more
generally applicable updating code (Fig 6.2). The simulator is but a virtual model
describing which blocks are extracted, processed and measured between t − 1 and t
(the complexity of the model should match the relevant problem specific features).
The separation of the forward simulator from the updating code allows for a flexible
integration with existing systems already installed at the mine site.

The forward simulator is thus used to propagate GeoMet realizations Wib
t−1(:, i )

into mill feed estimates Wi f
t (1, i ) = Ft (Wib

t−1(:, i )) (predicted mill performance). Both
realization sets combined contain enough information to link observed deviations
back to their constituent GeoMet blocks. This connection is established through the
calculation of the Kriging weights Kt :

Kt = Ct−1,b f C−1
t−1, f f , (6.4)
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where Ct−1,b f (a column vector of size N ) and C−1
t−1, f f (a single value) hold the condi-

tional forecast and observation error covariances. Kriging weights tend to be larger when
the observation is accurate (i.e. Ct−1, f f (1,1) is low) and strongly correlated to particular
blocks (i.e. Ct−1,b f (n,1) is large). The Kriging weights eventually determine how
individual block values have to be adjusted in order to shrink the detected deviations
(Eq. 6.3).

The necessary covariances are in turn computed empirically from the available real-
ization sets. Each entry Ct−1,b f (n,1) of the covariance vector describes the correlation

between the observation and the nth block in the GeoMet model. The covariance Ct−1, f f

on the other hand describes the accuracy of the mill observation.

Several technical and practical challenges are solved by computing covariances
empirically. (1) As time progresses, conditional forecast error covariances become non-
stationary. Were it not that covariances are computed empirically, a large non-stationary
field covariance matrix Ct−1,bb would have to propagated from one update cycle to the
next (number of entries equal to the square of the number of grid nodes). Computing co-
variances empirically reduces computation costs and memory requirements (Wambeke
and Benndorf, 2017). (2) Differences in scale of support are automatically dealt with.
There is no need to perform a support correction on a non-stationary covariance model.
(3) Empirical covariances are convenient to handle measurements on blended material
streams originating from multiple extraction points. Based on the magnitude of the
forecast error covariances, it is possible to pinpoint multiple blocks in the GeoMet model
that are responsible for a single detected deviation. Furthermore, the forecast error
covariances are of paramount importance in updating neighbouring correlated blocks.

The interested reader is referred to Wambeke and Benndorf (2017) for a detailed
literature review and an elaborate presentation of the algorithm. The suggested paper
discusses several other aspects of the algorithm which were omitted here.

6.3. BACKGROUND INFORMATION AND DATA SOURCES
This section briefly presents background information about the Tropicana Gold Mine.
Aspects related to geology, mining and processing are discussed and relevant data
sources are highlighted.

6.3.1. GEOLOGY

The Tropicana Gold Mine is located in Western Australia, approximately 330km East-
North-East of Kalgoorlie. The mine is situated near the edge of the Great Victoria
Desert along an ancient collision zone between the Yilgarn Craton and the Albany
Fraser Origen. The regional geology is dominated by granitoid rocks, felsic to mafic
paragneiss and orthogneiss, and felsic to ultramafic intrusive and volcano-sedimentary
rocks. The area is characterized by extreme weathering that resulted in the formation
of a 100m thick regolith. Mineralization is found within Archean-aged high grade
quartzo-feldspathic gneisses and is associated with late biotite and pyrite alteration. The
mineralization occurs as one or two laterally extensive planar lenses with a moderate
dip. Post mineralization faulting resulted in four distinct structural domains offsetting
the initial ore body.
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6.3.2. MINING
The ore body is mined from four contiguous pits extending six kilometres in strike length
(from North to South: Boston Shaker, Tropicana, Havana and Havana South). The mine
is operated as a typical drill and blast, truck and shovel open pit mine.

Prior to extraction, GC drilling (Reverse Circulation) is completed on relatively dense
10m East x 12m North drill patterns to map out the ore reserves. The GC holes are
drilled to intersect multiple benches at once and are drilled weeks ahead of extraction.
The resulting 1m samples are sent to an on-site lab for analysis. Conventional fire
assaying techniques are applied to determine the gold grade. During the sample
preparation stage, samples are processed in an automated sample preparation system,
which crushes, splits and pulverises the material prior to XRF and HS scanning. The
resulting multivariate interval data are translated into geometallurgical properties using
previously calibrated relationships. The inferred geometallurgical properties are subse-
quently modelled to populate the 3m x 3m x 3.33m blocks of the GeoMet model (used
for ore design and short-term planning). Once populated, the mine geologist delineates
ore polygons to group adjacent spatial blocks into semi-homogeneous digging volumes
(known as dig blocks).

Subsequently during blasting operations, a 10m high bench is blasted. Transmitters
are installed in blastholes and their locations are logged prior to and after the blast. Three
dimensional displacement vectors are computed and applied to a lattice structure. The
original undisturbed lattice structure consists of edges and nodes (corners) outlining
the 3m x 3m x 3.33m blocks in the GeoMet model. The distorted lattice structure (after
the displacement vectors have been applied) accounts for a repositioning of the GeoMet
blocks due to blasting.

The fragmented material is then excavated in three passes (based on design flitches
with a height of 3.33m). When a truck is loaded, the position of the excavated material is
being recorded (one GPS location per load). Following steps describe how the material
characteristics of a truck load are defined:

1. Match the recorded position to a block in the distorted lattice (look-up the block
which contains the recorded position).

2. Match the block in the distorted lattice to the corresponding block in the original
non-distorted GeoMet model (a unique block identifier can be used to setup a
one-to-one relationship between the blocks in both models).

3. Obtain the material characteristics of the selected block in the GeoMet model and
assign them to the truck.

Before proceeding, it is important to stress the limitations of the applied correction
technique. While the technique allows for differential distortion and movement, it
assumes that the material of a block remains within its assigned distorted circumference
(relative positioning is maintained). In other words, material cannot be exchanged
between two neighboring distorted blocks. In certain circumstances (particular blast
patterns and close proximity to the mining face), significant mixing could occur during
blasting as lower situated material moves forward, while higher situated material falls
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down. In such a situation, the previous assumption might be violated. A more advanced
correction technique would need to devised.

Once the truck is loaded, ore is hauled directly to the primary crusher or to one
of the reclaim stockpiles situated at the ROM pad (Run-Of-Mine). Direct crusher feed
(material directly coming from the mine) is supplemented with ore reclaimed from ROM
stockpiles. The fleet management system records each individual truck cycle in a central
database. The recorded spatial coordinates are used for material tracking purposes,
linking mill observations to their constituent blocks in the GeoMet model.

6.3.3. COMMINUTION
The comminution circuit comprises of a primary crusher, secondary crusher, High
Pressure Grinding Rolls (HPGR) and a ball mill. The HPGR screen has a top size of 2.75
mm, resulting in a typical ball mill feed of 500 to 600 µm (F80). The upper part of Fig.
6.4 displays a simplified version of the plant flowsheet (to be discussed later in detail).
Conveyor belt speeds, throughput values, recirculating loads, flow velocities and mill
performance are continuously monitored. The related sensor readings are written to a
database at five minute intervals.

6.4. FORWARD SIMULATOR

A forward simulator is built to generate mill feed estimates Wi f
t (1, i ) = Ft (Wib

t−1(:, i )).
The realization set of mill feed estimates is used to compute the empirical covariances,

which are essential in linking an observation wi f
t to its constituent GeoMet blocks. The

forward simulator is subdivided into two connected modules. The first module describes
the material handling process in the mine. The second module tracks material flow in
the comminution circuit.

6.4.1. FROM PIT TO CRUSHER
The material handling process in the mine can be replicated in great detail using truck
cycle data stored in a fleet management database (Fig. 6.3). Four types of truck cycles
are defined: (1) ore is hauled from the pit and dumped directly into the primary crusher
(direct tip); (2) ore is hauled from the pit and stockpiled on one of the ROM stockpiles; (3)
ore is reclaimed from ROM stockpiles and dumped into the primary crusher; (4) material
is hauled from the pit to a waste dump (not shown or further discussed).

A type 1/2 mine cycle starts the moment a truck is being loaded in the pit (Fig. 6.3).
A DepartingTruck is recorded in the POD (Pit Out Database). The BlockID, referring to a
specific block in the GeoMet model, is determined using a combination of GPS data and
a distorted lattice which accounts for differential movement due to blasting (ref. sec.
6.3.2). A type 1 cycle ends when a truck finishes tipping its load into the crusher. An
ArrivingTruck is stored in the CID (Crusher In Database). Its DataBaseLabel refers to the
POD.

A type 2 cycle ends the moment a truckload is stockpiled on one of the six ROM
stockpiles (Fig. 6.3). An ArrivingTruck instance is written to the RFID (ROM Finger
In Database). The assigned CellID refers to a 10m x 10m subdomain within a larger
stockpile and is computed from the GPS location of a tipping truck (each of the six
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Figure 6.3: Schematic representation of the material handling process in the mine
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stockpiles is modelled as a single layer of cells, hence each cell can be represented by its
horizontal footpint). All ‘active’ ArrivingTruck instances within a particular ROM finger
are deactivated the moment the entire stockpile is depleted (the IsActive boolean is set
to False).

A type 3 mine cycle is initiated when reclaimed ROM finger material is loaded into a
truck. A DepartingTruck instance is stored in the RFOD (ROM Finger Out Database). The
cycle ends when loaded material is tipped into the primary crusher. An ArrivingTruck is
written to the CID (Crusher In Database). Its DataBaseLabel points to the RFOD.

Querying the databases allows for a live characterization of the crusher feed and
stockpile domains. The PayLoad of the trucks arriving at the crusher is obtained
from the database referenced by the DataBaseLabel. A set of characteristic Wi values
(multiple realization to characterize uncertainty) is obtained in one of two possible ways,
depending on the assigned DataBaselabel (Fig. 6.3).

If the label points to the POD, the GeoMet model is queried using the BlockID of the
corresponding DepartingTruck record (one-to-one relationship). The query returns a
single set of simulated Wi values which are assigned to a specific truck.

If the label points to the RFOD, a more elaborate ‘query’ needs to be conducted.

1. The CellID is obtained from the corresponding DepartingTruck record in the
RFOD (one-to-one relationship based on TruckID).

2. BlockIDs and PayLoads are collected from ‘active’ ArrivingTruck records in the
RFID (one-to-many relationship based on CellID).

3. For each BlockID, a set of simulated Wi values is extracted from the GeoMet model
(one-to-one relationship).

4. Relative weighting factors are computed based on the obtained PayLoad values
(each truckload receives a weight proportional to the amount of material it
contributed to the stockpile subdomain). The weights are used to calculate a single
set of Wi values characterizing the material within a stockpile subdomain.

5. This single set of Wi values can be connected to a truck departing from the ROM
stockpiles and in extension thus also to a truck arriving at the crusher.

The module discussed thus far allows for the characterization of individual truck-
loads arriving at the crusher, independent of whether the material originates from one
of the ROM stockpiles or directly from the pit.

6.4.2. FROM CRUSHER TO MILL
The second module of the forward simulator is designed to describe the material flow
in the comminution circuit. Four sequential circuits have been identified and modelled:
(a) primary crushing, (b) secondary crushing, (c) High Pressure Grinding Rolls (HPGR)
and (d) ball mill. The material flow through each circuit is modelled using following the
model components (Fig. 6.4); a ‘merge’ unit (circle) combines material streams, a ‘queue’
(hourglass) describes delays and a ’split’ unit (trapezium) subdivides material streams
into two substreams. The behaviour of each virtual unit is driven by information derived
from the central processing database (five minute interval readings).
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Figure 6.4: Schematic representation of the material flow in the comminution circuit
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The moment a truck tips its load into the crusher, its virtual representation is
subdivided into a large number of smaller Parcels. Each Parcel has a payload and is
linked to the ArrivingTruck. The sum of all Parcel payloads equals the PayLoad of the
ArrivingTruck.

When material enters the comminution plant, it passes through a gyratory crusher
and ends up on a coarse ore stockpile (COS). The behaviour of this circuit is modelled as
a queue (first in, first out). The delay time of the queue corresponds to the residence time
of a Parcel on the stockpile (the time to pass the crusher lies in the order of seconds). The
popping rate of the queue matches the stockpile drawn down rate readings.

Drawn stockpile material is subsequently blended with the product of the secondary
crusher (merge unit). Once blended, material resides in a bin (queue) before being
dropped onto a screen (split unit). Oversized material is circulated back to the bin of the
secondary crusher (queue), while the undersize is directed towards the HPGR circuit.
The split unit randomly selects virtual Parcels and circulates them into the secondary
crushing circuit. The recirculating loads match the ones recorded in the processing
database.

Arriving at the HPGR circuit, material is blended with screen oversize and stored in
a bin, before being dropped into the HPGR (merge unit and queue). The HPGR grinds a
loose collection of material into a conglomerated cake product. The cake product resides
in a bin awaiting wet screening (queue). Prior to screening (split), the HPGR cake is
deagglomerated using water jets and vibration. The screen oversize is circulated back
to the bin installed above the HPGR, the undersize enters the milling circuit. Diverter
gates to extract tramp metal and to construct emergency stockpiles are not accounted
for (future work).

Material arriving from the HPGR circuit is mixed with the ball mill product and
inserted into a hydrocyclone (a merge and split unit). The cyclone underflow is
circulated back into the ball mill (queue), its overflow is transported to the carbon-in-
leach tanks. The moment a virtual Parcel arrives in the mill it is recorded in the MFD
(Mill Feed Database).

The comminution model is by far not accurate enough to track individual truckloads
as they move through the plant. Consequently, the mill feed is characterized over 4h

intervals to filter out possible inaccuracies. A mill feed estimate Wi f
t (1, i ) = Ft (Wib

t−1(:
, i )) is obtained as follows:

1. Query the MFD, collect all Parcel objects arriving at the mill between t −1 and t .

2. Group Parcel records according to their associated TruckIDs (truck arriving at the
crusher). Compute the total weight of the Parcels within each group.

3. Compute weighting factors based on the group weights.

4. Connect each group to a truck which already arrived at the crusher at an earlier
time. Assign the truck Wi values to the group.

5. Compute a weighted averaged set characterizing the mill feed within a 4h interval.

In comparison, an actual observation wi f
t is obtained by processing 4h long time series

of measured mill performance (previously discussed).
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6.5. RESULTS CASE STUDY
In this pilot study, about 120h of mill performance data are used to conduct 30 updates
of the GeoMet model (for a milling period between 21-Aug-2015, 06:00 - 26-Aug-2015,

06:00). A historic dataset is used to enable the validation of mill feed estimates Wi f
t

against already available mill observations wi f
t .

The material fed to the mill in the pilot study period, was sourced from ROM
stockpiles and direct crusher feed. Due to intermediate stockpiling, the mill feed
represents mining activity that occurred over a one month period. Hence, a month of
truck cycle data needs to be analysed. At 21:20 on 02-Aug, the first truckload is tipped
on a previously zeroed ROM stockpile. During the subsequent three weeks, the building
of this finger is carefully tracked. As a result, ROM stockpile material, reclaimed to the
crusher during week four, can be characterized. In summary, a month of mining data
is required to connect a week of plant performance measurements back to their source
locations.

6.5.1. GEOMET MODEL

The material milled between 21-Aug and 26-Aug mainly originates from two distinct
benches; bench 2260 in the Tropicana pit and bench 2280 in the Havana pit (Fig. 6.5).
Prior to extraction, two GeoMet models are constructed describing the spatial variation
of the Wi values in both benches. Each model contains 100 GeoMet realisations Wib

t (:, i )
on a block support of 3m x 3m x 3.33m. The field realization are generated using a
sequential Gaussian simulation algorithm. All realizations are conditioned on Wis (m)
estimates (Fig. 6.5), derived from XRF and HS proxies collected on GC samples. Figure
6.6a shows a horizontal section across the middle flitch of both benches. The figure
displays the mean field computed over the 100 prior realisations.

Figures 6.6b to 6.6k illustrate how the mean field changes through time when

assimilating mill observations wi f
t . A total of 30 updates are conducted. The time

between updates amounts to 4h. Only results obtained at the end of each shift (i.e every
12h) are shown. The markers on each figure refer to the source locations of the material
milled during the indicated time interval (last 12h). As the realizations are updated,
the level of detail in the resulting mean field increases. Overall, the algorithm seems
to correct for the globally occurring overestimation bias (i.e. in most blocks the Wi is
lowered). However at specific locations, the algorithm learns that the ore is harder than
initially expected (Wi values are increased).

6.5.2. MILL FEED ESTIMATES

Updated GeoMet models Wib
t−1 are continuously propagated through the forward sim-

ulator Ft to adjust mill feed estimates Wi f
t accordingly. The top axes of Figs. 6.7a to 6.7k

display groups of mill feed estimates at 11 different timesteps (ref. time label in the top
left corner). Each group of mill feed estimates (single plot) characterizes 30 distinct 4h
long mill feeds (blue boxplots). Certain mill feeds are already processed (grey area); one
is currently being milled and measured (yellow bar); others still have to be fed to mill

(right of yellow bar). Once a 4h interval ends, a new observation wi f
t becomes available
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Figure 6.5: truck pit source locations from Tropicana and Havana pit during the entire month of August (2015).
The displayed trucks are either dispatched to the crusher (red crosses - direct tip) or to ROM stockpile 4 (orange
squares). The black dots display GC holes intersecting the bench.

(red bar) and an update is performed. Before switching to the next time interval, the
forward simulator readjusts all predicted measurements.

Since the pilot study is based on a historic dataset, all future observations are known
ahead of time. As a result assessment statistics can be computed not only describing
improvements in historic predictions but also in future ones.

The bottom axis in Figs. 6.7b to 6.7k displays the Differences in Absolute Error (DAE)
between best estimates (blue horizontal line in boxplot) and true measurements relative
to time 0 (21-Aug 06:00). For example a DAE of 2 indicates that the best estimate moved
2 units towards the actual value. The bars are coloured green in case of improvements,
red otherwise. Deteriorations do occasionally occur but their magnitude stays within
acceptable limits.

The change in Root Mean Square Error (C RMSE) between predicted and actual
measurements is computed within different dynamic time windows. The first and
second window focuses on the upcoming 12h and 24h (12h and 24h ahead of the
yellow bar). The third window encompasses all historic 4h intervals (grey area). Future
predictions improve on average by about 26% (next 12h) and 22% (next 24h). The error
in historic estimates reduces on average by about 72%. A correction of 100% is not
desired since time-averaged noisy observations do not contain enough information to
fully eliminate all remaining inaccuracies in the blended blocks.

6.6. CONCLUSIONS
This chapter describes the pilot testing of a novel updating algorithm at the Tropicana
Gold Mine. During the pilot, on-line mill observations are automatically reconciled
against the spatial work index estimates of the GeoMet model. Deviations between
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Figure 6.6: Mean field across the middle flitch of two benches in the Tropicana and Havana pit. Blocks are
colour coded according to their best estimate at the indicated time. The source locations of the material milled
during the indicated time interval are displayed using either red crosses (direct tip) or orange squares (material
has resided on a stockpile finger)
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Figure 6.6: CONTINUED (2) - Mean field across the middle flitch of two benches in the Tropicana and Havana
pit. Blocks are colour coded according to their best estimate at the indicated time. The source locations of the
material milled during the indicated time interval are displayed using either red crosses (direct tip) or orange
squares (material has resided on a stockpile finger)
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Figure 6.6: CONTINUED (3) - Mean field across the middle flitch of two benches in the Tropicana and Havana
pit. Blocks are colour coded according to their best estimate at the indicated time. The source locations of the
material milled during the indicated time interval are displayed using either red crosses (direct tip) or orange
squares (material has resided on a stockpile finger)
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Figure 6.7: Predicted (blue) and actual time-averaged measurements (red). The lower axis displays difference
in absolute error (DAE) relative to time 0. Changes in RMSE between predicted and actual measurements,
computed for three dynamic time windows, are shown in the bottom right corner



6

122 6. PILOT STUDY

5.0

10.0

15.0

20.0

25.0

W
or

k 
In

de
x 

[k
W

h/
t]

Date/Time: 23-08 18:00
Update: 15

20
-0

8 
18

:0
0

21
-0

8 
06

:0
0

21
-0

8 
18

:0
0

22
-0

8 
06

:0
0

22
-0

8 
18

:0
0

23
-0

8 
06

:0
0

23
-0

8 
18

:0
0

24
-0

8 
06

:0
0

24
-0

8 
18

:0
0

25
-0

8 
06

:0
0

25
-0

8 
18

:0
0

26
-0

8 
06

:0
0

26
-0

8 
18

:0
0

27
-0

8 
06

:0
0

27
-0

8 
18

:0
0

Date Time [dd/mm HH/MM]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Di
ff.

 A
bs

. E
rro

r [
kW

h/
t]CRMSE 12h: 61.56%

CRMSE 24h: 43.12%
CRMSE HIST: 78.87%

(f) 60h

5.0

10.0

15.0

20.0

25.0

W
or

k 
In

de
x 

[k
W

h/
t]

Date/Time: 24-08 06:00
Update: 18

20
-0

8 
18

:0
0

21
-0

8 
06

:0
0

21
-0

8 
18

:0
0

22
-0

8 
06

:0
0

22
-0

8 
18

:0
0

23
-0

8 
06

:0
0

23
-0

8 
18

:0
0

24
-0

8 
06

:0
0

24
-0

8 
18

:0
0

25
-0

8 
06

:0
0

25
-0

8 
18

:0
0

26
-0

8 
06

:0
0

26
-0

8 
18

:0
0

27
-0

8 
06

:0
0

27
-0

8 
18

:0
0

Date Time [dd/mm HH/MM]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Di
ff.

 A
bs

. E
rro

r [
kW

h/
t]CRMSE 12h: 68.24%

CRMSE 24h: 61.84%
CRMSE HIST: 77.45%

(g) 72h

5.0

10.0

15.0

20.0

25.0

W
or

k 
In

de
x 

[k
W

h/
t]

Date/Time: 24-08 18:00
Update: 21

20
-0

8 
18

:0
0

21
-0

8 
06

:0
0

21
-0

8 
18

:0
0

22
-0

8 
06

:0
0

22
-0

8 
18

:0
0

23
-0

8 
06

:0
0

23
-0

8 
18

:0
0

24
-0

8 
06

:0
0

24
-0

8 
18

:0
0

25
-0

8 
06

:0
0

25
-0

8 
18

:0
0

26
-0

8 
06

:0
0

26
-0

8 
18

:0
0

27
-0

8 
06

:0
0

27
-0

8 
18

:0
0

Date Time [dd/mm HH/MM]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Di
ff.

 A
bs

. E
rro

r [
kW

h/
t]CRMSE 12h: 55.88%

CRMSE 24h: 29.02%
CRMSE HIST: 70.31%

(h) 84h

5.0

10.0

15.0

20.0

25.0

W
or

k 
In

de
x 

[k
W

h/
t]

Date/Time: 25-08 06:00
Update: 24

20
-0

8 
18

:0
0

21
-0

8 
06

:0
0

21
-0

8 
18

:0
0

22
-0

8 
06

:0
0

22
-0

8 
18

:0
0

23
-0

8 
06

:0
0

23
-0

8 
18

:0
0

24
-0

8 
06

:0
0

24
-0

8 
18

:0
0

25
-0

8 
06

:0
0

25
-0

8 
18

:0
0

26
-0

8 
06

:0
0

26
-0

8 
18

:0
0

27
-0

8 
06

:0
0

27
-0

8 
18

:0
0

Date Time [dd/mm HH/MM]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Di
ff.

 A
bs

. E
rro

r [
kW

h/
t]CRMSE 12h: -13.73%

CRMSE 24h: -5.40%
CRMSE HIST: 70.67%

(i) 96h

5.0

10.0

15.0

20.0

25.0

W
or

k 
In

de
x 

[k
W

h/
t]

Date/Time: 25-08 18:00
Update: 27

20
-0

8 
18

:0
0

21
-0

8 
06

:0
0

21
-0

8 
18

:0
0

22
-0

8 
06

:0
0

22
-0

8 
18

:0
0

23
-0

8 
06

:0
0

23
-0

8 
18

:0
0

24
-0

8 
06

:0
0

24
-0

8 
18

:0
0

25
-0

8 
06

:0
0

25
-0

8 
18

:0
0

26
-0

8 
06

:0
0

26
-0

8 
18

:0
0

27
-0

8 
06

:0
0

27
-0

8 
18

:0
0

Date Time [dd/mm HH/MM]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Di
ff.

 A
bs

. E
rro

r [
kW

h/
t]CRMSE 12h: -9.08%

CRMSE 24h: 0.06%
CRMSE HIST: 77.74%

(j) 108h

5.0

10.0

15.0

20.0

25.0

W
or

k 
In

de
x 

[k
W

h/
t]

Date/Time: 26-08 06:00
Update: 30

20
-0

8 
18

:0
0

21
-0

8 
06

:0
0

21
-0

8 
18

:0
0

22
-0

8 
06

:0
0

22
-0

8 
18

:0
0

23
-0

8 
06

:0
0

23
-0

8 
18

:0
0

24
-0

8 
06

:0
0

24
-0

8 
18

:0
0

25
-0

8 
06

:0
0

25
-0

8 
18

:0
0

26
-0

8 
06

:0
0

26
-0

8 
18

:0
0

27
-0

8 
06

:0
0

27
-0

8 
18

:0
0

Date Time [dd/mm HH/MM]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Di
ff.

 A
bs

. E
rro

r [
kW

h/
t]CRMSE 12h: 14.14%

CRMSE 24h: 26.99%
CRMSE HIST: 78.13%

(k) 120h

Figure 6.7: CONTINUED (2) - Predicted (blue) and actual time-averaged measurements (red). The lower axis
displays difference in absolute error (DAE) relative to time 0. Changes in RMSE between predicted and actual
measurements, computed for three dynamic time windows, are shown in the bottom right corner
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predicted and actual mill performance are monitored and used to locally improve the
GeoMet model. The novelty of the approach resides in its ability to trace detected
deviations back to the predominant source. The algorithm automatically handles
differences in scale of support, sensor inaccuracies and observations made on blended
material originating from two or more extraction points.

In order to operate the updating algorithm, actual observations are to be compared
against model-based expectations (the mill feed estimates). The model-based expecta-
tions result from the propagation of GeoMet realizations through a forward simulator.
The resulting realization sets (block and mill feed estimates)are subsequently used to
compute empirical covariances. The covariances describe the link between mill derived
observations and blocks from the GeoMet model. There is no need to formulate and
linearise an analytical forward observation model, let alone compute its inverse.

A total of 30 updates were performed to assimilate a week of mill performance data
into the GeoMet model. The level of detail in the mean field increases significantly as
the GeoMet realizations are updated. The algorithm corrects various local estimation
biases resulting from ill-calibrated relationships between sensor data (XRF and NIR
measurements) and work index values.

The obtained results are validated against readily available production measure-
ments. Since the pilot was run off-line, future mill observations are known ahead of
time (although this information is ignored during updating). Consequently, validation
statistics are computed to evaluate whether updated GeoMet models result in more
accurate mill feed estimates. Over the course of a week, the RMSE between predicted
and measured Word Index values drops by about 72%. The results further indicate that
updating causes on average a reduction in error of about 26% in performance forecasts
for the next shift (upcoming 12h). Improvement in future forecasts of up to 68% have
been observed.

Although the current implementation of the forward simulator does adequately
describe the relevant operational features, further work needs to be done.

• The entire updating approach applied during the pilot study relies on the assump-
tion that material can be tracked with sufficient accuracy during 4h long time
intervals. The tracking assumptions underpinning the forward simulator are to be
validated using e.g. RFID tags (radio frequency identification). These tags have to
be placed within the source material (e.g. blastholes, muckpiles or stockpiles) and
their initial location needs to be logged. Several antennae have to be installed at
critical positions in the comminution circuit. Subsequently, events of tags passing
an antenna are recorded. Finally these recorded events will have to be compared
against the tracking behaviour of the forward simulator. A sufficient agreement
will validate the tracking assumptions and the consequential behaviour of the
forward simulator.

• The material source locations can be more accurately defined. Currently only
the GPS locations of the trucks are recorded. Aerial photographs are used to
derive a set of correction vectors (length and orientation) linking truck positions
to actual digging locations. Very recently, the high-precision GPS locations of the
loaders and excavators were made available as well. An algorithm can be written
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to accurately determine the origin of each bucket loaded into the truck.

• A support correction algorithm needs to be designed and implemented to adjust
the distribution of Wi values assigned to a truck when material is reclaimed from a
stockpile subdomain. Some random noise proportional to the amount of volume
reduction should be added to the characterizing set. As a result, the uncertainty in
the truck would be larger than the one in the stockpile subdomain. The statistical
consequences of this volume reduction are currently ignored.

• Equipment performance measurements might start to drift as critical components
are wearing out (e.g. liners in the ball mill). Machine learning techniques could be
applied to automatically correct for the occurring drift.

• Since the case study is based on an off-line execution of the algorithm, future
predictions were generated using a ‘tracking-based’ forward simulator. When
the algorithm would run on-line, the tracking data would only allow to gener-
ate model-based equivalents to current and historic measurements. A second
‘schedule-based’ forward simulator needs to be built to generate production
forecasts. The production forecasts are by no means necessary to run the updating
algorithm.

• The application of a ‘schedule-based’ forward simulator allows for a continuous
re-evaluation of operational decisions based on the most up to date informa-
tion. Production forecasts should be recorded and validated against performance
measurements as soon as they become available. As such, the performance
of the algorithm with respect to generating accurate forecasts is continuously
monitored. The performance regarding reconciliation of historic measurements
should obviously be monitored as well.

Future development should further focus on extending the capabilities of the updat-
ing algorithm. The current implementation is designed to update a single continuous
attribute (spatial work index) based on a single continuous measurement variable (mill
derived work index). This measurement variable is either directly or indirectly related
to the attribute of interest. The algorithm needs to be extended to handle multivariate
attributes, both in the block model as on the measurement side (updating multiple
GeoMet estimates simultaneously). That is, correlated measurement variables need to
be jointly considered to update (other) correlated attributes. Neglecting to do so will
result in a loss of information. Additionally, it would be interesting to update categorical
variables such as ore types, lithologies or weathering zones, based on equipment
performance or other sensor measurements.

The application of machine learning algorithms to regularly recalibrate the relation-
ships between sensor data and work index values opens up another avenue of research.
A large database of reconciled work index values is built up as the updating algorithm
is operated over a longer period of time. Each resulting block value is then to be linked
with sensor data from neighbouring grade control samples. Both datasets are then to be
used to regularly retrain the relationship between sensor data and work index estimates.
The retrained relationship will eventually result in more accurate and reliable GeoMet
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models. Finally, the gained knowledge, e.g. a better understanding of the relation
between ore types and hardness (assuming sensor data can be used to differentiate
between ore types), should be transferred into the longer-term resource model on a
regular basis.
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7
CONCLUSIONS AND

RECOMMENDATIONS

The last chapter of the dissertation presents a brief overview of the general conclusions
from this research. Thereafter, the chapter lists recommendations and potential research
areas to further improve and develop the “updating loop” within the overall “Closed-Loop
Resource Management” framework. Note that specific conclusions and recommendations
are provided at the end chapters 3 (sec. 3.6), 4 (sec. 4.3), 5 (sec. 5.7) and 6 (sec. 6.6).

Parts of this chapter have been published in Mathematical Geosciences 49, 1 (Wambeke and Benndorf, 2017a)
or have been submitted for publication in Mathematical Geosciences accepted with revisions (Wambeke
and Benndorf, 2017b) or in Transactions of the Institutions of Mining and Metallurgy, SectionA - Mining
Technology accepted, in press (Wambeke et al., 2017).
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The goal of this research is to initiate the development of an updating framework
capable of assimilating online sensor observations into an already existing resource
model. The objectives, formulated in Chapter 1 (p. 7-8), are addressed as follows:

• Objective 1: A literature review compares the current state of the art in updating or
conditioning spatial models based on additional production data. The Ensemble
Kalman Filter is selected as the most suitable technique since it is capable of
executing sequential updates (obj. 1a), does not require a closed-form analytical
expression of the forward observation model (obj. 1b) and is able to handle noisy
blended measurements on various scales of support (obj. 1c).

• Objective 2: The Ensemble Kalman Filter is subsequently integrated into an overall
mathematical formulation and algorithm design. Several additional features and
options are added to cope with the requirements of the mining industry: (a) a
Gaussian Anamorphosis deals with non-Gaussian distributions and indirect ob-
servations, (b) a computation confined within the boundaries of a neighbourhood
is faster and requires less memory, (c) a parallel updating sequence (double helix)
and two covariance correction techniques contain the propagation of numerical
errors, which do originate from the use of a limited number of spatial realizations
(a larger number would simply be impractical), (d) the specific implementation of
the overall framework allows for an intuitive treatment of measurement error.

• Objective 3: The performance of the algorithm is studied extensively in an artificial
environment, representing a mining operation with two extraction points of
unequal production rate. A visual inspection of cross sections teaches that the
best estimates is significantly altered when production data is being assimilated
into the model. The global assessment statistics further illustrate that the overall
quality of the resource model improves over time. The local assessment statistics
show that the observed global improvements result from correcting local estima-
tion biases.

• Objective 4: The performance of the updating algorithm as a function of the
design and operational control of the monitoring system is examined. A detailed
analysis of the results and the subsequent conclusions are presented in great detail
in Chapter 5.

• Objective 5: The developed updating concepts is tested during a pilot study in
an operational mine. The pilot test demonstrates that it is possible to use online
mill observations to automatically reconcile the spatial Work Index estimates in
the GeoMet model. The error in historic and future production estimates drop on
average by respectively 72% and 26%.

The following section presents a general synopsis and conclusion. Thereafter, future
recommendations regarding the implementation, performance and applicability of the
developed updating framework are provided.



7.1. SYNOPSIS AND CONCLUSION

7

129

7.1. SYNOPSIS AND CONCLUSION
In order to make the best possible decisions, it is vital that the resource model is always
entirely up to date. This requires a practical updating algorithm which continuously
assimilates new information into an already existing resource model.

The updating algorithm must address following practical considerations. (a) At
each point in time, the latest solution has to implicitly account for all previously
integrated data (sequential approach). During the next update, the already existing
resource model has to be further adjusted to honour the newly obtained observations
as well. (b) Due to the nature of a mining operation, it is nearly impossible to formulate
closed-form analytical expressions describing the relationship between observations
and resource blocks. The relevant relationships will rather have to be inferred merely
from input (the resource model realizations) and the output (distribution of predicted
observations) of a forward simulator. (c) The updating algorithm must be able to
assimilate noisy observations made on a blend of material originating from multiple
sources and locations. Differences in scale of support will have to be dealt with
automatically.

Several existing (geo)statistical techniques are individually capable of solving at
least one but not all of the practical requirements identified. Co-Kriging approaches
for example can be used to jointly model the subsurface using both scarce direct and
more abundant indirect measurements. The underlying equations are designed to
handle differences in accuracy and measurement volume. They do however fail to
take advantage of measurements made on blended material streams. Furthermore,
the conventional co-Kriging approaches are not able to sequentially incorporate new
information into an already existing resource model.

The latter issue is resolved by merging the co-Kriging equations into a sequential
linear estimator. The resulting technique improves previous resource models by using
linearly weighted sums of differences between observations and model-based predic-
tions (forward simulator output). The weights, necessary to conduct each update,
result from solving a system of co-Kriging equations. These kriging weights eventually
determine how individual block values have to be adjusted in order to shrink the
detected deviations.

The blending issue is elegantly addressed through the application of Monte Carlo
principles. The covariances necessary to compute the Kriging weights are empirically
derived from two sets of Monte Carlo samples; the resource model realizations (input
forward simulator) and the observation realizations (output forward simulator). There
is no need to provide analytical formulae modelling spatial correlations, blending and
differences in scale of support.

Combined, the selected (geo)statistical techniques are capable of updating existing
resource models based on noisy measurements of blended material streams. The
governing equations bear some remarkable resemblance to those of a dynamic filter (the
Ensemble Kalman Filter). Their underlying philosophies however do differ significantly.
An application in the minerals industry is by no means comparable to those in various
other research areas. Weather forecasting and reservoir modelling (oil, gas and water),
for example, consider dynamic systems repetitively sampled at the same locations.
Generally, each observation characterizes a volume surrounding a sample location.
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Mineral resource modelling on the other hand focuses on static systems gradually
sampled at different locations. Each observation is characteristic for a blend of material
originating from one or more locations and sources. Each part of the material stream
is sampled only once, at the moment it passes the sensor in the production chain.
Although the equations are virtually the same, the terminology of sequential updating or
conditioning is preferred over (Ensemble) Kalman filtering. This is to stress the absence
of dynamic components and to highlight its link to the field of geostatistics.

The designed geostatistical approach is implemented into an efficient algorithm
capable of automatically assimilating online production data. The practicality of the
algorithm mainly results from the design decision to exclude the forward simulation
model from the computer code. A case specific forward simulator is built and run
parallel to the more generally applicable updating code. This results results in great flex-
ibility, allows for a better integration of expert knowledge and facilitates interdisciplinary
cooperation.

The forward simulator is run to translate resource model realizations into obser-
vation realizations. The resulting realization sets are subsequently used to compute
empirical covariances. These covariances mathematically describe the link between
sensor observations and individual blocks from the resource model. This numerical
inference avoids the cumbersome task of formulating, linearising and inverting an
analytical forward observation model. The application of a forward simulator further
ensures that the distribution of the Monte Carlo samples already reflect the support of
the concerned random values. As a result, the necessary covariances, derived from these
Monte Carlo samples, inherently account for differences in scale of support.

Various options are integrated into the updating algorithm to either reduce compu-
tation time, memory requirements or numerical inaccuracies. (a) A Gaussian anamor-
phosis option is included into the algorithm to deal with suboptimal conditions related
to non-Gaussian distributions. A specific algorithm structure ensures that the sensor
precision (measurement error) can be defined in its original units and does not need
to be translated into a normal score equivalent. (b) Numerical inaccuracies may arise
when the number of Monte Carlo samples is kept rather small for practical reasons.
Since covariances are computed empirically, degrees of freedom are lost over time.
Eventually this might result in a collapse of covariances (filter inbreeding). To prevent
this from happening, an interconnected parallel updating sequence (helix) can be
configured. (c) A neighbourhood option is implemented to constrain computation
time and memory requirements. Since observations are collected on blended material
streams originating from multiple extraction zone, different neighbourhoods need to be
considered simultaneously. A neighbourhood strategy also partially reduces the effect
of spurious correlations. (d) Two covariance correction options are implemented to
inhibit the propagation of statistical sampling errors originating from the empirical
computation of covariances. The localization correction is based on the assumption
that the accuracy of a covariance estimate decreases with distance from an extraction
point. Hence, grid anomalies are tapered around central extraction locations. The
error correction uses an offline Monte Carlo simulation to precompute the accuracy of
a certain correlation estimate. Corresponding correction factors are stored in a lookup
table and used to adjust the elements of the forecast error covariance matrix.
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An artificial experiment is conducted to extensively test the developed algorithm and
to showcase its capabilities. A mining operation with two extraction points of unequal
production rate is simulated. The resulting material streams are blended and inaccurate
observations are made. A total of 12 updates are performed, each one based on 2
inaccurate observations of 16 blended blocks. The RMSE inside both extraction zones
drops by 38% and 45%. Improvements ranging from 39% to 13% were observed in a
close neighbourhood. The results are very promising, especially considering the large
measurement volume and low sensor accuracy.

Another 125 artificial experiments are conducted to study how variations in mea-
surement volume, blending ratio and sensor precision affect the overall performance of
the updating algorithm. Each experiment mimics a virtual mining operation with two
extraction points. Over the course of each 144h long experiment, a total of 403200t
is excavated, processed and measured. Despite their mutual differences, all mining
schedules ensure that at the end of each experiment the same 1152 blocks are extracted.
Local production rates (blending ratios) and interval durations (measurement volumes)
do however vary significantly across the experiments. Moreover various sensors with a
different precision are applied.

Results regarding model improvements are promising. Under fairly optimal condi-
tions, the RMSE in the resource model drops by around 60%. Optimal conditions occur
when small operational volumes are extracted from a single location and characterized
with a relatively accurate sensor (8 GC blocks - 2800t , blending ratio of 100%, sensor
precision of 0.05). Even when conditions are far from optimal, the RMSE in the resource
models can still be reduced by about 20%. This is remarkable, especially considering
the large measurement volumes, the amount of blending and the extremely inaccurate
sensor (64 GC blocks - 22400t , blending ratio of 50%, sensor precision of 1.00). The
results indicate that even global inaccurate blended averages have some information
potential to further improve the resource model.

The experiments further illustrate the outstanding reconciliation capabilities of the
updating algorithm. The RMSE between historic (re)predicted and actual measure-
ments decreases between 46% and 97% over the course of an experiment. More accurate
sensors and shorter measurement intervals significantly improve the reconciliation
behaviour. Larger RMSE reductions are further observed when local production rates
are sitting at either end of the spectrum (blending ratio of 100% or 50%).

Improvements regarding future predicted measurements (next 24h) turn out to be
less robust against variations in system parameters. Average RMSE reductions vary
between −5% and +30%. Longer interval durations (measurement volume) harm
performance. The precision of the applied sensor does not seem to significantly impact
the results. The overall effect of variations in local production rates (blending ratio) is
harder to describe. Converging local production rates generally result in lower RMSE
reductions. This statement however only seems to apply as long as the local production
rates are noticeably different. The moment they are equal (blending ratio of 50%), the
RMSE reduction becomes exceptionally large.

Nearly all results have shown that shorter interval durations have a positive impact
on the algorithm performance, no matter the considered metric. Due to the complex-
ity of the material handling process, it might be challenging to construct a forward
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simulator accurate enough to track the material on a scale as small as a few blocks.
A larger time interval might have to be selected to ensure that a forward predicted
measurement and a time-averaged sensor response are actually characterizing roughly
the same material (ensure a correct match between a virtual and real measurement). A
representative forward prediction is essential in establishing an accurate link between
specific observations and the right constituent blocks. As measurement volumes grow
too large, the opportunity to improve future predictions might be lost.

It further would be wise to install by default the most accurate sensor available. First
of all, a more accurate sensor significantly improves the reconciliation of production
data. Secondly, even in combination with medium measurement volumes, inaccuracies
in the resource model diminish when more accurate sensors are applied.

In practice, it will be nearly impossible to control local production rates or blending
ratios for the sake of improving the algorithm performance. These parameters rather
follow from a defined mining schedule and are to be considered as external input.
Furthermore, local production rates and the corresponding blending regime will very
likely change over time. The previous results nevertheless form a basis for understanding
and anticipating changes in algorithm performance associated with adjustments in local
production rates. Before proceeding, it important to stress that the algorithm perfor-
mance can not be evaluated solely based on the blending ratio in itself. Differences in
performance can only be explained by comparing the more inclusive mining schedules.
It turns out that it is not the blending per se that matters but rather its impact on
consequential covariances, necessary to compute the Kriging weights.

The mining schedule (in combination with the sensor precision) directly affects the
magnitudes of following covariances; (1) Cross-covariances between extracted blocks;
(2) Cross-covariances between scheduled blocks; (3) Cross-covariances between neigh-
bouring blocks (not yet scheduled); (4) Covariances between extracted and scheduled
blocks; (5) Covariances between extracted and neighbouring blocks. The interplay
between these covariances eventually determines the success of resource model updates
and their subsequent impact on future predicted measurements (via scheduled blocks).

When purely evaluating potential resource model improvements, covariances of type
1, 3 and 5 have to be considered. Mine schedules with converging local production rates
(i.e. an increase of blending from two different sources) generally harm the quality of
resource model improvements. This is mainly because the number of zero-correlated
pairs of blocks increases as more material is being blended from two distant areas.
In other words, more covariances of type 1, 3 and 5 amount to zero. The non-zero
covariances do change as well with different mining schedules. Yet, their impact is
believed to be of lesser importance.

On the other hand, when the aim is to anticipate improvements in future predicted
measurements, covariances of type 2 and 4 have to be studied as well. Type 2 covariances
increasingly become zero as more blocks are being blended from two different areas.
Non-zero type 2 covariances increase or decrease depending on the specifics of the
corresponding mining schedule. The results however indicate that the behaviour, with
respect to improvements in future predictions, is mainly driven by type 4 covariances.
These covariances entirely depend on the distance (and the associated geological corre-
lation) between extracted and scheduled blocks. The schedules, describing the blending
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of equal material amounts (blending ratio of 50%), apparently resulted in the lowest
average distance. Hence, the associated experiments outperformed their counterparts
with a lower degree of blending.

This dissertation further presents the results of a pilot test conducted at the Tropi-
cana Gold Mine in Australia. The aim of the study is to investigate whether spatial Work
Index estimates of a GeoMet model can be updated using actual mill performance data.

A total of 30 updates were performed to assimilate a week of mill performance data
into the GeoMet model. The level of detail in the mean field increases significantly as
the GeoMet realizations are updated. The algorithm corrects various local estimation
biases resulting from ill-calibrated relationships between sensor data (XRF and NIR
measurements) and Work Index values.

The obtained results are validated against readily available production measure-
ments. Since the pilot was ran off-line, future mill observations are known ahead of
time (although this information is ignored during updating). Consequently, validation
statistics are computed to evaluate whether updated GeoMet models result in more
accurate mill feed estimates. Over the course of a week, the RMSE between predicted
and measured Word Index values drops by about 72%. The results further indicate that
updating causes on average a reduction in error of about 26% in performance forecasts
for the next shift (upcoming 12h). Improvements in future forecasts of up to 68% have
been observed.

7.2. RECOMMENDATIONS FOR FUTURE WORK
This dissertation presents the results of a first attempt to develop an approach to real-
time updating of resource models using online production data. The initial results
are very promising. This work opens up a potential novel research avenue within
the field of mining geotatistics. Hence, further research needs to be conducted to
bring the developed methodology to a required mature level. The remainder of this
chapter suggests some interesting new research directions which focus on (a) extending
the existing updating algorithm or implementing new ones (b) conducting additional
experiments to understand the effect of the prior model on subsequent updates (c)
addressing the modelling assumptions behind the forward simulator and suggesting
potential improvements.

7.2.1. THE UPDATING APPROACH

There is some potential to further enhance the localization error correction option
(Gaspari-Cohn function, ref. Chapter 3) of the existing updating algorithm. The current
implementation results in a differential covariance correction of blocks located in the
same digging area. A block near the centre of the extraction area (specified as a
point coordinate xl , ref. Algm. 1, p. 29) receives a lower correction factor than a
block slightly further away. Especially, when considering larger measurement volumes
(larger digging blocks), a tapering function with a plateau might be more suitable.
The function should be defined such that all blocks inside the digging area are not
corrected (correction factor of 1). Tapering then starts from the border onwards into
the surrounding neighbourhood. Consequentially, some inputs will have to adjusted.
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The central coordinates of the extraction area will have to be replaced with polygons
delineating the digging volumes.

Another point of attention could be the numerical stochastic representation of a
Gaussian anamorphosis function. During most forward transformations (those of grid
nodes and model-based predictions, Eq. 3.1, 3.3), a non-linear non-parametric operator
is used to map Monte Carlo samples onto their normal score equivalents. The forward
transformation of actual observations (Eq. 3.4) and the backward-transformation of
updated grid nodes (Eq. 3.10) requires a bit more care. Since these values of interest
are not all included in the numerical representation of the corresponding Gaussian
anamorphosis function, there is a need to establish rules of interpolation. If the
value is located inside the limits of the Monte Carlo sample, a straightforward linear
interpolation suffices. Outside the limits, the upper and lower tails are extrapolated
using a power model. These extrapolations require tedious manual input. Before each
update, the user has to specify a reasonable minimum and maximum value for the
considered resource attributes and model-based predictions (a reasonable range might
change when moving into an area with substantially higher or lower values). Polynomial
curve fitting techniques can be applied to provide a continuous representation of the
Gaussian anamorphosis function. Such an approach would circumvent the need to
define this manual input.

It further would be interesting to develop some statistics to monitor the ‘health’
of a sequentially updated resource model. Once developed, these statistics could be
used to identify malicious updates, which can then be rolled back. The resulting
monitoring tools should detect a covariance collapse, a disappearance of spatial cor-
relation structure and unusually large or small blocks values. Furthermore, predicted
observations should be recorded and validated against actual measurements as soon
as they become available. As such, the performance with respect to generating more
accurate forecasts is continually monitored. The performance regarding reconciliation
of historic measurements should obviously be monitored as well.

Besides monitoring the performance and ‘health’ of a sequence of updates, it can be
helpful to display the computed empirical covariances. A visual representation of these
covariances will be useful to learn and study the differences between seemingly similar
observations. The observation error covariances (Eq. 3.6) could represent the joint-
information content of a collection of observations, while the forecast error covariances
(Eq. 3.7) could identify the blocks which need to be updated.

Another type of statistic can be developed to anticipate changes in future predicted
measurements. A new statistic, preferably a single-value measure, needs to be devised
describing the updating potential of a mining schedule at discrete timesteps. Three
types of covariances need to be considered; cross-covariances between extracted blocks;
cross-covariances between scheduled blocks and covariances between extracted and
scheduled blocks. All this information could potentially be captured in some sort of
signal-to-noise ratio. Such a ratio could characterize upfront the reliability of upcoming
adjustments in predicted measurements. The ratio could as well indicate whether
or not it is wise to change operational decisions based on the updated predicted
measurements.

New updating algorithms have to be implemented to extend the capabilities of
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the developed updating framework. The current algorithm is designed to update
univariate continuous attributes based on single continuous measurement variables.
These measurement variables are either directly or indirectly related to the attribute of
interest. The algorithm needs to be extended to handle multivariate attributes, both
in the block model as on the measurement side. That is correlated measured variables
need to be jointly considered to update (other) correlated attributes. Neglecting to
do so will result in a loss of information. Additionally, it would be interesting to
update categorical variables such as ore types, lithologies, weathering zones based on
equipment performance or other sensor measurements.

7.2.2. ADDITIONAL EXPERIMENTS

Additional experiments have to be conducted to understand the limitations of the
algorithm regarding the geological environment and the prior model thereof. The
question still remains whether good performance can be achieved when the prior model
and the reality differ substantially. For the sake of simplicity, three detrimental scenarios
are considered; (1) an incorrect representation of the spatial correlation structure, (2) an
incorrect positioning of patterns of extreme attribute values (zones of clustered high and
low values), (3) unrealistic characterization of the geological uncertainty.

A fist set of experiments focusses on studying how an incorrect spatial correlation
structure impacts local anomaly corrections later on. The modelled correlation structure
can be lifted from the prior realizations using empirical covariances. The resulting
covariances largely determine the extent of updates in neighbouring block values. When
the covariances between measurements and neighbouring blocks are overestimated,
attribute values are corrected too aggressively, causing erroneous updates. A corrective
localization technique is integrated into the algorithm to prevent such behaviour (ref.
Chapter 3). Underestimated covariances on the other hand yield updates which are too
modest. Certain local anomalies remain partly uncorrected. In reality, the correlation
structure of the true field is obviously unknown. Several parallel updating tracks could
be run simultaneously, all initiated with a specific set of prior realizations (each set could
be generated using a different variogram model and/or simulation technique). Error
statistics, collected during an initial training period, could eventually be compared to
select the most ‘correct realization set, best describing the true spatial correlation.

A second set of experiments evaluates whether the algorithm still performs if the
prior realizations set is insufficiently conditioned. The inherent correlation structure is
assumed to be approximated correctly (it could for example be derived from another
area with similar geology). Under these conditions, it is assumed that the algorithm
(partly) corrects for the local estimation biases and (approximately) identifies clusters
of extreme values.

A third set of experiments investigates the necessity of realistically characterizing
geological uncertainty (partly related to a correct representation of the spatial correla-
tion structure). This geological uncertainty is propagated through the forward simulator
and results in a quantification of the uncertainty around predicted measurements.
The (geological) uncertainty is reflected by the spread in the Monte Carlo samples
associated to block and measurement volumes. When the spread is too wide, insufficient
confidence is placed in the initial prior model. As a result, the algorithm will update too
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aggressively. The opposite happens when the spread is too narrow. The third experiment
series studies whether the algorithm is capable of correcting under- and overconfident
models. It is furthermore interesting to quantify the effect of an uncertainty bias on the
overall algorithm performance.

The previously discussed experiment series focussed on analysing how closely prior
realizations have to match reality in order for the algorithm to function properly.
Some more experiments can be conducted varying the extraction sequence and the
update interval (note that the update interval is not the same as the measurement
interval). It is assumed that the order of extraction does not significantly impact the
final results. This assumption has not been proven and should be verified. Furthermore,
it is worthwhile to investigate whether longer update intervals, consisting of multiple
measurement intervals, would produce worse results. In other words, a study needs to be
made to differentiate between the assimilation of multiple observations simultaneously
(update interval is a multiple of the measurement interval) and the assimilation of one
observations at a time (update interval equals measurement interval).

7.2.3. PRACTICAL APPLICATION
A practical application requires two pieces of software: an updating algorithm and a
forward simulator. A discussion of the former will be omitted here. Several suggestions
have already been made to further improve/extend the updating algorithm. The
following text discusses some of the modelling assumptions underpinning the case
specific forward simulator and suggest potential improvements.

• The entire updating approach applied during the pilot study relies on the assump-
tion that material can be tracked with sufficient accuracy during 4h long time
intervals. The tracking assumptions underpinning the forward simulator could
be validated using e.g. RFID tags (radio frequency identification). These tags
have to be placed within the source material (blastholes, muckpiles, ...) and their
initial location needs to be logged. Several antennas have to be installed at critical
positions in the comminution circuit. Subsequently, events of tags passing an
antenna are recorded. Finally these recorded events will have to be compared
against the tracking behaviour of the forward simulator. A sufficient agreement
will validate the tracking assumptions and the consequential behaviour of the
forward simulator. This validation step might be challenging as it is yet unclear
how the RFID points have to be related to corresponding material volumes.

• The material source locations can be more accurately defined. Currently only
the GPS location of the trucks are recorded. Aerial photographs are used to
derive a set of correction vectors (length and orientation) linking truck positions
to actual digging locations. Very recently, the high-precision GPS locations of the
loaders and excavators are made available as well. An algorithm can be written to
accurately determine the origin of each bucket loaded into a truck.

• A support correction algorithm needs to be designed and implemented to adjust
the distribution of Wi values assigned to a truck when material is reclaimed from a
stockpile subdomain. Some random noise proportional to the amount of volume
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reduction should be added to the characterizing set. As a result, the uncertainty in
the truck would be larger than the one in the stockpile subdomain. The statistical
consequences of this volume reduction are currently ignored.

• Equipment performance measurements might start to drift as critical components
are wearing out (e.g. liners in the ball mill). Machine learning techniques could be
applied to automatically correct for the occurring drift.

• Since the case study is based on an off-line execution of the algorithm, future
predictions were generated using a ‘tracking-based’ forward simulator. When
the algorithm would run on-line, the tracking data would only allow to gener-
ate model-based equivalents to current and historic measurements. A second
‘schedule-based’ forward simulator needs to be build to generate production
forecasts. The production forecasts are by no means necessary to run the updating
algorithm.

• The application of a ‘schedule-based’ forward simulator allows for a continuous
re-evaluation of operational decisions based on the most up to date informa-
tion. Production forecasts should be recorded and validated against performance
measurements as soon as they become available. As such, the performance
of the algorithm with respect to generating accurate forecasts is continuously
monitored. The performance regarding reconciliation of historic measurements
should obviously be monitored as well.

The application of machine learning algorithms to regularly recalibrate the relation-
ships between sensor data and word index values opens up another avenue of research.
A large database of reconciled work index values is built up as the updating algorithm
is operated over a longer period of time. Each resulting block value is then to be linked
with sensor data from neighbouring grade control samples. Both datasets are then to be
used to regularly retrain the relationship between sensor data and work index estimates.
The retrained relationship will eventually result in more accurate and reliable GeoMet
models. Finally, the gained knowledge, e.g. a better understanding of the relation
between ore types and hardness (assuming sensor data can be used to differentiate
between ore types), should be transferred into the longer-term resource model on a
regular basis.
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