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Abstract

In this thesis, the analogy between the special theory of relativity and the dynamics of a
laborer is developed in the context of labor economics. At the basis of this analogy stands an
individual laborer who cannot supply more than 24 hours of labor in a day. This represents
the theoretical limit to the flow of labor services (velocity). We argue this limit is analogous
to the speed of light. The development of the analogy continues using hyperbolic functions
independent of the demand frame of reference (frame of reference) and dependent on the
degree of demand (rapidity) as well as the wage inelasticity (mass). This analogy describes
the behavior of an individual laborer, detailing the quantity of labor services (position) and
their flow, the wage (momentum) and the causation of changes in the flow of labor services
(forces). These dynamics in labor economics are consistent with the theory of special relativ-
ity, demonstrating economic engineering principles.

Economic engineering is applied to model an individual laborer using the newly developed
analogy. The laborer’s supply curve shows that wage inelasticity does not change when a
laborer performs more labor. Instead, the nonlinear supply curve is attributed to the differ-
ence in a laborer’s perception of time (proper time). The perception of time depends on the
flow of labor services of the observer, making it possible to observe the labor market from
different perspectives, including those of companies and laborers. The laborer’s perspective
on their supply is visualized on the Poincaré disk, from which occupational compositions and
job transitions can be analyzed.
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“The value of a college education is not the learning of many facts but the training
of the mind to think.”
— Albert Einstein [20]





Chapter 1

Introduction

In the field of labor economics, the objective is to comprehend the dynamics of the labor
markets. Labor markets consist of laborers who perform labor, usually in exchange for a
wage. The wage is determined based on demand and supply, influenced by social, cultural
and political variables. Economists construct macroeconomic models of the economy, of which
labor market models are a component. These labor market models are used by policymakers
to develop policies regulating the labor market, such as those concerning unemployment rates
and wage gaps. [6], [63]

A first attempt at developing an economic engineering labor market model was made by
Huisman, who utilized a commodity analogy. As a result of this approach, he modeled the
sale of laborers instead of their labor services. This is not an accurate representation of the
labor market in the Netherlands for it is not legal to sell people [54]. The model furthermore
does not consider that it is not theoretically possible for a single laborer to perform more
than 24 hours of labor in a day. [31]

The goal of this thesis is therefore to develop an economic engineering analogy that de-
scribes the dynamics of a laborer. A laborer who is not considered to be a commodity, nor
for whom it is possible to perform labor services at a rate faster than time. For the purpose
of interpretation of the analogy, we furthermore have the objective to visualize this analogy,
starting with the laborer’s kinematics.

This goal marks a step towards the broader vision of working towards a macroeconomic
economic engineering model that includes the modeling of individual laborers. Economic
engineering offers the possibility of modeling the dynamics of individual laborers as part of
macroeconomic models through agent-based modeling [34]. Whereas the CPB is currently not
able to model this due to computational limitations [15], [24]. Modeling individual laborers
has the potential to provide insights to policy analysts on topics considered important by
contemporary governments [73]. For example, it allows assessing distributions of variables
(such as unemployment) instead of only considering the mean, and it allows for assessing
group differences (such as wage gaps) [51], [35], [28].
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2 Introduction

In chapter 2 the analogy of labor services to linear mechanics is first developed, in a similar
manner as other analogies in economic engineering. An overview of this linear mechanical
analogy is provided in Table B-1 in appendix B-1. The linear mechanical analogy is then
extended to the rotational mechanics analogy for labor services in section 2-3, an overview of
this analogy is provided in Table B-2 in appendix B-2.

The results of the complete analogy are compared to the expected results based on the current
knowledge in labor economics in section 2-4-2. In this section, the contradictions between
our Newtonian analog and labor economics are detailed, and the next steps in developing a
correct analogy are determined.

For the reader already familiar with economic engineering and somewhat familiar with la-
bor economics I suggest not reading the entirety of chapter 2. Instead, I would suggest only
reading section 2-4-2 and the paragraph ’Inertia as inelasticity’ in section 2-2. Because, the
Newtonian analogy ultimately does not consider the theoretical limit to the flow of labor
services and thus is not the analogy ultimately proposed.

In chapter 3 the knowledge of the special theory of relativity is used to develop the dy-
namics describing a laborer functioning in the context of labor economics. Developing the
analogy analogous to the special theory of relativity allows for modeling the theoretical limit
to the flow of labor services. This is because the flow of labor services is deemed analogous to
the velocity, whose theoretical limitation is the speed of light. Throughout the development
of the relativistic analogy, the symbols are chosen to be the same as their counterpart in
special relativity, as much as reasonably allows, such that the developed formulas can just as
easily be used by physicists as by economic engineers.

The mathematical structures, describing the laborer’s quantity of labor over time, are set
up in section 3-2, forming LS spacetime. From here, the dynamics of the laborer are de-
veloped. To determine the running labor cost, the stationary action principle is utilized in
subsection 3-3-1. The running labor cost is then used to determine the wage in subsection
3-3-2. The obtained information is filled into the Legendre transform which is then used to
define the laborer’s surplus in subsection 3-3-3.

Furthermore, in section 3-4 the wage-surplus relationship is determined, analogous to the
momentum-energy relationship in special relativity to describe the total surplus of the la-
borer. Lastly, the drivers of the laborer are identified through the wage vector, analogous to
the 4-momentum vector in subsection 3-4-3.

In chapter 4 a method is proposed to visualize the flows and real flows of labor services.
We do this by projecting different flows onto one hyperboloid which describes the flow space.
In turn, this flow space is projected onto a Poincaré disk. Then, this disk is used to define
job compositions and job transformations.

Finally, the conclusions and recommendations are presented in chapter 5. The extent to
which the relativistic analogy describes the dynamics of labor economics is discussed. In ad-
dition, a reflection on what is achieved concerning visualizations of the analogy is provided.
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Furthermore, the next steps in the development of the relativistic analogy are proposed.

In section 5-2, further recommendations are made on how the analogy developed in this
thesis can be utilized to build macroeconomic models representing the labor market. It also
elaborates on the potential of the analogy to provide insights concerning other service analogs
in economic engineering. Finally, a suggestion for the continuation of the interpretation of
descriptive geometry is provided.
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Chapter 2

The Newtonian dynamics of labor
services

2-1 Introduction

As a first step towards modeling the labor market through economic engineering principles,
analogies relating engineering and labor economics are developed. The analogies developed
interpret labor economics through the linear mechanical analogy and the rotational mechan-
ical analogy, also referred to as the commodity analogy and the capital analogy. This set of
analogs is referred to as the Newtonian analogy throughout this thesis. Afterward, a compar-
ison is provided between the resulting kinematics of the new analogies and what economists
describe to be the dynamics of labor services.

At the core of labor economics are labor services. The term labor services will be used
throughout this thesis to describe labor that a laborer provides, in exchange for a wage.

The overview of the developed analogies is provided in Appendix B, the commodity analogy
in Table B-1 and capital analogy in Table B-2. A brief overview of the economic engineering
approach, and the reasoning for starting with developing a linear and rotational mechanical
labor analog, are provided in Appendix A.

2-2 The linear mechanical labor analogy

In this section, labor economics will be interpreted analog to the linear mechanical analogy,
in economic engineering named the commodity analogy [48].

The linear mechanical analogy is used to describe translational motions. It treats labor
as a commodity, an object that can be bought, sold and stored. However, this is not the case
for labor, as a laborer can either perform labor during a certain time frame or not. Labor

Master of Science Thesis J.M.L. de Graaf



6 The Newtonian dynamics of labor services

can thus not be stored, nor can the laborer go back in time to do more labor during times
the laborer did not initially work. Finally, it is not possible for a single laborer to work more
than one hour within a single hour. Furthermore, a laborer themselves cannot legally be sold,
they instead yield labor which, in turn, can be sold [54]. This makes a capital analogy more
suitable, for it describes an economic situation in which goods offer value only through selling
their yield. The capital analogy is described by the analogy to rotational mechanics, which is
an extension of the linear mechanical analogy [48]. Therefore, regardless of the capital anal-
ogy describing the phenomena of labor more accurately, the commodity analogy still needs
to be developed first.

The particle as laborer

Newtonian mechanics describes how an object behaves, whereas labor economics describes
how a laborer behaves. In mechanics the object can be idealized as a point particle [53].
Similarly, in economic engineering a laborer can be idealized. The laborer decides how much
labor it will perform based on where its supply and the demand for labor on the labor market
intersect.

The behavior of the laborer can be visualized as in Figure 2-1. In here, the x-axis repre-
sents the quantity of labor that the laborer performs. The y-axis represents the wage rate.
The blue line represents the quantity of labor the laborer is willing to supply for the wage
rate associated with it. The red line represents the quantity of labor the demander, such as
a company, is willing to employ when paying the associated wage rate. The wage rate is the
pay per unit of time. The laborer’s behavior in economics is thus visualized through a supply
line. [49], [3], [6]

Figure 2-1: Supply and demand curve for labor [3]

J.M.L. de Graaf Master of Science Thesis



2-2 The linear mechanical labor analogy 7

Kinematics to describe a laborers participation in the labor market

The next step towards developing the analogy is describing the laborers’ movements in com-
modity space. The analogy to commodity space is physical space, as this is where the move-
ments of the laborer will take place. The commodity space is an Euclidean space, just like
physical space. However, it can differ in the numbers of dimensions. The dimension can
represent the different types of labor which are defined based on the criteria deemed best fit
for the desired application.

For example, when studying the wage gap between different genders, one dimension could be
used to describe labor performed by men, a second dimension for labor performed by women,
and a third for labor of non-binary people [21]. Or, when assessing the role of different types
of labor in society the different dimensions could be white and blue-collar labor (office labor
and manual labor) [30]. Commodity space for this case is thus Rn = R3. For the number
of dimensions of commodity space n is equal to the number of different types of labor assessed.

The position of the laborer in commodity space is defined by the time the laborer has per-
formed the labor associated with the dimensions q, representing the quantity of labor services.
Continuing with the last example, the commodity space can be visualized as in Figure 2-2.
In Figure 2-2, the dimension of white-collar work is represented by qw and that of blue-collar
work by qb. In Figure 2-2a the laborer has not performed labor yet. Once the laborer starts
performing labor, the total number of hours performed by the laborer are tracked, and ex-
pressed in units [ps · hr].

For intuition, when a task takes 20 hours to complete, this task thus requires a single la-
borer 20 hours. It positions the laborer at a quantity of labor services of 20 when completing
the task. However, when studying a group of 4 laborers instead of a single laborer, it is
finished in 5 hours if they all work on it. This positions the group, again, at a quantity of
labor services of 20 at the end of the task. Therefore, the unit of the dimension becomes the
hours the persons performed labor, thus, q will be in [person · hours], in short, [ps · hr].

qw [ps · hr]

qb [ps · hr]

(a) Supply curve in economic engineering

qw [ps · hr]

qb [ps · hr]

(b) Supply curve in economic engineering

Figure 2-2: Movement of a laborer through commodity space
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8 The Newtonian dynamics of labor services

Movement through commodity space takes place when the laborer performs labor. Movement
is a change in quantity of labor services of the laborer. For example, when the laborer per-
forms two hours of white-collar labor services the laborer will move over the light red arrow to
position (2, 0), visualized by the light red dot in Figure 2-2b. When the labor then performs
an additional three hours of blue-collar labor services the laborer will find itself at position
(2, 3), as visualized by the red dot.

Whereas displacement in physical space takes place at a rate called the velocity, the change
in quantity of labor takes place at a rate called the flow of labor services. Which will be
denoted by q̇ and is presented in equation (2-1). Similar to physical space, the rate of change
is per unit of time. Therefore, the units of the flow of labor services are [ps·hr

hr ] = [ps]. For
intuition, when asking someone how fast a task requiring 20 ps · hr of labor services is going,
an example of a response is "we are working on it with 5 people".

q̇ = dq

dt
(2-1)

Next, we consider the interpretation of the change (over time) in the number of laborers per-
forming labor. It is interpreted as the additional hiring and is described per equation (2-2).
The variable used to represent the additional hiring is q̈ which is expressed in the units [ ps

hr ].
Unsurprisingly, this is analogous to the acceleration, for it is the time derivative of the velocity.

q̈ = dq̇

dt
(2-2)

The labor economics interpretation analogous to the kinematics of linear mechanics is pre-
sented in Table 2-1.

Labor economics Symbol Unit Linear mechanical analog
Laborer Particle
Quantity of labor services q [ps · hr] Position
Flow of labor services q̇ [ps] Velocity
Additional hiring q̈ [ ps

hr ] Acceleration
Time t [hr] Time

Table 2-1: Labor economics analogous to the kinematics of linear mechanics

Inertia as inelasticity

The equivalent of mass in the domain of labor economics is the resistance against a change in
the flow of labor services. For the inertia of a point particle is the measure of resistance against
a change in its velocity. And this inertia is called the mass in the case of linear mechanics.
[50] To determine the interpretation of this in labor economics we consider what economists
deem to be the factors in determining the flow of labor services. These factors are the wage
rate and the inelasticity of demand or supply of the flow of labor services. This is visualized in
Figure 2-3 where the demand concerns the demand of the company for a flow of labor services.

The higher the wage elasticity, the more elastic the demand or supply is considered to be.
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2-2 The linear mechanical labor analogy 9

And the more elastic the demand or supply is, the flatter the demand or supply line is. Thus,
the economic engineering analogy is that an elastic (flexible) laborer will require relatively
little change in wage to perform a different flow of labor services. [32],

Figure 2-3: Inelastic and elasticity demand curve [59]

In physics, however, a relatively large mass changes velocity less compared to a smaller one,
when the same force is applied [50]. Thus, whilst a large mass results in a small change in
velocity, a large elasticity results in a large change in the flow of labor services. Therefore,
the mass is considered to be the wage inelasticity m, with wage elasticity ϵ, as presented in
Table 2-2.

It is important to note that the definition of inelasticity in economic context differs slightly
from the economic engineering context. For in economics, the wage elasticity of supply is cal-
culated based on the percentage change, as in equation (2-3), [71]. This formula is expressed
in the economic engineering terminology used thus far.

wage elasticity of supply = percentage change in flow of labor services supplied
percentage change in wage (2-3)

Whilst in the economic engineering context it is based on the absolute changes, as presented
in equation (2-4) [49].

wage elasticity of supply = change in flow of labor services supplied
change in wage (2-4)

From labor economics, it is known that a wage is expressed in a unit of money over the unit
totaling the time spent, regardless of what its analogy is in physics [72]. Therefore the units
are [ $

ps·hr ] when taking $ for the currency representing money. It can thus be derived that the
units for the wage elasticity are [ps2·hr

$ ], as in equation (2-6). Furthermore, the wage elasticity
is the inverse of the wage inelasticity. Resulting in the units [ $

ps2·hr
] for the wage inelasticity,

as derived in equation (2-6).
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10 The Newtonian dynamics of labor services

[wage inelasticity of supply] = ([wage elasticity of supply])−1 (2-5)

= ( ps
$

ps·hr

)−1 = $
ps2 · hr

(2-6)

Labor economics Symbol Units Linear mechanical analog
Wage inelasticity m = 1

ϵ
$

ps2·hr
Mass

Table 2-2: Labor economics analogous to the inertia

Dynamics to describe the laborers’ incentives for participating in the labor market

Let us determine the interpretation of the momentum. So far, the m and q̇ have been
determined to be the wage inealsticity and the flow of labor services, which are the analogs
to the mass m and velocity q̇. It is furthermore known from physics that using these two
variables the momentum is determined simply by multiplying them. [58] The equation to
determine what is analogous to momentum becomes as presented in equation (2-7).

p = mq̇ (2-7)

Multiplying the wage inelasticity with the change in flow of labor services results in the units
[ $
ps·hr ], which aligns with the expected units of wage as well as its interpretation. Just like in

labor economics, when performing labor, q̇ > 0 ps, a wage needs to be provided p > 0 $
ps·hr .

When no wage is provided p = 0 $
ps·hr , the laborer will not provide labor and therefore

q̇ = 0 ps. Therefore, the momentum is analogous to the wage.

The time derivative of the momentum is the force [58]. Analogous to this, the change in
wage is the incentive for changing the flow of labor services as described in equation (2-8).
This incentive ultimately yields a change in the flow of labor services that the laborer wants
to perform. Hence, the force is analogous to what is named the want for labor, which is
expressed in the units [ $

ps·hr2 ].

F = dp

dt
(2-8)

The dynamics of the labor commodity analogy are presented in Table 2-3.

Labor economic Symbol Unit Linear mechanical analog
Wage p [ $

ps·hr ] Momentum
Want for labor F [ $

ps·hr2 ] Force

Table 2-3: Labor economics analogous to the dynamics of linear mechanics
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2-2 The linear mechanical labor analogy 11

Co-energy as labor cost and energy as labor surplus

To find the analogy to the kinetic (co-)energy the pq̇-diagram is set up and presented in
Figure 2-4a. The red line represents the wage p, forming the supply line for labor. On the
x-axis the flow of labor services that the laborer is willing to provide in exchange for the
associated wage p is presented on the y-axis. The space set up in this figure is thus the same
space that economists have set up in Figure 2-1 and in Figure 2-4b.

m

q̇ [ps]

p [ $
yr ]

T ∗

T

(a) pq̇-Diagram of the labor commodity
analog (b) Demand and supply in labor economics [33]

Figure 2-4: pq̇-diagrams for labor services

When comparing the figures in Figure 2-4 the light red area T is the same area as PS. PS
stands for the producer surplus (and CS for consumer surplus), in this case the producer is
the laborer [33]. As can be seen, the energy T is analogous to the surplus obtained by the
laborer. Therefore T is named the labor surplus.

T can be determined using equation (2-9), [37]. Using this equation, the units are deter-
mined to be [ $

hr ].

T =
∫ p

0
q̇ dp (2-9)

Furthermore, the little green area forms the analogy to the kinetic co-energy T ∗. T ∗ is
determined through equation (2-10) [37] and thus has units [ $

hr ]. In labor economics, a rational
laborer is willing to supply labor once supplying that labor yields more than the value to the
laborer of not performing the labor. [68], [29] The area T∗ can thus be interpreted as the
cost for the laborer and will be called the labor cost.

T ∗ =
∫ q̇

0
p dq̇ (2-10)

The analogy to the energy and co-energy is presented in Table 2-4.
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12 The Newtonian dynamics of labor services

Labor economics Symbol Unit Linear mechanical analog
Labor cost T ∗ [ $

hr ] Co-Energy
Labor surplus T [ $

hr ] Energy

Table 2-4: Labor economics analogous to the (co-)energy

2-3 The rotational mechanical labor analogy

In this section, labor economics is interpreted analogous to the rotational mechanical analogy,
called the capital analogy in economic engineering. In physics, it is used to describe motions
that are rotational motions. The rotational mechanical analogy can be seen as an extension
of the linear mechanical analogy and as a consequence of this, t, q̇, q̈, m, p, F , T ∗ and T
are still determined through the same formulas as presented in the previous section. The
economic engineering capital analogy treats the ’capital’ as something that yields value that
in turn can be sold, instead of selling the actual capital.

The first step in developing the capital analogy is setting up the capital space. This space
is visualized in Figure 2-5. Instead of all axes representing different types of labor, one axis,
q0, represents the labor force. It is the number of laborers that can yield an hour of labor
and therefore is expressed in [ps · hr] as well as the other q axis. The other q axis, e.g. q1,
represents the quantity of labor services performed by the labor force q0. These axis are the
same axis as in commodity space. The capital space thus consists of the x-axis representing
the labor force, q0, with the labor it produces, q1 on the y-axis.

L

q0 [ps · hr]

q1 [ps · hr]

q̇1 [ps]

ω

Figure 2-5: Capital space with a red marker depicting a laborer, the blue arrow depicting the flow
of labor services q̇ of this laborer, the light blue area the workforce’s wage L and the productivity
ω

The next step is determining the analogy to the angular velocity ω [25]. The assumption is
made that the labor force is constant. As a result of this, the only velocity component is
q̇1 which is perpendicular to the y-axis and has an arm of length q1. Therefore, ω can be
determined through equation (2-11) and is visualized by the curved arrow in Figure 2-5.

ω = q̇1
q0

(2-11)
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ω is thus the ratio between the flow of labor services that are actually produced, and the
number of people that can perform an hour of labor. Therefore ω is deemed the productivity
and has the unit [ 1

hr ].

The time integral of the angular velocity becomes the angle [14]. The angle has no units,
for the time integral of the productivity expresses the hours of labor services performed per
available hours, resulting in the units [hr

hr ] = [−]. As a result of this, the angle θh will be
named the working hours.

On the other hand, the time derivative of the angular velocity becomes the instantaneous
angular acceleration [14]. The time derivative of the productivity will be deemed the change
in productivity, with symbol α and units [ 1

hr2 ].

Contrary to the inertia in the linear mechanical domain, the inertia in the rotational me-
chanical domain is not the mass. Instead, it is the moment of inertia and is represented by
equation (2-12) in which the arm r is q0, as can be seen in Figure 2-5. [36] I thus has the
units [$ · hr], and concerns the full employment cost [57].

I = m r2 = m q2
0 (2-12)

Through the full employment cost, it is possible to calculate the total wage the labor force
receives. Therefore it is called the workforce’s wage. This can be calculated by multiplying
the full employment cost, with how much labor each laborer on average performs, namely, the
productivity. This is the light blue area depicted in Figure 2-5 This is expressed in equation
(2-13) [36]. Through here it can be determined that the workforce’s wage has the units [$].

L = Iω (2-13)

Lastly, the change in full employment cost is deemed the wage inflation [16]. For it is known
that the time derivative of the angular momentum is the torque, equation (2-14) follows [36].
The wage inflation is denoted in here using the same symbol as its analog, τN and thus has
the units [ $

hr ].

τN = dL

dt
= Iα (2-14)

The results of developing the extension of the commodity analogy to the capital analogy for
labor is presented in Table 2-5. Table 2-4.

2-4 The inconsistency between the kinematics of the Newtonian
analogy and the dynamics of labor services

The results of the developed analogies are compared with what economists observe in the
labor market. To compare these results, it is important to first understand the difference in
terminology used by economists and engineers. Then, the terminology that is used throughout
this thesis is presented, such that it is clear what is meant moving forward. The engineering
terms are considered leading. After this, the difference in findings from our analogy of labor
economics and economists’ views are discussed, and the next step in the development of a
labor service analogy is formulated.
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14 The Newtonian dynamics of labor services

Labor economics Symbol Unit Rotational mechanical analog
Quantity of labor services q1 [ps · hr] Position
Labor force q0 [ps · hr] Arm
Working hours θh [−] Angle
Productivity ω [ 1

hr ] Angular velocity
Change in productivity α [ 1

hr2 ] Angular acceleration
Full employment cost I [$ · hr] Inertia
Workforce’s wage L [$] Angular momentum
Wage inflation τN [ $

hr ] Torque

Table 2-5: Labor economics analogous to rotational mechanics

2-4-1 The difference in definitions of dynamics for economists and engineers

There is a difference between what economists describe as dynamics and what engineers call
dynamics. For the purpose of this thesis being understandable for economists as well as engi-
neers, the difference is explained. Throughout the remainder of this thesis, what economists
consider mainly dynamics will be referred to as kinematics. Because, what economists con-
sider ’dynamics’ is what economic engineers consider ’kinematics’, whilst there is no term in
economics that describes what engineers call ’dynamics’.

The economists’ definition of dynamics

Determining the labor dynamics is done by labor economists from IZA, "a nonprofit research
institute and the leading international network in labor economics" [52], as follows:

“Specifically, we take a microeconomic perspective by tracking movements of in-
dividuals across labor market states and discuss under which conditions these
transition rates can summarize the whole dynamics of the labor market.” [13]

As stated, they track the movements of laborers. In economic engineering, movement is
defined through the position in commodity space q that represents the quantity of labor.
Economists do not just track the displacements as part of ’movements’ but also consider the
time changes concerning these movements:

“ Measurement over time of changes in the activity status of individuals and of
changes in jobs of employed persons” [67]

In economic engineering the activity status is represented by q̇, the flow of labor services.
Furthermore, the measurement over time of change in the activity of individuals is represented
by q̈, the additional hiring. Besides q, q̇ and q̈, the wage p is also measured. It is important
to note that all these variables are measured and statistics are performed on them, resulting
in correlations. These statistical correlations are thus what economists call dynamics, these
relations not causally determined. [67], [6], [13]
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The engineers’ definition of kinematics

Engineers define kinematics as:

“Kinematics is a study of motion without regard to the cause of the motion” [39]

Which thus concerns measuring the variables in physics analogous to q, q̇, q̈ in economic
engineering. In kinematics the forces resulting in the measured values are not considered,
thus causality is not considered. Therefore kinematics is a more suitable description of what
economists describe as ’dynamics’. [4]

The engineers’ definition of dynamics

Engineers define dynamics as:

“ Dynamics is that branch of mechanics which deals with the motion of bodies
under the action of forces” [36]

The difference between kinematics and dynamics is that dynamics concerns itself with not
only the motion of laborers (bodies) but also the wants (forces) that cause motions, whereas
kinematics does not consider the wants [39]. Economists measure the motions and the wage
but do not consider the wants (forces) causing these motions. Therefore, dynamics is not
a suitable description of what economists describe as ’dynamics’, instead what they do is
mainly kinematics.

Defining the (engineering) dynamics of economic systems is an important contribution of
economic engineering [49]. Therefore, the decision is made to follow the engineering termi-
nology and refer to what economists call ’dynamics’ as ’kinematics’ instead, and continue to
refer to what engineers consider ’dynamics’ as ’dynamics’.

2-4-2 Inconsistencies between the flows of labor services

Let us compare the newly developed analogy to the kinematics of labor economics. For the
variables defined in both domains, the results are expected to be similar, as they describe the
same variables.

The labor supply curve as modeled by labor economists is not a linear curve. It is either a
convex curve or a backwards bending curve, as can be seen in Figure 2-1, Figure 2-6a and
Figure 2-6a. [6]

The result of plotting the labor supply curve for a single laborer through the commodity
or capital analogy are shown in Figure 2-7. In here, the x-axis represents the flow of labor
services expressed in [ps·hr

dy ], in which dy stands for ’day’, consisting of 24 hr. On this axis, a
value of 8 ps·hr

dy is a regular work day. The y-axis represents the wage expressed in [$] for a
laborer with inelasticity m = 1 $

ps2·hr
. In this figure, two contradictory results are observed.
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16 The Newtonian dynamics of labor services

(a) Convex labor supply curve [38]
(b) Backwards-bending labor
supply curve [6]

Figure 2-6: Supply curve and surplus in economics

Figure 2-7: Supply curve for labor (m = 1 $
ps2·hr ) when modeled using the capital or commodity

analog

The first contradictory result is that the supply curve is linear, and thus does not have a
convex or backwards bending part for the positive flow axis. Consider the following scenarios.
Scenario 1: when working a job of 6 hours a day, how much more would your employer need
to pay you to work 9 hours a day instead? Scenario 2: when you are already working 9 hours
a day, how much would your employer need to pay you to work 12 hours a day instead?
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According to economists, your answer in scenario two is expected to be higher than that of
scenario 1, thus resulting in an upwards sloping supply curve [10]. We did not find a more
convincing argument supporting a linear supply line and thus concluded our linear supply
line is still missing something fundamental.

The second observation is that a person is willing to perform more than 24 ps·hr
dy in ex-

change for a wage of more than 24 $
ps·dy . However, regardless of how much a laborer wants to

work more than 24 ps · hr in a day, there are not more than 24 hr in a day. Thus working
more than 24ps·hr

dy , or 1ps·hr
hr as a single laborer is not possible.

The inconsistency implies something is missing that neither the commodity nor capital anal-
ogy is able to describe. Besides interpreting existing analogs to labor economics, it is also an
option to attempt to develop a completely new type of analogy. As per the hard theoretical
limitations that labor services have, and the blatant disregard for these by the current analo-
gies, it seems like this is the only option left. A new type of analogy furthermore holds the
potential to be valuable for economic engineering in general, for many other supply curves
are convex curves as well [5]. The next step is thus to develop a new type of analogy for labor
services which accounts for the theoretical limitation to labor services.
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Chapter 3

The relativistic dynamics of labor
services

3-1 Introduction

The goal of this chapter is to present the development of the relativistic analogy for labor
services. As established in the previous chapter, there is a need for a new type of economic
engineering analogy that takes into account the theoretical limitations to the movement of
the laborer.

We argue that the space describing the flow of labor services is hyperbolic by defining the
mathematical structures that set up LS spacetime. From here, the cost-benefit analysis, anal-
ogous to the stationary action principle, is used to determine the running labor cost. This is,
in turn, used to determine the wage analogous to the momentum, which allows us to formulate
the Legendre transform. This transform is used to define the Hamiltonian, interpreted as the
surplus of the laborer. The filled-in Legendre transform is transformed into an equivalence
yielding the energy-momentum equation, or for labor economics, the surplus-wage equation.
The components of this equation are in turn used to define and interpret the wage-vector and
wants-vector, analogous to the four-momentum and force-vector.

The overview of the analogy developed in this chapter is presented in Table B-3 in appendix
B-3. Furthermore, the MATLAB code used is provided in appendix F.

3-2 Describing a laborer in labor service spacetime

3-2-1 The structure of the space describing a laborer

This section builds up the geometrical structure of the space in which to model a laborer
performing labor. Each different layer of the geometrical structure has its own mathematical
structure. The reasons for these structures are argued and the consequences are presented.
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20 The relativistic dynamics of labor services

Topological structure for observing the laborer

Let us start with the assumption that a continuous map of labor timesheets ξ exists. A labor
timesheet corresponds to a quantity of labor q in units [ps · hr], performed at time t with unit
[hr]. The values of these timesheets form the coordinates in labor service (LS) spacetime,
which is visualized in Figure 3-1. The map is considered continuous because we observe that
a laborer cannot skip ahead in time and can only perform labor over time. Thus nearby
timesheets have nearby coordinates.

q [ps · hr]

t [hr]

Figure 3-1: R2 LS spacetime

The dimensions of these continuous maps are dependent on the number of different types of
labor that are chosen to be modeled n ∈ Z+, and time +1. Thus, ξ :→ Rn+1. The case for
n > 1 is discussed in more detail in Section 3-2-3. There is no theoretical limit to the value
of n. All the timesheets associated with a laborer form a continuous line that represents a
laborer’s career path, visualized in blue in Figure 3-2.

Projective structure for observing career paths

Besides the topology of laborers and timesheets, there are other structures to be observed in
labor economics. One of these structures is the subclass of laborers whose wants for labor
and wants for leisure are in equilibrium. As a consequence, the laborer continues to perform
labor services at the rate they have been performing the labor services at. They will be called
equilibrium laborers and their career paths are asserted to be described by straight lines in
Rn+1. This results in the projective structure presented in Figure 3-3, whereas the laborer in
Figure 3-2 does experience non-zero wants and is not in equilibrium at all points in their career.

The coordinates associated with equilibrium laborers are not unique. As long as a trans-
formation Rn+1 → Rn+1 for map ξ preserves the projective structure, the new map ξnew is a
valid map.
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q [ps · hr]

t [hr]

Figure 3-2: R2 LS spacetime with in it a career path (blue) of a laborer

q [ps · hr]

t [hr]

Figure 3-3: R2 LS spacetime with the career path (blue) of an equilibrium laborer

Conformal structure obtained from robots

As observed in the previous chapter, it is not theoretically possible for a laborer to perform
labor services at a rate faster than time q̇ = 1ps·hr

hr . With q̇ defined as in equation (2-1).

Performing labor services continuously at this rate is only possible for robots, as laborers
need breaks [22]. The career paths of a robot performing labor all the time, and a robot not
performing anything are visualized in orange, in LS spacetime, in Figure 3-4.

Regardless of how much labor services laborer A is performing, when observing another la-
borer B, laborer B is not able to perform labor at a higher flow than the robot. Because
demand frames can be compared through excess supply, the flow of demand is measured from
one demand frame relative to the other. Thus a laborer assesses another laborer based on the
difference in the flow of labor services they are performing. However, when observing a robot,
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q [ps · hr]

t [hr]

Figure 3-4: R2 LS spacetime with the career paths of robots (orange) and all the possible career
paths for laborers (yellow)

both laborers will observe that the robot is performing labor services at the same rate that
time passes, thus q̇ = 24 ps·hr

dy = 1 ps·hr
hr , which from now on will be denoted by c. Resulting

in the second postulate:

All laborers assess a robot performing labor services at the rate of time, c = 1 [ps·hr
hr ]

Second postulate

Because it is not possible to perform labor services faster than time, the career paths of
laborers are restricted to stay within the cone set up by the career paths of robots, the com-
plete set of career paths is depicted in yellow. The possible career paths of the robot are
described by an angle that is dependent on the chosen units of the axis. In the case of choos-
ing q in ps · hr and t in hr the angle of all possible career paths must stay within the range
[π

4 , 3π
4 ] for their positive t-valued part, and in the range [5π

4 , 7π
4 ] for their negative t-valued

part. The conformal structure of LS spacetime is thus a result of the special class of directions
described by the maximum flow of labor services c theoretically possible, represented by the
career path of a robot.

Affine structure to describe perceived time

The concept relevant to the structure we consider next of labor economics is clocks. Clocks
assign values to the intervals along career paths. These values describe the time perceived
from the perspective of the laborer. There are two assertions at the core of setting up the
affine structure, which will be presented. An affine structure is a structure that conserves
only properties related to parallelism and the ratio between lengths of parallel line segments,
it thus does not preserve angles or distances. [9]
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The first assertion is universality. The perception of time for each laborer is considered
the same. The perception when performing labor can vary between laborers’ performing la-
bor at a different flow q̇.

For example, consider doing something you enjoy for about an hour, this leisure time is
expected to feel like it passes by faster compared to if you would perform labor during that
hour. The rate of the perceived time when performing labor, compared to the time on the
clock is, thus slower than when performing leisure, for this case. However, at some point,
when you allocate a lot of time for leisure, it can get boring and time will also become per-
ceived to pass slower. Implying that there is a ratio between labor and leisure that minimizes
the perceived time. The assumption is made that when performing labor at the same flow the
perceived time is experienced the same. Thus, the perceived time τ is the universal property
for which the experience of a defined interval is the same for all laborers, whereas for the
experience of a time clock (TC) interval t this is not necessarily the case.

Extending this observation leads to the perceived time passing slower for equilibrium la-
borers when performing higher rates of labor services or allocating more of their time to
leisure. Thus, when converting the perceived time to clock time, the clock time can differ
between laborers performing labor services at different rates. Regardless of clock time, a par-
ticular interval of perceived time thus describes an experience that is the same for all laborers.

This leads us to the second assertion, uniformity. In the natural affine structure, coordi-
nates can be found such that the affine structure of Rn+1 shows compatible readings between
clocks of career paths of free laborers performing labor at the same rate (aka lines at a same
angle). This can be visualized through a parallelogram of career paths, as presented in Fig-
ure 3-5. As can be seen in Figure 3-6, the perceived time between laborers not performing
labor at the same rate is different.

Uniformity is thus not dependent on comparing a set of clocks to another clock, but by com-
paring four through the parallelogram, with the sides parallel to each other having the same
flow of labor services q̇. Thus, when the career paths are not parallel, they represent laborers
performing labor at different rates, and uniformity no longer holds. Whereas if the career
paths of the equilibrium laborers are parallel, and thus the laborers are performing labor at
the same rate, uniformity holds.

Any representations of an equilibrium laborer in Rn+1 that is compatible with this affine
structure forms the basis for a type of inertial frame of demand, which has a constant flow of
labor services q̇.

That the flow of labor services of an inertial frame of demand is constant, is an impor-
tant observation. From physics it is known that the equations of motion for different inertial
reference frames are the same, but vary for acceleration reference frames. Based on previous
work in economic engineering on developing analogies, the assumption is made that the sce-
nario observed in physics extends to the economic engineering domain [49].
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Figure 3-5: R2 LS spacetime with career paths of an equilibrium laborer, green lines are parallel
to each other and the blue lines are parallel to each other, + visualizes an interval of size 1 over
the career paths

Figure 3-6: R2 LS spacetime with career paths of an equilibrium laborer, green lines are parallel
to each other and the blue lines are not parallel to each other, + visualizes an interval of size 1
over the career paths, in red the difference in perceived time between the blue lines

Resulting in the formulation of the first postulate:
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The same economic laws of demand will be valid for all inertial demand frames of
reference for which equations of economic engineering hold good.

First postulate

Obtaining the demand frame of reference by combining the different structures

Now we combine the conformal structure obtained from robots and the affine structure re-
sulting from perceived time. For simplicity, the case in R2 is considered. Consider maps ξ in
accordance with the affine structure. From these, select the ones describing robots, thus the
ones at slope -1 and 1.

A laborer assessing a robot sees the robot performing labor services with the rate of time
(career path with slope c), regardless of the laborer’s flow, as per the second postulate.
Therefore, the only possible result of a transformation of the demand frame of the career
path of a robot is that the career path stretches or contracts. For a robot not performing any
labor services (career path with slope −c), the same holds.

Due to the affine structure defined, the ratios of lengths of parallel line segments are kept
constant. As a result, if one career path of a robot is stretched, the opposing career path
must be squeezed with the same ratio. Consider a robot described by a whilst not performing
any labor, and describe another robot that is performing labor by b. The transformation for
the coordinates (a, b) is then described by equation (3-1) and visualized as in Figure 3-7.

(a, b) 7→ (ϵa,
1
ϵ

b) (3-1)

q [ps · hr]

t [hr]

Figure 3-7: (Lorentz) transformation of the coordinates associated to robots

Which is the Lorentz transformation, for which a detailed derivation is provided in appendix
C. For intuition, determine a line from the career path of the robot not performing labor
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to the career path of the one performing labor, and pick this line such that it is parallel to
the q-axis. The middle of this line now crosses the t-axis. As we change to demand frames
with different flows, the line will no longer be horizontal. The middle of this line (which is
being stretched when viewing it from demand frames with different flows), then draws the
hyperbola we find in Figure 3-10.

The Lorentz transformation is thus only dependent on the conformal and affine structures.
Using the Lorentz transformation any career path of an equilibrium laborer can be made
vertical. Our structure now provides a unique representation when units of the axis have
been chosen. Resulting in the demand frame of reference. These frames of demand thus have
a constant flow of labor services q̇ and adhere to the conformal structure.

Even though the focus of this thesis is on defining the supply of labor, the reference frame
is called a demand frame of reference. In economic engineering, the term "demand frame of
reference" is considered analogous to reference frames. Furthermore, action=reaction is seen
as analogous to demand=supply. Therefore, the decision is made to stay consistent with the
economic engineering terminology. [49]

Perceived time in LS spacetime

Through the demand frame of reference, the perceived time of different laborers is now studied
more precisely. Let us start with the career path of an equilibrium laborer that overlaps with
the t axis. Note that the perceived time of the laborer only overlaps with the t axis when the
laborer performs labor at a rate of q̇ = 0 ps·hr

hr relative to the demand frame in LS spacetime.
This laborer is presented in Figure 3-8 in which the horizontal stripes indicate a difference in
perceived time of τ = 1 hr.

q [ps · hr]

t [hr]

Figure 3-8: R2 LS spacetime with the career path (magenta) of an equilibrium laborer with a
relative flow of q̇ = 0 ps, as viewed from demand frame A
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Next, the career path is observed from a different demand frame. This demand frame is
chosen to have a different (constant) flow of labor services. From this frame, the laborer is
thus no longer at rest. The difference in the flow of labor services q̇ between these frames
is called the excess supply. Besides the difference in demand frames, the excess supply also
describes the difference in flow between laborers. When it is positive, the laborer supplies
labor. When it is negative the laborer demands labor. And when zero, there is no interaction
between the laborers. The laborer is thus described in a relative manner, through a demand
frame of reference.

The coordinates of the career path observed from the different demand frame are found by
applying the Lorentz transformation and are depicted in Figure 3-9. The horizontal magenta
stripes indicate, again, intervals of τ = 1 hr.

q [ps · hr]

t [hr]

Figure 3-9: R2 LS spacetime with the career path (magenta) of an equilibrium laborer with a
relative flow of q̇ = 0 ps, as viewed from demand frame B with horizontal stripes (magenta)
portraying one interval of perceived time

In figure Figure 3-9 it is visible that the unit interval of the perceived time (visualized by
the horizontal magenta stripes) is not the same value of t as when looking at it from the de-
mand frame in Figure 3-8 (visualized by the light horizontal magenta stripes). This result is
in line with the example concerning perceived time in the paragraph about the affine structure.

The procedure can be performed for all different possible demand frames from which this
career path can be observed. Through this, a set of points H is defined to represent the coor-
dinates of all the different career paths after one unit interval of perceived time (∆τ = 1 hr).
This set of points is described by a hyperbola described in equation (3-2) and presented in
Figure 3-10. This hyperbola is called the flow space.

t2 − q2 = 1 (3-2)
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q1 [ps · hr]

t [hr]

Figure 3-10: R2 LS spacetime with the flow space (blue) at τ = 1 hr for a laborer at the origin

Here, it can be seen that the equilibrium laborers along different career paths thus have a
slower perceived time when they are not performing labor at the same rate of the demand
frame of labor. Which is contrary to the Newtonian analogy. [7]

3-2-2 Kinematics LS spacetime

Because the flow space in LS spacetime is hyperbolic, lengths are defined differently in LS
spacetime. Defining lengths differently does not just affect the length but also the other vari-
ables. Therefore, the kinematics of LS spacetime are defined using a hyperbolic metric, with
metric signature [+−].

To define the lengths, first, the metric is chosen to be [+−]. Thus, a positive sign is used for
the time dimension t, and a negative sign is used for the spatial dimension(s) q. This metric is
also the metric used in equation (3-2), and is a matter of personal preference, for this metric is
often used when treating special relativity. Using [−+] leads to the same theory. [18], [43], [55]

The hyperbola described by equation (3-2) enables us to define a length s in LS spacetime.
It describes the possible locations of the laborer after τ = 1 hr when the laborer is at the
origin when τ = 0 hr. However, the length in LS spacetime is not necessarily equal to τ . It
depends on the scaling of the spatial axis of LS spacetime by c, resulting in equation (3-3).

∆s = c∆τ (3-3)

The change in length can be visualized as in Figure 3-11. In which the red dot represents the
laborer, and the blue hyperbola is the same hyperbola as in Figure 3-10.

Here, c = 1 [ps·hr
hr ], the maximum flow of labor services from postulate 2. The hyperbola is a

projection and the labor timesheets consist of homogeneous coordinates (q, t) in LS spacetime,
for they are assumed to all have the same properties. Because of this, it is possible to make
∆ infinitely small, resulting in equation (3-4). [8]

ds2 = (cdt)2 − dq2 (3-4)
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q [ps · hr]

t [hr]

c ∆t

∆q

∆s
ϕ

Figure 3-11: LS spacetime with a laborer (red), flow space (blue), visualizing the variables ∆s,
∆q, c ∆t and ϕ

In Figure 3-11 no negative values of the t-axis are shown. The focus is on the non-negative
values, because the laborer, just like you, is not able to go back in time.

Because the demand frame is relative, it is possible for the laborer starting at the origin
to move to a negative q value. The restriction concerning the q value is shown in Figure 3-4.
A laborer who is performing labor services at the same rate of the demand frame will stay
at q = 0 ps · hr over time. If that laborer instead starts to perform labor services at a lower
rate, it may look like the laborer is undoing labor from the perspective of the demand frame.
However, this is not the correct interpretation. The laborer simply decreases their flow of
labor.

For example, if the initial demand frame represents a full-time flow, and the laborer is at
rest. It means that the laborer is a full-time laborer and will move over the t-axis. This
laborer is the pink dot in Figure 3-12 with its trajectory in light pink. If a full-time laborer
lowers its flow and the laborer, for example, becomes a part-time laborer, the laborer moves
in the direction of the negative q-value. The part-time laborer is depicted by the orange dot,
its prior movements are depicted in light orange.

For additional interpretation, it could also be seen as the laborer hiring one other laborer to
perform (part of) the first laborer’s flow of labor services.

From Figure 3-11, the average flow of labor services can be determined as in equation (3-5).
In which ϕ represents the hyperbolic angle between c ∆t and ∆s.

q̇ = ∆q

∆t
= c tanh ϕ (3-5)

However, ϕ can also be seen as the hyperbolic angle between two different demand frames.
The difference between the demand frames is the flow of labor services q̇ with which they
propagate through LS spacetime. Therefore ϕ is determined to be the degree of demand.

Because of the projective structure, ∆ can be made infinitesimally small, allowing equation
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q [ps · hr]

t [hr]

Figure 3-12: LS spacetime with a full-time laborer (red dot) with prior positions (light red), a
part-time laborer (orange dot) with prior positions (light orange) and the flow space (blue)

(3-5) to be rewritten as the flow of labor services presented in equation (3-6).

q̇(t) = c tanh ϕ = dq

dt
(3-6)

Furthermore, when transforming dτ to dt, as in Figure 3-13, using the Lorentz transformation,
it is found that perceived time and TC are related through equation (3-7). Here, γ represents
the Lorentz factor. As presented, the Lorentz factor can be expressed in hyperbolic functions.
It shows that the perception of time of the laborer can be different than that of the demand
frame it is viewed from.

dτ = 1
cosh ϕ

dt = 1
γ

dt (3-7)

q [ps · hr]

t [hr]

∆s

Figure 3-13: Lorentz transformation applied to Figure 3-11 to the demand frame from the
perspective of the laborer (red), with the flow space (blue)

For example, if the demand frame A represents a company, and demand frame B represents
a laborer performing labor services for that company. Then, the time of the company is the
time in which the quantity of labor services performed is counted. This additional quantity
of labor services a laborer accumulates during a shift is the duration between clocking-in and
clocking-out. Therefore t is referred to as the time of the time clock (TC) in [hr].
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On the other hand, when the laborer has a flow of labor services, they will experience time
differently compared to the clock time. Because, the more flow of labor services the person
delivers, the slower their perceived time will go compared to the TC. Thus, the more you
would work during a day, the slower it will feel like time is going.

The overview of the derived analog so far is presented in Table 3-1.

Labor economics Symbol Unit
Length in LS spacetime ds [ps2 · hr2]
Quantity of labor services q [ps · hr]
Time clock (TC) t [hr]
Flow of a robot c [ps]
Flow of labor services q̇ [ps]
Perceived time τ [hr]
Lorentz factor γ [−]
Degree of demand ϕ [−]

Table 3-1: Labor economics analogous to kinematics

3-2-3 More than two dimensions in LS spacetime

LS spacetime can consist of more than two dimensions. In this chapter, we, so far, focused
on the case of one spatial dimension and one time dimension. However, the number of spatial
dimensions can be increased indefinitely to describe different types of labor. For labor can be
differentiated based on an indefinite number of characteristics, the number of dimensions that
can theoretically be set up is also infinite. Contrary to this, we consider that the number of
time dimensions is always 1. Here we follow the same argument as presented in physics [74].
Thus, the number of dimensions in LS spacetime can be determined using equation (3-8) and
can theoretically be infinite.

nr. of dimensions in LS spacetime = nr. of spatial dimensions + 1 (3-8)

Let us consider (again,) the case of manual and office labor. These form the two differ-
ent dimensions, manual labor is represented by the dimension q1 and office labor by q2, both
follow the units of q, thus [ps · hr]. The planes at q2 = 0 and q1 = 0 are presented in Fig-
ure 3-14a and Figure 3-14b. Here, the blue hyperbola represents the possible positions the
laborer can have when performing labor services at different flows for a perceived duration of
one hour (dτ = 1 hr).
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q1 [ps · hr]

t [hr]

(a) LS spacetime for a laborer only performing
manual labor and the flow space (blue)

q2 [ps · hr]

t [hr]

(b) LS spacetime for a laborer only performing
office labor and the flow space (blue)

Figure 3-14: Two planes in LS spacetime intersecting the origin and an entire axis of a spatial
dimension

The next step is considering a job that requires the laborer to perform manual labor as well as
office labor. For example by the ratio 2 : 1. This ratio is visualized in Figure 3-15 through the
dark green dashed line. The red represents the possible positions in the spatial dimensions the
laborer can have after a perceived duration of an hour. These possible positions are defined as
R in equation (3-9). The blue area represents the possible quantity of labor services a laborer
can obtain when it would perform labor at the different possible ratios of q1 and q2 and at
different flows, with the dashed orange line representing the attainable values at maximum
flow.

R = {t

[
sin(arctan(2

1))
cos(arctan(2

1))

]
| t ∈ [0, 1]} (3-9)

q1 [ps · hr]

q2 [ps · hr]

θ

Figure 3-15: Possible positions in the spatial dimensions a laborer can obtain at τ = 1 hr (light
blue), the furthest positions (orange) and the red line depicting the possible positions for a laborer
performing manual and office labor with a ratio 2:1 (green)

The blue dashed line is part of a circle. When also considering the buying of leisure of one
other person, a full circle with radius c is obtained. This can be represented by the expression
equation (3-10). The equation also shows the result of extending this theory to n spatial
dimensions. Forming the basis for the maximum attainable positions in the case of n number
of spatial dimensions after one hour of perceived time.

c =
√

q2
1 + q2

2 ⇒ c =

√√√√ n∑
i=1

q2
i (3-10)
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When applying this knowledge described in equation (3-11) a hyperboloid as visualized in
Figure 3-16 for the three-dimensional case is obtained.

Figure 3-16: Flow space (τ = 1 hr) in 3D LS spacetime

ds2 = (cdτ)2 −
n∑

i=1
q2

i (3-11)

3-3 The cost-benefit analysis

In economic engineering analytical mechanics becomes advantageous when considering an
economic system with a large number of agents, similar to physics for considering a large
number of particles [42]. It furthermore allows building in holonomic constraints through
the generalized coordinates. The theory presented is designed to model the labor market.
The advantage of initially deriving the analog through Newtonian mechanics was that the
intuition came easier. However, we think sufficient intuition has been created for the variables’
connection with labor economics throughout chapter 2. Since the labor market contains many
laborers, the decision is made to continue the derivation through analytical mechanics instead
of Newtonian Mechanics. [45]

3-3-1 Determining laborer’s cost using the stationary-action principle

In economic engineering, the stationary action principle is considered analog to the principle
of minimum cost. With the action representing the periodic cost and the Lagrangian repre-
senting the running cost [48]. In the case of labor economics, the periodic labor cost can be
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defined as in equation (3-12) in which L represents the running labor cost.

S[q] =
∫ tf

ti

L(q(t), q̇(t), t) dt (3-12)

The negative of the running labor cost −L, in turn is considered the laborer’s running benefit.

The action S is taken to be proportional to the perceived time τ . For it is the Lorentz
invariant variable representing the length of the path through LS spacetime. Because this is
an optimization problem, the right side of the equation can be multiplied by a constant β
without changing the optimization results. Leading to equation (3-13).

S = β

∫
dτ (3-13)

The equation states that the period cost is proportional to the integral of the perceived time.
This is to be expected, for the cost for a laborer is the value it would receive from leisuring
rather than performing labor services.

As it is desirable for the period cost to be minimized, the term in equation (3-13) needs
to be negative. For intuition; the more labor a laborer performs in a set amount of clock
time (higher q̇), the more tiresome a job is expected to become (lower τ), thus the higher the
value of the counterpart, leisure (higher L). And with this, implying a negative constant of
proportionality between the action and the proper time.

When it comes to the value of the proportionality constant there are two further require-
ments. First, the proportionality constant needs to result in matching units between the left
and right sides of the equation. Second, it needs to be based on constants available. The
constants available are the wage inelasticity [m] = [ $

ps2·hr
] and the robots flow of labor services

[c] = [ps]. The wage inelasticity is known in the relativistic analogy for it can be determined
in the same manner as done in the Newtonian analogy, described in Section 2-2. Since the
action represents the running cost, the desired unit is [S] = [$]. The combination of constants
that is suitable as the proportionality constant is mc2, for it yields the correct units for the
action, as presented in equation (3-14).

[S] = [$] = [β] · [τ ] = [ $
hr

] · [hr] = [ $ · ps2

hr · ps2 ] · [hr] = [m] · [c2] · [β] (3-14)

When combining the result of requiring the proportionality constant to be negative and
contain the constants mc2, equation (3-15) is formulated.

S = −mc2
∫

dτ (3-15)

The question may arise as to why −mc2 and not for example −2mc2. Theoretically, this
would be possible too, for S is relative. The reason for choosing −mc2 is that at a small scale,
it is desirable that the values are equal to values obtained by the commodity analogy such
that these can be compared. Appendix D shows this is the case for β = −mc2.
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When filling equation (3-7) into equation (3-15), equation (3-16) is found.

S = −mc2
∫ 1

cosh(ϕ)dt (3-16)

Using equation (3-12), the laborer cost is extracted from equation (3-16) resulting in equation
(3-17). The constant mc2 is added, such that the running cost is zero when the degree of
demand is zero [12]. Adding a constant is possible because the value L is relative.

L(ϕ) = −mc2 1
cosh ϕ

+ mc2 = −mc2 sech ϕ + mc2 (3-17)

L is visualized in Figure 3-17, for the case of c = 1 ps and various m. From here, two
observations are made.

Figure 3-17: The relativistic (red) and Newtonian analog (blue) for running labor cost L

The first observation is that the Newtonian analog shows a quadratic curve, whilst the rel-
ativistic analog yields an exponential curve. Intuitively, would it be equally tiresome to do
an hour of overtime after you worked for 6 hours or an additional hour after working for 12
hours? If no, which one would be more tiresome? If you answered "no, working an additional
hour after already having worked for 12 hours would be more tiresome’, then for you the
relativistic curve would be applicable. Because the rate of change in running labor cost of the
relativistic curve is dependent on the flow of labor services, whilst in the Newtonian analog
it is not.

Furthermore, it shows that the labor cost, when performing labor services at the maximum
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rate, is mc2 (or, without that added constant, the running labor cost whilst not performing
labor is −mc2). It thus shows, as expected, that the running labor cost at the maximum
flow, is a function of that maximum flow squared c2, and the measure of how much this flow
affects the wage the laborer requires, m.

The newly developed analogies in this paragraph are presented in Table 3-2.

Labor economics Symbol Unit
Periodic labor cost S [$]
Running labor cost L [ $

hr ]
Laborer’s running benefit −L [ $

hr ]

Table 3-2: Labor economics analogous to the stationary action principle

3-3-2 The wage as momentum

The marginal increase in running labor cost per unit increase in the flow of labor services is
defined as the wage p in [ $

ps·hr ]. Thus, if a laborer consistently performs more labor services,
the laborer’s wage goes up and vice versa. This definition is presented in equation (3-18).

p := ∂L
∂q̇

∣∣∣∣
q

(3-18)

Geometrically, this means that at each point of L, in the (L, q̇) space, a tangent line is
determined. The slope of this tangent line is in turn the wage p associated with the q̇ value
of the point the line is tangent to. This process is visualized in Figure 3-18. In which the
running cost L is shown in red, in the case of m = 1 $

hr·ps2 and c = 1 ps, and the tangent
lines are visualized in light grey. [60]

When filling equation (3-18) in using equation (3-5) and equation (3-17), equation (3-19) is
found when using equation (3-20) and equation (3-21).

p = d(−mc2 sech ϕ + mc2)
dc tanh ϕ

= −mc
d(sech ϕ + 1)

d tanh ϕ

= mc
− sech ϕ tanh ϕdϕ

sech ϕ2dϕ

= mc
tanh ϕ

sech ϕ

= mc
sinh ϕ

cosh ϕ
· cosh ϕ

= mc sinh ϕ (3-19)
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Figure 3-18: Lines (grey) with slope p, tangent to the running cost (red) with m = 1 $
hr·ps2 and

c = 1 ps

d tanh ϕ = d tanh ϕdϕ

dϕ
= sech2 ϕdϕ (3-20)

d(sech ϕ + 1) = d(sech ϕ + 1)dϕ

dϕ
= − sech ϕ tanh ϕdϕ (3-21)

This result is visualized in Figure 3-19.

In the figure, it is visible that the relativistic analogy yields a nonlinear curve whereas the
Newtonian analogy results in a linear line. Intuitively, consider what an employer would need
to pay you to consistently perform 8 hours of labor services a day. Now consider how much
that employer would need to pay you to consistently perform 16 hours a day. Answering that
the reward required for the 16 hours is more than double that of the 8 hours, is in line with
the relativistic curve. Furthermore, you can ask yourself, how much hourly wage would I
require to consistently perform 23 of labor services a day? From this, it is easy to see that a
nonlinear curve is more intuitive than a linear one.

Furthermore, Figure 3-19 shows that when performing additional labor services (q̇ > 0),
the additional wage is positive (p > 0). On the other hand, a laborer can take additional
leisure (q̇ < 0), by hiring someone else to perform their labor. Consequently, our laborer
needs to pay the person they are hiring (p < 0).

The relativistic analogy to the wage, described by equation (3-19) has two asymptotes whereas
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Figure 3-19: The relativistic (red) and Newtonian analog (blue) for wage p

the Newtonian analogy, described by equation (2-7), has none. The asymptotes of the rel-
ativistic analog are q̇ = mc and q̇ = −mc. These asymptotes are in line with the expected
kinematics described in Section 2-4 and Subsection 3-2-2. Therefore, the relativistic analog
is more realistic.

Furthermore, we obtain a nonlinear supply curve with a constant m. As a result of this,
a laborer can be described using one wage inelasticity. Whilst economists need many differ-
ent wage inelasticities that vary based on the flow and wage.

Table 3-3 shows the analogy to the momentum.

Labor economics Symbol Unit
Wage p [ $

hr ]

Table 3-3: Labor economics analogous to the wage

3-3-3 The surplus as Hamiltonian

Thus far, the flow of labor services q̇, the running labor cost L, and the wage p are developed.
These are now used in the Legendre transform presented in equation (3-22).

(L + H) dt = pdq (3-22)
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Through rewriting and filling in equation (3-22), the Hamiltonian is derived as in equation
(3-23).

H = −L + pq̇

= mc2 sech ϕ − mc2 + mc sinh ϕ · c tanh ϕ

= mc2 sinh ϕ2

cosh ϕ
+ mc2 1

cosh ϕ
− mc2

= mc2 sinh2 ϕ + 1
cosh ϕ

− mc2

= mc2 cosh ϕ2

cosh ϕ
− mc2

= mc2 cosh ϕ − mc2 (3-23)

This Hamiltonian is visualized in Figure 3-20 and Figure 3-21. The pink dot in figure Figure 3-
20 is the location at which the tangent line to point (q̇, L) crosses the y-axis. The y-value of
this point is the negative of the Hamiltonian associated with that q̇ and plotted underneath
it, represented by the green dot. The length of the thick green line represents the Hamiltonian
H, whilst the thick red line represents the running cost L.

Figure 3-20: Lines (grey) with slope p, tangent to the running cost (thin red), the point where the
line intersects the y-axis (magenta), −H(q̇) value (green), L(⨿̇) (thick red), with m = 1 $

hr·ps2 ,
c = 1 ps

When considering the meaning of the wage multiplied by the flow of labor services (pq̇), the
labor value of the labor performed is found. When subtracting the running labor cost from
the labor value it results in the laborer’s surplus in [ $

hr ].

The next step is visualizing the laborer’s surplus as a function of the wage. [60] The ob-
servation that is made from Figure 3-22 is that (p, H), forms a hyperbola implying that there
is a limit to the rate at which the surplus increases with an increase in the wage. It is known
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Figure 3-21: Lines (grey) with slope p, tangent to the running cost and −H in green, with
m = 1 $

hr·ps2 , c = 1 ps (pink).

that the Hamiltonian represents the co-energy which is the integral over the flow of labor in
Figure 3-19 [37]. From here, and the second postulate, it is clear that q̇ does not become
larger than c. Therefore, the integral will not increase faster than c. Thus, the hyperbolic
shape of (p, H) is in line with the expectation of the analog to the co-energy.

Figure 3-22: The relativistic (red) and Newtonian analogy (blue) for the laborer’s surplus H
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Table 3-4 summarizes the labor economics analogies to the Legendre transform.

Labor economics Symbol Unit
Laborer’s surplus H [ $

hr ]
Running labor cost L [ $

hr ]
Labor value pq̇ [ $

hr ]

Table 3-4: Labor economics analog to the Legendre transform

3-4 The surplus-wage relationships

For the purpose of finding causal relationships, the analogies to forces are determined by
analyzing the Legendre transform. First, dS is interpreted. Then, an equivalent of the
Legendre transform is determined to come to the surplus-momentum relationship. From
here, the wage vector is defined, considering not only spatial dimensions but also temporal
dimensions. Finally, the derivative of the wage vector is interpreted.

3-4-1 The opportunity cost

The Legendre transform has more terms that are possible to interpret in labor economics.
From equation (3-12), equation (3-24) is obtained.

dS = Ldt (3-24)

When using this in the Legendre transform, equation (3-22) is rewritten as in equation (3-25).
Here, pdq represents the wage obtained for the additional quantity of labor services performed.
making it a laborers periodic income, expressed in [$]. The Hdt term expresses the surplus
accumulated during time span dt, therefore it is called the accumulated surplus which also
has the unit [$].

Hdt = pdq − dS (3-25)

Finally, the term dS is the running labor cost over time period dt. To the laborer, the running
cost is the money they need to spend to be able to perform the labor and the value they could
have obtained from leisuring during the time it is now performing labor. Therefore, dS is
deemed the opportunity cost for the laborer, with the unit [$].

The results of determining what is analogous to the various terms in the Legendre trans-
form are Table 3-5.

Labor economics Symbol Unit
Periodic income pdq [$]
Opportunity cost dS = Ldt [$]
Accumulated surplus Hdt [$]

Table 3-5: Labor economics analogous to the Legendre transform (2)
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3-4-2 The surplus-wage relation from the Legendre transform

The Legendre transform as presented in equation (3-22) is expressed in dt. Therefore, it is
not time-invariant. As per the first postulate, the goal is to obtain equations independent
of the demand frame of reference. Therefore, equation (3-7) is used to rewrite the Legendre
transform as in equation (3-26).

(L + H)dt = p
dq

dt
(L + H) cosh ϕ dτ = pq̇ cosh ϕ dτ

(−mc2 1
cosh ϕ

+ mc2 + mc2 cosh ϕ − mc2) cosh ϕ dτ = mc sinh ϕ · c tanh ϕ · cosh ϕ dτ

mc2(cosh2 ϕ − 1) dτ = mc2 sinh2 ϕ dτ

(3-26)

When dividing both sides of the equation by the proper time dτ , and multiplying with the
proportionality factor mc2, equation (3-27) is obtained.

m2c4(cosh2 ϕ − 1) = (mc2 sinh ϕ)2 (3-27)

In the right-hand side of this equation, the wage p can be recognized, resulting in equation
(3-28).

(mc2 cosh ϕ)2 − (mc2)2 = (cp)2 (3-28)

Furthermore, it contains the constant used in the running cost and laborer’s surplus as a result
of which they start at 0. Based on this, and the knowledge about its units $

hr , mc2 is deemed
to be the inherent surplus of the laborer. Lastly, using the knowledge on the structure of the
energy-momentum relation [47] the first term on the right-hand side is deemed analog to E,
the total surplus in $

hr . Resulting in a time-invariant equivalent to the Legendre transform,
presented in equation (3-29).

E2 − (mc2)2 = (cp)2 (3-29)

Visualizing the surplus-wage plane results in Figure 3-23. The limit, which is represented
through the robot, is shown in Figure 3-24 as the yellow line. In Figure 3-23a and Figure 3-
23b, the comparison between the Newtonian analog and the Relativistic analog is shown. The
total surplus E and the laborer’s surplus H have the same shape, the only difference being
that a constant, the inherent surplus, is added. The intuition of the hyperbola is thus the
same as that of the laborer’s surplus.

The results of finding the surplus-wage relation are shown in Table 3-6.

Labor economics Symbol Unit
Total surplus E [ $

hr ]
Inherent surplus mc2 [ $

hr ]

Table 3-6: Labor economics analogous to energy
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(a) The Surplus-Wage plane, visualizing the relativistic (red) as well as Newtonian (blue) analogy, zoomed
in

(b) The Surplus-Wage plane, visualizing the relativistic (red) as well as Newtonian (blue) analogy, zoomed
out

Figure 3-23: Surplus-wage plane

3-4-3 The wage vector

So far, wage has only been in the context of the spatial dimensions, not yet in the time
dimension. equation (3-29) is now used as the first step towards defining the wage-vector P.
To do this, it is first rewritten as equation (3-30).

−m2c2 = p2 − E2

c2 (3-30)
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Figure 3-24: Surplus-wage plane, the relativistic (red) analogy and the theoretical maximum
represented by the robot (orange)

The size of the individual vectors is presented in equation (3-31). With n denoting the number
of dimensions of q. The first term on the right-hand side represents the spatial dimensions,
and the second represents the time dimension. Which is equal to the invariant constants on
the left hand of the equation.

−[1 × 1] = [1 × n][n × 1] − [1 × 1][1 × 1] (3-31)

Then the invariant wage-vector is defined as in equation (3-32). equation (3-32)

P := (E

c
, p) (3-32)

It is conveniently chosen such that the inner product satisfies equation (3-30), as shown in
equation (3-33) and equation (3-34) written in Einstein notation. Here, ηκν represents the
metric tensor. Thus, the wage vector satisfies the first postulate and has units [ $

ps·hr ].

⟨P, P⟩ = P κηκνP ν =
(

E
c p

)( −1 0
0 1

)(
E
c
p

)
= −

(
E

c

)2
+ p2 (3-33)
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⟨P, P⟩ = |P|2

=
√

P22

=

√
−E2

c2 + (mc sinh ϕ)2

2

= −(mc2 cosh ϕ)2

c2 + m2c2 sinh ϕ2

= m2c2(− cosh ϕ2 + sinh ϕ2)
= − (mc)2 (3-34)

The wants-vector

To lay bare causal relations, the analog to the four-force vector is determined through finding
the time derivative of the wage-vector. For this purpose, the time derivative of the individ-
ual components is determined first. Starting with the spatial component. Similar to how
in physics, the derivative of the momentum is the force [58], the derivative of the wage is
considered its driver. Therefore, it is deemed the laborer’s want for labor F . The want for
labor represents the change in marginal running labor cost per change in quantity of labor
services the laborer has performed, as presented in equation (3-35), with the units [ $

ps·hr2 ].
[48]

F := ṗ = ∂L
∂q

∣∣∣∣
q̇

(3-35)

Next, the time derivative of E
c is considered and named ρ as in equation (3-36). Whereas ṗ

is a want in the spatial dimension, ρ is the want in the time domain and is dependent on the
surplus. Therefore ρ is defined as the want for profit, which also has the units [ $

ps·hr2 ].

ρ := Ė

c
(3-36)

ρ becomes the want for profit. For this is the time derivative, the units are [ $
ps·hr2 ].

Combining the results in the want-vector, as presented in equation (3-37). The results are
furthermore presented in Table 3-7.

Ṗ = (ρ, F ) (3-37)

Labor economics Symbol Unit
Wage-vector P [ $

ps·hr ]
Want for labor F [ $

ps·hr2 ]
Want for profit ρ [ $

ps·hr2 ]
Wants-vector Ṗ [ $

ps·hr2 ]

Table 3-7: Labor economics analogous to the four-force
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Chapter 4

The geometric description of flows of
labor services

4-1 Introduction

In this chapter, the flow space is further analyzed for the case where LS spacetime is three-
dimensional. The hyperboloid representing the flow space is an infinite manifold which can
be projected onto finite maps using descriptive geometry. The flow space consists of points
representing different flows of labor services due to the projective structure, as detailed in
the previous chapter. Thus the projections provide information on time t, quantities of labor
services q’s, perceived time τ (= 1 hr in the case assessed) and the variables dependent on
these, such as the flow of labor services and the real flow of labor services.

First, the flow space is visualized in Section 4-2. Then descriptive geometry is used to project
the 3D hyperboloid onto a 2D poincaré disk in 4-3. Finally, the interpretation of the projec-
tion onto the poincaré disk is presented.

The MATLAB code used for the transformations is provided in E-4. Appendix E furthermore
details transformations of the points on the hyperboloid to maps other than the Poincaré disk.

4-2 The hyperboloid in LS spacetime

4-2-1 Real flow of labor services

The flow space provides knowledge on the flows of labor services of equilibrium laborers, as
each point setting up the flow space represents a different constant flow due to the projective
structure. Using the flow space in LS spacetime, it is furthermore possible to determine the
values of the variables t, q and τ . The flow of labor services as in equation (3-6) is the TC
derivative of the quantity of labor services. Besides the TC derivative, also the proper time
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derivative is assessed. This proper time derivative of the quantity of labor services is presented
in equation (4-1).

q̇(τ) = dq

dτ
(4-1)

Which represents the flow of labor services demanded from the perspective of the laborer.
q̇(τ), is therefore named the real flow of labor services. When functioning at higher q̇(τ)
the wage companies need to pay to laborers becomes exponentially higher, as can be seen in
equation (3-19). Because companies want to minimize the wage, functioning at higher v(τ)
indicates a labor shortage. On the other hand, a lower q̇(τ) indicates a plentitude, and thus
high unemployment rates. The demand for labor services as perceived by the laborer thus
informs economists on the strain felt on the labor market as a consequence of too few or too
many laborers available.

4-2-2 Projecting flows of labor services on one hyperboloid

The first step towards visualizing the real flows in 2D is obtaining the real flow from LS
spacetime. For the flow space to be a hyperboloid in 3D, LS spacetime needs to be in R3,
thus describing n = 2 different types of labor. The two types considered are desk labor (q1)
and physical labor (q2). The third dimension is time. Next, the projective space is determined,
which describes timesheets at τ = 1 hr for all possible career paths of equilibrium laborers
at different flows of labor services. It is obtained by assessing the career paths of equilibrium
laborers at different flows of labor services after τ = 1 hr. The obtained manifold is described
as in equation (4-2) and represents the flow space. It is formulated from the perspective of a
laborer initially located at (0, 0, 0).

1 = c2t2 − q2
1 − q2

2 (4-2)

The obtained hyperboloid can be visualized as in Figure 4-1 as a green-yellow mesh. Here, the
laborer at τ = 0 hr is visualized as a green marker. The timesheet of the same laborer, but
observed at tau = 1 hr, is visualized by the blue marker. This is a randomly chosen possible
timesheet. The axes set up a demand frame of reference, this particular demand frame will
be called "demand frame A".

From the perspective of the laborer at τ = 1 hr (blue marker), another flow space is set up.
This flow space describes the possible timesheets the laborer can obtain at τ = 2 hr from the
perspective of τ = 1 hr. This flow space is visualized by the blue-green mesh in Figure 4-2.
Here, the red marker depicts, again a randomly chosen possible next timesheet of the same
laborer at τ = 2 hr.
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4-2 The hyperboloid in LS spacetime 49

Figure 4-1: The flow space in 3D LS spacetime as viewed from demand frame A, with a laborer
at the origin (green marker), and the timesheet that laborer obtains after τ = 1 hr (blue marker)

Figure 4-2: The flow space in 3D LS spacetime as viewed from demand frame A, with a laborer
at the origin (green marker), the timesheet that laborer obtains after τ = 1 hr (blue marker),
and the timesheet the laborer obtains after τ = 2 hr (red marker)
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The flow space can also be viewed from the perspective of the laborer at τ = 1 hr, which will
be called "demand frame B". Demand frame B has the same real flow of labor services as
demand frame A, thus through simple addition to the coordinates of frame A, frame B can
be found. The perspective from frame B is depicted in Figure 4-3.

Figure 4-3: The flow space in 3D LS spacetime as viewed from demand frame B, the timesheet
that laborer obtains after τ = 1 hr (blue marker), and the timesheet the laborer obtains after
τ = 2 hr (red marker)

Because there is no difference in flow of labor services between the demand frames of reference,
the flow of the laborer over time can be projected onto one hyperbola. The result is visualized
in Figure 4-4. The difference between the different time sheets of the laborer is now ∆τ = 1 hr.
This perceived time step can be made infinitesimally for the flow space is a projective space.
Thus continuous trajectories representing q̇(τ) over perceived time can be derived, which in
turn can be visualized on the manifold which in 3D forms a hyperboloid.
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Figure 4-4: The flow space in 3D LS spacetime projecting the view from three different demand
frames, with a laborer at the origin in frame A (green marker), the timesheet that laborer obtains
after τ = 1 hr (blue marker), and the timesheet the laborer obtains after τ = 2 hr (red marker)

4-3 Real flows of labor services on the Poincaré disk

The hyperboloid representing the flow space is an infinite manifold that can be projected onto
a poincaré disk, which is a unit circle. Thus making it possible to capture all q̇(τ) and q̇(t)
in a finite 2D image, making it easier to analyze. It is possible because the points of the
hyperboloid represent q̇(τ) for the cases that ∆τ = 1 hr, and the hyperboloid details q and t
which allows determining q̇(t).

The hyperboloid can thus be used to determine the real flow of labor services as well as
the flow of labor services. In the following sections we will focus on the real flow of labor
services, but where it says "real flow", it can be replaced with "flow" if the correction factor
between these is applied, the Lorentz factor as per equation (3-7).

The projection onto the poincaré disk is obtained by projecting the point on the hyper-
boloid to the coordinates (q1, q2, t) = (0, 0, −1). The values q1 and q2 of where this projection
crosses the q1q2-plane are the coordinates on the poincaré disk. This is visualized in Figure 4-
5. The mathematical transformation from coordinates on the hyperboloid to coordinates on
the poincaré disk is presented in equation (4-3) in which an underscore h represents the value
associated with the hyperboloid and underscore p represents the value on the Poincaré disk.
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[1]

q1p = q1h

1 + th

q2p = q2h

1 + th

tp = 0

(4-3)

Figure 4-6 shows the result of applying the transformation to the laborer presented at 3
different points in perceived time.

Figure 4-5: Projecting the flow space onto the poincaré disk [62]

Figure 4-6: The flow at different perceived time τ , projected onto the poincaré disk
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Other transformations projecting points on the hyperboloid onto surfaces, such as the Klein
disk, half-plane and pseudosphere, are provided in appendix E. In this appendix, the example
of the laborer at different perceived times is continued and projected onto the different sur-
faces. It furthermore provides initial ideas for interpretation of these different surfaces.[19],
[11], [62], [2].

4-3-1 Angles representing occupational composition

The projecting of a flow space onto the poincaré disk is conformal projection. Meaning, the
angles and areas on the hyperboloid are preserved on the poincaré disk. The angles represent
the ratio between the relative real flows of desk labor q̇1 and physical labor q̇2 the laborer
performs. Therefore it is named the Occupational composition θ.

For example, let us consider the angle between the q1 and the laborer’s coordinates. The
poincaré disk is visualized in Figure 4-7. The coordinates of the laborer at τ = 1 hr (blue
marker) are (0.50, 0.27) and thus the angle with the q1 axis is 28◦. Thus for each 1 ps · hr of
desk labor the laborer performs, the laborer performs 0.54 ps · hr of physical labor.

Now consider the laborer at perceived time τ = 2 hr, which has a negative real flow of
physical labor. The coordinates on the poincaré disk are (0.12, −0.41), resulting in an angle
of 287◦. When the laborer performs 1 ps ·hr of desk labor, it means that the laborer performs
−3.33 ps ·hr. This may sound counter-intuitive, however, the frame is relative. It thus means
that the laborer has an occupational composition that has more desk labor compared to the
demand frame of reference, which can represent another laborer or company average, etc.

Figure 4-7: The real flow of labor services at different perceived time τ , projected onto the
poincaré disk
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4-3-2 Arc representing job transition

Arcs between points on the poincaré disk represent the progression from one real flow to
another. The different locations on the poincaré disk represent different occupational com-
positions of the real flows of labor a laborer is performing. Thus, progressing to a different
location on the disk represents a change in the composition of the labor a laborer is perform-
ing. Therefore, the arc visualizing this change in occupational composition is named a job
transition.

An example of such a job transition visualized is presented in Figure 4-8. In Figure 4-8,

Figure 4-8: Job transition projected onto the poincaré disk

the job transition is not just any job transition, it is the optimal job transition. The optimal
job transition is found when the arc between the two real flows is a geodesic, and therefore
the shortest path. The shortest path does not always look like a straight line (see the red
geodesic). The geodesic is determined by setting-up a plane through the two real flows on
the hyperboloid, and the origin of the demand frame. The geodesic representing the optimal
job transition is where this plane intersects the hyperboloid.
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Chapter 5

Conclusion and Recommendations

5-1 Conclusions

This thesis presents the development of an economic engineering analogy which describes how
much (more) labor a single laborer performs in exchange for (additional) wage. Furthermore,
we present a method to visualize how much labor, and at what rate, this laborer performs
labor services when analyzing one and two types of labor.

We assert that labor services cannot be performed faster than time. By building up LS
spacetime, containing the mathematical structures describing the laborer, we show that this
theoretical limit results in the flow space being described by a model of hyperbolic geometry.
As opposed to the Newtonian analogy, in which the flow space is a model of Euclidean ge-
ometry. Whilst continuing to build up LS spacetime we recognize a mathematical structure
similar to the one defined in the special theory of relativity. Therefore, we use the derivation
of the special theory of relativity as a guide to develop our relativistic analogy for labor eco-
nomics.

From LS spacetime and the flow space, we obtain timesheets (positions), career progressions
(displacement), career paths (trajectories), flows (velocities) and additional hirings (acceler-
ations). Thus providing us the kinematics of a laborer.

We furthermore find an exponential function for the running labor cost. This shows that
the increase in wage demanded to perform more labor services, depends on how high the flow
of labor services of the laborer already is. Contrary to the Newtonian analogy where the
increase in running cost according to the capital or commodity analogy does not depend on
the value of the existing flow.

Moreover, we find that the labor supply curve is exponential for a constant wage inelas-
ticity (mass). We attribute this to the dependence on the difference in perception of time
when a laborer is performing at a different flow of labor services. This is contrary to the view
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of economists, who ascribe this phenomenon to a change in wage (in)elasticity. Our view-
point has the advantage that a constant wage inelasticity yields a supply curve in the shape
of a hyperbolic sine function, thus an exponential labor supply curve. As a result of which,
we only need to determine one wage inelasticity to obtain the labor supply curve, whereas
economists need to determine all the different wage (in)elasticities for the different flows.

We also identify the wants-vector (force-vector) as the causation for changes in the flow
of labor services, also known as the laborer’s behavioral changes. This wants-vector provides
insights into the dynamics. The wants-vector consists of the want for labor and the want for
profit, which are dependent on the change in surplus and wage.

Concerning the next steps in the development of the dynamics of the laborer, I recommend
clearly defining what is analogous to a damper and spring. For the damper, I suggest looking
at phenomena such as taxes and travel time to and from the job. For the springs, I propose
considering activities such as preliminary work.

We furthermore present a method to visualize the flow of labor services onto the Poincaré
disk. On this disk, we find the laborer’s job composition and (optimal) job transition. As a
next step in the process of visualizing the kinematics of a laborer, I encourage the continu-
ation of the interpretation of different maps from descriptive geometry. From these maps, I
recommend starting with the half-plane and pseudosphere because of their metrics.

Ultimately, our developed model describing the dynamics of an individual laborer in the
context of labor economics is a pre-existing model in physics. In physics, it describes the
special theory of relativity. This is in line with economic engineering principles.

5-2 Further recommendations

5-2-1 Labor market modeling

To come to a model that performs policy analysis which includes analysis of the distribution
and group difference, the theory developed needs to be applied. The model can be developed
for the purpose of, for example, analyzing the unemployment rate or wage gaps. Both are
considered topics relevant by today’s government.

To build the macroeconomic model I suggest designing a closed-loop control system. Here,
the controller represents the government, and the system represents the labor market which
consists of laborers and companies. For designing the system, I propose using agent-based
modeling, which allows the modeling of large numbers of individual laborers using our pro-
posed analogy [34]. Because it is an agent-based model containing microeconomics1 as well
as the macroeconomics, the causal relationships are established both ways, as opposed to
contemporary models of the CPB. [24] [15]

1Microeconomics studies the decisions individual laborers or firms make based on changes in wages, incen-
tives, types of labor and available resources [70]
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A suggestion for studying wage gaps would be to start with two types of jobs possible for
laborers, flexible work and greedy work. The wage inelasticity of the demand curve repre-
senting greedy work is higher, for greedy work describes a laborer who needs to always be
available for emergencies and regularly works overtime. The next step is to consider a couple
that consists of two laborers with wage inelasticities dependent on the stage of career they
are at. When, for example, a child enters the couple, it is required for the couple that at
least one of them is not performing greedy work. This requires the couple to choose based on
what is financially the most advantageous decision, over the full time-span of their careers.
Such a model describes the core of the scenario Goldin attributes to wage gaps for which she
received the Nobel prize in economic sciences in 2023. [28], [65]

5-2-2 Economic engineering

At the basis of the labor service analogy stands a laborer who cannot supply labor at a rate
faster than time. The consequence of this is the difference in geometrical structure compared
to the commodity and capital analog.

The labor services are not the only economic quantity whose flow cannot become faster
than time. I recommend the usage of the structure of the labor service analogy presented in
this thesis when using economic engineering to model services. The main differences will be
that "labor" should be replaced by the name of the type of service considered, and "wage" is
the type of payment the service demands. An example of other types of services is housing
services, for the space is rented out for a specified duration. This duration is dependent on
time and thus cannot progress faster than time.

5-2-3 The perspective of the laborer

The variables from the perspective of the laborer are not considered in economics. For
economists do not ascribe the nonlinearity of the labor supply curve to the difference in
perceived time but instead to a difference in wage elasticity. The difference in perceived time
has implications for the way the labor market is observed, leading to different perspectives for
demand frames with different flows. These flows from the perspective of the laborer elaborate
on, for example, the strain on the laborers, describing the consequences on laborers of the
flow they are performing, related to the unemployment rate. Because these variables are new,
I advise exploring the interpretation of the different perspectives further.

A starting point would be continuing the interpretation of descriptive geometry, such as the
Klein disk, the half-plane and the pseudosphere. Whereas the Klein disk preserves straight
lines, thus showing whether arcs are optimal job transitions (geodesics) or not. The half-plane
shows whether these job transitions consist of a change in the flow assigned to one type of
job or multiple, through straight lines or half circles. Finally, the pseudosphere allows for
Euclidean measurements of distance, allowing for an easily measurable arc length.
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Appendix A

The initial economic engineering
approach

This appendix provides a short overview of economic engineering and provides the aspects
relevant to the development of the analogy in this thesis. First, the method of analogies
is discussed. Furthermore, the advantages of the use of analytical mechanics in economic
engineering are detailed. Lastly, the decision to start with the development of the Newtonian
analogy is substantiated.

A-1 Extending the method of analogies to economic engineering

Economic engineering is the modeling of economic systems analogous to mechanical systems.
Modeling economic systems analogous to mechanical systems opens up the possibility to ap-
ply the tools available in the field of systems and control engineering to economics. For
example, performing transient analysis to tune system parameters influencing i.a. settling
time and overshoot. Which, in the context of labor economics, could be the duration until
a desired unemployment rate is achieved and the maximum unemployment rate encountered
in the process. Another example would be using system identification to identify the value of
constants, such as constants analogous to the spring constant or the resistance [40]. The last
example is the information obtainable from the frequency domain. Economists only focus
on relations that were found between variables based on averages obtained through histori-
cal data. Therefore not accounting for differences during economic cycles, such as trade or
inventory cycles, provides less accurate results. [17], [49]

The method of analogies is set up within various domains in engineering, such as the lin-
ear mechanical, rotational mechanical, electrical and thermal domain. Thus far, the analogy
to Newtonian mechanics has often been used [31], [41], [64], [40], [49]. This is because the
Newtonian analogy has an explicit interpretation for most variables, and is often most famil-
iar to students with a mechanical engineering background. Both factors make the process of
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defining the economic analogy more intuitive, forming the reasons why this thesis will also
start with developing a Newtonian analog.

Prior to this thesis, the analogies to the electrical domain and thermodynamics have also
been explored. Both analogies focus on combining micro- and macroeconomics [26], and an
attempt to describe economic growth through thermodynamics [46]. The electrical domain
analogy resulted in a hands-on method to realize a model that combines micro- and macroe-
conomics, namely through Agent-Based Modeling (ABM). [34]

The reader may be wondering, if there is a method in the electrical domain that can link
micro- and macroeconomics, and that is so valuable, why not start by developing a new anal-
ogy there? This is precisely where the strength of the method of analogies comes in. When an
analogy is developed between two domains it can thereafter easily be translated to another
domain. As long as the other domain already has an analogy to one of the two domains
between which the analogy is initially developed. This means that in our case, when develop-
ing the analogy for labor services between the economic engineering domain and Newtonian
mechanics, it can easily be translated to the electrical domain. Because the analogy between
Newtonian mechanics and the electrical domain has already been established.

A-2 Analytical mechanics in economic engineering

Besides Newtonian mechanics, analytical mechanics is also used in economic engineering.
Analytical mechanics is a collection of alternative formulations of mechanics. The branches
of analytical mechanics that have so far been applied are Lagrangian mechanics, Hamilto-
nian mechanics, which is equivalent to Lagrangian mechanics by a Legendre transform, and
Hamilton-Jacobi. Newtonian mechanics is a force-momentum formulation, with the force in
economic engineering analogous to a want and momentum to the price. Whereas the La-
grangian represents the co-energy, analogous to the cost, and the Hamiltonian represents the
energy, analogous to the surplus.

In economic engineering Lagrangian mechanics has for example been used to derive the anal-
ogy between Mechanics and the economic processes of the mortgage market, deriving the
economic forces responsible for mortgage prepayments by Krabbenborg. [40] Hamiltonian
mechanics, for example, has been used to derive the economic rent by Fränkel [26]. Lastly,
the Hamilton-Jacobi equation has been used by Legrand to formulate the effects of dissipation
for general mechanical systems. Which allows economic engineers to model the equivalent of
dissipation in economic systems. [44]

In engineering, the advantage of applying Newtonian mechanics over Lagrangian mechan-
ics is that for simple systems, such as a single particle, it can be more intuitive. Whilst
Lagrangian mechanics become more advantageous when systems become more complex, in
the case of many particles. The reason for this is that Newtonian mechanics uses Carte-
sian coordinates whilst Lagrangian mechanics uses generalized coordinates. Whilst Cartesian
coordinates do not vary, generalized coordinates can be strategically defined based on the
system and its holonomic constraint forces. Thus, building the holonomic constraints directly
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into the equations of motion, as opposed to Newtonian mechanics in which they require to
be individually applied to each particle. [45]

Particles are considered analogous to agents in economic engineering, and in the context of
labor economics to laborers. Therefore, the consideration between approaching the system
through Newtonian mechanics or Lagrangian mechanics extends into economic engineering.
Making the analogy to Newtonian mechanics advantageous for a system consisting of a low
number of laborers, when an intuitive interpretation is advantageous. Whilst Lagrangian
becomes advantageous when considering an economic system with a large number of laborers.
Therefore, the choice is made to initially approach the derivation of the theory to describe a
single laborer as analogous to Newtonian mechanics, prioritizing intuition at this early stage.
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Appendix B

Overview of the analogies

This appendix provides an overview of the different analogies for labor services. Starting with
the commodity analogy for labor services, also known as the linear mechanical analogy. Then
the capital analogy is presented, also known as the rotational analog. Finally, the relativistic
analogy is presented.

B-1 Commodity analogy for labor services

The commodity analogy for labor services is presented in Table B-1.

Labor economics Symbol Unit Linear mechanical analog Unit in physics
Quantity of labor services q ps · hr Displacement m
Flow of labor services q̇ ps Velocity m

s
Additional hiring q̈ ps

hr Acceleration m
s2

Time clock t s Time s

Wage p $
ps·hr Momentum kg·m

s

Want for labor F $
ps·hr2 Force kg·m

s2

Wage inelasticity m $
ps2·hr

Mass kg

Wage elasticity ϵ ps2·hr
$ Mass−1 1

kg

Labor cost T ∗ $
hr Kinetic co-energy kg·m2

s2

Labor surplus T $
hr Kinetic energy kg·m2

s2

Table B-1: Linear labor service analogy (Commodity analogy)

B-2 Capital analogy for labor services

The capital analogy for labor services is presented in Table B-2.
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Labor economics Symbol Unit Linear mechanical analog Unit in physics
Quantity of labor services q1 [ps · hr] Displacement [m]
Labor force q0 [ps · hr] Displacement [m]
Flow of labor services q̇ [ps] Velocity [m

s ]
Additional hiring q̈ [ ps

hr ] Acceleration [ m
s2 ]

Time clock t [s] Time [s]
Wage p [ $

ps·hr ] Momentum [kg·m
s ]

Want for labor F [ $
ps·hr2 ] Force [kg·m

s2 ]
Wage inelasticity m [ $

ps2·hr
] Mass [kg]

Wage elasticity ϵ [ps2·hr
$ ] Mass−1 [ 1

kg ]
Labor cost T ∗ [ $

hr ] Kinetic co-energy [kg·m2

s2 ]
Labor surplus T [ $

hr ] Kinetic energy [kg·m2

s2 ]
Working hours θ [−] Angle [−]
Productivity ω [ 1

hr ] Angular velocity [1
s ]

Change in productivity α [ 1
hr2 ] Angular acceleration [ 1

s2 ]
Full employment cost I [$ · hr] Inertia [kg · m2]
Workforce’s wage L [$] Angular momentum [kg·m2

s ]
Wage inflation τN [ $

hr ] Torque [kg·m2

s2 ]

Table B-2: Rotational labor service analogy (Capital analogy)

B-3 Relativistic analogy for labor services

The relativistic analogy for labor services is presented in Table B-3.

Labor economics Symbol Unit Linear mechanical analog Unit in physics
Quantity of labor services q [ps · hr] Distance [m]
Flow of labor services q̇ [ps] Velocity [m

s ]
Flow of a robot c [ps] Light speed [m

s ]
Wage inelasticity m [ $

ps2·hr
] Mass [kg]

Perceived time τ [s] proper time [s]
Time clock t [s] lab time [s]
Labor cost L [ $

hr ] Lagrangian [kg·m2

s2 ]
Degree of demand ϕ [−] Rapidity [−]
Wage p [ $

ps·hr ] Momentum kg·m
s

Lorentz factor γ [−] lorentz factor [−]
Labor surplus H [ $

hr ] Hamiltonian [kg·m2

s2 ]
Want for wage F [ $

ps·hr2 ] Force [kg·m
s2 ]

Wage-vector P [ $
ps·hr ] four-momentum vector [kg·m

s ]
Want for profit ρ [ $

ps·hr2 ] power [kg·m
s2 ]

Wants-vector Ṗ [ $
ps·hr2 ] Four-force vector [kg·m

s2 ]

Table B-3: Relativistic labor service analogy
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Lorentz transform

To derive the Lorentz transformation, the first step is defining two different demand frames.
One frame of demand, called s, with {q, t}. This is the demand frame from which we observe
LS spacetime. Therefore, from our perspective, it has no flow of labor services in the q direc-
tion. The other frame of demand s′ with {q′, t′} has a flow of labor services q̇ in the q-direction.

The goal is to obtain a transformation linear in nature. Because that is what we found
for the transformation applicable to the robot. As described in 3-2-1. Furthermore, if they
are not linear, the transformation equations could result in accelerations which should not
be possible since accelerations can only be caused by forces. Therefore the q′ coordinate is
defined as in equation (C-1), with γ and b constants. The derivation works towards expressing
these constants in the variables and constants assumed available, which are the flow of labor
services q̇ and the robot’s flow c.

q′ = γq + bt (C-1)

The next step is to imagine a time sheet at the origin of s′. Which is described as equation
(C-2).

q = q̇t

q′ = 0
(C-2)

When filling equation (C-2) in equation (C-1) it yields equation (C-3).

0 = γ(q̇t) + bt

⇒ b = −γq̇ (C-3)

Substituting this value for b into equation (C-3) yields equation (C-4).

q′ = γq − γq̇t

⇒ q′ = γ(q − q̇t) (C-4)
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The reverse transformation is defined in equation (C-5).

q = γ(q′ − q̇t′) (C-5)

The second part of the derivation is dependent on the second postulate stating the robot’s
flow is the same for all observers. In this part, a robot is considered to start performing labor
at t = 0 s at the origin of s and s′ that overlap at time t = 0 s. The displacement of a robot
is described in the different frames of demand as in equation (C-6).

q = ct

q′ = ct′ (C-6)

When substituting q in the transformation equation (C-4) it yields equation (C-7).

ct′ = γ(ct − q̇t)

⇒ t

t′ = c

γ(c − q̇) (C-7)

When substituting q′ from equation (C-6) into equation (C-5) it yields equation (C-8).

ct = γ(ct′ + q̇t′)

⇒ t

t′ = γ(c + q̇)
c

(C-8)

When equating t
t′ = t

t′ , γ is derived as in equation (C-9).

γ(c + q̇)
c

= c

γ(c − q̇)
c2 = γ2(c + q̇)(c − q̇) = γ2(c2 − q̇2)

γ2 = c2

c2 − q̇2 = 1
1 − q̇2

c2

⇒ γ = 1√
1 − q̇2

c2

(C-9)

This γ is the Lorentz factor. Now this will be used to derive the transformation to obtain
t′ from t and the reverse transformation to t from t′. When filling γ in in equation (C-5) it
yields equation (C-10).
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q = q′ + q̇t′√
1 − q̇2

c2

q

√
1 − q̇2

c2 = q − q̇t√
1 − q̇2

c2

+ q̇t′ =
q − q̇t + q̇t′

√
1 − q̇2

c2√
1 − q̇2

c2

q(1 − q̇2

c2 ) = q − q̇t + q̇t′

√
1 − q̇2

c2

q − qq̇2

c2 = q − q̇t + q̇t′

√
1 − q̇2

c2

t − q̇q

c2 = t′

√
1 − q̇2

c2

t′ =
t − q̇q

c2√
1 − q̇2

c2

⇒ t′ = γ(t − q̇q

c2 ) (C-10)

A similar derivation can be followed to determine the reverse transformation. Finally, this
leads to the transformation equations shown in equation (C-11) for the regular transforma-
tion, and the reverse transformation is shown in equation (C-12). These are a special case of
the Lorentz transformation called the Lorentz boost for it is a rotation-free Lorentz transfor-
mation.

q′ = γ(q − q̇t)

t′ = γ(t − q̇q

c2 )
(C-11)

q = γ(q′ − q̇t′)

t = γ(t′ − q̇q′

c2 )
(C-12)
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Appendix D

Proportionality constant of the
periodic cost

In this appendix, the proportionality constant is derived. We obtain this by considering that
it is desirable to be able to compare the Newtonian analogy to the relativistic analogy. There-
fore, similar to physics, the regions with low flows (velocities) should yield almost the same
values. By comparing these, we find that the proportionality constant is mc2.

Let us start with defining the difference ds between two timesheets in LS Spacetime. This
difference is determined using equation (D-1) when applying the metric [+−].

ds2 = c2dt2 − dq2 (D-1)

Then, the length along the curve is parameterized by a parameter such as n to find equation
(D-2).

ds =
√

c2ṫ2 − dq̇2dn (D-2)

With ṫ and q̇ defined as in equation (D-3).

ṫ = dt

dn
and q̇ = dq

dn
(D-3)

The next step is determining the action, which in LS spacetime is the period cost of an
equilibrium laborer. These period costs for the laborer are proportional to the the length-
along-the-curve. The factor which allows for this is named w. The period cost can then be
written as in equation (D-4).

S = w

∫ √
c2ṫ2 − dq̇2dn (D-4)

The parameter n can be changed without the interpretation of the length of the line segment
changing. This can be shown through introducing the parameter η(n) and using equation
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(D-5).
ṫ = dt

dn
= dt

dη

dη

dn
and q̇ = dq

dn
= dq

dη

dη

dn
(D-5)

Which allows us to rewrite equation (D-4) into equation (D-7). Here, the derivative dots do
not refer to the derivative w.r.t. n but to η.

S = w

∫ √
c2( dt

dη
)2 − (dq

dη
)2 dη

dn

dn

dη
dη (D-6)

= w

∫ √
c2ṫ2 − q̇2dη (D-7)

The next step is attempting to identify parameter w by determining the Lagrangian for this
period cost and then comparing it with the Lagrangian found in the Newtonian labor analog.
Because it is compared to the Newtonian labor analog the period cost of the free laborer is
determined from the inertial demand frame of the company (considered the laboratory frame
in special relativity), thus not the inertial demand frame of the free laborer (considered the
COM frame in special relativity). Therefore, η will be defined as time t, the period cost can
then be written as in equation (D-8).

S = w

∫ √
c2(dt

dt
)2 − (dq

dt
)2dt

= w

∫ √
c2 − q̇2dt

= wic

∫ √
−1 + q̇2

c2 (D-8)

Furthermore, it is known that the integrant of the action is the Lagrangian. Analog to this,
the integrant of the period costs is the running cost L for the laborer, as presented in equation
(D-9) [69].

S =
∫ t2

t1
L dt (D-9)

This results in the running cost as presented in equation (D-10).

L = wic

√
−1 + q̇2

c2 (D-10)

The next step is comparing this running cost at low flow in the relativistic analog with the
running cost of the Newtonian analog LN . Because it is known that for a low flow of labor
services, the results are comparable. This is done using a Taylor series polynomial of degree
1 around q̇ = 0, presented in equation (D-11).

L ≈ wic(−1 + 1
2

q̇2

c2 ) = −wic + wi
1
2

q̇2

c
= LN = 1

2mq̇2 (D-11)

It is known that w, i and c are all constants that form a term. This new, constant term, does
not influence the Euler-Lagrange equations. Thus, the constants can be identified through
equation (D-12).
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wi

c
= m ⇒ wi = mc (D-12)

Filling this back into the running cost of equation (D-11) yields equation (D-13).

L = −mc2

√
1 − q̇2

c2 + mc2 (D-13)

Which can be rewritten in hyperbolic functions using equation (D-14) expressing the Lorentz
factor as a hyperbolic function of the degree of demand.

γ = 1√
1 − q̇2

c2

= 1√
1 − tanh ϕ2

1√
sech ϕ2 =

1
sech ϕ

=

cosh ϕ (D-14)

Which yields equation (D-15), in the thesis referred to as equation (3-17).

L(ϕ) = −mc2 1
cosh ϕ

+ mc2 (D-15)

[12]
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Appendix E

Descriptive geometry

Besides the Poincaré disk, descriptive geometry details more methods to visualize the 3D
hyperboloid onto a 2D plane. In this appendix, we continue with the example presented in
chapter 4. Where a single laborer is visualized at perceived time τ = 0 hr using a green
marker, at τ = 1 hr using a blue marker and τ = 2 hr using a red marker.

The different maps presented below have different properties. Whereas the Poincaré disk
is a conformal model, the Klein disk is a model that preserves straight lines. The Klein disk
is thus useful for assessing and determining optimal job transitions (geodesics). The Poincaré
half-plane is conformal and shows geodesics through straight vertical lines or circles with the
center at y = 0 axis. Because of its conformality, the half-plane preserves the occupational
composition. Finally, the distances on the Pseudosphere are Euclidean distances, making it
easy to measure. The different projects thus each have their own advantages. [56]

E-1 Klein disk

The projection from the hyperboloid to the Klein disk is presented in equation (E-1). Here,
qk and tk represents the location of the coordinates after projecting it on the Klein disk.
Whereas qh and th represent the coordinates on the hyperboloid in LS spacetime.

q1k = q1h

th

q2k = q2h

th

tk = 1

(E-1)

The advantage of the Klein disk is that it is easy to determine the optimal job transition
between two coordinates both containing the information on the flow and job composition.
This optimal job transition is found by simply drawing a straight line between the two coor-
dinates. [1]
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Visualizing the laborer and its job transitions on the Klein disk yields Figure E-1.

Figure E-1: Job transition projected onto the Klein disk

The distance dsk on the Klein disk is not Euclidean but instead provided by the metric in
equation (E-2) [23].

ds2
k =

(
1 − ∥qp∥2) ∥dqp∥2 + (qp · dqp)2

(1 − ∥qp∥2)2 (E-2)

E-2 Poincaré half-plane

The projection from the hyperboloid onto the Poincaré half-plane is presented in equation
(E-3). [66] Here, qhp represents the location of the quantity of labor services projected on the
Poincaré half-plane and qp represents these coordinates projected on the Poincaré disk.

On the half-plane, the optimal job transitions can be identified as straight lines and cir-
cles with a center on the real axis [27]. To keep the expression simple, the coordinates on
the Poincaré half-plane are expressed in coordinates from the Poincaré disk. In the code
presented at the bottom of this appendix, the direct transformation between the hyperboloid
and the Poincaré half-plane is also presented, see line 91.

q1hp = 2 · q1p

q2
1p + (q2p + 1)2

q2hp = 2 · (q2p + 1)
q2

1p + (q2p + 1)2 − 1
(E-3)
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Visualizing results in Figure E-2.

Figure E-2: Job transition projected onto the half-plane

The half-plane also does not measure Euclidean distances. The metric applicable to determine
distance dshp, is presented in equation (E-4). [66] From this metric, the inspiration is obtained
that this plane potentially would allow for the expression of the value of goods or commodities
in a number of labor services the laborer provides. Instead of converting the labor services
to money first and then to the good or commodity.

(dshp)2 = (dx)2 + (dy)2

y2 (E-4)

E-3 Pseudosphere

To obtain the pseudosphere from the Poincaré half-plane equation (E-5) is used. In which
qps and tps represent the locations of the coordinates from the hyperboloid projected on the
pseudosphere.

q1ps = sech(arcCosh(q2hp)) · cos(q1ph)
q2ps = sech(arcCosh(q2hp)) · sin(q1hp)

tps = arcCosh(q2hp) − tanh(arcCosh(q2hp))
(E-5)

The advantage of the pseudosphere is that it measures Euclidean distances. Thus allowing for
a direct measuring of the different timesheets. It is important to note that not all coordinates
described by the hyperboloid can be projected onto the pseudosphere. The coordinates that
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cannot be projected onto the half-plane are the ones that adhere to q2hp < 1. When q2hp ≥ 1,
it is possible for the coordinates to be projected onto the pseudosphere. [61]

As visible in Figure E-2, it is not possible to project all coordinates of the job transitions
onto the pseudosphere, for not all coordinates satisfy q2hp ≥ 1. The coordinates that do
satisfy this requirement are projected onto the pseudosphere and visualized in Figure E-3.

Figure E-3: Job transition projected onto the Klein disk

E-4 MATLAB code determining the projections from the hyper-
boloid

In the code, ϕ represents the degree of demand, which is a hyperbolic angle between the
q1q2-plane at height t = 0 hr. θ represents the occupational composition as measured from
q1. In the code q1 is referred to as qx and q2 as qy.

1 clear all ; close all ;
2
3 %% Hyperbola
4 % Define a position on the hyperboloid through defining the real demand

in the q_1 and q_2 direction
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5 c = 1 ; % Work of a robot [ps] (max work)
6 tau = 1 ; % Perceived time [hr]
7 phi = [ 0 . 5 ; 0 . 7 ] ; % Degree of demand [-] in [q1, q2] direction
8 n = 100 ; % Nr. of points taken on geodesic
9 m = 1 ; % Wage inelasticity , [$ / (ps^2 hr)], mass

10
11 % If q_x and q_y displacements are known
12 qx_3 = − 1 . 5 ;
13 qy_3 = 7 ;
14
15 % Calculate other info
16 [ t_3 , phi_3 , the_3 ] = disp_2_angles ( qx_3 , qy_3 , tau , c ) ;
17
18 % If phi and theta are known , using the same example as before for easy
19 % verification
20 phi_4 = phi_3 ;
21 the_4 = the_3 ;
22
23 % Calculate other info
24 [ t_4 , qx_4 , qy_4 ] = angles_2_disp ( phi_4 , the_4 , tau , c ) ;
25
26
27 %% Functions
28
29 function [ t , phi , theta ] = disp_2_angles ( qx , qy , tau , c ) % Determines

angles based on known distances
30 for i = 1 : size ( qx , 1 )
31 t (i , 1) = 1/c∗sqrt ( tau^2∗c^2+qx (i , 1)^2+qy (i , 1) ^2) ;
32 phi (i , 1) = acosh ( t (i , 1 ) /tau ) ;
33 theta (i , 1) = acos ( qx (i , 1) /qy (i , 1) ) ;
34 end
35 end
36
37 function [ t , qx , qy ] = angles_2_disp ( phi , theta , tau , c ) % Determines

distances based on known angles
38 for i = 1 : size ( phi , 1)
39 t (i , 1) = tau∗cosh ( phi (i , 1) ) ;
40 qy (i , 1) = c∗tau∗sqrt ( ( cosh ( phi (i , 1) ) ^2 −1)/(1+cos ( theta (i , 1) )

^2) ) ;
41 qx (i , 1) = qy∗cos ( theta (i , 1) ) ;
42 end
43 end
44
45 function [ th , xh , yh ] = klein_2_hyper ( xk , yk , c ) % Maps trajectory on

the Klein disk to the hyperboloid
46 for i = 1 : size ( xk , 1)
47 th (i , 1) = sqrt ( c^2/(c^2−xk (i , 1)^2−yk (i , 1) ^2) ) ;
48 xh (i , 1) = xk (i , 1) ∗th (i , 1) ;
49 yh (i , 1) = yk (i , 1) ∗th (i , 1) ;
50 end
51 end
52
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53 function [ tk , xk , yk ] = hyper_2_klein ( th , xh , yh , c ) % Maps trajectory
on the hyperboloid to the Klein disk

54 for i = 1 : size ( xh , 1)
55 xk (i , 1) = xh (i , 1) /th (i , 1) ;
56 yk (i , 1) = yh (i , 1) /th (i , 1) ;
57 tk (i , 1) = 1 ;
58 end
59 end
60
61 function [ tpc , xpc , ypc ] = hyper_2_poincare ( th , xh , yh , c ) % Maps

trajectory on the hyperboloid to Poincare disk
62 for i = 1 : size ( xh , 1)
63 % Project this path onto the Poincare disk
64 xpc (i , 1) = xh (i , 1) /(1+th (i , 1) ) ;
65 ypc (i , 1) = yh (i , 1) /(1+th (i , 1) ) ;
66 tpc (i , 1) = 0 ;
67 end
68 end
69
70 function [ xhp , yhp ] = poincare_2_halfplane ( xpc , ypc ) % Maps trajectory

on Poincare disk to Poincare half plane
71 for i = 1 : size ( xpc , 1)
72 xhp (i , 1) = 2∗xpc (i , 1) /( xpc (i , 1)^2+(ypc (i , 1)+1)^2) ;
73 yhp (i , 1) = 2∗( ypc (i , 1)+1)/( xpc (i , 1)^2+(ypc (i , 1)+1)^2) −1;
74 end
75 end
76
77 function [ tps , xps , yps , go_nogo ] = halfplane_2_pseudo ( xhp , yhp ) %

Maps trajectory on Poincare half plane to pseudo sphere
78 if any ( yhp ( : ) < 1)
79 go_nogo = {’no go, yhp too small to project onto pseudosphere’ } ;

% Not all points on the can be visualized on the
pseudosphere , this signals if some of the points you are
trying to put on the pseudosphere cannot be put on the
pseudospher

80 else
81 go_nogo = {’go, yhp values can be projected onto pseudosphere’ } ;
82 end
83
84 for i = 1 : size ( xhp , 1)
85 xps (i , 1) = sech ( acosh ( yhp (i , 1) ) ) ∗cos ( xhp (i , 1) ) ;
86 yps (i , 1) = sech ( acosh ( yhp (i , 1) ) ) ∗sin ( xhp (i , 1) ) ;
87 tps (i , 1) = acosh ( yhp (i , 1) ) − tanh ( acosh ( yhp (i , 1) ) ) ;
88 end
89 end
90
91 function [ xhp , yhp ] = hyper_2_halfplane ( th , xh , yh , c ) % Maps trajectory

on the Poincare half plane to the hyperboloid
92 for i = 1 : size ( xh , 1)
93 xhp (i , 1 ) = 2∗xh (i , 1) / ( ( xh (i , 1)^2+yh (i , 1) ^2) / (1+th (i , 1) ) +

2∗yh (i , 1)+1+th (i , 1) ) ;
94 yhp (i , 1 ) = (2∗ yh (i , 1)+2∗th (i , 1)+2) / ( ( xh (i , 1)^2+yh (i , 1) ^2) /

(1+th (i , 1) )+2∗yh (i , 1)+1+th (i , 1) ) −1;
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95 end
96 end
97
98 function [ xpc , ypc ] = halfplane_2_poincare ( xhp , yhp , c ) % Maps trajectory

on the Poincare half plane to the Poincare disk
99 for i = 1 : size ( xhp , 1)

100 xpc (i , 1 ) = (2∗ xhp (i , 1 ) ) /( xhp (i , 1 ) ^2 + yhp (i , 1 ) ^2 + 2∗yhp (i , 1 ) +
1)

101 ypc (i , 1 ) = −(xhp (i , 1 ) ^2 + yhp (i , 1 ) ^2 − 1) /( xhp (i , 1 ) ^2 + yhp (i , 1 )
^2 + 2∗yhp (i , 1 ) + 1)

102 end
103 end
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Appendix F

MATLAB for comparing Newtonian
analogy and Relativistic analogy

This appendix contains the code used to visualize the comparison between the Newtonian
analogy for labor services and the Relativistic analogy for labor services. These visualizations,
and the mathematical descriptions for the variables are presented throughout chapter 3.

1 clear all ; close all ;
2
3 %%
4 c = 1 ; % Flow of a robot [ps]
5
6 m = [ 0 . 1 , 1 , 5 ] ; % Wage inelasticity [$ / (ps^2 hr]
7 v = −c : 0 . 0 1 : c ; % Flow of labor services , [ps], also can have

negative values because it is all relative
8
9 for i = 1 : size (v , 2 )

10 phi ( i ) = atanh ( v ( i ) /c ) ; %
Rapidity , real demand

11 % varieties of the wage inelasticity (m)
12 for i2 = 1 : ( size (m , 2) )
13 p (i , i2 ) = m (1 , i2 ) ∗c∗sinh ( phi ( i ) ) ; %

Momentum , wage [$ / (ps hr)]
14 L (i , i2 ) = −m (1 , i2 ) ∗c^2 / cosh ( phi ( i ) )+m (1 , i2 ) ∗c ^2; %

Laborer ’s cost, Lagrangian , kinetic co-energy [$ / hr]
15 H (i , i2 ) = m (1 , i2 ) ∗c^2∗cosh ( phi ( i ) )−m (1 , i2 ) ∗c ^2; %

Laborer ’s surplus , Hamiltonian , kinetic energy [$ / hr]
16 pv (i , i2 ) = v ( i ) ∗ m (1 , i2 ) ∗c∗sinh ( phi ( i ) ) ; %

Legendre transform , L+H should overlap with pv [$ / hr]
17 gamma (i , i2 ) = cosh ( phi ( i ) ) ; %

Lorentz factor [-]
18 E (i , i2 ) = m (1 , i2 ) ∗c^2∗cosh ( phi ( i ) ) ; %

Total surplus [$ / hr]
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19 E_rob (i , i2 ) = abs ( p (i , i2 ) ) ; %
Line representing robot [$ / hr]

20 K_e_n (i , i2 ) = 1/2∗m (1 , i2 ) ∗v ( i ) ^2 ; %
Newtonian laborer ’s cost, kinetic energy [$ / hr]

21 p_n (i , i2 ) = m (1 , i2 ) ∗v ( i ) ; %
Newtonian laborers wage, momentum [$ / (ps hr)]

22 K_ce_n (i , i2 ) = p_n (i , i2 ) ^2/(2∗m (1 , i2 ) ) ; %
Newtonian laborer ’s surplus , kinetic co-energy [$ / hr]

23 E_n (i , i2 ) = K_e_n (i , i2 ) ; %
Newtonian total surplus , energy [$ / hr]

24 end
25 end
26
27
28 %% Visualizing Legendre Transform
29
30 figure ( ) ;
31 hold on
32 grid on
33 n_a = 2 ;
34 tan_length = 5 ;
35 targetX = 0 ;
36
37 for n =1:10:100
38 slope ( n ) = ( L ( n∗n_a+1, 2)−L ( n∗n_a−1, 2) ) / ( v ( n∗n_a+1) − v ( n∗n_a−1) ) ;

% Determine slope
39
40 % Point where the tangent line touches the Lagrangian
41 X_neutral (n , 1 ) = v ( n∗n_a ) ;
42 Y_neutral (n , 1 ) = L ( n∗n_a , 2 ) ;
43
44 % Determine begin and end point of tangent line
45 X (n , 2) = v ( n∗n_a )+tan_length ; % Determine begin

point of line
46 Y (n , 2) = L ( n∗n_a , 2)+tan_length∗slope ( n ) ; % Determine begin

point of line
47 X (n , 1) = v ( n∗n_a )−tan_length ; % Determine end point

of line
48 Y (n , 1) = L ( n∗n_a , 2)−tan_length∗slope ( n ) ; % Determine end point

of line
49
50 % Visualize the tangent lines
51 plot ( [ X (n , 1 ) , X (n , 2 ) ] , [ Y (n , 1 ) , Y (n , 2 ) ] , ’Color’ , [ 0 . 3 , 0 . 3 , 0 . 3 ,

0 . 3 ] )
52
53 % Visualizing legrendre transform
54 y0 ( n ) = Y_neutral (n , 1 ) + slope ( n ) ∗ ( targetX − X_neutral (n , 1 ) ) ;
55 plot ( X_neutral (n , 1 ) , y0 ( n ) , ’go’ , ’MarkerSize’ , 3 , ’MarkerFaceColor’ ,

’g’ )
56 end
57 plot (v , L ( : , 2 ) , ’r’ ) % Visualize Lagrangian
58 plot (v , −H ( : , 2 ) , ’g’ ) % Visualize - Hamiltonian
59
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60 xlabel ( ’$\dot{q}$ $[ps]$’ , ’Interpreter’ , ’Latex’ , fontsize=15) ;
61 ylabel ( ’$L$ $[\frac{\$}{hr}]$’ , ’Interpreter’ , ’Latex’ , fontsize=15) ;
62 xlim ([ −1 , 1 ] ) ;
63 ylim ([ −2 , 1 ] ) ;
64 hold off
65 %title(’$\dot{q}$, L’, ’Interpreter ’,’Latex ’);
66
67 %%
68 n_1 = 81 ; % The number of the tangent line that

is being visualized
69 m_2 = ( Y ( n_1 , 2) − Y ( n_1 , 1) ) / ( X ( n_1 , 2) − X ( n_1 , 1) ) ; % Determine

the slope of the tangent line
70 b = Y ( n_1 , 1) − m_2 ∗ X ( n_1 , 1) ; % Identify the value of the negative

of the laborer ’s surpus , Hamiltonian
71
72 figure ( )
73 plot ( [ X ( n_1 , 1 ) , X ( n_1 , 2 ) ] , [ Y ( n_1 , 1 ) , Y ( n_1 , 2 ) ] , ’Color’ , [ 0 . 3 , 0 . 3 , 0 . 3 ,

0 . 3 ] ) % Visualize a tangent line
74 hold on
75 plot (v , L ( : , 2 ) , ’r’ )

% Visualize
Lagrangian

76 plot (0 , b , ’o’ , ’MarkerSize’ , 7 , ’MarkerFaceColor’ , ’m’ )
% Visualize the point where the tangent line

crosses the y axis
77 plot ( [ v ( n_1∗n_a ) , v ( n_1∗n_a ) ] , [ 0 , L ( n_1∗n_a , 2) ] , ’r’ , ’LineWidth’ , 2)

% Visualize line from y axis to -H
78 plot ( [ v ( n_1∗n_a ) , v ( n_1∗n_a ) ] , [ b , 0 ] , ’g’ , ’LineWidth’ , 2)

% Visualize line from L to x-axis
79 plot ( [ 0 , v ( n_1∗n_a ) ] , [ b , b ] , ’m--’ )

% Visualize line from -H
to (L, \dot{q})

80 plot ( v ( n_1∗n_a ) , b , ’o’ , ’MarkerSize’ , 7 , ’MarkerFaceColor’ , ’g’ )
81 grid on
82 xlim ( [ −0 .2 , 1 ] ) ;
83 ylim ([ −1 , 1 ] ) ;
84 xlabel ( ’$\dot{q}$ $[ps]$’ , ’Interpreter’ , ’Latex’ , fontsize=15) ;
85 ylabel ( ’$L$ $[\frac{\$}{hr}]$’ , ’Interpreter’ , ’Latex’ , fontsize=15) ;
86 hold off
87
88 %% Visualizations Comparing Relativistic and Newtonian
89
90 %% Laborer ’s cost - Lagrangian
91 figure ( ) ;
92 plot (v , L ( : , 1 ) , ’r:’ ) ;
93 hold on
94 plot (v , L ( : , 2 ) , ’r-.’ ) ;
95 plot (v , L ( : , 3 ) , ’r--’ ) ;
96 grid on
97 xlabel ( ’$\dot{q}$ $[ps]$’ , ’Interpreter’ , ’Latex’ , fontsize=15) ;
98 ylabel ( ’$L$ $[\frac{\$}{hr}]$’ , ’Interpreter’ , ’Latex’ , fontsize=15) ;
99 %title(’$\dot{q}$, L’, ’Interpreter ’,’Latex ’);

100 plot (v , K_e_n ( : , 1 ) , ’b:’ ) ;
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101 plot (v , K_e_n ( : , 2 ) , ’b-.’ ) ;
102 plot (v , K_e_n ( : , 3 ) , ’b--’ ) ;
103 legend ( sprintf ( ’Relativistic analog , m = %d $\\frac{\\$}{ps^2 \\cdot hr}$

’ , m ( 1 , 1 ) ) , sprintf ( ’Relativistic analog , m = %d $\\frac{\\$}{ps^2 \\
cdot hr}$’ , m ( 1 , 2 ) ) , sprintf ( ’Relativistic analog , m = %d $\\frac{\\$}{
ps^2 \\cdot hr}$’ , m ( 1 , 3 ) ) , sprintf ( ’Newtonian analog , m = %d $\\frac
{\\$}{ps^2 \\cdot hr}$’ , m ( 1 , 1 ) ) , sprintf ( ’Newtonian analog , m = %d $\\
frac{\\$}{ps^2 \\cdot hr}$’ , m ( 1 , 2 ) ) , sprintf ( ’Newtonian analog , m = %d

$\\frac{\\$}{ps^2 \\cdot hr}$’ , m ( 1 , 3 ) ) , ’Interpreter’ , ’Latex’ ,
fontsize=10)

104 hold off
105
106 %% Laborer ’s surplus - Hamiltonian
107 figure ( ) ;
108 plot ( p ( : , 1 ) , H ( : , 1 ) , ’r:’ ) ;
109 hold on
110 plot ( p ( : , 2 ) , H ( : , 2 ) , ’r-.’ ) ;
111 plot ( p ( : , 3 ) , H ( : , 3 ) , ’r--’ ) ;
112 grid on
113 xlabel ( ’$p$ $[\frac{\$}{ps \cdot hr}]$’ , ’Interpreter’ , ’Latex’ , fontsize

= 15) ;
114 ylabel ( ’$H$ $[\frac{\$}{hr}]$’ , ’Interpreter’ , ’Latex’ , fontsize = 15) ;
115 %title(’$p$, H’, ’Interpreter ’, ’Latex ’);
116 plot ( p_n ( : , 1 ) , K_ce_n ( : , 1 ) , ’b:’ ) ;
117 plot ( p_n ( : , 2 ) , K_ce_n ( : , 2 ) , ’b-.’ ) ;
118 plot ( p_n ( : , 3 ) , K_ce_n ( : , 3 ) , ’b--’ ) ;
119 legend ( sprintf ( ’Relativistic with m = %d’ , m ( 1 , 1 ) ) , sprintf ( ’Relativistic

with m = %d’ , m ( 1 , 2 ) ) , sprintf ( ’Relativistic with m = %d’ , m ( 1 , 3 ) ) ,
sprintf ( ’Newtonian with m = %d’ , m ( 1 , 1 ) ) , sprintf ( ’Newtonian with m = %
d’ , m ( 1 , 2 ) ) , sprintf ( ’Newtonian with m = %d’ , m ( 1 , 3 ) ) )

120 hold off
121
122 %% Only one Hamiltonian
123 figure ( ) ;
124 hold on
125 plot ( p ( : , 2 ) , H ( : , 2 ) , ’r’ ) ;
126 grid on
127 xlabel ( ’$p$ $[\frac{\$}{ps \cdot hr}]$’ , ’Interpreter’ , ’Latex’ , fontsize

= 15) ;
128 ylabel ( ’$H$ $[\frac{\$}{hr}]$’ , ’Interpreter’ , ’Latex’ , fontsize = 15) ;
129 %title(’$p$, H’, ’Interpreter ’, ’Latex ’);
130 plot ( p_n ( : , 2 ) , K_ce_n ( : , 2 ) , ’b-.’ ) ;
131 legend ( sprintf ( ’Relativistic with m = %d’ , m ( 1 , 2 ) ) , sprintf ( ’Newtonian

with m = %d’ , m ( 1 , 2 ) ) )
132 hold off
133
134 %% Momentum - wage, pv-diagram
135 figure ( ) ;
136 plot (v , p ( : , 1 ) , ’r:’ ) ;
137 hold on
138 plot (v , p ( : , 2 ) , ’r-.’ ) ;
139 plot (v , p ( : , 3 ) , ’r--’ ) ;
140 grid on
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141 xlabel ( ’$\dot{q}$ $[ps]$’ , ’Interpreter’ , ’Latex’ , fontsize = 15) ;
142 ylabel ( ’$p$ $[\frac{\$}{ps \cdot hr}]$’ , ’Interpreter’ , ’Latex’ , fontsize

= 15) ;
143 %title(’$\dot{q}$, p’, ’Interpreter ’, ’Latex ’, fontsize = 15);
144 plot (v , p_n ( : , 1 ) , ’b:’ ) ;
145 plot (v , p_n ( : , 2 ) , ’b-.’ ) ;
146 plot (v , p_n ( : , 3 ) , ’b--’ ) ;
147 legend ( sprintf ( ’Relativistic analog , m = %d $\\frac{\\$}{ps^2 \\cdot hr}$

’ , m ( 1 , 1 ) ) , sprintf ( ’Relativistic analog , m = %d $\\frac{\\$}{ps^2 \\
cdot hr}$’ , m ( 1 , 2 ) ) , sprintf ( ’Relativistic analog , m = %d $\\frac{\\$}{
ps^2 \\cdot hr}$’ , m ( 1 , 3 ) ) , sprintf ( ’Newtonian analog , m = %d $\\frac
{\\$}{ps^2 \\cdot hr}$’ , m ( 1 , 1 ) ) , sprintf ( ’Newtonian analog , m = %d $\\
frac{\\$}{ps^2 \\cdot hr}$’ , m ( 1 , 2 ) ) , sprintf ( ’Newtonian analog , m = %d

$\\frac{\\$}{ps^2 \\cdot hr}$’ , m ( 1 , 3 ) ) , ’Interpreter’ , ’Latex’ ,
fontsize=10)

148 hold off
149
150 %% Momentum - wage, pv-diagram only Newtonian analog
151 v_n1 = −1.5∗c : 0 . 0 1 : 1 . 5 ∗ c ;
152 for i = 1 : size ( v_n1 , 2 )
153 %phi(i) = atanh(v_n(i)/c); % Rapidity , real demand
154 % vary the wage inelasticity (m)
155 for i2 = 1 : ( size (m , 2) )
156 p_n1 (i , i2 ) = m (1 , i2 ) ∗v_n1 ( i ) ; %

Momentum , wage
157 end
158 end
159
160 figure ( ) ;
161 hold on
162 grid on
163 xlabel ( ’$\dot{q}$ $[ps]$’ , ’Interpreter’ , ’Latex’ , fontsize = 15) ;
164 ylabel ( ’$p$ $[\frac{\$}{ps \cdot hr}]$’ , ’Interpreter’ , ’Latex’ , fontsize

= 15) ;
165 %title(’$\dot{q}$, p’, ’Interpreter ’, ’Latex ’, fontsize = 15);
166 plot ( v_n1 , p_n1 ( : , 1 ) , ’b:’ ) ;
167 plot ( v_n1 , p_n1 ( : , 2 ) , ’b-.’ ) ;
168 plot ( v_n1 , p_n1 ( : , 3 ) , ’b--’ ) ;
169 legend ( sprintf ( ’Newtonian analog , m = %d $\\frac{\\$}{ps^2 \\cdot hr}$’ , m

( 1 , 1 ) ) , sprintf ( ’Newtonian analog , m = %d $\\frac{\\$}{ps^2 \\cdot hr}
$’ , m ( 1 , 2 ) ) , sprintf ( ’Newtonian analog , m = %d $\\frac{\\$}{ps^2 \\cdot

hr}$’ , m ( 1 , 3 ) ) , ’Interpreter’ , ’Latex’ , fontsize=10)
170 hold off
171
172
173 %% Energy Momentum equation
174
175 figure ( ) ;
176 plot ( p ( : , 1 ) , E ( : , 1 ) , ’r:’ ) ;
177 hold on
178 plot ( p ( : , 2 ) , E ( : , 2 ) , ’r-.’ ) ;
179 plot ( p ( : , 3 ) , E ( : , 3 ) , ’r--’ ) ;
180 grid on
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181 plot ( p_n ( : , 1 ) , E_n ( : , 1 ) , ’b:’ ) ;
182 plot ( p_n ( : , 2 ) , E_n ( : , 2 ) , ’b-.’ ) ;
183 plot ( p_n ( : , 3 ) , E_n ( : , 3 ) , ’b--’ ) ;
184 %plot(p(:,2), E_rob(:,2), ’m’);
185 xlabel ( ’$p$ $[\frac{\$}{ps \cdot hr}]$’ , ’Interpreter’ , ’Latex’ , fontsize

= 15) ;
186 ylabel ( ’$E$ $[\frac{\$}{hr}]$’ , ’Interpreter’ , ’Latex’ , fontsize = 15) ;
187 %title(’p, E’);
188 legend ( sprintf ( ’Relativistic analog , m = %d $\\frac{\\$}{ps^2 \\cdot hr}$

’ , m ( 1 , 1 ) ) , sprintf ( ’Relativistic analog , m = %d $\\frac{\\$}{ps^2 \\
cdot hr}$’ , m ( 1 , 2 ) ) , sprintf ( ’Relativistic analog , m = %d $\\frac{\\$}{
ps^2 \\cdot hr}$’ , m ( 1 , 3 ) ) , sprintf ( ’Newtonian analog , m = %d $\\frac
{\\$}{ps^2 \\cdot hr}$’ , m ( 1 , 1 ) ) , sprintf ( ’Newtonian analog , m = %d $\\
frac{\\$}{ps^2 \\cdot hr}$’ , m ( 1 , 2 ) ) , sprintf ( ’Newtonian analog , m = %d

$\\frac{\\$}{ps^2 \\cdot hr}$’ , m ( 1 , 3 ) ) , ’Interpreter’ , ’Latex’ ,
fontsize=10)

189 hold off
190
191 %% Energy momentum only relativistic and robot
192
193 figure ( ) ;
194 plot ( p ( : , 1 ) , E ( : , 1 ) , ’r:’ ) ;
195 hold on
196 plot ( p ( : , 2 ) , E ( : , 2 ) , ’r-.’ ) ;
197 plot ( p ( : , 3 ) , E ( : , 3 ) , ’r--’ ) ;
198 grid on
199 %functioning at the max flow
200 plot ( p ( : , 3 ) , E_rob ( : , 3 ) , ’color’ , [ 0 . 9 2 9 0 0 .6940 0 . 1 2 5 0 ] , ’LineStyle’ , ’-

’ ) ;
201 xlabel ( ’$p$ $[\frac{\$}{ps \cdot hr}]$’ , ’Interpreter’ , ’Latex’ , fontsize

= 15) ;
202 ylabel ( ’$E$ $[\frac{\$}{hr}]$’ , ’Interpreter’ , ’Latex’ , fontsize = 15) ;
203 %title(’p, E’);
204 legend ( sprintf ( ’Relativistic analog , m = %d $\\frac{\\$}{ps^2 \\cdot hr}$

’ , m ( 1 , 1 ) ) , sprintf ( ’Relativistic analog , m = %d $\\frac{\\$}{ps^2 \\
cdot hr}$’ , m ( 1 , 2 ) ) , sprintf ( ’Relativistic analog , m = %d $\\frac{\\$}{
ps^2 \\cdot hr}$’ , m ( 1 , 3 ) ) , sprintf ( ’Robot’ ) , ’Interpreter’ , ’Latex’ ,
fontsize=10)

205 hold off
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Glossary

List of Acronyms

LS labor service (often used in the context of "LS spacetime")
PS producer surplus
CS consumer surplus
TC time clock

List of Symbols

α Change in productivity
β Proportionality constant
γ Lorentz factor
ω Productivity
ϕ Degree of demand
ρ Want for profit
τ Perceived time
τN Wage inflation
θ Occupational composition
θh Working hours
ξ Continuous map of labor timesheets

−L Laborer’s running benefit
q̈ Additional hiring
q̇ Flow of labor services
q̇(τ) Real flow of labor services
q̇1 Real flow of desk labor services
q̇2 Real flow of physical labor services
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ϵ Wage elasticity
Ṗ Wants-vector
P Wage-vector
H Laborer’s surplus
L Running labor cost
c Flow of labor services of a robot performing labor
ds Length in LS spacetime
dshp Distance on the Poincaré half-plane
dsk Distance on the Klein disk
E Total surplus
F Want for labor
H Set of points of all different career paths after one unit interval of perceived time
I Full employment cost
L Workforce’s wage
m Wage inelasticity
mc2 Inherent surplus
n Number of different types of labor
p Wage
pq̇ Labor value
q Quantity of labor services
q0 Labor force
q1 Quantity of desk labor services (in Chapter 4)
q1 Quantity of labor services (in Chapter 2)
q2 Quantity of physical labor services
qb Quantity of blue-collar labor services
qh Quantity of labor services on the hyperboloid in LS spacetime
qk Coordinate of the quantity of labor services projected onto the Klein disk
qw Quantity of white-collar labor services
qhp Coordinate of the quantity of labor services projected onto the Poincaré half-

plane
qps Coordinates of the quantity of labor services projected onto the pseudosphere
qp Coordinate of the quantity of labor services projected onto the Poincaré disk
R Possible positions of the laborer after one time interval of perceived time
S Periodic labor cost
T Labor surplus
t Time clock
T ∗ Labor cost
th Time on the hyperboloid in LS spacetime
tk Time value representing the height of the plane containing the Klein disk
tps Coordinates of the time projected onto the Poincaré disk
s Length in LS spacetime
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