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A mixed mimetic spectral element method is applied to solve the rotating shallow water 
equations. The mixed method uses the recently developed spectral element histopolation 
functions, which exactly satisfy the fundamental theorem of calculus with respect to the 
standard Lagrange basis functions in one dimension. These are used to construct tensor 
product solution spaces which satisfy the generalized Stokes theorem, as well as the 
annihilation of the gradient operator by the curl and the curl by the divergence. This 
allows for the exact conservation of first order moments (mass, vorticity), as well as higher 
moments (energy, potential enstrophy), subject to the truncation error of the time stepping 
scheme. The continuity equation is solved in the strong form, such that mass conservation 
holds point wise, while the momentum equation is solved in the weak form such that 
vorticity is globally conserved. While mass, vorticity and energy conservation hold for any 
quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. 
The method possesses a weak form statement of geostrophic balance due to the compatible 
nature of the solution spaces and arbitrarily high order spatial error convergence.

Published by Elsevier Inc.

1. Introduction

In recent years there has been much interest in the use of finite element methods for the development of geophysical 
fluid solvers. This is in large part due to the recognition of the importance of conservation over long time integrations as a 
means of mitigating against both numerical instabilities and biases in the solution [1], and the capacity of finite elements 
to satisfy the conservation of various moments via the use of compatible or mimetic finite element spaces [2]. Various 
finite element spaces have been explored for their suitability for modeling geophysical flows including Raviart–Thomas, 
Brezzi–Douglas–Marini and Brezzi–Douglas–Fortin–Marini elements [3–5]. When used in a sequence of element types such 
as the standard continuous and discontinuous Galerkin elements, these can be shown to exactly satisfy the Kelvin–Stokes 
and Gauss-divergence theorems when applying the curl and divergence operators respectively in the weak form, as well as 
the annihilation of the gradient operator by the curl. Satisfying these properties exactly in the discrete form is necessary 
in order to conserve both first order and higher order moments for the shallow water equations in rotational form, as first 
presented for a C-grid finite difference scheme [6], and later formalized via the derivation of the finite difference operators 
from Hamiltonian methods [7,8].
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The application of mimetic finite elements for shallow water flows has also been formalized in the language of exte-
rior calculus in order to generalize the expression of their conservation properties [9]. Mimetic properties have also been 
demonstrated for the standard A-grid spectral element method on cubed sphere geometries via careful use of covariant and 
contra-variant transformations in order to evaluate the curl and divergence operators respectively so as to exactly satisfy 
the Kelvin–Stokes and Gauss-divergence theorems [10].

The present study explores the use of spectral elements using mixed basis functions in order to preserve mimetic prop-
erties for geophysical flows. These recently developed methods invoke the use of histopolation functions [11], which are 
defined such that they exactly satisfy the fundamental theorem of calculus with respect to the nodal Lagrange basis func-
tions from which they are derived. In the language of exterior calculus these edge functions may then be regarded as 
defining the space of 1-forms (with the Lagrange polynomials defining the space of 0-forms). By taking tensor product com-
binations of these basis functions and their associated edge functions higher dimensional differential k-forms may also be 
constructed for which the Kelvin–Stokes and Gauss-divergence theorems are satisfied [12].

As for other compatible tensor product finite element methods, the mixed mimetic spectral elements provide an effective 
means of preserving many of the properties of a geophysical fluid over long time integrations. These include:

• Conservation of mass, vorticity, total energy and potential enstrophy
Conservation of mass ensures that the solution does not drift over time and develop large biases. Vorticity is an impor-
tant moment to conserve since the large scale circulation of the atmosphere and oceans at mid latitudes is dominated 
by a quasi-balance between rotation and pressure gradients. Conservation of energy ensures that solutions remain 
bounded and numerical instabilities do not grow exponentially. The importance of potential enstrophy conservation is 
less immediately obvious meanwhile since for two dimensional turbulent fluids this cascades to small scales where 
some dissipation mechanism is necessary [13].

• Stationary geostrophic modes
The large scale circulations of the atmosphere and ocean are dominated by the slow evolution of modes balanced 
between Coriolis forces and pressure gradients. If this balance cannot be exactly replicated in a numerical model then 
the process of adjustment will result in the radiation of fast gravity waves that can contaminate the solution [14].

• High order spatial error convergence
The spectral element method defines the nodes of the basis functions to cluster towards element boundaries such that 
spurious oscillations due to spectral ringing are avoided, allowing convergence of errors at arbitrarily high order.

The rest of this paper proceeds as follows: In the following section the shallow water equations will be briefly introduced 
in the continuous form. Section 3 discusses the mixed mimetic spectral element method, as introduced by previous authors 
[11,12,15,16], and its application to the rotating shallow water equations. Section 4 explores the conservation properties of 
the discrete system. In Section 5 some results are presented, demonstrating the error convergence, conservation and balance 
properties of the method. Section 6 details some conclusions regarding the suitability of the method for geophysical flows, 
its advantages and limitations, as well as some future work we intend to pursue on the topic.

2. The 2D shallow water equations

The two dimensional shallow water equations present an excellent testing ground for primitive equation atmospheric 
and oceanic models since they exhibit many of the same features, including slowly evolving Rossby waves and fast gravity 
waves, nonlinear cascades of higher moments (kinetic energy and potential enstrophy), and the conservation of various 
moments (mass, total energy, vorticity, and an infinite number of rotational moments, of which potential enstrophy is the 
first).

Let � = [xmin, xmax] × [ymin, ymax] ⊂ R
2 such that xmin < xmax and ymin < ymax be a doubly periodic domain, and let 

tF > 0. The rotational form of the shallow water problem, [6], consists in finding the prognostic variables velocity, �u :
� × (0, tF ] �→R

2, and fluid depth, h : � × (0, tF ] �→R, such that1

⎧⎪⎨
⎪⎩

∂ �u
∂t

+ q × �F + ∇(K + gh) = 0 , in � × (0, tF ] , (a)

∂h

∂t
+ ∇ · �F = 0 , in � × (0, tF ] . (b)

(1)

The diagnostic variables are potential vorticity q : � × (0, tF ] �→ R, mass flux �F : � × (0, tF ] �→ R
2, and kinetic energy per 

unit mass K : � × (0, tF ] �→R, defined as

1 The shallow water equations are formulated in 2D, such that q × �F := q�ez × �F = q�F ⊥ .



284 D. Lee et al. / Journal of Computational Physics 357 (2018) 282–304
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q := ∇ × �u + f

h
, (a)

�F := h�u , (b)

K := 1

2
�u · �u , (c)

(2)

where f : � �→ R is the Coriolis term. Note that we assume that this Coriolis term does not explicitly depend on time.
The shallow water equations conserve the following invariants, [6]:

• Volume: integrating (1a) over the domain � and assuming periodic boundary conditions gives the result that

d

dt

∫
�

h d� = 0 . (3)

If we assume constant density, then this also gives mass conservation.
• Vorticity: taking the curl of (1a) leads to a conservation equation for vorticity ω = ∇ × �u : � × (0, tF ] �→R, of the form

∂ω

∂t
+ ∇ · (�u (ω + f )) = 0 . (4)

Integrating over the domain (and assuming periodic boundary conditions) gives the conservation of vorticity as

d

dt

∫
�

ω d� = 0 . (5)

• Energy: computing the inner product of (1a) with �F and multiplying (1a) by gh gives

∂hK

∂t
+ ∇ · (�F K ) + �F · ∇(gh) = 0 , (6)

∂( 1
2 gh2)

∂t
+ ∇ · (gh�F ) − �F · ∇(gh) = 0 . (7)

Combining these and integrating over � gives energy conservation as

d

dt

∫
�

{
hK + 1

2
gh2

}
d� = 0 . (8)

• Potential enstrophy: expressing the vorticity as ω = hq − f within the vorticity advection equation and subtracting q
times (1a) gives an advection equation for the potential vorticity as

∂q

∂t
+ �u · ∇q = 0. (9)

Multiplying this by hq and (1a) by 1
2 q2 and adding gives

∂ 1
2 hq2

∂t
+ ∇ ·

(1

2
�F q2

)
= 0. (10)

Integrating over the domain then gives potential enstrophy conservation as

d

dt

∫
�

1

2
hq2 d� = 0 . (11)

For a detailed derivation of these conservation laws the reader is referred to previous studies [4,6].
One of the central objectives of this paper is to show that these properties can be satisfied at the discrete level within the 

mimetic spectral element discretization framework. Ensuring the conservation of invariants in discrete form helps to mitigate 
against biases and instabilities in the solution of the original system [1]. For this reason, it is considered important to satisfy 
these conservation properties at the discrete level in geophysical flow solvers, especially when long time simulation is the 
goal.
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3. Spatial discretization

In this work we set out to construct a mimetic spectral finite element discretization for the shallow water equations as 
given by (1), together with the diagnostic equations (2). In particular we use a mixed finite element formulation, for more 
details on mixed finite elements see for example [17,18].

The mimetic finite element discretization presented here differs from other finite element methods in the degrees of 
freedom. Here the degrees of freedom, the expansion coefficients, represent integral values. For nodal basis functions, the 
degrees of freedom represent the values at points, see (31), the degrees of freedom for vectors will be the (two-dimensional) 
fluxes over line segments, see (35), (36) in the section. The degrees of freedom for densities will be their integrated values 
over 2D volumes, see (40). The main motivations for the use of these degrees of freedom are: 1. that integral values are well 
defined on non-orthogonal grids and 2. that the optimal order of convergence is displayed on both affine and non-affine 
meshes. Alternative formulations may encounter loss of optimality, [19–21]. An important feature of this sequence of basis 
functions is that the derivative can be applied directly to the degrees of freedom by multiplying the degrees of freedom by 
an appropriate incidence matrix [22–26], as shown in (44) and (47) in this section. The incidence matrices do not depend 
on the polynomial degree or the shape of the grid; they represent the topological derivative. In Section 4 we will prove 
conservation properties in terms of these topological structures. Since the proofs are based on metric-free concepts, this 
ensures that these properties will also hold on highly deformed grids.

3.1. Weak formulation

The first step to construct this discretization is the weak form of (1) and (2). In this work, as usual, 〈·, ·〉� represents the 
L2 inner product

〈 f , g〉� :=
∫
�

f · g d�. (12)

The weak formulation reads: for any time t ∈ (0, tF ] and for a given Coriolis term f ∈ L2(�), find �u, �F ∈ H(div, �), h, K ∈
L2(�), and q ∈ H(rot, �)2 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈�ν,
∂ �u
∂t

〉� + 〈�ν,q × �F 〉� − 〈∇ · �ν, K + gh〉� = 0 , ∀�ν ∈ H(div,�) (a)

〈σ ,
∂h

∂t
〉� + 〈σ ,∇ · �F 〉� = 0 , ∀σ ∈ L2(�), (b)

〈ζ,hq〉� = −〈∇⊥ζ, �u〉� + 〈ζ, f 〉� , ∀ζ ∈ H(rot,�), (c)

〈 �ϕ, �F 〉� = 〈 �ϕ,h�u〉� , ∀ �ϕ ∈ H(div,�), (d)

〈κ, K 〉� = 1

2
〈κ, �u · �u〉� , ∀κ ∈ L2(�), (e)

(13)

where we have used integration by parts and the periodic boundary conditions to obtain the identities [4]{〈�ν,∇(K + gh)〉� = −〈∇ · �ν, K + gh〉�, (a)

〈ς,∇ × �u〉� = −〈∇⊥ς, �u〉�. (b)
(14)

These two relations show that minus the gradient is the Hilbert adjoint of the divergence operator and minus the curl is 
the Hilbert adjoint of the rot, provided the boundary integrals vanish. The space L2(�) corresponds to square integrable 
functions and the spaces H(div, �) and H(rot, �) contain square integrable functions whose divergence and rot are also 
square integrable.

3.2. Finite dimensional mimetic function spaces

The second step to construct this discretization is the definition of the spatial conforming function spaces, where we will 
seek the discrete solutions for velocity �uh , fluid depth hh , mass flux �Fh , kinetic energy Kh and potential vorticity qh:

qh ∈ Wh ⊂ H(rot,�), �uh, �Fh ∈ Uh ⊂ H(div,�), and hh, Kh ∈ Q h ⊂ L2(�) . (15)

2 For scalar variable ψ the rot operator ∇⊥ := �ez × ∇ is defined as

∇⊥ψ =
( −∂ψ/∂ y

∂ψ/∂x

)
.
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The choice of finite dimensional function spaces determines the properties of the discretization, see for example [27,28]
for a more general discussion, and [2] for a recent discussion focused on the 2D Navier–Stokes equations.

Therefore, the finite dimensional function spaces used in this work are such that when combined form a Hilbert sub-
complex

R −→ Wh
∇⊥−→ Uh

∇·−→ Q h −→ 0 . (16)

The meaning of this Hilbert subcomplex is that

{∇⊥ωh |ωh ∈ Wh} ⊂ Uh and {∇ · �uh | �uh ∈ Uh} ⊆ Q h . (17)

In other words, the rot operator must map Wh into Uh and the div operator must map Uh onto Q h .
This discrete subcomplex mimics the 2D Hilbert complex associated to the continuous functional spaces

R −→ H(rot,�)
∇⊥−→ H(div,�)

∇·−→ L2(�) −→ 0 . (18)

The Hilbert complex is an important structure that is intimately connected to the de Rham complex of differential forms. 
Therefore, the construction of a discrete subcomplex is an important requirement to obtain a stable and accurate finite 
element discretization, see for example [22–26,28,29] for a detailed discussion.

Each of these finite dimensional function spaces Wh , Uh , and Q h has an associated finite set of basis functions 
ε W

i , �ε U
i , εQ

i , such that

Wh = span{ε W
1 , . . . , ε W

dW
}, Uh = span{�ε U

1 , . . . , �ε U
dU

}, and Q h = span{εQ
1 , . . . , εQ

dQ
} , (19)

where dW , dU , and dQ denote the dimension of the discrete function spaces and therefore correspond to the number of 
degrees of freedom associated to each of the unknowns. As a consequence, the approximate solutions for vorticity, potential 
vorticity, Coriolis, velocity, mass flux, fluid depth, and kinetic energy can be expressed as a linear combination of these basis 
functions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qh :=
dW∑
i=1

qi ε
W

i , fh :=
dW∑
i=1

f iε
W

i , (a)

�uh :=
dU∑
i=1

ui �ε U
i , �Fh :=

dU∑
i=1

Fi �ε U
i , (b)

hh :=
dQ∑
i=1

hi ε
Q
i , Kh :=

dQ∑
i=1

Ki ε
Q
i , (c)

(20)

with qi , f i , ui , Fi , hi , Ki , the degrees of freedom for vorticity, potential vorticity, Coriolis, velocity, mass flux, fluid depth, and 
kinetic energy, respectively. Since the shallow water equations form a time dependent set of equations, these coefficients 
will be time dependent.

3.2.1. One dimensional nodal and histopolant polynomials
To define the two-dimensional basis functions ε W

i , �ε U
i , and εQ

i , we first introduce two types of one-dimensional poly-
nomials: one associated with nodal interpolation, and the other with integral interpolation (histopolation).3 Subsequently, 
these two types of polynomials will be combined to generate the two-dimensional polynomial basis functions used to 
discretize the physical quantities that appear in this problem.

Consider the canonical interval I = [−1, 1] ⊂ R and the Legendre polynomials, L p(ξ) of degree p with ξ ∈ I . The p + 1

roots, ξi , of the polynomial (1 − ξ2)
dLp
dξ

are called Gauss–Lobatto–Legendre (GLL) nodes and satisfy −1 = ξ0 < ξ1 < · · · <

ξp−1 < ξp = 1. Let lp
i (ξ) be the Lagrange polynomial of degree p through the GLL nodes, such that

lp
i (ξ j) :=

{
1 if i = j

0 if i �= j
, i, j = 0, . . . , p . (21)

The explicit form of these Lagrange polynomials is given by

lp
i (ξ) =

p∏
k=0
k �=i

ξ − ξk

ξi − ξk
. (22)

3 For an extensive discussion of integral interpolation (histopolation) see [11,30].
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Fig. 1. Histogram and an example of a histopolant (red curve). By definition, the integral of the histopolant over each cell (or bin) Ahistopolant is equal to the 
area of the corresponding bar of the histogram Ahistogram. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Let qh(ξ) be a polynomial of degree p defined on I = [−1, 1] and qi = qh(ξi), then the expansion of qh(ξ) in terms of 
Lagrange polynomials is given by

qh(ξ) :=
p∑

i=0

qil
p
i (ξ) . (23)

Because the expansion coefficients in (23) are given by the value of qh in the nodes ξi , we refer to this interpolation as 
a nodal interpolation and we will denote the Lagrange polynomials in (22) by nodal polynomials.

Before introducing the second set of basis polynomials that will be used in this work it is important to introduce the 
reader to the concept of histopolant. Given a histogram, i.e. a piece-wise constant function, a histopolant is a smooth function 
whose integrals over the cells (or bins) of the histogram are equal to the area of the corresponding bars of the histogram, 
see Fig. 1. If the histopolant is a polynomial we say that it is a polynomial histopolant. In the same way as a polynomial 
interpolant that passes exactly through p + 1 points has degree p, a polynomial that exactly histopolates a histogram with 
p + 1 bins has polynomial degree p. Consider now a function g(x) and its associated integrals over a set of cells [a j−1, a j], 
g j = ∫ a j

a j−1
g(x)dx, with a0, < · · · < a j < · · · < ap . The set of integral values g j and cells [a j−1, a j] can be seen as a histogram. 

As mentioned before, it is possible to construct a histopolant of this histogram. This histopolant will be an approximating 
function of g that has the particular property of having the same integral over the cells [a j−1, a j] as the original g . Just like 
a nodal interpolation exactly reconstructs the original function at the interpolating points, a histopolant exactly reconstructs 
the integral of the original function over the cells.

Using the nodal polynomials we can define another set of basis polynomials, ep
i (ξ), as

ep
i (ξ) := −

i−1∑
k=0

dlp
k (ξ)

dξ
, i = 1, . . . , p . (24)

These polynomials ep
i (ξ) have polynomial degree p − 1 and satisfy,

ξ j∫
ξ j−1

ep
i (ξ)dξ =

{
1 if i = j

0 if i �= j
, i, j = 1, . . . , p . (25)

The proof that the polynomials ep
i (ξ) have degree p − 1 follows directly from the fact that their definition (24) involves a 

linear combination of the derivative of polynomials of degree p. The proof of (25) results from the properties of lp
k (ξ). Using 

(24) the integral of ep
i (ξ) becomes

ξ j∫
ξ j−1

ep
i (ξ)dξ = −

ξ j∫
ξ j−1

i−1∑
k=0

dlp
k (ξ)

dξ
= −

i−1∑
k=0

ξ j∫
ξ j−1

dlp
k (ξ)

dξ
= −

i−1∑
k=0

(
lp
k (ξ j) − lp

k (ξ j−1)
) = −

i−1∑
k=0

(
δk, j − δk, j−1

)
,

where δi, j is the Kronecker delta. It is straightforward to see that

−
i−1∑
k=0

(
δk, j − δk, j−1

) =
{

1 if i = j

0 if i �= j
, i, j = 1, . . . , p .

For more details see [11,30].
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Fig. 2. Basis polynomials associated to p = 4. Left: nodal polynomials, the value of the basis polynomial at the corresponding node is one and on the other 
nodes is zero. Right: histopolant polynomials, the integral of the basis polynomials over the corresponding shaded area evaluates to one and to zero on the 
others.

Let gh(ξ) be a polynomial of degree (p − 1) defined on I = [−1, 1] and gi = ∫ ξi
ξi−1

gh(ξ) dξ , then its expansion in terms 
of the polynomials ep

i (ξ) is given by

gh(ξ) =
p∑

i=1

gie
p
i (ξ) . (26)

Because the expansion coefficients in (26) are the integral values of gh(ξ), we denote the polynomials in (24) by histopolant 
polynomials4 and refer to (26) as histopolation.

It can be shown, [11,30], that if qh(ξ) is expanded in terms of nodal polynomials, as in (23), then the expansion of its 
derivative dqh(ξ)

dξ
in terms of histopolant polynomials is

(
dqh(ξ)

dξ

)
h

=
p∑

i=1

⎛
⎜⎝

ξi∫
ξi−1

dqh(ξ)

dξ
dξ

⎞
⎟⎠ ep

i (ξ) =
p∑

i=1

(qh(ξi) − qh(ξi−1)) ep
i (ξ)

=
p∑

i=1

(qi − qi−1) ep
i (ξ) =

p∑
i=1, j=0

E1,0
i, j q je

p
i (ξ) , (27)

where E1,0
i, j are the coefficients of the p × (p + 1) matrix E1,0

E1,0 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 . . . 0

0 −1 1 0
. . . 0

...
. . .

. . .
...

0
. . . 0 −1 1 0

0 . . . 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

The following identity holds (Commuting property)(
dq(ξ)

dξ

)
h

= dqh(ξ)

dξ
. (29)

For an example of the one-dimensional basis polynomials corresponding to p = 4, see Fig. 2.

4 In earlier work we referred to these functions as edge functions.
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3.2.2. Two dimensional basis functions
Consider the nodal polynomials (22), lp

i (ξ) of degree p, the histopolant polynomials (24), ep
i (ξ) of degree p − 1, the 

canonical square � = I × I ⊂R
2, and take ξ, η ∈ I = [−1, 1].

Basis functions for Wh Combining nodal polynomials we can construct the polynomial basis functions for Wh on a reference 
quadrilateral. Consider the canonical interval I = [−1, 1], the canonical square � = I × I ⊂ R

2, the nodal polynomials (22), 
lp
i (ξ) of degree p, and take ξ, η ∈ I . Then a set of two-dimensional basis polynomials, ε W

k (ξ, η; p), on � can be constructed 
as the tensor product of the one-dimensional ones

ε W
k (ξ,η; p) := lp

i (ξ) lp
j (η) , i, j = 0, . . . , p, k = j + 1 + i(p + 1) . (30)

These polynomials, ε W
k (ξ, η; p), have degree p in each direction and from (21) it follows that they satisfy, see [11,29],

ε W
k (ξi, η j; p) =

⎧⎪⎨
⎪⎩

1 if k = i(p + 1) + j + 1

0 if k �= i(p + 1) + j + 1

, i, j = 0, . . . , p, k = 1, . . . , (p + 1)2 . (31)

Here, as before, ξi and ηi with i = 0, . . . , p are the Gauss–Lobatto–Legendre (GLL) nodes. Let ωh(ξ, η) be a polynomial 
function of degree p in ξ and η, defined on � and

ω
p
k = ωh(ξi, η j), with k = i(p + 1) + j + 1, (32)

then its expansion in terms of these polynomials, ωh(ξ, η; p), is given by

ωh(ξ,η; p) =
(p+1)2∑

k=1

ω
p
k ε W

k (ξ,η; p) . (33)

For this relation between the expansion coefficients and nodal interpolation we denote the polynomials in (30) by nodal 
polynomials. Therefore we set W p

h := span{ε W
1 (ξ, η; p), . . . , ε W

(p+1)2 (ξ, η; p)}. To simplify the notation, the explicit reference 
to the polynomial degree p will be dropped from the function space, the basis functions, and the coefficient expansion, 
therefore from here on we will simply use Wh , ε W

k (ξ, η), and ωk .

Basis functions for Uh In a similar way, but combining nodal polynomials with histopolant polynomials, we can construct the 
polynomial basis functions for Uh on quadrilaterals. Consider the nodal polynomials (22), lp

i (ξ) of degree p, the histopolant 
polynomials (24), ep

i (ξ) of degree p − 1, the canonical square � = I × I ⊂ R
2, and take ξ, η ∈ I = [−1, 1]. A set of two-

dimensional basis polynomials, �ε U
k (ξ, η; p), can be constructed as the tensor product of the one-dimensional basis functions

�ε U
k (ξ,η; p)

:=
{

lp
i (ξ)ep

j (η) �eξ if k ≤ p(p + 1), with i = 0, . . . , p, j = 1, . . . , p, k = ip + j ,

ep
i (ξ)lp

j (η) �eη if k > p(p + 1), with i = 1, . . . , p, j = 0, . . . , p, k = (p + i − 1)(p + 1) + j + 1 .
(34)

These polynomials, �ε U
k (ξ, η; p), have degree p in ξ and p − 1 in η if k ≤ p(p + 1). If k > p(p + 1), then the degree in ξ is 

p − 1 and the degree in η is p. Using (21) and (25) it follows that these polynomials satisfy, [11,29]

η j∫
η j−1

�ε U
k (ξi, η; p) · �eξ dξ =

{
1 if k = ip + j ,

0 if k �= ip + j ,
with

⎧⎪⎪⎨
⎪⎪⎩

i = 0, . . . , p,

j = 1, . . . , p,

k = 1, . . . ,2p(p + 1) ,

(35)

and

ξi∫
ξi−1

�ε U
k (ξ,η j) · �eη dη =

{
1 if k = (p + i − 1)(p + 1) + j + 1 ,

0 if k �= (p + i − 1)(p + 1) + j + 1 ,
with

⎧⎪⎪⎨
⎪⎪⎩

i = 1, . . . , p,

j = 0, . . . , p,

k = 1, . . . ,2p(p + 1) .

(36)

Let �uh(ξ, η; p) be a vector valued polynomial function defined on � and
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up
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

η j∫
η j−1

�uh(ξi, η) · �eξ dη if k ≤ p(p + 1), with

⎧⎪⎨
⎪⎩

i = 0, . . . , p,

j = 1, . . . , p,

k = ip + j ,

ξi∫
ξi−1

�uh(ξ,η j) · �eη dξ if k > p(p + 1), with

⎧⎪⎨
⎪⎩

i = 1, . . . , p,

j = 0, . . . , p,

k = (p + i − 1)(p + 1) + j + 1 .

(37)

Then its expansion in terms of these polynomials, �uh(ξ, η; p), is given by

�uh(ξ,η; p) =
2p(p+1)∑

k=1

up
k �ε Q

k (ξ,η; p) . (38)

The expansion �uh(ξ, η; p) is a two-dimensional polynomial edge histopolant (interpolates integral values along lines). Since 
the coefficients of this expansion are edge (or flux) integrals, we denote the polynomials in (34) by edge polynomials. We 
set Uh := span{ε U

1 (ξ, η; p), . . . , ε U
2p(p+1)(ξ, η; p)}. To simplify the notation, the explicit reference to the polynomial degree p

will be dropped from the function space, the basis functions, and the expansion coefficients, therefore from here on we will 
simply use Uh , �ε U

k (ξ, η), and uk .

Basis functions for Q h Combining histopolant polynomials we can construct the polynomial basis functions for Q h on a 
quadrilateral. Consider the canonical interval I = [−1, 1], the canonical square � = I × I ⊂ R

2, the histopolant polynomi-
als (24), ep

i (ξ) of degree p − 1, and take ξ, η ∈ I . Then a set of two-dimensional basis polynomials, εQ
k (ξ, η; p), can be 

constructed as the tensor product of the one-dimensional ones

εQ
k (ξ,η; p) := ep

i (ξ) ep
j (η), i, j = 1, . . . , p, k = j + (i − 1)p . (39)

These polynomials, εQ
k (ξ, η; p), have degree p − 1 in each variable and satisfy, see [11,29],

ξi∫
ξi−1

η j∫
η j−1

εQ
k (ξ,η; p)dξdη =

{
1 if k = (i − 1)p + j

0 if k �= (i − 1)p + j
, i, j = 1, . . . , p, k = 1, . . . , p2 . (40)

Here, as before, ξi and ηi with i = 0, . . . , p are the Gauss–Lobatto–Legendre (GLL) nodes. Let Kh(ξ, η) be a polynomial func-
tion defined on � and K p

k = ∫ ξi
ξi−1

∫ η j
η j−1

Kh(ξ, η) dξdη with k = j + (i − 1)p, then its expansion in terms of these polynomials, 
Kh(ξ, η; p), is given by

Kh(ξ,η; p) =
p2∑

k=1

K p
k εQ

k (ξ,η; p) . (41)

For this relation between the expansion coefficients and surface integration we denote the polynomials in (39) by surface 
polynomials. Moreover, these basis polynomials satisfy εQ

k (ξ, η; p) ∈ L2(�). Therefore we set Q p
h := span{εQ

1 (ξ, η; p), . . . ,
εQ

p2 (ξ, η; p)}. To simplify the notation, the explicit reference to the polynomial degree p will be dropped from the function 

space, the basis functions, and the coefficient expansion, therefore from here on we will simply use Q h , εQ
k (ξ, η), and Kk .

3.2.3. Properties of the basis functions
The first property that can be shown, [11,29], is that if ωh(ξ, η) ∈ Wh , then ∇⊥ωh(ξ, η) ∈ Uh , where ωh(ξ, η) is expanded 

as (33).

(
∇⊥ωh(ξ,η)

)
=

p∑
i=0, j=1

⎛
⎜⎝

η j∫
η j−1

∇⊥ωh(ξi, η) · �eξ dη

⎞
⎟⎠ �ε U

ip+ j(ξ,η)

+
p∑

i=1, j=0

⎛
⎜⎝

ξi∫
ξ

∇⊥ωh(ξ,η j) · �eηdξ

⎞
⎟⎠ �ε U

(p+i−1)(p+1)+ j+1(ξ,η)
i−1
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=
p∑

i=0, j=1

(
ωh(ξi, η j−1) − ωh(ξi, η j)

) �ε U
ip+ j(ξ,η)

+
p∑

i=1, j=0

(
ωh(ξi, η j) − ωh(ξi−1, η j)

) �ε U
(p+i−1)(p+1)+ j+1(ξ,η)

(32)=
p∑

i=0, j=1

(
ωip+ j − ωip+ j+1

) �ε U
ip+ j(ξ,η)

+
p∑

i=1, j=0

(
ωi(p+1)+ j+1 − ω(i−1)(p+1)+ j+1

) �ε U
(p+i−1)(p+1)+ j+1(ξ,η)

=
2p(p+1)∑

k=1

(p+1)2∑
j=1

E1,0
k, j ω j �ε U

k (ξ,η) , (42)

where E1,0
k, j are the coefficients of the 2p(p + 1) × (p + 1)2 matrix E1,0 and are defined as

E1,0
k, j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if j = k + 1 + (k div(p + 1)) and 1 ≤ k ≤ p(p + 1) ,

1 if j = k + (k div(p + 1)) and 0 ≤ k ≤ p(p + 1) ,

1 if j = k − (p − 1)(p + 1) and p(p + 1) < k ≤ 2p(p + 1) ,

−1 if j = k − p(p + 1) and p(p + 1) < k ≤ 2p(p + 1) ,

0 otherwise .

(43)

Here (k divp) denotes integer division in which the remainder is discarded.
From (42) it follows that

ωh(ξ,η) ∈ Wh =⇒ ∇⊥ωh(ξ,η) ∈ Uh ,

which is the finite-dimensional analogue of

ω(ξ,η) ∈ H(rot;�) =⇒ ∇⊥ω(ξ,η) ∈ H(div;�) .

Or fully discrete, if ω j are the expansion coefficients of ωh ∈ Wh with respect to the basis eW
i (ξ, η), then E1,0

k, j ω j are the 
expansion coefficients of ∇⊥ωh in Uh with respect to the basis �uU

j (ξ, η).
As a special case we have that

∇⊥ε W
j =

2p(p+1)∑
k=1

E1,0
k, j �ε U

k , (44)

and therefore ∇⊥�ε W
j ∈ Uh , with j = 1, . . . , (p + 1)2, and these basis functions satisfy (16).

The second property that can be shown, [11,29], is that if �uh(ξ, η) ∈ Uh is expanded in terms of edge polynomials, as in 
(38), then the expansion of ∇ · �uh in terms of the surface polynomials, (39), is

∇ · �uh(ξ,η) =
p∑

i, j=1

⎛
⎜⎝

ξi∫
ξi−1

η j∫
η j−1

∇ · �uh(ξ,η)dξdη

⎞
⎟⎠ εQ

j+(i−1)p(ξ,η)

=
p∑

i, j=1

⎛
⎜⎝

ηi∫
η j−1

�uh(ξi, η) · �eξ dη +
ξi∫

ξi−1

�uh(ξ,η j) · �eη dξ −
ηi∫

η j−1

�uh(ξi−1, η) · �eξ dη

−
ξi∫

ξ

�uh(ξ,η j−1) · �eη dξ

⎞
⎟⎠εQ

j+(i−1)p(ξ,η)
i−1
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(37)=
p2∑

k=1

(
uk+p + uk+p(p+1)+(kdiv(p+1))+1 − uk − uk+p(p+1)+(kdiv(p+1))

)
εQ

k (ξ,η)

=
p2∑

k=1

2p(p+1)∑
j=1

E2,1
k, j u jε

Q
k (ξ,η) , (45)

where E2,1
k, j are the coefficients of the p2 × 2p(p + 1) incidence matrix E2,1 defined as

E2,1
k, j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if j = k + p ,

1 if j = k + p(p + 1) + (k div(p + 1)) + 1 ,

−1 if j = k ,

−1 if j = k + p(p + 1) + (k div(p + 1)) ,

0 otherwise .

(46)

Equation (45) confirms that we have a finite dimensional Hilbert sequence as in (16), because

�uh(ξ,η) ∈ Uh =⇒ ∇ · �uh(ξ,η) ∈ Q h ,

which is the finite dimensional analogue of

�u ∈ H(div;�) =⇒ ∇ · �u ∈ L2(�) .

In terms of the expansion coefficients we have: If u j are the expansion coefficients of �uh ∈ Uh with respect to the basis �εU
j , 

then the expansion coefficients of ∇ · �uh ∈ Q h with respect to the basis εQ
k are given by 

∑2p(p+1)

j=1 E2,1
k, j u j . As a special case 

we have that

∇ · �ε U
j =

p2∑
k=1

E2,1
k, j ε

Q
k . (47)

If ω j are the expansion coefficients of ωh ∈ Wh , then E1,0
k, j ω j are the expansion coefficients of ∇⊥ωh ∈ Uh . Then E2,1

i,k E1,0
k, j ω j

are the expansion coefficients of ∇ · ∇⊥ωh ∈ Q h . Since ∇ · ∇⊥ωh = 0 for all ωh (and therefore ω j ) and because εQ
k forms a 

basis for Q h , we need to have that

E2,1
i,k ◦ E1,0

k, j ≡ 0 .

This is the fully discrete representation of the vector identity ∇ · ∇⊥ ≡ 0.

3.2.4. Some remarks
Note that the degrees of freedom for Wh are associated with the points in the GLL-grid. In a multi-element setting, 

neighboring elements share the GLL-points on the boundary of the element, thus imposing C0-continuity for functions 
in Wh . The degrees of freedom for Uh are the integrals of the normal components (the flux) of �uh over the edge in 
the GLL-grid. In a multi-element setting, neighboring elements share an edge and therefore also the degree of freedom 
associated with that edge. So only the normal component of �uh ∈ Uh is continuous between elements, thus making Uh a 
proper subspace of H(div; �). The degrees of freedom for Q h are the integral values over the two-dimensional surfaces in 
the GLL-grid. A surface in one spectral element is entirely disjoint from a surface in neighboring elements and therefore, 
the approximation in Q h is discontinuous between elements. In that sense Q h is a proper subspace of L2(�).

There is a close relation between this mimetic finite element discretization and the traditional C-grid finite difference 
discretization [6], where rotational moments are located at vertices, normal velocities on edges and pressure and mass 
variables at cell centers. It is possible to construct an analogue to the D-grid finite difference discretization, for which the 
tangential and not the normal velocities reside on the edges. Two advantages of the mimetic finite element discretization is 
the immediate generalization to arbitrary order and the possibility to treat deformed meshes, which we have not addressed 
in the current work.

There exists for the Hilbert subcomplex of discrete function spaces described above a discrete Helmholtz decomposition 
[3] of vector fields in Uh into a unique partition of rotational components in Wh and divergent components in Q h which are 
orthogonal to one another. This result has been shown previously for the mixed mimetic spectral element function spaces 
[15].
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3.3. Discrete weak formulation

Consider again the domain � ⊂ R
2 and its tessellation T (�) consisting of N arbitrary quadrilaterals (possibly curved), 

�m , with m = 1, . . . , N . We assume that all quadrilateral elements �m can be obtained from a map �m : (ξ, η) ∈ I2 �→
(x, y) ∈ �m . Then the pushforward �m,∗ maps functions in the reference element I2 to functions in the physical element 
�m , see for example [31,32]. For this reason it suffices to explore the analysis on the reference domain I2. Additionally, the 
multi-element case follows the standard approach in finite elements.

Remark 1. If a differential geometry formulation was used, the physical quantities would be represented by differential 
k-forms and the map �m : (ξ, η) ∈ I2 �→ (x, y) ∈ �m would generate a pullback, �∗

m , mapping k-forms in physical space, �m , 
to k-forms in the reference element, I2, [15].

The discrete weak formulation can be stated as: given � = I2, the polynomial degree p and a Coriolis term fh ∈ Wh , for 
any time t ∈ (0, tF ] find �uh, �Fh ∈ Uh , hh, Kh ∈ Q h , and qh ∈ Wh such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈�νh,
∂ �uh

∂t
〉� + 〈�νh,qh × �Fh〉� − 〈∇ · �νh, Kh + ghh〉� = 0 , ∀�νh ∈ Uh, (a)

〈σh,
∂hh

∂t
〉� + 〈σh,∇ · �Fh〉� = 0 , ∀σh ∈ Q h, (b)

〈ζh,hhqh〉� = −〈∇⊥ζh, �uh〉� + 〈ζh, fh〉� , ∀ζh ∈ Wh, (c)

〈 �ϕh, �Fh〉� = 〈 �ϕh,hh �uh〉� , ∀ �ϕh ∈ Uh, (d)

〈κh, Kh〉� = 1

2
〈κh, �uh · �uh〉� , ∀κh ∈ Q h. (e)

(48)

Using the expansions for �uh , �Fh , hh , Kh and qh in (20), (48) can be written as: find u, F ∈ R
dU , h, K ∈ R

dQ , and q ∈R
dW

such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dU∑
i=1

〈�ε U
j , �ε U

i 〉� dui

dt
+

dU∑
i=1

〈�ε U
j ,qh × �ε U

i 〉� Fi −
dQ∑

i,k=1

E2,1
k, j 〈εQ

k , εQ
i 〉�(Ki + ghi) = 0 , j = 1, . . . ,dU , (a)

dQ∑
i=1

〈εQ
j , εQ

i 〉� dhi

dt
+

dU∑
i=1

dQ∑
i,k=1

E2,1
k,i 〈εQ

j , εQ
k 〉� Fi = 0 , j = 1, . . . ,dQ , (b)

dW∑
i=1

〈ε W
j ,hhε

W
i 〉�qi = −

dU∑
i,k=1

E1,0
k, j 〈�ε U

k , �ε U
i 〉�ui +

dW∑
i=1

〈ε W
j , ε W

i 〉� f i , j = 1, . . . ,dW , (c)

dU∑
i=1

〈�ε U
j , �ε U

i 〉� Fi =
dU∑
i=1

〈�ε U
j ,hh �ε U

i 〉�ui , j = 1, . . . ,dU , (d)

dQ∑
i=1

〈εQ
j , εQ

i 〉�Ki = 1

2

dU∑
i=1

〈εQ
j , �uh · �ε U

i 〉�ui , j = 1, . . . ,dQ , (e)

(49)

with u := [u1, . . . , udU ]� , F := [F1, . . . , FdU ]� , h := [h1, . . . , hdQ ]� , K := [K1, . . . , KdQ ]� and q := [q1, . . . , qdW ]� .
Using matrix notation, (49) can be expressed more compactly as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U
du

dt
+ Uq F −

(
E2,1

)�
Q (K + gh) = 0 , (a)

Q
dh

dt
+ Q E2,1 F = 0 , (b)

Whq = −
(

E1,0
)�

U u + W f , (c)

UF = Uhu , (d)

QK = 1

2
Uu u . (e)

(50)

The coefficients of the matrices U, Q, and W are given by

Ui j := 〈�ε U , �ε U 〉�, Qi j := 〈εQ
, εQ 〉�, and Wi j := 〈ε W , ε W 〉� . (51)
j i j i j i
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Similarly, the coefficients of the matrices Uq , Uh , Uu , and Wh are given by

Uq
i j := 〈�ε U

i ,qh × �ε U
j 〉�, Uh

i j := 〈�ε U
i ,hh �ε U

j 〉�, Uu
i j := 〈ε Q

i , �uh · �ε U
j 〉�, and Wh

i j := 〈ε W
i ,hhε

W
j 〉� . (52)

The mass matrix Q may be canceled entirely from (50b), such that the continuity equation holds in the strong form.

dh

dt
+ E2,1 F = 0 .

This reflects the fact that the divergence theorem is satisfied point wise as given by (47). We further note that (48e), (49e)
and (50e) are redundant since �uh · �uh may be directly projected onto �νh in (48a), (49a) and (50a) respectively. We have 
preserved this expression however as it makes explicit that Kh ∈ Q h is a scalar quantity in the same discrete function space 
as hh , and is efficient to compute since it may be done so individually for each element since Q h is discontinuous across 
element boundaries.

4. Discrete conservation properties

4.1. Conservation of mass

Conservation of mass is given by

d

dt

∫
�

h d� = 0 . (53)

At the discrete level we have that hh ∈ Q h , therefore hh = ∑
j h jε

Q
j . Recalling that the basis functions εQ

j satisfy (40), we 
have that∫

�

hh d� =
∑

j

h j = 1ᵀh , (54)

with 1ᵀ = [1, . . . , 1] ∈R
dQ . Eliminating Q in (50b) results in

dh

dt
= −E2,1 F . (55)

Combining (53) with (54) and (55), results in conservation of mass at the algebraic level

d

dt

∫
�

hh d�
(54)= d

dt

(
1ᵀh

) = 1ᵀ
dh

dt
(55)= −1ᵀE2,1 F = 0 . (56)

The last identity results from the telescoping property of the incidence matrix on periodic domains, 1ᵀE2,1 = 0.

4.2. Conservation of vorticity

Conservation of total vorticity is given by

d

dt

∫
�

ω d� = 0 . (57)

At the discrete level, vorticity is defined as: for any time t ∈ (0, tF ], given �uh ∈ Uh , find ωh ∈ Wh such that

〈ςh,ωh〉� = −〈∇⊥ςh, �uh〉� , ∀ςh ∈ Wh . (58)

At the algebraic level (58) becomes

Wω = −
(

E1,0
)ᵀ

Uu , (59)

and its time derivative

W
dω

dt
= −

(
E1,0

)ᵀ
U

du

dt
. (60)

Since ωh ∈ Wh , we have that ωh = ∑
j ωkε

W . Recalling that 
∑

j ε
W = 1, we have
j j
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∫
�

ωh d� =
∫
�

∑
j

ω jε
W
j d� =

∫
�

∑
j

(∑
k

εW
k

)
ω jε

W
j d� =

∑
j,k

ω j

∫
�

εW
k εW

j d� = 1ᵀWω , (61)

with 1ᵀ = [1, . . . , 1] ∈R
dW . Therefore (57) becomes

d

dt

∫
�

ωh d�
(61)= d

dt

(
1ᵀWω

) = 1ᵀW
dω

dt
, (62)

Multiplying both sides of (60) by 1ᵀ and combining with (62) gives the time conservation of total vorticity at the algebraic 
level

d

dt

∫
�

ωh d� = 1ᵀW
dω

dt
= −1ᵀ

(
E1,0

)ᵀ
U

du

dt
= 0 . (63)

The last identity again results from the telescoping property of the incidence matrix on periodic domains, 1ᵀ (
E1,0

)ᵀ =(
E1,01

)ᵀ = 0.
Note that the conservation of vorticity is satisfied irrespective of how qh is constructed in (49a). As such vorticity con-

servation is preserved in the event that the anticipated potential vorticity method [33] is used to truncate the potential 
enstrophy cascade, since this involves removing some downstream anticipated potential vorticity from the right hand side 
in order to introduce some dispersion into the vorticity advection equation. We construct this anticipated potential vorticity 
q̂h in the weak form as

〈ςh, q̂h〉� = 〈ςh,qh〉� − �τ 〈ςh, �uh × ∇⊥qh〉� (64)

where �τ is some time scale associated with the evaluation of the downstream potential vorticity.

4.3. Conservation of energy

For physical problems governed by the shallow water equations, the total energy E , is given by the sum of kinetic and 
potential energies

E :=
∫
�

(
Kh + 1

2
gh2

)
d� = 〈h, K 〉� + 1

2
〈h, gh〉� . (65)

Conservation of total energy is then expressed as

dE
dt

= 〈h,
∂ K

∂t
〉� + 〈∂h

∂t
, K 〉� + 〈∂h

∂t
, gh〉� . (66)

For the discrete variables, the time variation of energy takes a similar form

dEh

dt
= 〈hh,

∂ Kh

∂t
〉� + 〈∂hh

∂t
, Kh〉� + 〈∂hh

∂t
, ghh〉� , (67)

which can be written at the algebraic level as

dEh

dt
= hᵀQ

d K

dt
+ dhᵀ

dt
QK + g

dhᵀ

dt
Qh . (68)

From (50e) we have that

QK = 1

2
Uu u , (69)

and therefore its time derivative is given by

Q
d K

dt
= 1

2

d

dt

(
Uu u

)
. (70)

If we now recall the definition of Uu , (52), we can rewrite the right hand side of (70) as

1

2

d

dt

(
Uu u

) = 1

2

d

dt

⎛
⎝ dU∑

j=1

Uu
i ju j

⎞
⎠ = 1

2

d

dt

⎛
⎝ dU∑

k, j=1

uk〈εQ
i , �ε U

k · �ε U
j 〉�u j

⎞
⎠ =

dU∑
j=1

Uu
i j

du j

dt
= Uu du

dt
. (71)

Substituting (71) into (68) yields
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dEh

dt
= hᵀUu du

dt
+ dhᵀ

dt
QK + g

dhᵀ

dt
Qh . (72)

Noting that

hᵀUu =
dQ∑
i=1

hiU
u
i j =

dQ ,dU∑
i,k=1

hi〈εQ
i , �ε U

k · �ε U
j 〉�uk =

dQ ,dU∑
i,k=1

hi〈�ε U
k , εQ

i �ε U
j 〉�uk =

dU∑
k=1

ukUh
kj = uᵀUh , (73)

we can rewrite (72) as

dEh

dt
= uᵀ

(
Uh

)ᵀ du

dt
+ dhᵀ

dt
QK + g

dhᵀ

dt
Qh , (74)

since Uh is a symmetric matrix. If we now use (50d) on the first term on the right hand side of (74) and (50b) on the other 
two terms, we obtain

dEh

dt
= FᵀU

du

dt
− Fᵀ

(
E2,1

)ᵀ
Q(K + gh) , (75)

again because U and Q are symmetric matrices.
Finally, substituting (50a) into (75) yields

dEh

dt
= −FᵀUq F + Fᵀ

(
E2,1

)ᵀ
Q(K + gh) − Fᵀ

(
E2,1

)ᵀ
Q(K + gh) = 0 , (76)

because the last two terms directly cancel each other, and the first one is zero since Uq is a skew-symmetric matrix. 
The necessary conditions for energy conservation in space, namely that Uq is skew-symmetric and that the gradient and 
divergence operators are anti-adjoints, as given in (14a) and applied in (48a) are more fundamentally derived from the 
structure of the Poisson bracket used to construct the rotating shallow water equations in Hamiltonian form [7,34]. Note 
that (71) requires that the chain rule holds in the discrete form for �uh with respect to t . The conservation of energy therefore 
is limited to the truncation error in the time stepping scheme.

4.4. Conservation of potential enstrophy

Potential enstrophy, Q, is defined as, [4],

Q :=
∫
�

hq2 d� = 〈hq,q〉� . (77)

Conservation of potential enstrophy states that

dQ
dt

= d

dt
〈hq,q〉� = 〈∂h

∂t
q,q〉� + 2〈hq,

∂q

∂t
〉� = 0 . (78)

When considering the discrete variables, the time variation of potential enstrophy is expressed in an analogous way

dQh

dt
= 〈∂hh

∂t
qh,qh〉� + 2〈hhqh,

∂qh

∂t
〉� , (79)

which at the algebraic level becomes

dQh

dt
= dhᵀ

dt
Wqq + 2hᵀWq dq

dt
, (80)

with

Wq
i j := 〈εW

i ,qhε
Q
j 〉� . (81)

Noting that

(
Wqh

)
i =

dQ∑
k=1

Wq
ikhk =

dQ∑
k=1

〈εW
i ,qhε

Q
k 〉�hk =

dW∑
k=1

〈εW
i ,hhε

W
k 〉�qk =

dW∑
k=1

Wh
ikqk =

(
Whq

)
i
, (82)

it is possible to rewrite (80) as

dQh = dhᵀ (
Wq)ᵀ q + 2qᵀWh dq

. (83)

dt dt dt
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Furthermore, if we now observe that

d

dt

(
Whq

)
= dWh

dt
q + Wh dq

dt
= Wq dh

dt
+ Wh dq

dt
, (84)

equation (83) becomes

dQh

dt
= dhᵀ

dt

(
Wq)ᵀ q − 2

dhᵀ

dt

(
Wq)ᵀ q + 2qᵀ d

dt

(
Whq

)
= −dhᵀ

dt

(
Wq)ᵀ q + 2qᵀ d

dt

(
Whq

)
. (85)

If we now assume that d f
dt = 0, using (50c) we can rewrite (85) as

dQh

dt
= −dhᵀ

dt

(
Wq)ᵀ q − 2qᵀ

(
E1,0

)ᵀ
U

du

dt
. (86)

Substituting (50a) into the last term on the right hand side yields

dQh

dt
= −dhᵀ

dt

(
Wq)ᵀ q + 2qᵀ

(
E1,0

)ᵀ
Uq F − 2qᵀ

(
E1,0

)ᵀ (
E2,1

)ᵀ
Q (K + gh) . (87)

The last term on the right hand side cancels out because E2,1E1,0 = 0, therefore

dQh

dt
= −dhᵀ

dt

(
Wq)ᵀ q + 2qᵀ

(
E1,0

)ᵀ
Uq F . (88)

Since dQh
dt is a scalar, we have that

dhᵀ

dt

(
Wq)ᵀ q = qᵀWq dh

dt
, (89)

and substituting into (88), results in

dQh

dt
= −qᵀWq dh

dt
+ 2qᵀ

(
E1,0

)ᵀ
Uq F . (90)

Moreover, using (50b) we can write

dQh

dt
= −qᵀWqE2,1 F + 2qᵀ

(
E1,0

)ᵀ
Uq F . (91)

Now, noting that

[(
Uq)ᵀ E1,0q

]
j
=

dW ,dU∑
i,k=1

〈�ε U
k ,qh × �ε U

j 〉�E1,0
k,i qi = −

dW ,dU∑
i,k=1

〈�ε U
j ,qh × �ε U

k 〉�E1,0
k,i qi = −〈�ε U

j ,qh ×
⎛
⎝dW ,dU∑

i,k=1

E1,0
k,i qi �ε U

k

⎞
⎠〉� .

(92)

Recalling (42), we can rewrite the last term of (92) as

dW ,dU∑
i,k=1

E1,0
k,i qi �ε U

k = ∇⊥qh , (93)

and consequently (92) becomes[(
Uq)ᵀ E1,0q

]
j
= −〈�ε U

j ,qh × ∇⊥qh〉� . (94)

The right hand side of this equation can be transformed in the following way

−〈�ε U
j ,qh × ∇⊥qh〉� ∗= 1

2
〈�ε U

j ,∇(qh · qh)〉� ∗= 1

2
〈∇ · �ε U

j ,qh · qh〉� . (95)

Therefore we have[(
Uq)ᵀ E1,0q

]
j
= 1

2
〈∇ · �ε U

j ,qh · qh〉� . (96)

It is important to note that the two middle identities, with ∗=, in (95) are only valid if exact integration is used in the inner 
products. If approximate integration is used, these identities are only guaranteed to be approximately valid. Now, the right 
hand term in (96) can be written as
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〈∇ · �ε U
j ,qh · qh〉� =

dQ∑
k=1

E2,1
k, j 〈εQ

k ,qh · qh〉� =
dQ∑

k=1

E2,1
k, j 〈εQ

k qh, ε
W
i 〉�qi =

[(
E2,1

)ᵀ (
Wq)ᵀ q

]
j
. (97)

Therefore, (91) becomes

dQh

dt
= −qᵀWqE2,1 F + qᵀWqE2,1 F = 0 , (98)

thus proving conservation of potential enstrophy at the discrete level.
As for energy conservation, potential enstrophy conservation requires that the chain rule holds for differentiation in time, 

as applied in (78). However unlike the energy conservation argument, potential enstrophy conservation also requires that 
this holds for spatial differentiation, as given in (95). Potential enstrophy conservation is therefore also subject to exact 
spatial integration in the weak form.

4.5. Geostrophic balance

The existence of stationary geostrophic modes derives from the linearization of (1) as [3]⎧⎪⎨
⎪⎩

∂ �u
∂t

+ f × �u + g∇h = 0 , in � × (0, tF ] , (a)

∂h

∂t
+ H∇ · �u = 0 , in � × (0, tF ] , (b)

(99)

where H is the mean depth of the fluid layer. If we assume a stationary solution then we have the balanced system

f × �u + g∇h = 0 ∇ · �u = 0 (100)

In order to show that this balance is satisfied for our formulation we begin by introducing the stream function as �u = ∇⊥ψ . 
Note that this identity is satisfied in the strong form for our discrete formulation via (44). Substituting this into (100) gives

− f ∇ψ + g∇h = 0 ∇ · �u = 0 (101)

To show that this relation is satisfied at the algebraic level we begin by taking the linearized form of (50a), (50b) as

U
du

dt
+ U f u − g

(
E2,1

)�
Qh = 0 (102)

dh

dt
+ E2,1u = 0 (103)

where U f
i j := 〈�ε U

i , fh × �ε U
j 〉� . Note that we have eliminated the Q matrix in the linearized continuity equation (103) as 

done in (55). Applying the stream function identity to (102) and then the adjoint relation (14a) gives

U
du

dt
+ f

(
E2,1

)�
Qwψ − g

(
E2,1

)�
Qh = 0 (104)

where Qw
ij := 〈ε Q

i , ε W
j 〉� . The last two terms of (104) constitute the weak form of (101) and so balance up to truncation 

error of the interpolating polynomials, εW
i , εQ

i is achieved such that u is approximately stationary. Since (103) holds point 
wise, the absence of divergence leads to a stationary fluid depth h, thus demonstrating geostrophic balance.

In the following section we will illustrate for a simple divergence free linear test case that the errors in geostrophic 
balance remain bounded and convergent with temporal and spatial resolution.

5. Results

5.1. Convergence

In order to first validate our mixed mimetic spectral element formulation we inspect the L2 norm error convergence 
of the various operators. For this we compare the three diagnostic equations (50c)–(50e) to the analytic solutions for a 
specified velocity and depth field, as derived from a stream function solution of

ψ = 0.1 cos(x − π) cos(y − π) � = (0,2π ] × (0,2π ], (105)

where �u = ∇⊥ψ , h = ( f /g)ψ + H via geostrophic balance, f = g = 8.0 and H = 0.2 is the constant of integration in 
the geostrophic balance relation. In each case exact spatial integration is applied. By demonstrating both the algebraic 
convergence of the errors for constant polynomial degree with decreasing mesh size and the spectral convergence with 
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Fig. 3. Algebraic convergence for the 3rd order (left) and 4th order (right) basis functions for qh , �Fh and Kh . Blue slopes show the theoretical convergence 
rates for 3rd and 4th order respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 4. Spectral convergence of the diagnostic equations with polynomial degree (left) and convergence of errors for the linear geostrophic balance test 
(right).

increasing polynomial degree and constant mesh size of the solution for each of the diagnostic equations we aim to validate 
the basis functions for each of the Wh , Uh and Q h function spaces.

As shown in Fig. 3, �Fh and Kh satisfy their expected rates of convergence for both 3rd and 4th order accurate basis 
representations. However qh ∈ Wh should in principle converge at one order higher, since its polynomial expansion is one 
degree higher. This higher rate of convergence is not observed from Fig. 3. The fact that qh converges at the same rate 
as �Fk and Kh may be possibly be attributed to the fact that hh as used in the left hand side of diagnostic equation (50c)
is discontinuous across element boundaries and so may be projecting spurious gradients onto qh . Convergence studies of 
qh using the ||qh||2H(rot) norm with an analytic (continuous) depth field (not shown), which exhibit the correct rate of 
convergence, would seem to suggest this.

Fig. 4 shows the spectral convergence of errors for constant mesh size and increasing polynomial degree for each of the 
Wh , Uh and Q h tensor product element diagnostic equations.

5.2. Linearized geostrophic balance

As a second test the linearized system (99a), (99b) is solved in the discrete form for a divergence free velocity field and 
a depth field derived from geostrophic balance via the stream function solution (105). The discrete problem for this system 
is equivalent to (50) with q = f , K = 0 and F = Hu. For this and all subsequent tests we use an explicit second order 
Runge–Kutta scheme, given for the continuous form (1) as

y′ = yn − 0.5�tG(yn), yn+1 = yn − �tG(y′)
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Fig. 5. Fluid depth h at times t = 0.0, 0.5, 1.0 and 2.0 dimensionless units. Approximate geostrophic balance is preserved while fast gravity waves radiate 
outwards from the disturbances.

for y = [�u, h]�, G = [q × �F +∇(K + gh), ∇ · �F ]� . Fig. 4 shows the convergence of errors for the linearized geostrophic balance 
problem with nx = 4, 8 and 16 3rd order elements in each dimension (and a time step of �t = 0.02/nx). As can be seen 
the errors for a given resolution remain constant, showing that once the weak form geostrophic balance relation has been 
approximated for the first time step there is no subsequent accumulation of errors.

5.3. Conservation

Having verified the construction of our mixed mimetic spectral element operators and solver via various convergence 
and geostrophic balance tests, we proceed to investigate the conservation properties of the full system (50), as derived in 
Section 4. The model is tested for a pair of vortices starting in approximate geostrophic balance, as given from the stream 
function solution

ψ = e−2.5((x−π)2+(y−2π/3)2) + e−2.5((x−π)2+(y−4π/3)2) � = (0,2π ] × (0,2π ], (106)

where the velocity is given as �u = ∇⊥ψ , and the depth is derived from geostrophic balance as f × �u + g∇h = 0, with 
f = g = H = 8.0, using 20 × 20 3rd order elements and a maximum time step of �t = 0.0052. The solution behaves as 
expected, with fast gravity waves radiating out from the initial disturbance, which is preserved for long times due to the 
approximate geostrophic balance of the initial condition, as shown in Fig. 5. The ratio of the deformation radius Ld = √

g H/ f
to the nodal grid spacing is approximately 9.55.

As discussed in Section 4, mass and vorticity conservation hold independent of time step, as shown in Fig. 6. This is due 
to the point wise satisfaction of the divergence theorem in the case of mass, and the elimination of the gradient operator 
by the curl in the weak form in the case of vorticity. Total energy and potential enstrophy are conserved to truncation error 
in time, as shown in Fig. 7, with the second order Runge–Kutta time stepping scheme applied with varying time step size.

Gauss–Lobatto–Legendre (GLL) quadrature is known to be exact for polynomials of degree p = 2n − 3, where n is 
the number of quadrature points [35]. Therefore in order to exactly integrate all nonlinear matrices in (50) we use n =
(3p + 3)/2 quadrature points (where 3p is the maximum degree of the test function, trial function and nonlinear function 
basis expansion product). A second set of tests was also run using inexact quadrature with n = p + 1 in order to derive di-
agonal mass matrices for test functions in Wh , since this significantly increases the computational efficiency of the scheme, 
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Fig. 6. Exact conservation for the volume, h (left) and vorticity, ω (right) with time.

Fig. 7. Convergence of conservation errors for the energy, E (left) and potential enstrophy, Q (right) with time step �t (exact spatial integration).

Fig. 8. Convergence of conservation errors for the energy, E (left) and potential enstrophy, Q (right) with time step �t (inexact spatial integration).

and is customary for spectral element models [10]. While energy conservation holds for inexact spatial integration, potential 
enstrophy conservation fails for inexact integration, as shown in Fig. 8.
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Fig. 9. Fluid depth h (left) and vorticity ω (right) fields for shear flow over orography at t = 44, �τ = 0.02.

Fig. 10. Kinetic energy per unit volume K for shear flow over orography at t = 44, �τ = 0.02 (left), and growth of normalized vorticity ω, energy E and 
potential enstrophy Q with time for varying values of the anticipated potential vorticity coefficient �τ , where ||A|| = (A(t) − A(t = 0))/A(t = 0).

5.4. Stabilization of shear flow via removal of anticipated potential vorticity

Our final numerical experiment involves an investigation of the anticipated potential vorticity method [33] for a shear 
flow initial condition over a stationary orographic feature. The orography is implemented as a bh ∈ Q h , such that the 
momentum equation (50a) becomes

U
du

dt
+ Uq F −

(
E2,1

)�
Q (K + gh + gb) = 0 (107)

and the energy is correspondingly defined as E = 〈hh, Kh + 0.5ghh + gbh〉� . The initial conditions are given as

h = H + 0.1 tanh
(1 − y2

2

)
�u =

(
− ∂h

∂ y
,0

)
(108)

and the orography as

b =
{

0.0125(cos(4πx/L) + 1)(cos(4π y/L) + 1) if |x| ≤ L/4, |y| ≤ L/4

0 otherwise
(109)

with � = (−L/2, +L/2] × (−L/2, L/2], L = 10 and f = g = H = 1.0. In order to stabilize the potential enstrophy cascade, 
the anticipated potential vorticity q̂h (64) substitutes for the potential vorticity qh in the rotational term of the momentum 
equation. This results in a loss of potential enstrophy such that the cascade to sub grid scales is arrested [33]. The test is 
run on 24 × 24 3rd order elements, with a ratio of Ld to the average nodal grid spacing of 7.2.

Fig. 9 and Fig. 10 show the depth, vorticity and kinetic energy fields after 44 units of dimensionless time have elapsed. 
While fast gravity waves radiate out from the topography as the solution adjusts, the vorticity field evolves on a slow time 
scale. The outline of the discontinuous Q h elements of the orography field is visible in the fluid depth hh . Fig. 10 also shows 
the growth in vorticity ω, energy E , and potential enstrophy Q with time for varying values of the anticipated potential 
vorticity time scale �τ . As can be seen, vorticity conservation is preserved to machine precision independent of �τ , and 
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the rate of energy growth is also similar for both values of �τ . The rates of potential enstrophy growth differ however, 
with �τ = 0.02 resulting in the faster growth of potential enstrophy (following an initial loss) than �τ = 0.1. Neither 
values of �τ is able to fully suppress the growth of Q, which over long time integrations will cascade to sub grid scales 
and contaminate the solution. This failure to fully stabilize the solution via the removal of anticipated potential vorticity is 
perhaps a result of the projection of the discontinuous hh field onto qh within the potential vorticity diagnostic equation. 
Some method of averaging of hh at the element boundary quadrature points within (50c) may help to ameliorate this.

6. Conclusion

In this paper we have built upon the work of previous authors in the development of compatible finite element meth-
ods for geophysical fluid dynamics [3–5] in order to present a shallow water solver which exactly conserves first order 
and higher order moments using the mixed mimetic spectral element method [11,12,16]. The conservation of second or-
der moments (energy and potential enstrophy) is subject to the truncation error in the time integration scheme, and the 
conservation of potential enstrophy also requires exact spatial integration, as shown by the conservation arguments and 
demonstrated for the test cases given above.

We note the performance constraints of the different diagnostic and prognostic equations as follows:

• Fluid depth, hh: The continuity equation (50b) is satisfied point wise in the strong form, and may be evaluated purely 
from the topology, with the divergence theorem satisfied exactly such that the change in fluid depth is simply the sum 
of the momentum fluxes across the adjacent Uh basis functions of �Fh , and so is extremely fast to compute.

• Kinetic energy per unit volume, Kh: Since Kh also exists on the discontinuous spaces of Q h , the weak form diagnostic 
equation (50e) may be solved as a discontinuous Galerkin problem without the need for a global matrix solve.

• Potential vorticity, qh: If we are prepared to sacrifice potential enstrophy conservation for an inexact quadrature rule, 
then the left hand side of (50c) is diagonal due to the orthogonality of the Wh basis functions. This again avoids the 
need for a global matrix solve. The use of inexact GLL quadrature also reduces the computational cost of assembling 
all other matrices and vectors. This saving may prove significant and override the desirability of potential enstrophy 
conservation for production codes.

• Velocity, �uh and momentum, �Fh: Equations (50a) and (50d) require a global matrix solve, since the function space Uh
is continuous across element boundaries. The solution of these equations therefore represents the major computational 
bottleneck of the scheme.

While we have derived the potential vorticity from a diagnostic equation (50c) in our current formulation, this could 
alternatively be derived from a prognostic equation by taking the curl of the momentum equation (i.e. by substituting 
(50a) into (60)). Doing so may have the added advantage of allowing for conservation of energy and potential enstrophy 
independent of time step via a time staggering of the variables, as has been previously shown for the 2D Navier–Stokes 
equations [2].

In order to compare the properties of the mixed mimetic spectral element method to the standard A-grid spectral 
element method [10], the gravity wave dispersion relation for the two method will also be compared, in order to determine 
if the mixed mimetic method improves upon the spurious discontinuities present in the standard spectral method dispersion 
relation [36]. The power spectra for nonlinear problems will also be compared to determine if the mixed method can be 
run with lower amounts of diffusion due to the absence of collocated velocity and pressure degrees of freedom.
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