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Abstract—Cyber-physical power systems are susceptible to 

cyber threats and attacks that can lead to cascading failures and 

widespread power outages. Therefore, mitigating the impact of 

such attacks requires the timely implementation of operational 

strategies to prevent cascading blackouts. One Such strategy is 

the controlled islanding of the affected power grid, serving as a 

last resort against the propagation of the cascading outages. In 

this context, this paper introduces a novel detection-informed 

operational mitigation strategy, i.e., controlled islanding, 

against cyberattack-induced cascading failures, addressing 

"when" and "where" to implement controlled islanding. The 

proposed strategy leverages dynamic cascading failure 

modeling to quantify the impact of ongoing cyberattacks on 

power grids, using quantitative metrics such as demand-not-

served (DNS). For effective operational mitigation, the strategy 

initiates controlled islanding when any attack, including 

fabricated protection trip commands and measurements’ replay 

attacks, are detected, and any operating limits, such as line 

loading, are violated. It then proceeds to the implementation of 

controlled islanding, where identified cyberattack-affected 

elements are effectively surrounded by stable and self-sufficient 

islanded areas, while minimizing the system DNS. Numerical 

results on the IEEE 39-bus system demonstrate the effectiveness 

of the proposed strategy, reducing the DNS value by up to 47% 

when the controlled islanding strategy is implemented. 

Keywords— cascading failures, cyberattacks, anomaly 

detection, operational mitigation, controlled islanding. 

I. INTRODUCTION 

In future power systems with increased digitalization, 
cyberattacks may become one of the most common causes of 
cascading failures [1]. These events are classified as high-
impact low-probability (HILP) events that threaten power 
systems and may lead to severe blackouts, especially in cyber-
physical power systems (CPPS). The most recent impactful 
cyberattacks on power systems globally were associated with 
Ukraine in 2015 and 2016 [1], emphasizing the critical need 
for effective countermeasures against such incidents. To 
mitigate the impact of cyberattacks, especially when 
adversaries successfully breach network security and hack 
into the cyber network, it is necessary to implement an 
operational strategy applicable to power grids, thereby halting 
the spread of cascading failures. In general, cyberattacks may 
involve compromising communication links, such as those 
between phasor measurement units (PMUs) and Phasor Data 
Concentrator (PDC), as well as fabricating, altering, or 
deleting measurement data from PMUs or PDC, thereby 
impacting the integrity of data. Moreover, the system is 
susceptible to manipulation of control signals and protection 
commands through techniques like blocking controllers and 
replaying a trip command packet [2]. As power system 
operators cannot rely on measurement data following events 
that raise suspicions of cyberattacks, they can instead initiate 
the implementation of mitigation strategies surrounding the 
affected elements. This ensures the prevention of a system 

collapse resulting from the spread of a severe cascading 
blackout, providing an opportunity for direct communication 
between the control center and power plant or substations. 
Consequently, this facilitates a more in-depth investigation of 
evolving incidents, resulting in improved situational 
awareness of the power grid and informed decision-making 
for effective operations ahead. 

The cascading failure phenomenon poses a constant threat 
to power systems, particularly as grids become more complex 
and the frequency of weather-related and cyberattack events 
continues to rise. Controlled islanding serves as an operational 
mitigation strategy in both preventive [3] and corrective [4] 
control actions. It can effectively alleviate cascading 
blackouts triggered by various initiating events, including 
extreme operating conditions, severe weather-related 
incidents, and cyberattacks. For an effective operational 
mitigation strategy applicable to the power grid in near-real-
time, the computational time of the controlled islanding 
method needs to be as short as possible [4], [5]. In [5], 
different controlled islanding methods suitable for online 
Wide-Area Monitoring, Protection, and Control (WAMPC) 
application are evaluated. Fig. 1 illustrates conceptually how 
the implementation of an operational mitigation strategy, such 
as corrective controlled islanding, can affect system resilience, 
specifically during the disturbance progress phase. It can 
effectively halt cascading propagation, thereby reducing 
degradation in system performance and contributing to the 
improvement of system resilience. Drawing from an extensive 
review of existing literature in [1], [2], [6], various types of 
attacks within the CPPS context are addressed in terms of 
detection, prevention, and mitigation. However, a notable 
proportion of these studies, exemplified by [3]–[5], do not 
explore or emphasize an operational mitigation strategy, such 
as controlled islanding, specifically designed to seamlessly 
quantify, detect, and mitigate the impacts of cyberattack-
induced cascading failures in power systems. This work aims 
to bridge this gap by exploring such an impactful phenomenon 
through dynamic cascading failure modelling (DCFM). In this 
paper, we introduce an effective mitigation strategy based on 
controlled islanding to suppress the progressive impact of 
cascading outages by confining the cyberattack-affected 
elements within limited islanded areas.  

   
Fig. 1. Resilience trapezoid without and with the implementation of a 

reactive mitigation strategy on the power grid. 
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Fig. 2. Flowchart of the proposed methodology. 

This paper develops a novel detection-informed mitigation 
strategy for power grids, incorporating the following items as 
its main contributions: 

• A cascading-driven resilience assessment is performed 
through dynamic modeling and time-domain simulation of 
cyberattack-induced cascading failures to quantify the 
degradation in system performance following attacks, 
such as fabricated protection trip commands and 
measurements’ replay attacks. 

• The proposed strategy involves identifying affected 
elements to be included in the constraints of the controlled 
islanding problem. This enables the mitigation strategy to 
effectively split the system surrounding the affected 
elements, thereby limiting the propagation of cascading 
events.  

• The methodology is developed based on corrective 
controlled islanding as an operational mitigation strategy 
against evolving cyberattacks, providing near-real-time 
applicability while ensuring the stability and self-
sufficiency of islanded subnetworks during system split. 

II. CONTROLLED ISLANDING METHODOLOGY AGAINST 

CYBER-INDUCED CASCADING OUTAGES 

The methodology introduced in this work primarily 
focuses on mitigating cascading impacts in power systems 
induced by cyberattacks through an operational strategy, 
which involves controlled islanding with near-real-time 
applicability to power grids. Fig. 2 shows the flowchart of the 
proposed methodology, which mainly encompasses 
cascading-driven resilience assessment, anomaly detection 
(AD), identification of affected elements (AE), and controlled 
islanding. The aim of the methodology is to reduce the impacts 
of cascading failures by splitting the system into stable and 
self-sufficient islands, thereby containing the evolving events 
triggered by the cyberattack-affected elements. To attain this, 
the identification of assets affected by cyberattacks needs to 
be incorporated into the controlled islanding framework, 
formulated as a constrained spectral clustering problem. The 
data needed to identify AE using the AD method and to detect 
operating limit violations involve the voltage of power system 
nodes and the flow of power network branches. Upon 
i 

 
Fig. 3. Vulnerable points to launch cyberattacks on a conceptually 

represented typical CPPS. 

detecting any attack and subsequent violation of operating 
limits, such as line loading, controlled islanding is performed.  

A. Cyberattack modelling and considerations  

Fig. 3 conceptually illustrates vulnerable points in CPPSs 
that adversaries can target to carry out their planned attacks. 
These vulnerabilities may include compromising 
communication links between PMUs and PDC, fabricating, 
altering, or deleting measurement data from PMUs or PDC, 
and manipulating control signals and protection commands. In 
this study, two types of cyberattacks, i.e., fabricated trip 
commands and replay attacks, are considered, targeting 
protection relays and measurement data, respectively. It is also 
assumed that network security is compromised and breached 
by adversaries through gaining necessary access to launch the 
cyberattacks, due to vulnerabilities within the cyber layer. In 
the attacker model, attack resources limited by the maximum 
available number are considered due to the attack budget [7]. 
This work explores different scenarios by setting the 
maximum number of concurrent attacks at different values (��) 
[8]. It is also assumed that a maximum of only one generator 
can be attacked in each scenario. The cyberattack-affected 
elements are defined randomly, as formulated below:  

� � arg  	
��
�� 

(1) 
Subject to   

∑ ��� � ��     ,     �� ∈ �     ,    ∀ � ∈ �      
∑ ��� � 1     ,     �� ∈ �    ,    ∀ � ∈ �      

where, �  denotes a random integer vector representing 
cyberattack-affected elements, with values of 0 and 1 
indicating not-affected and affected elements, respectively; � 
is a vector including binary numbers corresponding to all 
transmission lines and generators; � refers to a set of all 
network elements, comprising all transmission lines and 
generators, while � represents a set of all generators; �� refers 
to the maximum number of concurrent attacks. 

B. Cascading-driven resilience assessment  

This work leverages dynamic cascading failure modeling 
to examine the proposed methodology's effectiveness in 
mitigating cascading impacts. Indeed, it conducts a cascading-
driven resilience assessment of the power grid by measuring 
system degradation following cyberattack incidents. In 
essence, dynamic modeling of cascading failures captures 
entire cascade mechanisms and transient dynamics following 
a disturbance. This involves incorporating all relevant 
controllers and protective relays, such as the generator’s 
governor and AVR, underfrequency and undervoltage load 
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shedding (UFLS and UVLS), over- and under-frequency 
generator tripping (OFGT and UFGT), and overcurrent relays 
[9]. The model is developed in the DIgSILENT software using 
time-domain RMS simulation [10]. It then quantifies the 
impacts of cyberattack-induced cascading failures through the 
DNS metric. 

C. Identification of Affected Elements (AE) 

As the proposed methodology is designed for near-real-
time applications, the computational burden of the anomaly 
detection method needs to be low. To this end, the overall 
methodology employs the Pearson correlation as a data-driven 
online detection comparison metric for cyberattacks. It is used 
to measure the strength and direction of a linear relationship 
between two variables. This AD method is nearly 
instantaneous and effectively locates affected elements by 
calculating correlations of data within a moving window of 
PMU measurements [11]. Given that attack resources are 
limited and only a few elements can be targeted [7], detection 
of anomalies caused by cyberattacks, including fabricated trip 
commands and replay attacks, can be achieved by tracing 
correlations in measurement data. The method distinguishes 
between data packets originating from an actual fault or 
disturbance and those fabricated or altered by attackers. As a 
consequence of the cyberattack, a sudden drop in the 
correlation value between two successive instants is detected. 
This drop reflects a low or poor correlation, indicating a loss 
of a common trend and unison in the system's response at 
respective measurement points [11]. If the correlation value 
of a specific measurement compared to that of other 
neighboring measurements exhibits a distinctive trend, the 
corresponding element is identified as being attacked. The 
pseudocodes presented in Algorithm 1 outline the process of 
identifying affected elements due to cyberattacks. It is worth 
mentioning that, in this work, the cybersecurity measures are 
not taken into account for the current study. To assess the 
effectiveness of the anomaly detection algorithm, 
performance evaluation metrics such as True Positive Rate 
(TPR), False Positive Rate (FPR), True Negative Rate (TNR), 
and False Negative Rate (FNR) are employed, based on the 
confusion matrix [12]. 

D. Controlled islanding 

The method of controlled islanding (CI) developed in this 
work, depicted in Fig. 2, employs constrained spectral 
clustering due to its low computational time [5], making it 
suitable for near-real-time applications in network splitting. 
The constraints in the CI problem, here, encompass coherent 
generators within each island and cyberattack-affected 
elements. 

1) Identification of coherent generator group (CGG) 
To maintain rotor angle stability following controlled 

islanding, it is crucial to cluster coherent generators together 
in the same group. Due to data availability and similarity to 
rotor angle behavior, phase angles of terminal voltage from 
generators, as measured by PMUs, are utilized for CGG 
identification [13]. This work employs the Intraclass 
Correlation Coefficient (ICC) and the K-medoids clustering 
algorithm [14] to develop a CGG identification method. The 
ICC measures the coherency between each pair of generators 
on a scale from 0 to 1, where values closer to 1 indicate higher 
coherency. Moreover, the K-medoids clustering algorithm is 
employed to partition the calculated ICC values into k-distinct 
clusters of coherent generators by identifying medoids that 
 

Algorithm 1: Identification of Affected Elements (AE) 

- Collect phasor measurement data  
- Calculate correlations between each pair of measurements within the 

moving window  

- if a distinctive trend in correlations is detected then 
-     if any tripping occurred then 
-         Identify the tripped elements with the detected anomaly as 

Affected Elements (AE)  

-         Proceed with the implementation of operational mitigation 
strategies 

-     end if 

- end if 

minimize the sum of dissimilarities between data points and 
their nearest medoid. For this purpose, a set of 100 samples, 
each spanning 10 milliseconds, is processed over a moving 
time window. 

2) Spectral clustering 
In essence, the spectral clustering method utilizes the 

graph-cut of an undirected edge-weighted graph that is built 
according to Eq. (2) by ignoring the direction of power flow 
[15]. In this study, the arithmetical sum of the active power 
across a transmission line connecting nodes i and j serves as 
the edge weight (���). The dynamic weighting of edges, based 

on power flow, incorporates the effects of changes in actual 
operating conditions on controlled islanding. 

��� � ��� � 
����� + ������ 2⁄  (2) 

The objective function, which focuses on minimizing the 
power flow disruption—represented by the absolute value of 
the active power flow across the splitting boundary 
branches—is expressed as follows: 

min&∑ 
���'� + ��'��� 2⁄�,' ∈()
*  (3) 

where, (+  is the set of buses at both ends of the splitting 
boundary branches. 

In the proposed methodology, constrained spectral 
clustering is employed with two types of pairwise constraints: 
Must Link (ML) and Cannot Link (CL) [16]. An ML 
constraint between two vertices ensures that these vertices will 
belong to the same cluster, while a CL constraint guarantees 
that the vertices will be assigned to different clusters. Given 
the objective of mitigating the progressive impact of 
cascading outages by confining affected elements within 
limited islanded areas, the identified coherent generator 
groups and cyberattack-affected elements are applied to the 
constrained controlled islanding problem through the pairwise 
constraints. 

III. RESULTS AND DISCUSSION 

A. Case study application  

The test system used in this study to demonstrate the 
effectiveness of the proposed methodology is the IEEE 39-bus 
system with a peak demand of 6259.4 MW. The study 
explores different values of the maximum number of 
concurrent attacks by setting ��  to 2, 3, and 4 [8] in the 
definition of three cyberattack scenarios. It is also assumed 
that only one generator can be attacked in each scenario, 
derived from historical cyberattack incidents [6]. The 
proposed methodology is simulated on a PC with an Intel core 
i7, 2.8 GHz CPU, and 16 GB RAM, taking a maximum 
computational time of around 5 seconds from detection to 
implementation. To extensively explore the methodology 
from an effective implementation perspective, three different 
scenarios of cyberattacks are randomly defined as follows: 
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Fig. 4. Comapring the manipulated measurement data for bus voltages with 

the actual data. 

 
Fig. 5. Comapring the correlations between each pair of voltages for Bus 4 

that are under replay attack with those of its beighbouring buses. 

• Scenario 1: two concurrent attacks (�� � 2�. Line 6-11 
and Transformer 6-31 are targeted by a trip command 
attack on their relays, located at Bus 6. 

• Scenario 2: three concurrent attacks (�� � 3� . Gen 7, 
Line 4-5, and Line 1-39 are subject to a trip command 
attack, targeting their relays located at Bus 36, Bus 4, and 
Bus 39, respectively.  

• Scenario 3: four concurrent attacks (�� � 4�. Line 17-18 
and Line 21-22 are subject to a trip command attack. In 
addition, two more replay attacks are launched at Bus 21 
and Bus 18 to manipulate the measurement data.  

B. Affected Elements’ Identification  

As described in Section II-C, the elements affected by a 
cyberattack are initially identified and then added to the 
operational mitigation strategy. This identification involves 
calculating the correlation between time-series voltage signals 
within a moving window. Subsequently, the elements 
identified as affected, which exhibit distinctive correlation 
trends compared to those of other neighboring buses, are 
incorporated into the constraints of the controlled islanding 
problem. Fig. 4 depicts the time-series bus voltages of the 
IEEE 39-bus system under line outage disturbances at 2 
seconds of simulation. It compares the actual measurement 
data, shown in Fig. 4-(a), with the manipulated data without 
disturbances through the replay attack on Bus 4, as illustrated 
in Fig. 4-(b). Fig. 5 illustrates how a distinctive trend in 
correlations can be detected by comparing the respective 
values for actual data, depicted in Fig. 5-(a), with the 
manipulated data, shown in Fig. 5-(b). As can be seen in Figs. 
4-(a) and 5-(a), following a disturbance, all actual 
measurement data undergo changes, and the corresponding 

correlations for neighboring buses experience nearly identical 
trends. This indicates that any bus losing correlations with 
other neighboring buses and exhibiting a distinctive trend, as 
illustrated in Fig. 5-(b), is identified as being anomalous. 
Similarly, in the case of fabricated trip commands, if no 
transients are detected from grid measurements but an element 
is tripped, it signifies an anomaly.  

In this study, 100 test scenarios are used to evaluate the 
anomaly detection algorithm, consisting of 10 scenarios with 
anomalies and 90 scenarios without anomalies. The test 
results reveal that 11 scenarios are positive, with 9 scenarios 
classified as true positives (TP) and 2 as false positives (FP). 
Additionally, 89 scenarios are negative, with 88 scenarios 
classified as true negatives (TN) and 1 as false negative (FN). 
The evaluation metrics are then calculated as follows: TPR is 
90%, FPR is 2.2%, TNR is 97.8%, and FNR is 10%. These 
values indicate the satisfactory performance of the algorithm, 
as the high TPR and TNR values, along with the low FPR and 
FNR values, demonstrate its effectiveness. In the exemplary 
case, as shown in Fig. 4, the affected element, Bus 4, is then 
assigned to the pairwise constraints of the controlled splitting 
problem. This effectively surrounds the identified affected 
elements with an islanded area, providing an opportunity for 
improved situational awareness of the power grid. This is 
essential as the system operator cannot rely on the 
measurement data and availability status of the targeted 
element. Therefore, by confining it within an island, the 
potential impacts of cascading failures are mitigated, 
providing more time for the implementation of appropriate 
security countermeasures. 

C. Comparative studies of cyberattack-induced cascading 

failures with and without controlled islanding  

This section thoroughly explores the effectiveness of the 
proposed reactive mitigation methodology, i.e., corrective 
controlled islanding. To this end, the randomly generated 
cyberattacks, as described in Section II-A and outlined earlier 
in three scenarios, are applied to the test system. 
Subsequently, the cascading-driven resilience assessment is 
conducted to demonstrate how the system performance 
degrades after cyberattacks, both with and without the 
controlled islanding strategy. Initially, the comparative study 
delves into more details, specifically focusing on Scenario 2. 
Then, the results of the same study for all scenarios are 
compared. According to Scenario 2, the attacks on G7, Line 
4-5, and Line 1-39 are successfully launched through the 
manipulation of protection commands, leading to the tripping 
of these elements at 2 seconds of the simulation. Fig. 6 depicts 
the impacts of this attack scenario on the test system, 
showcasing the initiation and propagation of the cascade 
across a significant portion of the system, involving the 
outages of 3 generators, 14 buses, and 21 branches. This 
results in approximately a 52% demand loss.   

To mitigate the cascading impacts, the system is split into 
three islands by opening Line 3-4, Line 3-18, Line 14-15, and 
Line 17-27 as shown in Fig. 7. The three islanded areas 
demonstrate how these stable and self-sufficient networks can 
absorb the impacts of the events and minimize the resultant 
DNS value. As described in Section II-D-1, to maintain rotor 
angle stability following controlled islanding, coherent 
generator groups are initially identified. In this scenario, {G1, 
G2, G3}, {G4, G5, G6}, and {G8, G9, G10} swing closely 
together and are grouped as shown in Fig. 8. Figs. 8 to 11 
illustrate the system responses, both with and without 
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Fig. 6. Cascading propagation across a significant portion of the system 

under Scenario 2 of cyberattacks. 

 
Fig. 7. Three identified islanded areas confining the cyberattack-affected 

elements related to Scenario 2. 

 
Fig. 8. Identification of coherent generators during the islanding process. 

controlled islanding following the events, through time-
domain RMS simulation. At 2 seconds of the simulation, the 
system is subjected to the cyberattack events. Approximately 
5 seconds later, due to the algorithm's computational time, the 
controlled islanding strategy is implemented at 7 seconds, 
resulting in the system splitting into three islanded areas. In 
Fig. 9, the frequency responses of the system under the events 
in Scenario 2, both with and without controlled islanding, are 

compared. According to Fig. 9-(a), at each instant when the 
cascading failures propagate, the system frequency at each bus 
undergoes different changes across the system, depending on 
the value of load-generation imbalance. This imbalance arises 
from uncontrolled system splitting, as well as uncontrolled 
loss of load and generation following events during cascading 
propagation. At 66.7 and 81.7 seconds of the simulation, 
generators G4 and G6 are tripped due to the over-frequency 
generator tripping relay (OFGT) and the under-frequency 
generator tripping relay (UFGT) operations, respectively. As 
a result, a major part of the system, as depicted in Fig. 6, 
experiences a cascading blackout. In comparison, Fig. 9-(b) 
shows the same study with the controlled islanding 
implementation mentioned earlier in this section. It represents 
the transient deviations in frequency for each islanded area 
following the system splitting at 7 seconds of the simulation. 
In this case, the only element tripped by the overcurrent 
protection relay is Line 16-19 at 29 seconds of the simulation 
due to overloading.  

Fig. 10-(a) elaborates on the variations of the total load 
over the simulation time resulting from the dynamic 
mechanisms of the cascade, which involve system controllers 
and protection relays such as governors and under-frequency 
load shedding. It clearly demonstrates system degradation due 
to cascading failures, comparing the total load with and 
without the islanding mitigation strategy. In Fig. 10-(b), the 
DNS values for the base case are compared, both without and 
with controlled islanding, corresponding to the entire system 
and at each individual bus once the system remains stabilized  
 

 
Fig. 9. Frequency deviations during cascading failures across the system 

corresponding to (a) without and (b) with corrective controlled islanding. 

 
Fig. 10. Change in total system load during cascading failures corresponding 

to (a) without and (b) with corrective controlled islanding. 
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Fig. 11. Change in line loading during cascading failures corresponding to 

(a) without and (b) with corrective controlled islanding. 

TABLE I.  STUDY RESULTS FOR THE THREE DIFFERENT SCENARIOS 

Cyberattack scenario no. 1 2 3 

Maximum concurrent attacks 2 3 4 

Targeted Elements 
Line 6-11  

Trans. 6-31 

Gen. 7 

Line 4-5 
Line 1-39 

Line 17-18  
Line 21-22 

Bus 21 *  

Bus 18 * 

Type of 
attacks 

* Replay 0 0 2 

Trip commands 2 3 2 

DNS 
in MW 

(% of 

total 
demand) 

Without CI 
1381.7 

(22.1%) 

3263.7 

(52.2%) 

4751.2 

(76%) 

With CI 
1183.2 

(18.9%) 
1110.5 

(17.8%) 
1815.5 
(29%) 

Improvement  
198.5 

(3.2%) 

2153.2 

(34.4%) 

2935.7 

(47%) 

and the cascade halts. As a result of the controlled islanding, 
the total DNS value decreases from 3263.7 to 1110.5 MW, 
representing a 2153.2 MW reduction in loss of load or a 34.4% 
improvement in the system performance with ICI 
implemented. Fig. 11 illustrates the loading of the network 
lines, comparing the studies conducted without and with 
controlled islanding. It highlights the lines that are tripped due 
to overloading during the cascading propagation. It is worth 
noting that, owing to the inverse-time characteristics of 
overcurrent relays, the lines and transformers experiencing 
overload are tripped with varying delays based on the extent 
of overloading. Table I summarizes the results of the same 
cascading failure analysis for all attack scenarios, comparing 
the cases both without and with controlled islanding. The 
system DNS under the events of Scenarios 1, 2, and 3 is 
reduced from 1381.7 MW, 3263.7 MW, and 4751.2 MW to 
1183.2 MW, 1110.5 MW, and 1815.5 MW, respectively, as a 
result of implementing the proposed methodology. 
Considering the total load, the overall improvements of 3.2%, 
34.4%, and 47% in DNS are attained for Scenarios 1, 2 and 3, 
respectively. Thus, the study explicitly demonstrates that the 
controlled islanding strategy, serving as a last resort for power 
systems to endure, is particularly effective in mitigating highly 
impactful events, such as Scenario 3.  

IV. CONCLUSION 

This paper introduces a novel operational mitigation 
strategy against cyberattack-induced cascading failures 
through the seamless integration of dynamic cascading failure 
analysis, an anomaly detection technique, and a constrained 
controlled islanding method. The AD technique facilitates the 
identification of elements targeted by cyberattacks, such as 
fabricated protection trip commands and measurements’ 

replay attacks, aiding in the effective implementation of an 
operational mitigation strategy. The mitigation strategy 
employed in this study involves corrective controlled 
islanding, constrained to identified coherent generator groups 
and cyberattack-affected elements, which can serve in near-
real-time operation. These constraints enhance the 
methodology's effectiveness in system splitting by 
surrounding the affected elements with stable and self-
sufficient islanded areas. This work leverages the dynamic 
cascading failure modelling developed in the DIgSILENT 
software to quantify the cascade impacts, capturing system 
dynamics stemming from cascade mechanisms after initiating 
events. The simulation results on the IEEE 39-bus system 
clearly highlight the benefits of the proposed operational 
mitigation strategy in alleviating the impact of cyberattack-
induced cascading failures, resulting in a maximum reduction 
of 47% in DNS for the studied scenarios. This improvement 
is primarily attributed to isolating the affected elements and 
halting the propagation of cascading failures to other healthy 
parts of the system. Notably, a methodology for implementing 
cybersecurity measures, alongside the proposed operational 
mitigation strategy against a broader range of cyberattacks, 
will be considered as an extension of the paper in future work.  
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