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Abstract
The route to reliable quantum nanoelectronic devices hinges on precise control of the
electrostatic environment. For this reason, accurate methods for electrostatic simulations are
essential in the design process. The most widespread methods for this purpose are the
Thomas-Fermi (TF) approximation, which provides quick approximate results, and the
Schrödinger-Poisson (SP) method, which better takes into account quantum mechanical effects.
The mentioned methods suffer from relevant shortcomings: the TF method fails to take into
account quantum confinement effects that are crucial in heterostructures, while the SP method
suffers severe scalability problems. This paper outlines the application of an orbital-free
approach inspired by density functional theory. By introducing gradient terms in the kinetic
energy functional, our proposed method incorporates corrections to the electronic density due to
quantum confinement while it preserves the scalability of a theory that can be expressed as a
functional minimization problem. This method offers a new approach to addressing large-scale
electrostatic simulations of quantum nanoelectronic devices.

Supplementary material for this article is available online

Keywords: hybrid quantum devices, electrostatic simulations, Thomas-Fermi model,
Schrödinger-Poisson method, orbital-free DFT, semiclassical methods

(Some figures may appear in colour only in the online journal)

1. Introduction

The continuous increase of complexity in quantum nanoelec-
tronic devices has created the demand for a precise descrip-
tion of the electrostatic behavior of these systems, as this
influences all other phenomena in the devices [1–3]. Solving
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the electrostatic problem requires the solution of Poisson’s
equation (PE) for the electric potential φ coupled to a func-
tional n [φ] that describes the electron density as a function of
the electrostatic field itself

−∇ · (ε∇φ) = ρfx − en [φ] , (1)

where ρfx is the eventual fixed charge in the device and e is the
electron charge.

In the context of hybrid superconductor-semiconductor
quantum devices, two methods are currently widely used: the
Schrödinger-Poisson (SP) and the Thomas-Fermi (TF) meth-
ods [2–8]. The SP method takes the quantum mechanical
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system into account within the Hartree approximation and
provides precise results, but is computationally demand-
ing [3, 8, 9]. The TF method, instead, uses the free-fermions
gas model to approximate the charge distribution. In this way,
it reasonably approximates the device’s electrostatic config-
uration at a much lower computational cost. While the SP
method provides more precise results, it is computationally
much more demanding since it requires the diagonalization
of the Hamiltonian. Memory and time requirements can be so
high that it is practically impossible to use on realistic systems
of relevant size [2, 10]. However, the TF method fails to prop-
erly consider quantum confinement effects as the energy func-
tional is completely local. For this reason, a common practice
is to first focus on the electrostatic problem and solve it with
the TFmethod, and then use the calculated electrostatic poten-
tial to solve the quantum mechanical problem [1, 2]. We will
refer to this approach, which is not strictly self-consistent, as
Schrödinger-Thomas-Fermi (STF) method.

The TF method is exact for uniform systems and holds as
an approximation as long as the electron density slowly varies
in space. The validity of this assumption for a specific system
can be checked through the TF error:

RTF ≡
||∇n(r)||
n(r)kF(r)

, (2)

where kF(r) = [3π2n(r)]1/3 is the Fermi wavelength [11]. The
TF approximation is valid in the limit RTF ≪ 1 [12, 13]. This
condition is never satisfied at interfaces with vacuum or insu-
lators where the density goes abruptly to zero. Two instances
of typical devices are shown in figure 1, showing the density
calculated with the TF method and the value of the TF error.

The TFmethod is the simplest model in the class of orbital-
free (OF) density functional theories, and some of its short-
comings are overcome in more advanced models. The defin-
ing feature of these models is that their mathematical form
is exactly an energy functional of the density. This means
that explicit diagonalization of the Köhn-ShamHamiltonian is
not required to determine the ground state density of the sys-
tem. For this reason, OF density functional theory methods are
computationally efficient and can be applied to systems with a
large number of electrons. However, the accuracy of OF dens-
ity functional theory is generally lower, and it is typically used
for approximate calculations and to study qualitative trends.
Traditional application domains of OF theories include atomic
physics and material science [14–18]. Similar theories are also
known as semiclassical methods in nuclear matter systems that
include finite nuclei and astrophysical systems [19–22].

This paper introduces these methods in a different field:
quantum nanoelectronic devices design. We adapt ideas from
OF density functional theory to go beyond the TF method,
improve on some of its drawbacks, and minimize any addi-
tional computational cost. The goal is thus to develop and
assess a numerically cheap model in a variational form that
includes corrections to the electronic density due to quantum
confinement. Moreover, the application of these ideas to
nanoelectronic devices can be far easier than in the usual
application domains, like material science, since a precise

Figure 1. Electrostatic simulations of two example devices. The
first row shows sketches of a cross-section of a common 2DEG
device (a) and a simple circular quantum dot (d). In both cases, the
devices are built on top of a semiconductor stack (schematic given
in figure 2) that provides the vertical confinement of electrons. The
lateral confinement is controlled by Au gates (yellow), HfO2 oxide
(gray), and an Al wire (dark gray). (b) and (e) show the electron
density from a TF simulation. (e) is plotted in the middle of the InAs
well. (c) and (f) show RTF as defined in equation (2).

estimation of excitation energies is not required. We expect
such a method to better predict the charge density compared to
the TF method. Estimating the electron number is especially
crucial for floating metallic parts of devices where charging
energy is a relevant parameter. Following the literature, we
will refer to this orbital-free method as the extended Thomas-
Fermi (ETF) method [20].

A comparable theory built following similar considera-
tion is the effective-potential potential method [23, 24] later
expanded in the density-gradient theory [25, 26]. Unlike
our approach, the density gradient theory tries to intro-
duce quantum-confinement corrections to the drift-diffusion
equations commonly used in modeling traditional semicon-
ductor devices operated at room temperature. Our proposal
is much simpler and more tailored to quantum nanoelectronic
devices operated at low-temperature with small currents in a
condition very close to equilibrium.

As a specific application domain of our method, we con-
sider the task of optimizing gate shapes and providing an intu-
itive understanding of how the potential landscape is affected
by variation in voltage biasing. These tasks do not require pre-
cise calculations but rather quick and responsive evaluation of
a configuration. In this respect, our tool provides, in addition
to a precise electric field, a model for the electron fluid which
is closer to the SP evaluations.

An inevitable feature of an orbital-free approach is the
incapacity of modeling the quantization of charge. While in
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many applications this is a disadvantage, it can be a useful
feature in certain situations. The two outputs of the method,
φ and n, will depend continuously on the geometrical and
material parameters of the device. This means that any derived
quantity L[n,φ] will be continuous as well with respect to the
parameters of the model. This allows for the possibility of
developing new devices by using parametric modeling, where
the function L can be an objective function describing some
desired property of the device (e.g. the transmission probabil-
ity of a quantum point contact), allowing for computation of
the optimal geometrical and material parameters by numerical
optimization.

For a more precise treatment of quantization, a hybrid
Schrödinger-ETF method, similar to the STF method, can be
used. Additionally, the ETF method not only provides a pre-
cise estimate of the electrostatic potential φ(r) but also of
the numerical density n(r), which can be used to generate an
effective Hamiltonian through dimensionality reduction. For
example, one can be interested in projecting a 3D Hamilto-
nian on a 2D subspace to model a 2DEG device. This could
be done by taking the weighted average of the parameters of
the Hamiltonian, like, for example, the effective mass, Rashba
field, electrostatic potential, or CBM.

2. Orbital free method

In the following, we will consider only direct bandgap semi-
conductors.Wewill neglect the hole accumulation process and
model only the electron fluid. However, it is straightforward to
extend the method by including a hole fluid. For low densit-
ies, we can assume that the electrons in the semiconductor are
close to theΓ point and can be reliably described by a parabolic
band. In this case, a general orbital-free theory for the conduc-
tion band electrons can be expressed by an energy functional
similar to the one for free electrons:

E[n,φ] = K[n] +V[n] +U[φ] +
ˆ
Ω

dr(ρfx − en)φ, (3)

where φ is the electrostatic potential while n is the numerical
density of electrons [10, 13–15, 27]. The energy functional is
split into several pieces:K[n] is the kinetic energy functional of
the electrons, V[n] is the potential energy of the electron fluid,
U[φ] is the electrostatic field energy, and finally, the last term
is the coupling between the electrostatic field and the charge
which comprises the free electrons charge distribution −en
and the fixed charge of the system ρfx. This can be due to,
e.g. doping or fixed surface charge, and can be fundamental in
the electrostatic modeling of semiconductor systems [28, 29].
The computational domain Ω can be split into three different
kinds of regions: metals, insulators, and semiconductors such
that Ω= ΩM ∪ΩSm ∪ΩI.

The electrostatic field energy takes the standard form

U[φ] =
ˆ
Ω

drε
||∇φ||2

2
, (4)

where ε(r) is the permittivity, while the potential is

V[n] =
ˆ
ΩSm

dr [ECBMn+Vex(n)] , (5)

where ECBM(r) is the conduction band minimum (CBM) of
the semiconductor that acts as local chemical potential. The
exchange energy can be included within the local density
approximation through the Vex(n(r)) term, which we neglect
in this work as including this would make the comparison with
the SP method more complicated.

The form of the kinetic energy functional is the most
complicated part of the orbital-free theory. Finding precise
kinetic energy functionals is the focus of much modern
research [14–18]. We opted for the simplest model that goes
beyond the homogeneous electron gas case of the TF method

K[n] =
ˆ
ΩSm

drCTF(r)n5/3(r)+λvW
ℏ2

8m∗
||∇n(r)||2

n(r)
, (6)

where CTF(r) = (3π2)
2
3 ℏ2

2m∗(r)
3
5 is the TF constant, λvW is the

von Weizsäcker parameter and m∗ is the effective mass. The
kinetic energy functional incorporates a TF term and the so-
called vonWeizsäcker correction [10, 18, 20, 27, 30, 31]. This
term captures the energy cost of rapid variation of the density
in space and was originally introduced by von Weizsäcker to
correct the TF method issues when applied to rapidly varying
electron densities.

In the literature, there has been much discussion on the
value of the vW coefficient, λvW, which works as a weight
of the gradient-dependent vW term [27]. In the limit λvW → 0,
the TF method is recovered. In [32], the response function of a
uniform system of independent fermions is investigated, and it
is shown that λvW = 1 is exact in the limit of short-wavelength
perturbations, whereas λvW = 1/9 is exact in the limit of long-
wavelength perturbations. Other analysis pointed to the value
of λvW = 1/5 as the most adequate [33].

In this application, we decided to treat λvW as a parameter
of the model and empirically select a value in the [0,1] inter-
val that agrees with SP simulations in simple geometries. The
complete form of the energy functional and some of its exten-
sions are further discussed in [20].

It is worth noting that a functional theory that takes this
form is not, strictly speaking, a density functional theory, as
the electric potential is explicitly included and cannot be eas-
ily transformed into a pure density functional theory. This
is caused by the fact that metal parts (like gates or float-
ing metallic islands) are present in nanoelectronic devices.
These modify the boundary condition of the electric potential
equation such that the PE Green’s function becomes a com-
plicated object generally not expressible in an analytic form.
Including the electric potential explicitly avoids this problem.
A more detailed discussion is included in appendix.

Moreover, when treating a closed system like an atom or
a molecule, the minimization problem is characterized by the
constraint

3
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ˆ
Ω

drn= N, (7)

where N is the total number of electrons, that is fixed. The
existence of a solution is not guaranteed when including an
exchange and correlation potential [34]. We do not have such
a constraint in our case. The total number of electrons N is
not fixed, but actually one of the results we want to determine.
Moreover, it can also take fractional values.

To move from an optimization problem to a boundary value
problem, we will use functional minimization. It is convenient
to define the matter field ψ =

√
n before proceeding. Note that

ψ is a real field defined as the square root of the density. It
cannot be interpreted as a wavefunction as it does not carry
information about the phases of the electrons. Therefore this
theory cannot describe long-range interference effects, but it
just includes a local correction to the electronic density due to
quantum confinement effects.

The functional derivative δE
δφ = 0 returns the Poisson

equation while δE
δψ = 0 returns a partial differential equation

that has the form of a nonlinear Schrödinger equation (NLSE).
The system of coupled PDEs is then

{
−∇ · ε∇φ= ρfx − eψ2 ,

−ℏ2

2 ∇ ·
(
λvW
m∗ ∇ψ

)
+ 5

3CTFψ
7/3 + [−eφ+ECBM]ψ = 0 .

(8)

The insulators are usually large gap semiconductors that
are depleted for low enough bias voltages. Therefore, we can
exclude insulator regions from the NLSE domain and assign
the boundary condition of ψ(∂ΩI) = 0 to all semiconductor-
insulator interfaces, where with the symbol ∂Ωi we denote
the surface of the region Ωi. We assume all metallic regions
are described by ideal metals, and therefore the potential is
homogeneous in these domains. When a voltage bias V i is
applied to region ΩMi , a Dirichlet boundary condition can be
used that takes the form φ(∂ΩMi) = δµi+Vi where δµi is
a material-specific constant modeling the Fermi energy dif-
ference between the metal in regions ΩMi and the reference
one. When ΩMi is a floating island, the Neumann condition
∇⊥φ(∂ΩMi) = 0 fixes the electric field to be normal to the
surface. Precise calibration of the band-offsets δi requires a
careful comparison of numerical simulations and experimental
results. Since this work is a proof of concept, the offsets δµi for
metals are given arbitrary but reasonable values, and we refer
to other references for the details of such procedure [35]. The
choice of material properties constants, including band offsets
between semiconductors used to evaluate the CBM ECBM, are
discussed in the supplemental material.

Metal-semiconductor interfaces are a vast topic that is still
actively being researched [36], and we have not found a con-
vincing solution to the problem of including these interfaces in
our method. We will first focus on the case where these inter-
faces are not present and assess the validity of the model while
we postpone the discussion to section 4.

3. Calibration and benchmark

Before considering the ETF theory, we analyze the limits of
the TF method (λvW = 0) by simulating two simple but relev-
ant geometries for 2DEG devices: a nanowire and a circular
dot. For the 2DEG, we choose a semiconductor stack similar
to the ones used in many modern experiments, e.g. [37–39].
Figure 1(a) display the schematic of a cross-section of a 2DEG
nanowire. Two Au gates (yellow) serve the purpose of deplet-
ing the areas next to the Al wire (dark gray). The two Au
gates and the Al wire are separated by HfO2 dielectric (gray).
Figure 1(b) shows the electron density in the system, simulated
using a top gate voltage of −3 V with respect to the grounded
Al wire, while in figure 1(c) we plot the TF error as defined in
equation (2). From this simulation, it is clear that the TF error
does not satisfy RTF ≪ 1, and thus the electron density is vary-
ing too quickly in space to justify the use of the TF approxima-
tion. This behavior is consistent when trying different top gate
voltages. In figures 1(d)–(f), we simulate a quantum dot on the
same semiconductor stack. We apply a voltage of −0.25 V to
the outer gate and 0 V to the inner gate. In figures 1(e) and (f),
we show, respectively, the electron density in a plane located
in themiddle of the InAs layer and the TF error that approaches
1 at the boundary to the depleted region.

After having assessed the need for a more elaborated kin-
etic energy functional than the TF one, we now consider
the ETF method. We start with the problem of determining
the optimal value of λvW for the use case of electrostatic
simulations of nanoelectronic devices. We considered a 2D
translational invariantMOS device formed by a semiconductor
heterostructure quantum well with an insulator layer and a
metallic top-gate as shown in figure 2(a). We study the electro-
static problem with the TF and ETF method with various λvW
and compare the results with a simulation done with the self-
consistent SP method. The density per unit area is shown in
figure 2(b).

To assess quantitatively the optimal value for the vonWeiz-
säcker parameter, we introduce two metrics: the absolute dif-
ference of the density per unit area

δN≡ |NvW −NSP|
NSP

, (9)

where N=
´
ndx is the total number of electrons per unit area,

and the quantity

(δn)2 ≡
ˆ

(nSP − nvW)
2 dx , (10)

that takes into account the difference in the shape of the density
profile. The results are shown in figure 2(c). In general, we
find that low values of λvW in the interval [0.05,0.2] provide
the best agreement with SP results. We decided to elect λvW =
1/9 as the standard parameter because of the theoretical works
backing this choice [27, 32].

We simulated a quantum dot shown in figure 3 with the
TF, ETF, and STF methods to evaluate the accuracy of the
method in a more realistic situation. Here we fix the outer gate
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Figure 2. Calibration of λvW. (a) shows a schematic of the simulated semiconductor stack inspired by the one used in [39] (not to scale). An
Au gate (yellow) is separated from the four semiconducting layers by a layer of oxide (gray). (b) shows the results of TF, ETF (with various
λvW), and SP simulations. (c) shows a comparison of different values of λvW, using the two metrics defined in equations (9) and (10). For all
simulations the built-in bias at the interface is 0.1 V.

Figure 3. Results from the dot-probe device simulation, using
three different methods, i.e. TF, ETF, and STF. (a) shows the
semiconducting stack used (not to scale), and (b) shows
the geometry. (c) shows how electrons accumulate in the
semiconducting stack as the inner gate voltage increases.

to −0.35 V and consider the number of electrons in the dot as
a function of the inner gate voltage. The results can be seen
in figure 3(c). Notice that the device under consideration does
not show a dot-like behavior as the charge increases almost
linearly with the gate voltage, as expected for a 2D system.
This suggests that the lateral confinement induced by the gate
system is not able to strongly confine the electrons.

Of the three methods, the TF method generally predicts the
largest number of electrons, while the STF method predicts
the lowest. The ETF results are intermediate between the two.
Even though the ETF and STF methods do not overlap for all
voltages, the two methods seem to have great compliance in
the moderate filling regime.

One important difference between the TF and ETF meth-
ods is that the TF method predicts a steep jump in the dif-
ferential capacitance C(V) = dQ

dV as the voltage increases. This
happens as electrons at a particular voltage start accumulat-
ing in a previously classically forbidden region, while the ETF
method, by allowing exponentially suppressed tails in the clas-
sically forbidden layers, prevents this from happening. This
makes the ETF method less prone than the TF method to show
unphysical behavior in semiconductor heterostructures. Thus
the ETF method would, for instance, also be more appropri-
ate to calculate capacitance compared to the TF method. In
the setup considered here, we can thus conclude that the ETF
method is superior to the TF method for simulating the num-
ber of electrons and calculating elements of the capacitance
matrix.

4. Semiconductor-metal boundary condition

As is briefly described in the method presentation, the treat-
ment of the interfaces between metals and semiconductors is
an open problem [36]. Moreover, the electron density shows
a strong dependence on the thickness of thin metallic films
that afflicts heterostructures when placed in contact with clean
metallic films [2]. Usually, the electrostatic problem of the
charge distribution in the metal is not taken into account, and
metallic parts are assumed neutral by assigning a Dirichlet
boundary condition at the surface [1, 2]. We will consider
the problem starting with a complete treatment of the metal-
semiconductor interface and discuss the issues of this solution.
Next, we will search for an approximate solution able to repro-
duce the important physical behavior of the electrostatics in
the semiconductor.

4.1. Complete treatment

A complete treatment of the Sm-M interface can be formu-
lated assuming that ψ2 represents the conduction band elec-
tron density in both the semiconductor and the metal. We
denote by EF,M the bulk Fermi energy of the metal defined

as EF,M = ℏ2kF
2

2m∗ . We define EW as the difference between the

5
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Fermi energy of the metal and the CBM of the semiconductor
such that the local CBM takes the form

ECBM(r) =−Ew1Sm(r)−EF,M1M(r) , (11)

where 1Ωi is the indicator function of region Ωi.
In addition, since in the metal the Fermi energy lies in the

conduction band, the equilibrium bulk electron density needs
to be compensated by a positive background that we assumed
homogeneous and equal to

ρfx = ρM1M(r), ρM =
e

3π2

(
2m∗EF,M

ℏ2

)3/2

, (12)

such that a homogeneous metallic system is neutral at equi-
librium with an electron density equal to the one predicted by
the TF model. However, there are issues with this model when
it is applied to a metal-semiconductor system. Since ψ2 is the
electron density in both materials, there will be a huge jump
in its value at the interface, violating the assumption of slowly
varying electron density.

4.2. Effective boundary treatment

Since a complete model of the semiconductor-metal inter-
face is not available and the boundary conditions for the ETF
method are unknown, we explored the possibility of finding an
effective way to treat the semiconductor-metal boundary.

A first approach consists in excluding the metal from the
NLSE. In this way, ψ2 models the electron density only in the
semiconductor, and the problem reduces to finding an effect-
ive boundary condition by trial and error. We tested three
options. If the interface is not transparent, setting the dens-
ity at the interface to zero ψ(∂ΩM) = 0 can be an acceptable
boundary condition even in the metallic case. Alternatively,
if we assume that the metal is not perturbed at all, we can
impose that the density should continuously go to the unper-
turbed metal density at the interface ψ(∂ΩM) =

√
nM. Finally,

we tried a Neumann boundary condition by fixing the change
in electron density to zero at the semiconductor-metal inter-
face ∂ψ(∂ΩM) = 0.

These approaches cannot be applied if the metal has to be
included, for example, because it is a floating part. In this case,
we found that a mixed TF and ETF approach can be used,
where we solve for the electron density in both the semicon-
ductor and the metal, but we allow λvW to vary in space. The
idea of promoting λvW to an inhomogeneous field has already
been considered in more traditional application fields of OF
density functional theory [40, 41].

Since metals have an extremely large electron density com-
pared to that of the semiconductor, there will be an extremely
large gradient of the electron density at the very interface.
Since the vW-correction of the energy functional is propor-
tional to the absolute value of this gradient squared, the vW-
term will be extremely large here and thus essentially penalize
the energy functional, trying to remove the abrupt change in
electron density. However, this abrupt change in electron dens-
ity at the Sm-M interface is what we would expect of the sys-
tem and should thus not be removed. A solution to this could

Figure 4. Simulation of the semiconducting stack in figure 2(a),
with a 5 nm layer of aluminum on top. The upper plot shows the
electron density in the semiconducting stack, while the lower one
shows the electron density in the metal. 6 different ways of treating
the semiconductor-metal interface are simulated: Three ETF
simulations with different boundary conditions at the interface
(ψ= 0, ψ =

√
nAl, and ∂ψ = 0), one TF simulation, one SP

simulation that is solved only in the semiconductor, and one ETF
simulation where the value of λvW is swept such that it is 1/9 in the
semiconductor and 0 in the metal.

be to change λvW through the stack to diminish the correc-
tion where we expect large gradients. We dubbed this method
λvW-sweep. In the metal, we expect an extremely large elec-
tron density (when compared to the semiconductor) that is
only weakly perturbed by being in contact with a semicon-
ductor. Changes are thus slow in space on the length scale of
the Fermi wavelength, and the electron density in the metal
can be effectively described by the TF method, i.e. assigning
λvW ≃ 0 in the metal while using a finite λvW in the semicon-
ductor. This circumvents the problem of assigning a boundary
condition to the interface. In the bulk of the semiconductor,
we use λvW = 1/9, and in the aluminum we set λvW to zero
(for convergence reasons, we use a small but non-zero λvW of
2× 10−8).

To test the method above, we considered a 2DEG system
built with the semiconducting stack from figure 2 with a 5 nm
layer of Al deposited on top as shown in figure 4. In the
cases where the metal is included in the density part, we set
the Fermi energy to EF,Al = 11.6eV and neutralized the bulk

6
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charge with a positive background. With this value, the bulk
electron density of Al is roughly nM = 1.8× 1029m−3. The
electron density simulated for all the cases described can be
seen in figure 4. For comparison, we included the result of a
SP simulation.

In the top plot of figure 4, we see how the results for the
ψ= 0 and ∂ψ = 0 boundary conditions are similar to the ones
obtained with λvW-sweep model, and how all of these meth-
ods seem to provide a good agreement with the SP method.
The Dirichlet boundary condition ψ =

√
nAl approach seems

to give an erroneously small electron density in the well. This
is caused by the extreme change in electron density that has
to be neutralized entirely in the semiconductor. This causes
an excess of negative charge near the interface that is left
unbalanced. The λvW-sweepmethodmakes it possible to avoid
this problem since the electron density in the metal is now
described by the TF method and, thus, no boundary con-
dition is required at the semiconductor-metal interface. As
can be seen, even if the depletion in the metal is localized
in a tiny region at the interface, given the extremely high
bulk density, the decrease causes a strong dipole at the inter-
face that strongly changes the electrostatics restoring a result
closer to the SP simulation. We can conclude that if the semi-
conductor layer closer to the metal is classically forbidden,
both ψ(∂ΩM) = 0 and ∂ψ(∂ΩM) = 0 are acceptable effective
boundary conditions for the orbital-free theory. If the metal
has to be explicitly included, a λvW-sweep can be used for this
purpose. We ruled out the ψ(∂ΩM) =

√
nM option as it does

not provide comparable results.

5. General consideration on computational
complexity

Before concluding, we briefly discuss the convergence proper-
ties of ETF methods, and in general, OF methods, in compar-
ison to TF and SP. Estimating the space and time complexity
of these methods can be complicated, yet by assuming that the
electric potential is discretized using Ne degrees of freedom
and the charge distribution on Nq degrees of freedom, we can
make some general observations.

The TFmethod is represented using only the electric poten-
tial, leading to a space complexity of O(Ne). The method
requires solving a relatively simple nonlinear PDE for the elec-
tric potential, which generally requires iterative methods to
converge, making it difficult to estimate the convergence rate.

In contrast, the ETF method is represented as a functional
of both the electrostatic field and the matter field, leading to
a space complexity of O(Ne+Nq). The coupled PDEs that
need to be solved are more complex than the one in the TF
method. In some cases, it is possible to decouple the two
PDEs and solve them separately and iteratively (using a so-
called segregated or partitioned approach in contrast to a fully
coupled/monolithic one) in order to optimize the convergence
speed.

We assume that only k electrons are considered for the SP
method, leading to a space complexity of O(Ne+ kNq). The

calculation is dominated by the solution of the Schrödinger
equation, and assuming the use of an iterative solver like
Arnoldi iteration, the time complexity is bounded from below
by O(kN2

q). The cost of diagonalization is needed for each
step of the iteration, together with the solution of the Pois-
son equation, which generally has a negligible cost compared
to diagonalization. The solution strategy is inherently segreg-
ated, and this can cause potential instability problems that need
to be addressedwith special care [3]. It is important to note that
in the case of large systems, not only the number of degrees
of freedom increase, but, in general, it is also necessary to
increase the number of states k considered.

In summary, it is clear that the computational cost of OF
methods increases more slowly with the size of the system
compared to the SP method, making it a more attractive option
for large-scale simulations. Moreover, the expression in vari-
ational form is amenable to the application of many conver-
gence optimization techniques commonly used for general
PDEs that are not easily applicable to diagonalization prob-
lems like multigrid methods, preconditioning, and in particu-
lar, domain decomposition.

6. Conclusions

In this work, we investigated orbital-free methods for the solu-
tion of the electrostatic problem for nanoelectronic devices.
We checked that the widespread TF method, regarded as
the simplest orbital-free method, is often applied outside its
range of validity. The most notable case of the approxima-
tion breakdown occurs at the interfaces with classically for-
bidden regions, like insulators, where the density of electrons
has abrupt jumps.

To achieve a more accurate description of the density pro-
file in these cases, we considered the extended Thomas-Fermi
(ETF) method that includes the von Weizsäcker correction of
the kinetic energy functional. This correction can significantly
increase the precision of the density profile near interfaces.

We addressed the question of the optimal value of the
λvW parameter by studying a simple 2DEG system and found
that the theoretically motivated value of λvW = 1/9 provides
a good agreement also in the practical example cases con-
sidered. By applying the method to the simulation of realistic
device geometries, we found that the ETF method provides
density profiles closer to the ones calculated with the SP
method than the density profile provided by the TF method.

SP methods can be computationally expensive as they
require explicit diagonalization of the Hamiltonian, whereas
the predictive power of the TF method is poor due to the
perfect local behavior of the energy functional. Therefore,
the ETF method represents a good compromise in terms of
computational speed and predictive power. orbital-free meth-
ods are an often neglected alternative for electrostatic simu-
lations of nanoelectronic devices, which are useful to handle
large systems since the problem can be nicely expressed
in variational form and implemented on any finite element
solver.
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Other effects like strong spin–orbit coupling [19], finite
temperature [42, 43], non-parabolicity [44, 45] and exchange
interaction [46], can be included by using more advanced
energy functionals.
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Appendix. General orbital-free functional theory

As mentioned in the main text, the theory proposed is not
strictly a density functional theory as the electric potential
appears as an argument of the energy functional, differently
from what is common in electronic structure calculations. In
principle, it is still possible to eliminate the electric potential
from the formulation, but the presence of metallic gates makes
the application of the procedure extremely complicated and
cumbersome.

To illustrate the procedure, we can start with the generic
orbital-free functional provided by equation (3) and proceed
to find the minimizing condition for φ. We get

δE
δφ

= ρ(r)+∇ · (ε∇φ(r)) = 0 , (A1)

which is exactly the PE. This is abstractedly solved by the fun-
damental solution G(r) such that

−∇2G(r,r ′) = δ(r ′), (A2)

where δ(r ′) is the Dirac’s delta function.
Therefore, we can express the electric potential as

φ(r) =
ˆ
G(r,r ′)ρ(r)ρ(r ′)dr ′ (A3)

and consequently rewrite the energy functional as a function
of the charge density alone

E[ρ] = K[ρ] +
ˆ
Vextρ(r)dr

+

ˆ
ρ(r)G(r,r ′)ρ(r ′)drdr ′ .

(A4)

This density functional theory formulation is exactly
equivalent to the orbital-free theory that is the object of this
paper. However, it relies on the fundamental solution G(r,r ′)
that is an extremely complicated object in any real case since
in almost any case inhomogeneous permittivity and metallic
gates with nontrivial shapes are present in the system.

For electronic structure calculations, this is not the case and
indeed the PE equations have the simple fundamental solution

G(r,r ′) =
1

4πε|r− r ′|
. (A5)

With this simplification, we can write the total energy func-
tional as a functional of ρ only

E[ρ] = Ek[ρ] +

ˆ
Vextρ(r)dr

+

ˆ
ρ(r)ρ(r ′)

4πε
1

|r− r ′|
dr ′ ,

(A6)

as we have seen that the functional minimization with respect
to φ directly gives PE. This means that we can now minimize
the functional with respect to ρ, and couple this with PE to
capture both the physical behavior fromφ and ρ. Thus we have
decoupled the problem and can now write the functional with
respect to ρ only.

This is exactly the form that we implicitly assume in the
calculations above, and thus the functional we use to derive
the TF and ETF methods. This result is exact in free space, as
it is under the assumption of ε being constant and under the
assumption of no boundary conditions. However, this is not
correct in any real device.
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