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ABSTRACT

In decentralized applications requirements on latency are high. For instance, in trading
applications a millisecond latency advantage can save companies millions of dollars. In
this thesis a design is proposed for an overlay in a decentralized peer-to-peer system
that lowers the latency between connected peers. The overlay is designed and imple-
mented on top of Tribler, a BitTorrent client developed at Delft University of Technol-
ogy. The client continually connects toward the peers with the lowest latency to keep
an established connection towards them. Next to that, the introductions in the peer
discovery mechanism are chosen in such a way that introduced peers have a low la-
tency toward each other. To achieve this latency estimation algorithms are used that
estimate the latency between arbitrary peers in the network. These algorithms require
a limited amount of measured latencies between peers in the network and can estimate
the others. Latencies are continually measured toward peers that have an established
connection to a client. These measured latencies are shared to other peers for further
improvements on the quality of the latency estimation algorithms. The overlay design is
evaluated on the accuracy of the latency estimation algorithms, computation time and
to what extent the connections of a peer are low latency. The results show that the peers
in the overlay are able to connect toward their lowest latency peers despite low accuracy
of the latency estimation algorithms.
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1
INTRODUCTION

In the field of distributed systems new applications are created such as cryptocurren-
cies, online contracts and match making in multiplayer gaming. The requirements on
latency are high in these new systems. In distributed systems multiple processes are ex-
ecuted. Pairs of processes can communicate to each other by passing messages. Some
applications make use of overlay networks built on top of the internet for efficient com-
munication. Widely used distributed systems are peer-to-peer (P2P) networks with no
central administration element. Unlike the traditional client-server model, computers
in P2P networks are called nodes or peers. In this thesis we try to lower the response
time (latency) between nodes in P2P networks. This enables communication to go faster
between P2P applications.

1.1. THE IMPORTANCE OF LATENCY
To show that a low latency is beneficial in a P2P network the latency requirements for
trading and anonymous communication applications are discussed. Latency is a bot-
tleneck for efficient communication and latency sometimes also effects the logic of a
system when, for instance, resources in a trading system are given faster to nodes with a
low latency.

LATENCY IN TRADING

In the past 30 years, trading has become faster. Due to large competition and invest-
ments into technology the time it takes to process a trade has gone from minutes to sec-
onds to milliseconds. In financial technology latencies are at wire speed with definitions
of a "Low latency" under 10 milliseconds and an "Ultra-Low latency" under one millisec-
ond. Around 50% of trades in the U.S. are done with an "Ultra-low latency". Some firms
state that 1 millisecond advantage can save 100 million U.S. dollars [1]. Traders have the
following advantages in low latency systems [2]:

1. Better decision making: Whenever communication on trades arrives later, the de-
cisions of traders are different. Traders continually communicate with each other
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Figure 1.1: Anonymization techniques used in Tribler. There are three layers of the TOR protocol that make
anonymous communication between peers.

by offering bid and ask prices for specific quantities of goods. They also commu-
nicate with each other to cancel trades. When this information is processed later
there is a different overview of the market.

2. Competitive advantage towards other traders: A trader has competitive advantage
when it can respond faster to trades. If a price differentiation takes place, nodes
with a lower latency can act earlier. The goods can then be bought before a price
correction takes place.

3. Higher priority for nodes with a low latency: Offers that arrive first are served
first. To compensate, traders with low latency can lower their price to get a higher
priority[3] [4].

LATENCY IN ANONYMIZATION TECHNIQUES

Another example of an applications with high latency requirements are anonymization
techniques. The time required for data transfers in anonymization techniques is highly
dependent on the latency between nodes. Data is communicated and encrypted via a
chain of nodes to ensure the sender and receiver are unlinkable. The total latency of one
data transfer is greater or equal than the addition of the latency between the chain of
nodes. Especially in the Mix network anonymization technique proposed by Chaum in
1981 latency has a large effect[5]. In mix networks messages are batched at nodes and
batches are forwarded when a certain amount of messages are received. Messages have
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Figure 1.2: Graph of earth in a geometric space with the physical location of peers represented by dots in the
space. The distance between peers estimates the latency.

to wait at nodes before others arrive to be reordered and forwarded. Therefore the to-
tal latency between the sending and receiving node becomes very high. To reduce the
total latency Dingledine et al proposed in 2004 TOR onion routing[6]. In TOR Messages
are not batched but forwarded in real time between a chain of nodes to reduce the la-
tency between sender and receiver. With TOR, only the latencies between nodes are the
bottleneck. Figure 1.1 shows an overview of onion routing.

1.2. LOW LATENCY OVERLAY
A low latency overlay is constructed in this thesis that provides nodes with low latency
connections. Latencies between nodes are estimated with algorithms to make better
decisions when making connections. Various algorithms in the past 15 years have been
proposed that model peers as dots in a geometric space where the distance between
the dots estimates the latency[7] [8] [9] [10] [11]. By changing the coordinates of the
dots, the algorithms improve the latency estimation. Dots in the geometric space can
be interpreted as the physical location of peers on earth. Such interpretations reside
on the assumption that the latency estimation algorithms correctly provide an earth like
map. Figure 1.2 shows the idea of a location space similar to earth with dots representing
peers.

In this thesis the focus is on creating a latency overlay that is computational efficient
and provides peers with low latency connections. The following research question is an-
swered:

How can a computational efficient overlay be created that decreases the latency be-
tween connected peers in the P2P network?
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To answer this question, a number of sub-questions are formulated:

1) Which methods to estimate latencies between computers on the internet have
been introduced in the past?

2) How to create a scalable latency estimation algorithm that can be run in a real
world P2P network?

3) What is the computational performance and accuracy of the new low latency over-
lay?



2
RELATED WORK

In the past 15 years several algorithms have been proposed to estimate latencies between
computers on the internet. By combining the research to the latency estimators with the
state-of-the-art P2P technology a new low latency overlay is designed. This chapter de-
scribes the state-of-the-art P2P technology in section 2.1 and the past research to latency
estimation algorithms in section 2.3. Section 2.2 describes the optimization functions
that are used by the latency estimation algorithms and in section 2.4 some previously
designed overlay systems are described.

2.1. TRIBLER
Tribler is an extension of BitTorrent and includes social phenomena such as friendships
and the existence of communities of users with similar tastes or interests. The social
phenomena are exploited in content discovery, content recommendation and uploading
and downloading of files to increase usability and performance. Tribler has the following
Vision and Mission:

"Push the boundaries of self-organising systems, robust reputation systems and craft
collaborative systems with millions of active participants under continuous attack from
spammers and other adversarial entities[12]."

Since the founding of Tribler in 2005, about 10 to 15 scientists and engineers have
been working on it full-time and added various new features. As of December 2014 Tri-
bler has a build-in version of a Tor-like anonymity system that gives superior protection
to VPN, but no protection against resourceful spying agencies. A reputation system is
included that provides incentives for users to upload resources instead of only down-
loading resources from the network[12]. A screenshot of Tribler is given in figure 2.1.

DISPERSY OVERLAY

Dispersy allows nodes to communicate with each other in Tribler using one or more
overlays. Each overlay is called a community and consists of a group of peers that com-
municate with each other according to specific design criteria in line with the purpose
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Figure 2.1: A screenshot of the Tribler application[14]

.

of the community. There are communities for P2P file sharing, TOR-like anonymity tun-
nels and market exchanges. In every community each node maintains a list of peers
called the neighbourhood with active connections toward the node. Whenever a node
connects to the overlay, the neighbourhood is initially empty. To fill the neighbourhood
with active connections Dispersy has a peer discovery mechanism that introduces peers
to each other and punctures the firewalls protecting the peers[13].

2.2. OPTIMIZATION FUNCTIONS
In this paragraph we discuss the Simplex Downhill and the L-BFGS-B optimization al-
gorithms. The algorithms approximate the minimum of a multi-dimensional objective
function in different ways.

SIMPLEX DOWNHILL ALGORITHM

A widely used optimization function is the simplex downhill algorithm[7] [8] [9] [10]. It
is an applied numerical method used to find the minimum or maximum of an objective
function with a multidimensional input space. It is applied to optimization problems for
which derivatives of the objective function are not known. When optimizing an objective
function with an n dimensional input space the algorithm maintains a set of n +1 test
points where each test point reflects an input variable plus one extra test point. The al-
gorithm takes several steps in which it measures the behaviour of the objective function
when test points are changed. At each step for each test point it is decided whether in-
creasing or decreasing the test point would give a better result for the objective function
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Figure 2.2: Part 1 and 2 of GNP algorithm. The left picture shows the first step of the GNP algorithm with
landmark computation. The right picture shows ordinary host computation with ordinary hosts positioning
themselves next to landmarks[7].

and the test point is updated accordingly. When after several steps the objective func-
tion is converged towards a minimum, the algorithm terminates. The algorithm always
gives an approximation of the minimum of the objective function because sometimes
the algorithm converges toward a local minimum instead of a global minimum[15].

L-BFGS-B
The Limited-Memory Broyden-Fletcher-Goldfarb Algorithm (L-BFGS-B) improves on the
simplex downhill algorithm with mathematics and is especially suited for problems with
large amount of input variables. The basis of the algorithm is similar to other optimiza-
tion techniques in that it tries to optimize a set of test points. Because derivatives of the
input space are not available, the algorithm tries to estimate the inverse Hessian matrix
to make decisions on how to improve the test points for the objective function[16] [17].

2.3. LATENCY ESTIMATION ALGORITHMS
The latency estimation algorithms that are described in this section are coordinate-based.
Each host is represented by a position in a space. The distance between the hosts repre-
sents the two-directional estimated latency. It is difficult and computationally expensive
to find coordinates that provide good estimations. If this has happened, the estimations
are calculated quickly with one euclidean distance calculation.

GNP ALGORITHM

In 2002, Global Network Positioning (GNP), the first latency estimation algorithm by
Zhang et al was [7]. It consists of two steps, Figure 2.2 shows the two steps of the GNP al-
gorithm. In the first step a subset of landmarks L from all hosts H are chosen as points of
reference. It is normal to have around 20 landmarks. Coordinates are found by minimiz-
ing the difference between the real measured latencies and computed distances between
the landmarks. In the second step the coordinates of ordinary hosts are determined. To
find the coordinates of a host H the sum of the differences between the measured and
estimated latencies to all landmarks L is minimized. In both steps the minimization is
done with the simplex downhill algorithm. Any other optimization algorithm can also
be used.
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The complexity of the number of distances that have to be minimized in the first step
is O(|L|2) and the complexity of the second step is O(|H | ∗ |L|). However, in most cases
there are only a small number of landmarks. This means becomes |L| becomes negligible
in the complexity. The complexity of the whole algorithm will then only depend on step
2 and is O(|H |). Whenever the number of landmarks L is larger, the algorithm might
provide higher accuracy, but takes more time to compute. Therefore, a trade-off between
the number of landmarks and accuracy has to be made.

NPS ALGORITHM

The Network Positioning System (NPS) latency estimation algorithm is shortly published
after the GNP algorithm in 2004 and improves GNP by introducing decentralization[8].
Hosts can serve as landmarks for a base of reference points. This makes landmarks much
less critical and less of a bottleneck to the system. If a landmark or connections toward
it fail, the system can recover.

In NPS the two steps method of GNP is used but the landmark calculation is changed.
Each landmark node computes its own coordinates in multiple steps. In a single step
the difference between the measured and computed distance toward other landmarks is
minimized. The computed coordinates are then shared with other landmarks. After one
second, a new step is started and this repeats until convergence is met. Convergence
is achieved if after 3 consecutive iterations a landmark position has not moved by more
than one millisecond. The approach can compute the coordinates of 20 landmarks in
approximately one minute. The resulting positions are just as accurate as the centralized
approach.

VIVALDI ALGORITHM

Vivaldi was published shortly after the GNP algorithm in 2004[9]. It conceptually differs
from GNP in that corrections on coordinates are done with Newtonian physics. Nodes
move step-wise towards other locations in the map according to the force that is exerted
on them. In the model there is a spring placed between each pair of nodes with a rest
length equal to the measured latency between the nodes. Every pair of nodes exert a
force on each other with a strength equal to the displacement of the spring from rest. The
displacement is equal to the difference between the measured and computed latency.
The total force on a single node is the sum of all pair forces.

In the simple decentralized Vivaldi algorithm each node simulates only its own move-
ments. In every step nodes obtain the coordinates from- and measures the latency to-
ward other peers. After receiving this information from a single peer, the node directly
moves in the direction of the node it communicated with. The size of the move is depen-
dent on the time-step. The time-step size δ determines how long the force exerts on a
node.

Because the node moves directly after communication with a single peer, only the
displacement of the spring from that particular peer is reduced. To converge toward the
right coordinate, nodes continually communicate with multiple peers . Figure 2.3 shows
an example of coordinate results after convergence. Nodes that are contacted a lot are
more frequently updated because a node updates itself directly after communication. To
resolve this a node can favor not recently contacted peers and peers that aren’t contacted
frequently. Nodes can do this by maintaining a communication history.



2.3. LATENCY ESTIMATION ALGORITHMS

2

9

Figure 2.3: The node coordinates results by Vivaldi with the King data set (a) in two dimensions, (b) in three
dimensions, (c) with height vectors projected on the x y plane, and (d) with height vectors rotated to show the
heights[9].

The main difficulty in Vivaldi is choosing a right time-step size δ. A large δ often
results in oscillation with no convergence. A small δ leads to convergence, but this can
happen very slowly. In order to solve both problems, Vivaldi varies δ depending on how
certain the node is about its coordinates. Large δ values will help the node to go quickly
to a position, while small δ values allows it to refine itself. Vivaldi also takes into account
the error of the opposing node when changing δ. When the error of the opposing node
is high, δ will be lower. With the approach of changing δ during the run of the algorithm,
there is quick convergence, low oscillation and nodes with high error have lower impact.

PIC
The Practical Internet Coordinates for Distance Estimation (PIC) published in 2004 is a
solution that scales well and does not rely on centralized infrastructure nodes[10]. Any
node in the system can act as a landmark if its coordinates are already calculated. PIC ad-
dresses the problem that peers can choose to obstruct the system by for instance sending
wrong information or manipulating its own coordinates.

New entering nodes determine their coordinates by minimizing the errors in pre-
dicted distances to all landmarks. The authors of the paper experimented with several
error functions to minimize. The one that performed the best was the sum of the squares
of the relative errors. For this error function, the new entering node has to obtain the la-
tencies toward all landmarks. This is done by probing all landmarks before computation.

Three different strategies have been tested to choose a subset of landmarks out of
all nodes. Each strategy is tested in different environments with a variable amount of
routers. Choosing some landmarks close to the new entering nodes and some landmarks
randomly gives the best performance.

To make PIC more secure triangle inequality tests are introduced. In mathematics,
the triangle inequality states that the sum of any two sides must be greater than or equal
to the length of the remaining side. If an attacker lies about its coordinates or its distance
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Figure 2.4: Both figures are from the experiments performed on the data from Xbox game consoles by Lee et
al in 2008. [18] The figure on the left shows the cumulative distribution of the distance between consoles. The
figure on the right shows the latencies measured for each distance between two nodes in miles.

to a joining node the attacker is likely to violate triangle inequality. The security test may
also be useful when dealing with congested network links. When a link is temporarily
congested, it will make the distance between the nodes in the link large and create a
triangle violation. Nodes that require links that have congestion will thus be treated as
an attacking node and ignored.

LATENCY ESTIMATION WITH GEO-LOCATION

In 2008, Lee et al tried to do latency estimation with location data of peers from earth[18].
The IP-addresses of Xbox live game session information for Halo 3 are retrieved and
translated towards locations. Using the commercial MaxMind GeoIP City database from
June 2007, the authors were able to provide the latitude and longitude for over 98% of
the IP addresses. The data set covers over 126 million latency measurements from 5.6
million IP addresses.

It is hypothesized that the geographic distance has a strong correlation with the mea-
sured latency between two consoles. The great-circle distance, the shortest distance be-
tween two points on a sphere, is used to calculate the distances between two consoles
at different geolocations on earth. These distances vary between 0 and 12000 miles and
Figure 2.4 shows a cumulative distribution function for these distances. It can be seen
that about 14% of the console pairs traversed over 5000 miles.

In the right graph of figure 2.4 the relation between the distance and delay is shown.
There is a very strong correlation between the geographic distance and the minimum la-
tency measured between two consoles. Therefore the geography of IP addresses is a use-
ful predictor for filtering out node pairs that have a low latency, but are too far apart for
this. Above the minimum value there is a lot of noise. This means there is no strong cor-
relation between the latency and the geographic distance between node pairs on earth.

HTRAE LATENCY ESTIMATION SYSTEM

Htrae is a latency prediction method published by Microsoft in 2009 merging both net-
work coordinate systems (NCS) and earth geo-location approaches. The way it combines
both methods works is by geographic bootstrapping. NCS coordinates are initialized in
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Figure 2.5: The correlation between the distance and latency. The latency data is the median of the data from
the Halo 3 players database. The distance data is from MaxMind’s IP-to-geo database. There is a clear linear
relation between the distance and the median. The slope of the line is 0.0269 ms/mile and the explained
variance is 97,6% (R2 = 0.976).

such a way that they correspond to the locations of the nodes in space. With better initial
positions, internet latencies can be better predicted.

Figure 2.5 shows the relation between the distance in miles and latencies from the
Halo 3 database. In contrast to figure 2.4, the median is taken at each distance which
show a linear relation between the distance and median latency. The least-squares fit
line is also drawn in figure 2.5. The explained variance percentage of this fit is 97,6%.
This is a high explained variance, suggesting a strong linear relation.

When a new machine enters the system the Htrae algorithm works as follows. At first,
the IP-address is looked up in the commercial MaxMind’s IP-to-geo database. This gives
an initial geo-location for the NCS. A Vivaldi-like algorithm is then used where a node
moves in the direction of the forces that pull on the new node by nearby coordinates.
The Vivaldi algorithm is adapted to use a sphere space with spherical coordinates in-
stead of a linear euclidean space to better model the shape of the earth. An uncertainty
model is also added that is used to calculate the magnitude of the force to apply when
updating coordinates. Uncertainty is defined as the difference between the observed
and estimated latencies. The greater the uncertainty, the stronger the force will be.

The Htrae system implements additional things to improve on NCS systems like Tri-
angle Inequality Violation (TIV) avoidance and autonomous systems (AS) correction.
Triangle Inequality Violations (TIVs) have an impact on the performance of neighbour
selection in P2P systems. TIVs exist due to routing policies and the structure of the inter-
net and will therefore remain in the future. TIVs are removed by skipping the coordinate
update if the measured latency is different from the predicted latency by some number
δ. In AS correction, inefficient routing paths are corrected. When connecting two ran-
dom computers via the internet in as many as 40% of times these computers have an
alternative shorter routing path. Inefficient routing causes a large delay between two
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nodes compared to a more efficient route[11].

2.4. INTERNET OVERLAYS
In this section we describe internet overlays as examples of existing systems. The litera-
ture provides theoretically concepts.

DHASH++
DHash++ is a distributed hash table (DHT) that provides network storage [19]. It has high
requirements on latency because it is designed for applications that read data most of
time. Dhash is built as a layer over the Chord distributed lookup system. Chord provides
a scalable lookup service that maps keys of the DHT to nodes. A node will have the ability
to choose from a set of node to complete a lookup operation. Therefore it is prefered to
choose the node with the lowest latency. For instance, a data item might be replicated
over multiple nodes to create redundancy. It is beneficial retrieve the data from the node
with the lowest latency to save time. To know the latencies between nodes the Vivaldi
latency estimation algorithm is used.

BINNING: TOPOLOGY AWARE OVERLAY CONSTRUCTION

Binning uses topological information about the relationship in nodes to make better
routing policies and reduce latency in overlay networks [20]. Nodes are grouped together
in bins. The latency is reduced by putting nodes that are relatively close to each other
in the same bin. The binning strategy is simple, scalable and completely distributed.
However, the scheme requires a set of well-known landmark machines spread across the
internet. An application node connects to these landmarks and measures its latency.
The measured latencies are used to select a bin. The latencies measured are divided into
multiple levels that order the latency measurements. The ordering of the different levels
to each landmark determines the bin of the node. The method reduces the latency and
performance in the network overlay construction.
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PROBLEM DESCRIPTION

This chapter describes the problems faced when creating a low latency overlay. The main
problem is to make efficient latency estimation algorithms. In order to give low latency
peer introductions to each other, peers should be able to estimate latencies well. Fur-
thermore, the low latency overlay should not be able to be taken down easily. Finally, the
low latency overlay should be resilient against attacks like the eclipse and sybil attack.

3.1. PERFORMANCE OF LATENCY ESTIMATION ALGORITHMS

The first requirement of the low latency overlay is that the latency estimation algorithms
should be computationally and memory efficient with a large number of peers N in the
P2P network. Nodes can run other programs in the background and might not have the
computation power available to run the P2P application with an inefficient algorithm. If
the algorithm computation takes too long, the P2P application maybe blocked. The node
will not be able to respond to communication and the user experience will become bad.
With no response to communication, the latency of a peer toward the blocking node
increases.

The algorithms should also be efficient in memory- and bandwidth usage. The num-
ber of latencies stored in memory and sent over the internet can become large as more
are obtained from other peers. If peers maintain and share all the latency information
they ever received, the space complexity is O(N 2) where N is the number of peers in the
network. With millions of peers N in the network, the memory usage can become Giga-
bytes. The GNP algorithm requires such amounts of memory because it also has space
complexity O(N 2). Therefore, a latency estimation algorithm has to be used that reduces
the amount of latencies sent to other peers and store in memory. Also, choices have to be
made about which latencies to remember and to send toward other peers. Such choices
imply an information loss that could decrease the quality of predictions.

13



3

14 3. PROBLEM DESCRIPTION

3.2. PEER DISCOVERY
A second requirement is that peers should be able to communicate with each other in
both ways even though some peers are behind a Network Address Translation (NAT) box.
Figure 3.1 gives an overview of NAT. To enable communication in both ways, NAT boxes
should be punctured and a peer discovery mechanism is required. In a peer discovery
mechanism peers are introduced to each other and new connections are set up. Low
latency peers should be introduced. In this way peers will automatically make connec-
tions toward low latency peers. It is impossible for the peer discovery mechanism to have
a central authority as this will imply a central point that can be taken down and therefore
let the whole system collapse.

Connections between peers can terminate because punctured holes in NAT boxes
are closed when communication does not occur anymore. Therefore connections to-
ward low latency peers can also terminate. The peer discovery mechanism should try to
maintain the connection toward low latency peers and reconnect if needed.

Figure 3.1: Network Address Translation (NAT). The NAT box has two IP, port combinations. (i p4, por t4 is
available on the local network and i p5, por t5 is available on the internet.

3.3. SECURITY REQUIREMENTS
SYBIL ATTACK

In the Sybil attack an adversary creates multiple pseudonym peers that flood or spam the
P2P network with false information. It is hard to solve the sybil attack because there is no
central authority that can verify the identity of peers and distinguish between pseudonym
peers and non-pseudonym peers. An adversary is able to take peers down with Dis-
tributed Denial of Service [DDoS] attacks using pseudonyms. An adversary can order
multiple pseudonyms to send a lot of peer introduction requests to a target peer. The
target peer is then completely occupied by handling all the introduction requests and
is taken down. It is unable to respond and send messages to normal non-pseudonym
peers.

By letting pseudonyms collude with each other, an adversary can subvert the repu-
tation system of P2P applications. Peers could gain a false high reputation. Reputation
systems are important in a lot of P2P applications. P2P file sharing applications make
use of reputation systems to incentivize peers to share files with other peers instead of
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just using the system. The reputation is then defined as the amount of data shared with
other peers. In the TrustChain online currency application a peer will be denied service
when its reputation is too low [21] [22].

ECLIPSE ATTACK

Eclipse attacks have large implications on P2P networks. An attacker can gain partly or
complete control over the data that is received by a victim node. This is achieved by ma-
nipulating the connections of the victim and its neighbours. Adversaries can introduce
attacking nodes to peers. If attacker nodes control a large part of the connections they
can "eclipse" victims. When this happens, messages that attempt to reach the victim are
dropped or rerouted. If all connections of a peer are from attackers, they will gain full
control over all traffic toward the victim[23].

The eclipse attack is a very powerful and generic attack. We will provide several ex-
amples in cryptocurrency applications where eclipse attacks are used and have direct
financial consequences. In most cryptocurrency systems a decentralized blockchain is
used where transactions are stored in blocks. Nodes use computational proof-of-work to
reach consensus on transactions. These nodes are called miners and by providing com-
putational power to discover blocks they receive a mining reward. The following attacks
on cryptocurrencies use eclipsed nodes as a powerful building block[24].

1) Engineering block races
A block race occurs when two miners discover blocks at the same time. One of these
miners receives the reward for that block and it will become part of the blockchain. The
other miner will be ignored, create an "orphan" block and receives no reward. Attackers
can forge block races by holding back blocks mined by eclipsed miners. When holding
back blocks, a non-eclipsed miner will discover them first and receive the reward.

2) Splitting mining power
By eclipsing a large part of miners from the rest of the network, the 51 % attack becomes
easier. In this attack, the attacker gains control over 51 % of the mining power in the net-
work. The attacker is therefore able to create a separate blockchain. The mining power
reduction of eclipsed miners can be made less detectable by eclipsing them gradually or
intermittently.

3) Selfish mining
The attacker can decide to eclipse certain miners and withhold them from discovering
blocks. Other miners controlled by the attacker have then higher chances of discovering
a block with less competition. In this attack, a is the fraction of nodes used to eclipse
other miners. The fraction of nodes b is used for honest mining. When a increases,
mining becomes easier for the fraction b. Another way to obstruct eclipsed miners is to
only give them a limited view on the blockchain.

4) 0-confirmation double spend
In a 0-confirmation transaction the attacker exploit systems where a merchant gives a
confirmation of the transaction to a customer before the transaction is verified. This
happens in systems where it is inappropriate to wait 5-10 minutes before a transaction
gets confirmed. For instance, the retail service BitPay or gambling sites like Betcoin a
transaction needs to be confirmed immediately. In the attack, coins are double spend
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to the merchant. The attacker first eclipses the merchant and starts a transaction T . Be-
cause the merchant is eclipsed he can never tell the blockchain about T . For the outside
world the transaction T did not happen. The attacker double spends the bitcoins with
another transaction T ′ and rewires the money back to himself.

5) N-confirmation double spend
In a system with N-confirmation transactions, the attacker can also double spend coins
from a merchant. In an N-confirmation transaction the merchant only releases goods
after the transaction is confirmed in a block of depth N - 1 in the block-chain. The attack
requires that not only the merchant is eclipsed, but also a certain fraction of miners. The
attacker starts a transaction T with the merchant but only sends T to the eclipsed miners.
The eclipsed miners incorporate T into their view of the block-chain V ′. The confirma-
tion of T from the eclipsed miners is send to the merchant. After this, the blockchain
view V of the non-eclipsed miners is send toward the merchant and the eclipsed miners.
Therefore, the block-chain view V ′ containing T is orphaned and T never happened.



4
OVERLAY DESIGN

In this chapter we will focus on how the low latency overlay is designed. First the algo-
rithms are described that estimate latencies between peers. The algorithms enable low
latency introductions. Incremental algorithms make the latency estimators computa-
tionally and memory efficient. How the low latency overlay is designed into Tribler is
described in the second section.

DISPERSY

The low latency overlay is build on top of Dispersy. It consists of 1200 lines of code and
can be downloaded open source from Github 1. Two test suits are written to test the code
development, one for unit-tests and one for integration tests. The unit-tests have a test
coverage of 68% and the integration tests have a test coverage of 70%. Dispersy allows
implementing communication protocols on various machines in a distributed system.

The most important terminologies are explained to clarify how Dispersy is implemented[25]
[13] .

Peer A peer is a device running a Dispersy instance.

Node A node is equal to a peer.

P2P network A Peer-to-peer (P2P) network is a network consisting of peers.

Message A message is sent between peers for communication.

Payload The payload defines the content of a message. Every message has a unique
payload design. It defines what is sent in the message.

Latency A latency is the round-trip time of a message between two peers.

Community A community is a subclass of Dispersy with the code implementation of
an overlay. The low latency overlay has its own community class called Latency-
Community.

1https://github.com/basvijzendoorn/tribler/
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Neighbourhood Each node maintains a list of peers to which it has an active connec-
tion. This list is called the neighbourhood. The node can communicate with peers
in the neighbourhood and vice versa.

Peer discovery Procedure where nodes find other peers to connect to. When a new con-
nection is set-up between two peers they add each other to their neighbourhood.

4.1. LATENCY ESTIMATION ALGORITHMS
The focus is on online incremental algorithms to create a computationally and memory
efficient latency estimator (figure 4.1). An online incremental algorithm does not require
the total input of all the measured latencies at once. Instead, the input is given over time
in steps. At each new step, new input en is given and a new intermediate solution sn

is calculated. The variable n denotes the step number. One step should not require
much computational power. Eventually, the incremental algorithm will converge to a
final solution[26] [27].

The 5 latency estimation algorithms are explained in the following paragraphs. Each
algorithm is given a unique name. Using incremental algorithms gives a computational
benefit. Splitting the problem into different parts may reduce the accuracy. Incremental
algorithms have incomplete information because future measured latencies cannot be
taken into account. To cope with this, the relation between past- and newly added in-
formation has to be analyzed. The latency estimation algorithm may reuse information
added in the past.

Figure 4.1: Overview of an online incremental algorithm. At each step a new input event e is added to the
algorithm. A small computation with O(a) complexity is used to calculate a new solution s. The new solution
is used in the next step of the algorithm.

NAIVE ALGORITHM

The naive algorithm is coordinate-based and an error function is minimized. The er-
ror function is equal to the difference between the estimated- and real measured laten-
cies. It assumes that there are n hosts in the system. These hosts H are coordinates in
a two-dimensional geometric space S. Hosts are equivalent to peers and nodes. Every
host Hi ∈ H has its own coordinate C S

i in S. Because S is geometric the distance func-

tion between two host coordinates d(C S
1 ,C S

2 ) is easily calculated by taking the euclidean
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distance between the two hosts H1, H2. The error function requires that latencies are
measured and collected by hosts. The function md(H1, H2) equals the measured latency
between hosts H1, H2 ∈ H .

The following minimization function is calculated to compute the coordinates of
nodes:

fob j (C S
1 ,C S

2 , ...,C S
n ) = ∑

i , j∈{1,2,..,n}|i> j
= ε(d(C S

i ,C S
j ),md(Hi , H j ))

where ε(.) is the error measurement function:

ε(d(.),md(.)) = (d(.)− md(.))2

The minimization algorithm used is L-BFGS-B. It uses less time compared to the sim-
plex downhill algorithm while the accuracy is remained. L-BFGS-B is able to handle large
number of peer coordinates since it is especially suited for large input spaces. The num-
ber of iterations in L-BFGS-B can vary. With more iterations, L-BFGS-B might have an
improved minimization, but more computation time is used.

The complexity of L-BFGS-B is O(m ∗n2) where m is the number of error function
calls and n the number of hosts in the system. P2P applications are not allowed to
distinguish between landmark and non-landmark nodes used in the GNP algorithm.
Therefore, no computational optimizations based on central components can be ap-
plied. Since every pair of coordinates and their representing hosts are used in the objec-
tive function, the complexity of one call is O(n2). The squared relationship implies that
with large n, the algorithm may become computationally too expensive. In large P2P
networks, n can easily be in the order of 100 000 nodes.

SIMPLE INCREMENTAL ALGORITHM

The simple incremental algorithm (Inc) only updates the coordinates of new entered
peers Pnew to the neighbourhood. It is similar to the naive algorithm: It also contains
a two-dimensional geometric space S where every host Hi ∈ H has its own coordinate
C S

i ∈ C . The distance function md(Ha , Hb) equals the measured latency between two

hosts a,b ∈ H . The function d(C S
a ,C S

n ) equals the euclidean distance between the two
coordinates representing hosts a,b ∈ H . These definitions apply to all other incremental
algorithms described in this chapter. The way the coordinates are calculated differs in
each algorithm.

In the simple incremental algorithm "Inc", only the corresponding coordinates C S
a

of each peer pa ∈ Pnew is updated by minimizing its error function. Peers measure the
latencies toward their neighbours and remember the latencies measured toward past
neighbours. The set L contains all the measured latencies between peer a and its neigh-
bours and past neighbours. For each latency l ∈ L there are two peers p1 and p2 between
which the latency l is measured. The collection of all these peers minus peer pa ∈ Pnew

is called Psub with corresponding coordinates Csub . For each of the peers pn ∈ Psub its
corresponding coordinate C S

n ∈ Csub is looked up from memory or created. Whenever
there is a peer pn ∈ Psub with no corresponding coordinate in Csub , its initial coordi-
nates C S

n ∈ C are created by taking two draws from a uniform distribution from 0 to 1.
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The corresponding coordinate C S
a ∈C of the peer pa ∈ Pnew is calculated by minimizing

the following function:

Incob j (C S
a ) = ∑

C S
i ∈Csub

ε(d(C S
a ,C S

i ),md(Ha , Hi ))

where ε(.) is the error measurement function:

ε(d(.),md(.)) = (d(.)− md(.))2

The minimization is done with the L-BFGS-B algorithm like in the naive algorithm.
The total complexity of one step in the "Inc" algorithm is O(m ∗ |L|) where |L| is the size
of the number of latencies measured by one peer and m is the number of error function
calls. The complexity of one minimization function call is O(|L|). As time progresses,
|L| increases because more peers are contacted and latencies are measured. The mini-
mization function is called for each p ∈ Pnew every time the "Inc" algorithm is started.
However, the size of Pnew is negligible and thus not added to the total complexity.

INCREMENTAL ALGORITHM WITH R RANDOM REPEAT

The Incremental algorithm with R random repeat extends the "Inc" algorithm by updat-
ing the coordinates of past calculated peers. This algorithm is called "RandomRepeat".
When the calculating the extension, R random coordinates (C S

1 ,C S
2 ,C j ...S ,C S

R ) ∈ C are
updated with a similar minimization function as in the "Inc" algorithm. The algorithm
of the extension equals:

for each C S
j ∈ (C S

1 ,C S
2 ,C S

j ...,C S
R ) do

Incob j (C S
j ) = ∑

C S
i ∈C S

jsub

ε(d(C S
j ,C S

i ),md(H j , Hi ))

where ε(.) is the error measurement function:

ε(d(.),md(.)) = (d(.)− md(.))2

The subset of coordinates C S
jsub

is calculated in the same way as in the "Inc" algorithm

by taking a subset of latencies L j from the measured latencies. L j is equal to all the
latencies between peer H j ∈ H and its neighbours and past neighbours.

The complexity of the extension is O(m∗R∗|L|). The minimization function is called
for R times extra. Various numbers for R can be chosen to observe the impact on the
computation time and accuracy of the latency estimator.

INCREMENTAL ALGORITHM WITH R FIXED REPEAT

With a random repeat of node updates some nodes are updated more frequently than
others. A structured repeat of coordinate updates is implemented to improve the accu-
racy of the R random repeat algorithm. This algorithm is called "RepeatStructured" or
"Repeat". The structured repeat ensures that all coordinates C are updated once before
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the same node is updated again. In this way no nodes are left behind and none are up-
dated more frequently. Each coordinate of C is numbered. When C increases the new
coordinates are given a new number in incremental order. So the first coordinate that
was put in C is given the number 1, the second the number 2 and so on. Each time the
Repeat algorithm is executed, a new subset of R ⊆ C is selected for updating. Thus the
first time the coordinates with a number smaller than R are selected from C , the second
time the coordinates with a number between R and 2R are selected etc. If after n times
nR > |C |, the selection starts again from the beginning numbers of C . The complexity of
this algorithm is the same as the R random repeat version as the coordinates of R nodes
are updated with the same minimization function. Thus the complexity is O(m∗R∗|L|).

INCREMENTAL ALGORITHM WITH R FIXED REPEAT AND TRIANGLE INEQUALITY VIOLATION

PREVENTION

The Incremental Algorithm with R fixed repeat and Triangle Inequality Violation (TIV)
Prevention is an extension on the "RepeatStructured" algorithm. TIVs are described in
chapter 2. This algorithm is called "TIVPrev". In the extension algorithm peers that are
part of a TIV are ignored. Therefore the coordinates and latencies towards these peers
are ignored in the minimization functions of both the "Inc" and "Repeat" part.

To estimate which latencies are part of TIVs, the "prediction error" is calculated for
every latency that is measured in the past. For every latency l ∈ L and peer pair H1, H2 of
l the following prediction error is calculated:

pr edi ct i on_er r or = d(C S
1 ,C S

2 )
md(H1,H2)

TIVs are prevented by ignoring the three latencies with the largest prediction error. These
latencies are not used in the minimization calculations.

The total complexity of the extension algorithm remains O(m∗R ∗|L|). The TIV pre-
vention requires a sorting of the latencies with merge sort. This has complexity O(|L|l og (|L|)).
However, the sorting happens before the calculation of the minimization function and is
therefore negligible.

4.2. IMPLEMENTATION INTO TRIBLER
This section describes how the low latency overlay is implemented into Tribler. How
the peer discovery mechanism works is described first. Folowed by how the low latency
overlay obtains latency information. Finally is described how the low latency overlay
introduces peers to other peers. An overview of the settings of the overlay is presented in
table 4.1 at the end of the chapter.

DISPERSY PEER DISCOVERY AND NAT PUNCTURING

The design of the current peer discovery mechanism is explained[25] [13]. In the current
implementation a peer introduction request- and response mechanism is build. This
mechanism requests another peer for an introduction and then a response is given. The
result is a list of peers called the candidate list or neighbourhood that each node main-
tains. The peers in the candidate list are called the neighbours of a peer. Data can always
be exchanged between two peers in the candidate list. This implies that if peer A has
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peer B in its candidate list then peer B also has peer A in its candidate list. Both peers
A and B assume the role of client and server and therefore the NAT firewall of one of the
peers has to be punctured.

There are four phases in the current peer discovery mechanism of Dispersy. These
four phases represent one step. A new step is taken in an interval of seconds. The num-
ber of seconds of the interval can be set in the TAKE_STEP_INTERVAL setting. Multi-
ple steps are called a walk, and by walking each peer discovers its neighbourhood. The
TAKE_STEP_INTERVAL setting is chosen to be 5 seconds by default in Dispersy. The four
phases are shown in an overview in figure 4.2.

Figure 4.2: Overview of a step in peer discovery of Dispsery.

1. peer A chooses a peer B from its neighbourhood and it sends to peer B an introduction-
request;

2. peer B chooses a peer C from its neighbourhood to introduce to peer A and sends
peer A an introduction-response containing the address of peer C ; peer A will add the
address of node C to its neighbourhood.

3. peer B sends to peer C a puncture-request containing the address of peer A;

4. peer C sends peer A a puncture message to puncture a hole in its own NAT.

The NAT puncturing is integrated in the peer discovery mechanism. It works by send-
ing puncture messages to other peers. In the third step of a peer discovery step, peer B
asks peer C to puncture a hole in its NAT for peer A. Peer C does this by sending a punc-
ture message toward peer A. When doing this peer C opens a port in its own firewall such
that peer A can send a response. The two-way communication requirement is complete
if peer A can also communicate to peer C . In the second step of a peer discovery step
peer B also sends the address of peer C to peer A. By knowing this address peer A can
send messages toward peer C . Peer C receives these messages through its punctured
hole. The NAT puncturing enables peers to communicate with each other without hav-
ing to worry about the NAT firewalls.
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DISPERSY NODE SELECTION

To prevent against eclipse attacks a node selection policy for step 1 is implemented in
Dispersy[25] [13] . The policy selects a node from the neighbourhood to send an intro-
duction request. The candidate list is divided into categories and Nodes are selected
with pre-defined rules. These categories are:

I) Trusted nodes

II) Nodes we have successfully contacted in the past

IIIa) Nodes who have contacted us in the past by sending an introduction-request.

IIIb) Nodes that have been introduced by another node.

A node which responded to an introduction request is put in category II. The in-
troduced node that was included in the introduction response is put in category IIIb.
Whenever a node receives an introduction request the sender is put in category IIIa. The
trusted nodes category consists of a special list of pre-defined nodes.

When selecting a node, a choice is made from the categories with pre-defined prob-
abilities. The trusted node category I is chosen with a probability of 1%. Category II is
chosen for 49.5% of cases and category IIIa and IIIb are both chosen 24.75%. Some fire-
walls close inactive connections after a certain timeout. When a connection is closed,
both nodes cannot communicate with each other anymore. Therefore, after a category
is chosen, the node with the most recent interactions is selected.

Nodes in the neighbourhood are removed if the probability of a closed punctured
hole is high. Most NAT boxes close punctured holes after a certain period of inactiv-
ity. NAT boxes can close punctured holes after about 60 seconds of no communication.
Therefore peers in category II and IIIa are removed from the neighbourhood after 55
seconds and introduced nodes from category IIIb are removed after 25 seconds. This is
a problem becuase low latency peers could be removed from the neighbourhood. Coun-
termeasures should be taken to keep them.

Dividing the nodes into the categories as described above has a dampening effect on
an eclipse attack. If the attacker tries to perform an eclipse attack by introducing adver-
sary nodes, they are only added to category III and not to category II. Because category II
has a 49,5% selection probability the adversary nodes will not always be selected. There-
fore, the node selection policy mitigates an eclipse attack. It is for an adversary with a lot
of resources still possible to do an eclipse attack. The trusted node group, with a selec-
tion probability of 1%, is added to give additional protection. Whenever a node selects
the trusted group the neighbourhood is completely reset and all adversary nodes in the
candidate list are automatically removed.

4.2.1. OBTAINING LATENCY INFORMATION
In this section two mechanisms are explained to measure and obtain latency informa-
tion: the ping-pong mechanism and the crawling mechanism. The ping-pong mech-
anism measures and shares previously measured latency information. The crawling
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mechanism is an extra feature added to the overlay in order to rapidly share latency in-
formation between peers. In contrast to the ping-pong method this mechanism is band-
width inefficient and not enabled by default.

To make the overlay more memory and computationally efficient only a selected
number of latencies are stored. Latencies toward peers that are closest to the own node
will be remembered. The own node is the peer obtaining the latency information. After
a latency from peer a ∈ P to b ∈ P is obtained, all peers Q with stored latencies toward
a ∈ P are determined. The list Q is sorted in ascending order of the peers that are closest
to the own node in the map of the latency estimation algorithm. The latencies toward a
top number of the closest peers to the own node are stored. This number can be set in
the REMEMBER_LATENCIES setting.

PING-PONG MECHANISM

The ping-pong mechanism has two purposes. At first, the latency between peers is mea-
sured. Secondly, previously measured latencies stored by the Tribler instance are shared
to other peers. The ping-pong mechanism starts in an interval number of seconds by
every peer. The interval can be set in the PING_TIME_INTERVAL setting. By default the
value of the PING_TIME_INTERVAL setting is set to 2 seconds. This setting frequently
updates the latency information of peers with limited bandwidth usage. Frequent updat-
ing is important for two reasons. First, the latency to newly entered peers in the neigh-
bourhood should quickly be measured to use this information in the latency estimation
algorithms. Secondly, the latency between peers can change over time. Nonetheless,
the latency information cannot be updated too frequently because this will increase the
bandwidth cost and processing time too much.

Figure 4.3: Ping payload.

Latency measuring and sharing works as follows. When the ping-pong mechanism
is activated every peer sends all its neighbours a ping message. The peers which receive
the ping message return a pong message. The time when the ping message was send
is stored to compare later with the arrival time of the pong. After the pong has arrived,
the difference between the send and return time is calculated and the latency toward the
neighbour is obtained. The payload format of the ping message is shown in figure 4.3.
The ping message contains the IP and port of the peer sending the ping and the time of
sending plus 10 previously measured latencies. These latencies always contain the peer
who activates the ping-pong mechanism. They are are not between two arbitrary peers.
In 30 seconds with 15 ping messages and default settings are 10∗ 15 = 150 measured
latencies send toward the other peer. In practice, the ping-pong mechanism will first
send the first 10 measured latencies, then the second 10 etc. When all measured latencies
are send the ping-pong mechanism will start again from the beginning and send the first
10 measured latencies again.
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The ping-pong mechanism also shares latencies from two arbitrary peers. These are
added to the 10 previously measured latencies. In a ping message, from shar e_p peers
are shar e_l latencies randomly chosen to send. Thus, in total shar e_p times shar e_l
latencies are additionally send in a ping message. By default shar e_p is equal to 2 peers
and shar e_l is 10 latencies. With these values bandwidth is saved, but over a longer
period, still a significant amount of latencies are shared. The variables shar e_p and
shar e_l can vary to share more or less latencies in the ping message.

With default settings the size of a ping message equals 30∗70+70 = 2100 bytes. The
bandwidth consumption of ping messages cannot be exactly calculated. It depends on
the amount of latencies send in each ping message and the byte cost of one latency (see
figure 4.3). A latency is transferred as a string and therefore varies in size. On average
one latency has a size of around 70 bytes. With default settings 30 latencies are send in
each ping payload. Another 70 bytes are reserved in the message for the IP address, port
and time that are also send in the ping message.

Figure 4.4: Pong payload.

After receiving a ping message, a pong response is given back. Figure 4.4 shows the
payload format of the pong response message. The pong payload contains the IP and
port of the responder. The time from the ping message is copied to the pong payload.
On average the size of the pong payload equals 70 bytes.

CRAWLING MECHANISM

When the crawling mechanism is active, in an interval of seconds a crawl request is sent
to all neighbours of a peer. The interval can be set in the CRAWL_TIME_INTERVAL set-
ting. The standard CRAWL_TIME_INTERVAL is 15 seconds. Figure 4.5 shows what hap-
pens when the crawl request is sent. The mechanism consumes a vast amount of band-
width and is therefore not activated by default. Each peer that receives a crawl request
forwards it to other peers. It also sends all its obtained latencies back to the requesting
peer. By forwarding latency requests more peers are reached. After a latency request
message is received, the receiver returns its obtained latencies.

The forwarding construction is built, because peers can only communicate with their
neighbours. Peers cannot directly send back the latency information to the initiator of
the crawl request. This would require puncturing the NAT firewall of the initiator.

An overview of the latency request payload is shown in figure 4.6. The IP address and
port of the peer requesting the crawl is stored in the message. The hop count variable
denotes how many times the message has been forwarded. It is increased each time the
message is forwarded. The peer that sends the first crawl message sets the hop variable
to 0. If the hop count exceeds the MAXIMUM_HOP_COUNT setting variable the mes-
sage is not forwarded anymore. This limits the traffic on the P2P network. The relay list
contains a list of unique variables that is used when sending the response latency mes-
sage. It is used in the forwarding mechanism in order to know to which peer the latency
response should be forwarded back. The byte cost of one message varies and depends
on the size of the relay list. In default settings MAXIMUM_HOP_COUNT is equal to two
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Figure 4.5: The left figure shows what happens when peer P1 sends a crawl request. The crawl request is
forwarded to its neighbours P2, P3 and P4. These peers forward the crawl request to their neighbours. In the
right figure the latency response message is shown. All peers send back their latency information to the peer
from who they received the crawl request message. These peers forward this response message back until the
original crawler P1 is reached.

and the relay list has a maximum size of around 10 bytes. In default settings, another 50
bytes are added to the byte cost for the IP address, port and hops variables. Therefore
the total byte cost is around 10+50 = 60 bytes.

Figure 4.6: Overview of crawl request payload.

The latency response message payload is shown in figure 4.7. The IP address and port
contain the address of the peer returning the latency response message. The relay list is
used by the forwarding mechanism. The latencies in the payload are all the latencies a
peer knows. They are send backward toward the initiator of the crawl. The latencies are
stored in a dictionary for transfer. The two addresses of the peers of the latency are keys
and the latency between the two peers is the look-up value of the key. The dictionary is
serialized to a string for easy transfer in the payload. Since all known latencies of a peer
are send in the response payload its byte cost is impossible to estimate. The byte cost
can become large as the number of obtained latencies increases.

THE FORWARDING MECHANISM

The forwarding mechanism consists of two parts. In the first part crawl request messages
are forwarded to reach many peers. In the second part latencies are returned by all peers
that received a request message. The returned latencies are sent back to the original
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Figure 4.7: Overview of latency response payload.

requester with the same route as the requests were send. Both the crawl request and
latency response message contain a relay list that is used in the forwarding mechanism.

Figure 4.8: Peer forwarding scheme. In each communication line the r el ay_l i st is given. Each peer adds a
new relay id to the r el ay_l i st . When a peer receives a message the r el ay s dictionary is updated with the last
added r el ay_i d as key and the peer which sends the message as result. The hop count is also increased at
each forward.

In the first part of the mechanism the crawl request messages are forwarded to other
peers (figure 4.8). Each time the message is forwarded a unique r el ay_i d is created by
the peer and is added to the relay list. When a peer receives a crawl request message
the address of the sender is saved in the r el ay s dictionary. The last r el ay_i d on the
relay list is used as a key in the r el ay s dictionary. With the r el ay_i d key, the peer can
know to which address the response with latencies has to be sent back in the second
part. The unique r el ay_i d is created using the global time variable in dispersy plus the
address of the peer. The global time variable is a lamport clock used for message ordering
inside a dispersy community. With global time each message used in the community
can be uniquely identified in combination with the node which sends the message and
the community id. If r el ay_i d is not unique the key in the r el ay s dictionary might be
overwritten and the response message could arrive at the wrong peer.

In the second part the latency responses are sent back to the peer that initiated the
crawl (figure 4.9). After arrival of a latency response message, the last r el ay_i d of the
r el ay_l i st in the message is popped and used as a key in the r el ay s dictionary. As
can be seen in figure 4.9, the key returns the address of the next peer in the forward-
ing chain from the r el ay s dictionary. The item corresponding to the dictionary key is
deleted when the latency response is forwarded back. It is of no further use and by delet-
ing it the crawl mechanism stays memory efficient.

Sometimes the peer to which the latency response has to be forwarded back is no
longer in the neighbourhood. In that case the crawl initiator will never retrieve the la-
tencies and has to wait before the crawler is actived again.



4

28 4. OVERLAY DESIGN

Figure 4.9: Peer forwarding scheme upon return. When the hop count exceeds the hop count limit the latencies
are returned. The peer pops the last r el ay_i d from the r el ay_l i st and uses this id to lookup the peer to
backward the latencies to in the r el ay s dictionary.

4.2.2. LOW LATENCY OVERLAY

A few changes are made in the peer discovery mechanism to enable low latency intro-
ductions. In the second phase of a step the introduction peer C is chosen from the neigh-
bourhood of peer B to introduce to peer A. It is chosen in such a way that the latency
between peer A and the introduction peer C is low. Peer B uses the latency estimation al-
gorithm to know which neighbours of B have a low latency with A. Peer B knows this by
calculating the distances between his neighbours and A in the map that was constructed
by the algorithm. Load balancing is set up to avoid that the same peer is introduced
multiple times. This is important, otherwise the introduction has no extra value and be-
comes meaningless. The load balancing is implemented by choosing to introduce one
of the top BALANCE_INTRODUCTIONS peers with the lowest estimated latency toward
A. By default the BALANCE_INTRODUCTIONS setting variable is equal to 3.

Due to NAT timeouts, peers are removed from the neighbourhood. This has a large
implication on the quality of introductions and walking requirements. It is not possi-
ble to introduce peers that are not in the neighbourhood because their firewalls are not
punctured. When not all peers in the network can be introduced, it is inevitable that low
quality peers are introduced with high latency.

The peer discovery mechanism is changed to keep low latency peers in the neigh-
bourhood. It is changed to always prefer to take steps toward one of the top 10 lowest
latency peers in the neighbourhood. NAT-timeouts do not occur because there is still
communication between the peers. The TAKE_STEP_INTERVAL setting is lowered to 1
second to further incentivize preservation of the low latency peers. Load balancing is
also set up in the walking mechanism by repetitively choosing one of the top 10 lowest
latency peers. By default the above described new walking mechanism is set up, but the
old mechanism can also be used to add additional randomness. The old mechanism
is described in the Dispersy node selection paragraph. In the "OldMechanism" setting,
in 50% of node selections the old mechanism is used and in the other 50% one of the
top 10 lowest latency peers is chosen. The randomness of node selection in this setting
dampens the eclipse attack.

The quality of introductions can increase with the cluster effect. In the map of the
latency estimation algorithm peers can become clustered. This means these peers are
close together and have a low latency toward each other (Figure 4.10). Probabilities are
high that peers in such clusters have each other in their neighbourhood. Therefore,
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Figure 4.10: Schematic overview of the cluster effect with a map result of the latency estimation algorithm.
Peers A, B, C and D are clustered together and have each other in their neighbourhood. They will introduce
members of the cluster to each other. Peer E is less likely to be introduced because it is further away from peers
A, B, C and D and it does not belong to the top lowest latency peers of cluster members.

members of the cluster are more likely to be introduced and stepped forward to. The
clusters can increase the quality of introductions if peers already know their lowest la-
tency neighbours in the network. They can compensate for the negative effects of the
limited available peers in the neighbourhood due to NAT timeouts.

Newly introduced peers are stored in Pnew . They are used as input to the latency
estimation algorithm. The incremental algorithm can only benefit from the newly in-
troduced peer if latencies toward that peer are obtained. The latency information is ob-
tained after introduction with the ping-pong mechanism or the crawling mechanism. In
the default setting the ping-pong mechanism is activated every 2 seconds. This means
that in the worst case scenario the latencies toward peers of Pnew are obtained two sec-
onds after introduction.

One of the latency estimation algorithms is run in the background. This is imple-
mented by calling two functions in intervals. The first function call updates the coordi-
nates of new discovered peers. The coordinates of the peers of Pnew are computed in an
interval amount of seconds. The interval can be set with the COORDINATE_TIME_INTERVAL
setting. When no latencies were obtained from a peer of Pnew , no coordinate calcula-
tion can be done. These peers will stay in Pnew until latencies are obtained. Other peers
are removed from Pnew . By default COORDINATE_TIME_INTERVAL is chosen to be 3
seconds. With an interval of 3 seconds, the overlay should have enough time to obtain
latencies of a peer that was recently added to Pnew .

The second interval updates previously calculated coordinates when the "Repeat-
Structured" and "TIVPrev" algorithms are used. Every second a number of previously
calculated coordinates are updated. The number can be set with the NUMBER_OF_REPEATS
setting. By default NUMBER_OF_REPEATS is set to 1 coordinate. This is provisional,
because the repetition is done every second. With default settings, 10 coordinates are
updated after 10 seconds.
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Name Description Options Default
setting

Latency estimation
algorithm

The latency estimation algorithm
used in the overlay.

Inc, Re-
peat,
TIV

TIV

TAKE STEP INTER-
VAL

Interval time between steps in the
peer discovery mechanism.

Integer
(seconds)

1

COORDINATE TIME
INTERVAL

Interval time at which a new incre-
mental step in the latency estima-
tion algorithm is taken.

Integer
(seconds)

3

NUMBER OF RE-
PEATS

Number of coordinates that are
updated every second for the
"TIV" and "Repeat" algorithms.

Integer
(coordi-
nates)

1

Remember latencies Number of latencies to remember
for one peer after new latencies are
obtained.

Integer
(latencies)

100

Ping-pong mecha-
nism

Mechanism to measure and share
latencies.

On/off On

Share extra latencies
in ping-pong mech-
anism

Share extra latencies obtained
from other peers in ping-pong
mechanism

On/off On

PING TIME INTER-
VAL

Interval at which the ping-pong
mechanism is activated

Integer
(seconds)

2

Crawling mecha-
nism

Mechanism to obtain latencies
from other peers.

On/Off Off

CRAWL TIME IN-
TERVAL

Interval at which the crawling
mechanism is activated

Integer
(seconds)

15

MAXIMUM HOP
COUNT

Maximum number of times
crawler request is forwarded

Integer 1

BALANCE INTRO-
DUCTIONS

Number of peers to load balance
in introductions.

Integer 4

Step toward low la-
tency peers

If on, always take steps toward
the top 10 low latency peers in
the neighbourhood. If off 50% of
times the normal dispersy mecha-
nism is used.

On/Off On

Table 4.1: Overview of low latency overlay settings.
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EXPERIMENTS

In this chapter a description is given of the experiments that test the low latency overlay.
We will first describe the performance metrics used in the experiments. After that the
experiments are described.

5.1. PERFORMANCE METRICS

COMPUTATION TIME

The computation time performance metric measures how much time Tribler is consec-
utively computing a part of the latency estimation algorithm. It can be easily calculated
by taking the time difference of the time before and after the computation. When the
computation is spread in some algorithms, each computational part that requires a sep-
arate calculation is measured as such single consecutive computation. This happens in
the "Repeat" and "TIVPrev" algorithms where coordinates are updated.

RELATIVE ERROR

The relative error metric measures the overall estimation performance of the algorithm.
In all algorithms the estimated latency between peers a and b is equal to the euclidean
distance between the two corresponding coordinates in a geometrical space S. For each
estimated latency the local relative error is defined as follows:

r el ati ve_er r or = |est i mated_l atenc y−measur ed_l atenc y |
mi n(est i mated_l atenc y,measur ed_l atenc y)

A value of zero implies a perfect prediction as the estimated latency and measured
latency are equal while a value of one would imply that the estimated latency is larger by
a factor of two. The relative error performance metric is the average of all local relative
errors between every peer pair in the map. If the map contains n peers, there are n2

peer pairs and local relative errors. Thus, if the map contains 500 peers, the average of
500∗500 = 250000 local relative errors is taken.

31
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RANKING ACCURACY

The ranking accuracy metric measures the predictive quality of the latency estimation
algorithms. It is a good metric to evaluate the selective performance. In other words, how
well can the algorithm make predictions on what peers have a low latency toward one
other. Suppose we have a set of P peers that form a P2P network. The ranking accuracy
metric is the average of the local ranking accuracies of all peers of P .

The local ranking accuracy of a peer a ∈ P is calculated as follows. The subset Ba ⊆ P
are all the peers that were introduced to a ∈ P . The latencies from a to all peers of Ba are
estimated and sorted in the ascending list Ea . Each element of Ea is a tuple (b,e) where
b ∈ Ba and e is the estimated latency from peer a to b ∈ Ba . The measured latencies from
peer a to all peers of Ba are also sorted in an ascending list Ma . Each element of Ma is
a tuple (b,m) where b ∈ Ba and m is the measured latency from peer a ∈ P to b ∈ Ba .
Because we are only interested in the accuracy of the lowest latencies, only the top 10%
lowest latency tuples in the sorted lists Ea and Ma are used. These tuples are stored
in the lists E10a and K 10a . The local ranking accuracy of peer a ∈ P is defined as the
percentage of peers that is both in the tuples of E10a and K 10a .

TOP 10 LOWEST LATENCY PEERS

The top 10 lowest latency peers metric measures the quality of the neighbourhood. The
metric is determined for a node a ∈ P in the following way. First is calculated which 10
peers have the lowest latency toward node a. This is done by using the latency data-set.
The number of these peers that is in the neighbourhood of node a equals the perfor-
mance metric.

QUALITY OF INTRODUCTIONS

The quality of introductions metric measures how well introductions provide low latency
peers for the node receiving the introduction. The calculation of the metric is explained
with an example. Suppose there is a P2P network of P peers where node a introduces
peer b to c. The peers a,b and c are random chosen peers of P . The metric is calculated
by peer c. The latencies between all peers P and node c are sorted in ascending order.
These latencies are extracted from the data-set. The quality of introductions is equal to
the position in the sorted list that corresponds to the latency from peer b to peer c. With
this definition, a value of 1 would imply that the lowest latency peer is introduced to
node c. A value of 20 would imply that the twentieth lowest latency peer is introduced to
node c.

5.2. ALGORITHM VALIDATION EXPERIMENT
The goal of the algorithm validation experiment is to test the behaviour of the algo-
rithms. The experiment is not executed on a distributed system and is not meant to
test the overlay.

SETUP

The algorithms, "Naive", "Repeat", "TIVPrev" and "Inc" described in chapter 4 have been
implemented and are validated on a single machine. The algorithms were run on a com-
puter with a dual core 2.8 GHz processor. In the experiment, the peer discovery mech-
anism is simulated by incrementally adding peers. In the beginning of the experiment
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there are 0 peers in the network. Every time a new peer is added an incremental step of
the algorithm is taken. Complete information over the latencies toward all other peers
is provided. After every incremental step the computation time of one incremental step
the ranking accuracy, and the relative error are calculated. The experiment stops after
1000 peers entered the system. The value for R in the Repeat and TIVPrev algorithm is
equal to 20.

Latencies are extracted from the King Dataset. The King data-set contains is a 1740x1740
matrix with latencies measured between 1740 DNS servers[28]. The entry on row n and
column m contains the latency measurement from DNS server n to m. An entry is cal-
culated as follows. At first the latency of two DNS lookups toward the severs n and m are
measured 5 times and averaged. The DNS lookup of the second server m is routed via
the first. Therefore the difference between the latencies of the DNS lookups is equal to
the latency from n to m. The latencies are measured multiple times to reduce potential
inaccuracies due to variatons by transient network conditions. Gummadi and authors
show that the latencies measured in the king dataset are indistinguishable from ICMP
ping times.

The latencies from the King Dataset are between DNS servers and are not represen-
tative for the environment in which Tribler typically operates. Tribler instances are run
on end-user devices such as mobile phones and personal computers with more volatile
network conditions. Therefore the validity in real-world conditions is limited. However,
latencies are still measured between real-world computers. The relation between the
distance and latency (see figure 2.4) is still encapsulated in the experiment.

Figure 5.1: Graph of the computation time metric for different settings in the algorithm validation experiment.
The x-axis are the number of peers that enter the system. The metric is the average of 10 x-axis values.

RESULTS

The computation time of the naive algorithm grows quadratic, while the computation
time of the other algorithms grow linearly (figure 5.1). These behaviours can be ex-
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Figure 5.2: Graph of the relative error metric for different settings in the algorithm validation experiment. The
x-axis are the number of peers that enter the system. The metric is the average of 10 x-axis values.

plained by the complexity of the algorithms. The naive algorithm grows parabolic be-
cause it has complexity O(m ∗n2) where n is the number of peers in the system and m
is the number of error function calls. After 30 peers entered the run for the naive algo-
rithm is stopped because the computation time is too high. The complexity of one step
of the Inc algorithm is O(m ∗ |L|) where |L| is the size of the number of latencies mea-
sured by one peer. Complete information is assumed and new peers know all latencies
toward all other peers in the system. Therefore, |L| = n and the complexity of the Inc
algorithm becomes O(m ∗n). The Repeat and TIVPrev algorithms have a higher growth
rate compared to Inc due to R coordinate updates. The complexity is O(m ∗R ∗n).

The computation times of the TIVPrev and Repeat algorithm eventually become larger
than 0.5 seconds. This means the computation time becomes problematic in networks
with large number of peers. For instance, in networks with millions of peers the Repeat
and TIVPrev algorithms will use such a large computation time that the user experience
is effected. Users will be limited in using other applications simultaneously. This seems
not to be a problem with the Inc algorithm because the linear growth is smaller. After
1000 incremental steps the computation time of the Inc algorithm is still smaller than
0.1 seconds.

Repetitively updating past calculated coordinates is highly beneficial for higher ac-
curacy and faster convergence. When looking at the ranking accuracy and relative er-
ror performance metrics the TIVPrev and Repeat algorithms have the best performance
(figure 5.2 and 5.3). They converge in less than 30 steps and have after convergence a
ranking accuracy between 50% and 60% and a relative error close to 0.30.

In incremental algorithms the information is added in phases and thus no perfect
decisions can be made. With no compensation in the Inc run the performance is worst.
The run has a ranking accuracy after convergence between 40% and 50% and a relative
error around 0.35. With the Repeat and TIVPrev algorithms a compensation mechanism
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Figure 5.3: Graph of the ranking accuracy metric for different settings in the algorithm validation experiment.
The x-axis are the number of peers that enter the system. The metric is the average of 10 x-axis values.

is implemented. Decisions from the past are reconsidered. With new latency informa-
tion positions of past calculated coordinates are updated. This comes with the price of
extra computation time when updating the coordinates.

Even though the naive algorithm uses a lot of computation time, it does not have the
best accuracy. The accuracy is between the Inc- and the Repeat and TIVPrev algorithms.
An explanation for the bad performance is that it could be hard to find a global minimum
when minimizing the objective function. In the naive algorithm the coordinates of all
corresponding hosts are in one objective function. When the coordinates of one host
changes, the error of another host is influenced. Therefore, minimizing the function can
be become rather complex. Therefore the minimization algorithm has higher probability
to converge to a local minimum.

5.3. SYNTHETIC EXPERIMENT
The goal of the synthetic experiment is to validate the correct implementation of the low
latency overlay in Tribler. It is executed with a synthetic dataset. In the first part of the
experiment the accuracy is measured. In the second part is tested how well the overlay
reacts to new entering peers to the network.

ENVIRONMENT PART 1
In the first part the low latency overlay is run with default settings on 500 Tribler in-
stances, using 35 nodes. The nodes are managed by the ASCI Supercomputer 5 (DAS5)
server cluster. Gumby is used as experiment framework to gather results [29]. Every
10 seconds the performance metrics "Relative Error" and "Ranking accuracy" are com-
puted for every Tribler instance. The number of repetitions R done every second is set
to 20 to enhance the speed of convergence. The balance introductions setting is set to
8. At the end of the experiment Gumby aggregates and averages the results at each time
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Figure 5.4: The figure shows the ranking accuracy metric calculated every 10 seconds in the synthetic exper-
iment part 1. Each line represents the average ranking accuracy over every peer for a different algorithm at a
certain point in time.

point. The experiment is run for 320 seconds to make the algorithms converge.
A synthetic dataset is constructed with latencies extracted from a two-dimensional

map with 500 points. The coordinates of the points are randomly chosen between zero
and 1. Latencies in the dataset are equal to the distances between the points in the map.
Because the latencies are directly extracted from the map, it is expected that the latency
estimation algorithms should give near-perfect predictions.

RESULTS PART 1
The experiment shows that the low latency overlay is correctly implemented. In the
runs with the "TIVPrev" and "Repeat" latency estimation algorithms, all accuracy per-
formance metrics converge to optimal values (figures 5.4, 5.5). With the "Ranking Ac-
curacy" at almost 100% and the "Relative error" approximately zero the algorithms give
near-perfect predictions after 300 seconds. The perfect predictions imply that all peers
can be modeled as coordinates in a map where distances correctly estimate latencies.
The TIVPrev and Repeat algorithms show that they can correctly reproduce the original
peer locations of the data-set.

At the end of the experiment in the Inc run the predictions are not of high quality.
The "Ranking Accuracy" is below 10% and the "Relative Error" is higher than 1 (figures
5.4 and 5.5). It appears to be highly beneficial to repetitively update past calculated coor-
dinates to give a compensation to the inability of incremental algorithms to process all
input information at once. When new latencies arrive past calculated coordinates can
be updated that give better estimations. In the Inc run this does not happen.

ENVIRONMENT PART 2
In the second part the reaction of the low latency overlay to new entering peers is tested.
The low latency overlay is run with the same settings and synthetic dataset as in the
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Figure 5.5: The figure shows the relative error metric calculated every 10 seconds in the synthetic experiment
part 1. Each line represents the average relative error over every peer for a different algorithm at a certain point
in time.

first. The experiment is run 600 seconds. Ten peers enter the network after 400 seconds.
Before they enter, they do not participate. Every 10 seconds the performance metrics
"Quality of introductions" and "Top 10 lowest latency neighbours" are computed for the
ten entering peers.

RESULTS PART 2
With near 100% latency prediction quality in the "TIVPrev" and "Repeat" runs after 400
seconds, the neighbourhoods of the new entering peers are rapidly occupied with low
latency peers. The "Quality of introductions" metric converges to a value around 5 after
50 seconds. With a value of 5 there is still some variation in the introductions. Multiple
low latency peers are introduced to get a high quality neighbourhood. With a value of 1
the lowest latency peer would always be introduced and the new entering peers would
not have a variety of low latency peers in their neighbourhood. After 80 seconds "Top 10
lowest latency neighbours" converges to almost perfect conditions (see figures 5.6 and
5.7). In the first 50 seconds the quality of introductions is higher because the latencies
toward new entering peers are not yet well estimated. As more latencies are measured
toward new entering peers the estimations become better.

As the new entering peers establish themselves in the neighbourhoods of nodes, the
cluster effect adds to the quality of the overlay. The cluster effect is shown in figure 4.10.
Clusters of nodes that have a low latency toward each other are more often introduced to
other peers of the cluster. Therefore the number of low latency peers in the neighbour-
hood increases.

In the Inc run, the "Quality of introductions" converge below 50 and the "Top 10 low-
est latency neighbours converges to a value of 9 (see figures 5.6 and 5.7). Despite the
limited predictability of the Inc algorithm, the performance is high. This can only be
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Figure 5.6: The figure shows the quality of introductions metric calculated every 10 seconds in the synthetic
experiment part 2. Each line represents the average quality of introductions over every peer for each different
algorithm at a certain point in time.

Figure 5.7: The figure shows the top 10 lowest latency neighbours metric calculated every 10 seconds in the
synthetic experiment part 2. Each line represents the average top 10 lowest latency peers metric over every
peer for each different algorithm at a certain point in time.
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explained with the cluster effect. As more low latency peers gets occupied in the neigh-
bourhood the quality of introductions increases.

5.4. ACCURACY EXPERIMENT
The goal of the experiment is to measure the performance of the low latency overlay.
Multiple Tribler instances are run with different settings.

ENVIRONMENT

The experiment runs the low latency overlay with various settings on 500 Tribler in-
stances, using 35 nodes. Gumby is used as experiment framework to gather results. The
nodes are managed by the ASCI Supercomputer 5 (DAS5) server cluster. The experiment
is run 2200 seconds. Every 10 seconds the performance metrics "Relative Error", "Rank-
ing accuracy", "Quality of introductions" and "Top 10 lowest latency neighbours" are
computed for every Tribler instance. At the end of the experiment Gumby aggregates
and averages the results at each time point.

Latencies are extracted from the King Dataset in the same way as in the algorithm
validation experiment. To integrate the King Dataset in Tribler each node in the P2P
network is given a unique ID. The ID is an integer from 1 to 500. Whenever a node wants
to lookup the latency measurement between two nodes with ID a and b it uses the King
Dataset. The node retrieves the latency measurement between DNS Server a and b. This
latency is in row a and column b of the King Dataset.

Different settings are tested in runs. The three different algorithms "TIVPrev", "Re-
peat" and "Inc" are run with default settings. Next to that is the "TIVPrev" algorithm
run three additional times with other settings in the "TIV20Repeat", "TIVSlowWalk" and
"TIVOldMethod" runs. In the "TIV20Repeat" run, previously calculated coordinates are
updated 20 times a second. The default setting updates just once a second. The "TIVS-
lowWalk" the interval time between two walker steps is increased to 5 seconds. With the
"TIVOldMethod" setting the overlay uses 50% of times the normal dispersy node selec-
tion method when taking a step.

RESULTS

Using the measured latencies of the king-dataset does not result in perfect predictions.
The results of the accuracy of the latency estimation algorithms can be seen in figures
5.9 and 5.10. After convergence the relative error converges to a value around 0.35 and
the ranking accuracy to 45% for the "TIVPrev", "TIVOldMethod" and "TIVSlowWalk" and
"Repeat" runs. There are other factors that explain the latency differences between com-
puters than their physical distance. Routing policies, Triangle inequality violations and
the used transmission medium also effect the latency. Therefore, the locations of the
DNS-servers of the king data-set cannot be perfectly modeled to corresponding coor-
dinates in a two-dimensional map where the distances perfectly predict latencies. The
location model gives limited predictions.

Compared to the algorithm validation experiment on a single machine the Tribler
implementation has a similarly but slightly less accurate latency estimator. The best run
in the Tribler implementation has a difference of about 5% to 10% in ranking accuracy
and 0.05 in relative error compared to the experiment on a single machine (see figures
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Figure 5.8: The figure shows the computation time metric calculated every 10 seconds in the accuracy experi-
ment. The x-axis is the elapsed time of the experiment. Each line represent the average computation time over
every peer for each different run at a certain point in time.

Figure 5.9: The figure shows the ranking accuracy metric calculated every 10 seconds in the accuracy exper-
iment. Each line represents the average ranking accuracy over every peer for each different algorithm at a
certain point in time.
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Figure 5.10: The figure shows the relative error metric calculated every 10 seconds in the accuracy experiment.
Each line represents the average relative error over every peer for each different algorithm at a certain point in
time.

Figure 5.11: The figure shows the quality of introductions metric calculated every 10 seconds in the accuracy
experiment. Each line represents the average relative error over every peer for each different algorithm at a
certain point in time.



5

42 5. EXPERIMENTS

Figure 5.12: The figure shows the top 10 lowest latency peers in neighbourhood metric calculated every 10
seconds in the accuracy experiment. Each line represents the average relative error over every peer for each
different algorithm at a certain point in time.

5.9, 5.10, 5.3 and 5.2). The only explanation are the differences in available latency in-
formation in both experiments. In the single machine experiment the knowledge of all
latencies between peers is assumed while in the Tribler implementation they first have
to be obtained. At the end of the accuracy experiment runs not all latencies between
peers have been obtained.

The accuracy performance cannot be translated one-to-one toward real-world set-
tings. The latencies from the King Dataset are between DNS servers instead of end-user
devices in which Tribler operates. In the real world the latencies are probably higher and
more volatile due to network conditions. This could have an implication on the accuracy
of the estimations. It might be harder for the algorithms to find coordinates that provide
the same results for the relative error and ranking accuracy.

The frequency of updating past calculated coordinates has a large effect on the speed
of convergence. In the TIV20Repeat run, twenty coordinates are updated per second.
Therefore the quality of predictions of the latency estimation algorithm converges ear-
lier compared to other runs (see figures 5.9, 5.10). In each update new arrived latency
information is taken into account. More frequent updating allow the latency estimator
to captivate new information on peers and latencies with higher speed. It is beneficial
to do this since with incremental algorithms temporarily solutions are created with in-
complete input. When new information arrives the old solution should be reconsidered
and updated. In the Inc run there are no updates and therefore the quality of predictions
is much lower. There is a large prediction quality difference between the Inc run and
runs that feature updating of past coordinates. After 1600 seconds of elapsed time in the
experiment, the ranking accuracy difference is almost 30% and the relative error differs
0.5 (see figures 5.9, 5.10). The accuracy benefit of more frequent updating comes at the
cost of computation time (see figure 5.8). With 20 updates per second computation time
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rises to 0.5 seconds. With only one update per second the computation time is less than
0.05 seconds.

The performance of the latency estimation algorithms has an effect on the quality
of introductions but less than expected (see figure 5.11). When the estimators quality is
high with runs that repetitively update coordinates the quality of introductions converge
to an average about 50. This value means that on average the fiftieth lowest latency is
introduced. In the Inc run, it converges to an average around 75. The explanation for this
is simple. When the overlay knows which peers have a low latency toward each other it
is capable of introducing them. With no knowledge, the introduction quality decreases.
However, despite bad predictability of the Inc algorithm the introduction quality is still
quite high. This can only be explained with the cluster effect. When more of the lowest
latency neighbours are discovered, the introduction quality automatically increases.

It is interesting to note that despite the high performance in latency prediction, the
TIVSlowWalk run has the worst performance in neighbourhood quality (see figure 5.12).
At the end of the experiment 70% of the 10 lowest latency peers are in the neighbour-
hood. In the TIVSlowWalk run the interval between steps in the peer discovery mecha-
nism is set to 5 seconds instead of one. With slower walking, the overlay is not able to
keep all lowest latency peers in the neighbourhood. The explanation for this is that peers
leave the neighbourhood because the firewall closes the connection. This happens af-
ter a certain period, usually one minute, of inactivity. With a 5 seconds interval only
60/5 = 12 steps are made per minute.

When walking less steps a minute in the TIVSlowWalk run, the quality of the latency
estimation algorithms converges to the same point as with the TIV run, but slower (see
figure 5.10 and 5.9). The reason is that it takes more time to obtain latency information.
Latency information is important for letting the latency information algorithms perform
well. With the TIVSlowWalk run, the quality of introductions is lower (see figure 5.11).
This can be explained with the cluster effect. The cluster effect adds to the quality of the
overlay if there are low latency peers in the neighbourhood. However, there are less of
the lowest latency peers in the neighbourhood compared to other runs. Therefore the
cluster effect is less effective.

When using the original Dispersy method for node selection 50% of times in the
TIVOldMethod run, the quality of the neighbourhood converges to better results despite
lower introduction and equal latency estimation quality (5.12, 5.11, 5.10 and 5.9). The
original Dispersy method adds more randomness to the overlay to dampen the eclipse
attack. The explanation for the better neighbourhood quality is that with randomization
the overlay gets a higher variety of neighbours. In the new node selection mechanism
the overlay walks toward the top 10 lowest latency peers in order to keep them in the
neighbourhood. With more randomization the chances are higher that the introducee is
one of the lowest latency peer. Because in 50% of times the new node selection method
is used, the overlay is also able to keep the low latency peers in the neighbourhood.

5.5. BOOTSTRAP EXPERIMENT
The goal of the bootstrap experiment is to measure how well the low latency overlay re-
acts to new entering peers in the P2P network. When Tribler operates in the real world
new peers enter the network over time. The nodes that were in the network already
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Figure 5.13: The figure shows the quality of introductions metric of the 10 new entering peers in the bootstrap
experiment. Each line represent the average quality of introductions metric.

Figure 5.14: The figure shows the top 10 lowest latency peers metric of the 10 new entering peers in the boot-
strap experiment. Each line represent the average of the top 10 lowest latency peers metric.
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Figure 5.15: The figure shows the total upload and download for the 10 new entering peers in the bootstrap
experiment. The solid line represent the upload and the dotted line the download speed. The bar represents
the size of the variance of the total upload or download relative to the mean.

found their lowest latency peers. How fast the new entering peers find their lowest la-
tency neighbours is tested in this experiment. Multiple Tribler instances are run in a test
environment. At some point in the experiment new peers enter and their behaviour is
measured.

ENVIRONMENT

The experiment runs the low latency overlay with various settings on 500 Tribler in-
stances, using 35 nodes. Gumby is used as experiment framework to gather results. The
nodes are managed by the ASCI Supercomputer 5 (DAS5) server cluster. The experiment
is run 2200 seconds. Ten peers enter the P2P network after 1600 seconds. In the first 1600
seconds they do not participate. There performance is measured every 10 seconds with
the metrics "Relative Error", "Ranking accuracy", "Quality of introductions" and "Top 10
lowest latency neighbours".

Latencies are extracted from the King Dataset and the same settings are used as in the
accuracy experiment. The three different algorithms "TIV", "Repeat" and "Inc" are run
with default settings. Next to that is the "TIV" algorithm run three additional times with
other settings in the "TIV20Repeat", "TIVSlowWalk" and "TIVOldMethod" runs. In the
"TIV20Repeat" run, previously calculated coordinates are updated 20 times a second.
The default setting updates just once a second. The "TIVSlowWalk" the interval time
between two walker steps is increased to 5 seconds. With the "TIVOldMethod" setting
the overlay uses 50% of times the normal dispersy node selection method when taking a
step.

RESULTS

The quality of introductions of new entering peers are about the same as with ordinary
hosts after convergence. (see figure 5.13). In the first 50 seconds the new entering peers
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have to be positioned by the algorithms. Therefore the quality of introductions is worse
in the beginning of the experiment. The length of this period is about the same for all
runs. The Inc algorithm performs only slightly worse than the other algorithms. Since
the latency estimation is of low quality, the only explanation for such good performance
is the clustering effect. In the Inc run the neighbourhood still gets occupied with low
latency peers (see figure 5.14). This increases introduction quality.

Despite the good results for the introduction quality it takes about 250 seconds be-
fore the new entering peers are converged toward a neighbourhood with the lowest la-
tency nodes (see figure 5.14). The time to convergence is still about two times faster than
with the accuracy experiment but worse than expected. Latency estimation- and intro-
duction quality are not sufficient for faster convergence. The algorithms are limited in
predicting the latencies of the king-dataset since in the synthetic experiment predictions
were near perfect.

The bandwidth usage of the new entering peers is as low as expected (see figure 5.15).
Every run has the same byte cost. The upload and download speed are throughout the
experiment about the same and show a linear growth. However, there are slightly more
bytes download than uploaded. This is normal because no latencies are measured yet
and thus less are send in the ping message when uploading. After 500 seconds the total
byte usage is around 72Mbyte, 38Mbyte download and 34Mbyte upload. The average
upload and download speed throughout the experiment is around 65 KByte per second.
The expected bandwidth usage is the addition of the byte cost of the ping-pong mech-
anism and the peer discovery mechanism. Every 2 seconds ping messages are send to
each peer in the neighbourhood and every second a new step is taken with the peer dis-
covery mechanism. Therefore are in the 500 seconds of the experiment 250 ping and
pong messages send to the entire neighbourhood of each peer. At the same time are also
500 steps taken by the peer discovery mechanism.

5.6. SYBIL EXPERIMENT
The goal of the experiment is to test the capability of the overlay to prevent the sybil
attack. The success of a sybil attack is determined by the average amount of sybils in the
neighbourhoods of peers. It makes it harder for an adversary to do a sybil attack when
peers have low latency nodes in their neighbourhoods. An adversary has to control sybils
with a low latency toward their target to successfully launch the attack. It is expected that
with randomly chosen sybils in the network the attack will be less successful.

ENVIRONMENT

The experiment runs the low latency overlay on 500 Tribler instances, using 35 nodes.
Fifty of the 500 Tribler instances are chosen randomly and marked as sybils. Every 10
seconds is determined how many sybils are on average in the neighbourhood of every
peer. Gumby is used as experiment framework to gather results. The nodes are managed
by the ASCI Supercomputer 5 (DAS5) server cluster. The experiment is run 800 seconds.
Latencies are extracted from the King Dataset in the same way as in the accuracy exper-
iment.

There are two runs in the experiment: "TIV20Repeat" and "Normal". In the "TIV20Repeat"
run the low latency overlay is implemented. The TIV algorithm is used where previously
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Figure 5.16: The figure shows the average number of sybils in the neighbourhood of peers in the sybil exper-
iment. Each line represents one run from the experiment. On the x-axis is the number of seconds elapsed in
the experiment.

calculated coordinates are updated 20 times a second. These settings had the best re-
sults in the bootstrap and accuracy experiments. In the "Normal" run the currently used
peer discovery mechanism of dispersy is used without the low latency overlay. From the
accuracy experiment can be concluded that the "TIV20Repeat" run is converged after
500 seconds. Therefore are the results collected after 500 seconds in both runs.

RESULTS

The results from figure 5.16 show that the low latency overlay makes the sybil attack less
successful. With the TIV20Repeat run there are on average 3.2 sybils in the neighbour-
hood and with the normal run 5.5. The amount of sybils is reduced with the low latency
overlay. The explanation is that the randomly chosen sybils are less likely to be the low
latency peers in the neighbourhood. To successfully launch a sybil attack in the overlay
an adversary needs to control the low latency peers of a node.

5.7. DISCUSSION
Nodes in the low latency overlay eventually find their lowest latency peers. However, due
to inadequate latency predictions this can take a large amount of time and the lowest la-
tency peers are not always found. The latency estimation algorithms are not able to do
good predictions with real world measured latencies resulting in a low quality of intro-
duction. It appears that the geolocation model for latency prediction between peers is
not good enough to provide a high quality low latency overlay.

The performance of the runs that include the TIV algorithms are the best. To gain
such performance it is vital to repetitively update past calculated coordinates. With de-
fault settings the updating is still done in a reasonable amount of computation time.
When more coordinates are updated per second in the TIV20Repeat run, the accuracy
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converges faster. However, it costs extra computation time to have more updates per
second.

It is important to have small time intervals between steps in the peer discovery mech-
anism. When doing that the lowest latency peers are kept in the neighbourhood. They
are then reconnected to the neighbourhood after NAT-timeouts. In the TIVSlowWalk the
time interval is high and low latency peers leave the neighbourhood. Adding random-
ness with the normal dispersy walking method in the TIVOldMethod not only dampens
the eclipse attack but also leads to faster convergence.
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FUTURE WORK

Finding better algorithms to solve the convergence problems and provide latency esti-
mation with higher accuracy should have the highest priority for future work. The la-
tency estimation algorithms need to be of high quality to let the low-latency overlay fully
rely on them. The current low-latency overlay takes a long time to converge and when
new peers enter the P2P network the overlay does not provide them with low latency
peers fast. On the positive side does the low-latency overlay converge at some point and
are incremental algorithms used with a low computation cost. Algorithms that handle
lack of information well and Triangle inequality violations (TIVs) could be further in-
vestigated to improve the accuracy because the algorithm that tried to counter triangle
inequality violations worked the best.

Experiments with the low latency overlay on large networks should be done to test
and develop a low latency overlay suitable for large networks. It takes several days for a
peer to get 100 000 different neighbours to measure the latency with. When such large
number of latency’s have been measured the algorithm should still be computationally
and memory efficient. It should be tested whether the latency estimation algorithms
converge towards a result with high accuracy in a large P2P network. The algorithm
should also be able to handle large latency inputs with more than 100000 latency’s at
each step of the incremental algorithm. One incremental step should be executed com-
putationally efficient. If the computation at one step of the incremental algorithm is
too much Tribler could block other processes and therefore increase the latency of the
network.

Research on algorithms that deal with lack of information and how to counter Tri-
angle Inequality Violations (TIVs) can further improve the accuracy and convergence of
the latency estimation algorithms. The experiments so far have shown that algorithms
with TIV prevention and algorithms that repeat past calculated coordinates are useful.
Accuracy of latency estimation algorithms is affected a lot by lack of latency informa-
tion. The more latency’s are measured the better the algorithms performs. The lack of
information is especially important in the decentralized Tribler setting because peers
only measure latency’s toward neighbours and cannot measure latency’s to other peers.

49
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An algorithm could be created that handles lack of information more efficiently or more
latency information could be gained via other ways with for instance ICMP messages.
Other possibilities to detect TIVs and prevent them could be further investigated to im-
prove the accuracy of the overlay.



7
CONCLUSION

Building a low latency overlay to give low latency connections between peers is a hard
problem. To make good decisions on what peer to introduce to another peer the la-
tency’s between two arbitrary peers in the P2P network have to be estimated. Finding
good algorithms that estimate latency’s between peers computationally and memory ef-
ficient is hard. The current state of the art latency estimation algorithms provide enough
accuracy to build a low latency overlay but are limited because of the peer introduc-
tion mechanism. Incremental algorithms are used to divide the computation over time
but methods that use more computational power create a more accurate latency over-
lay. These methods require a very frequent updating of previously estimated latency’s.
It is beneficial to counter peers who cause Triangle Inequality Violations (TIVs) in the
latency estimation algorithm because algorithms that deal with TIVs perform better and
have a better accuracy. The low latency connections between peers has various benefits
to various applications. It provides faster trading and faster onion routing.

Low latency peers cannot be introduced to other peers if there is no peer discovery
mechanism that traverses the NAT boxes which enable peers to connect to the internet.
A NAT traversal mechanism is required because most computers used by peers are not
directly connected to the internet but behind a NAT box in a local network. In the overlay
NAT boxes are punctured by previously discovered peers to enable good connections
between peers.

Eclipse attacks are a very generic attack and powerful attack on the low latency over-
lay and is countered in the design of the overlay. The peer discovery mechanism adds
randomness in its choices of peer selection to prevent against the eclipse attack. If the
new low latency overlay does not have countermeasures against the eclipse attack, nodes
could be controlled by adversaries or nodes could receive false information about other
peers or about things from a P2P application. This gives very powerful attacks on cryp-
tocurrency applications with direct financial consequences and thus are eclipse attack
prevention methods important.

51
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