
Understanding Tools and Practices for Distributed Pair

Programming

Till Schümmer
(FernUniversität in Hagen, Department for Mathematics and Computer

Science, Cooperative Systems, Germany
till.schuemmer@fernuni-hagen.de)

Stephan Lukosch
(Delft University of Technology, Faculty of Technology, Policy, and

Management, Systems Engineering Section, The Netherlands
s.g.lukosch@tudelft.nl)

Abstract: When considering the principles for eXtreme Programming, distributed
eXtreme Programming, especially distributed pair programming, is a paradox prede-
termined to failure. However, global software development as well as the outsourcing of
software development are integral parts of software projects. Hence, the support for dis-
tributed pair programming is still a challenging field for tool developers so that failure
for distributed pair programming becomes less mandatory. In this paper, we analyse the
social interaction in distributed pair programming and investigate how current technol-
ogy supports this interaction. We present XPairtise, a plug-in for Eclipse that allows
instant pair programming in distributed development teams. In addition, we report on
experiences and findings when using XPairtise in a distributed software development
setting.

Key Words: eXtreme Programming, distributed pair programming, patterns for
computer-mediated interaction

Category: D.2.3, D.2.6, H.5.3

1 Introduction

Agile software development practices [Boehm and Turner, 2004], especially the
eXtreme Programming [Beck, 1999] methodology, most importantly differ from
other software development practices in the way how they address collaboration
among participants. In the agile manifesto [Beck et al., 2001], the authors state
12 general principles that all highlight the importance of flexibility and collab-
oration. With respect to group interaction, principles 4, 5, 6, and 11 are most
relevant:

“(4) Business people and developers must work together daily through-
out the project. (5) Build projects around motivated individuals. Give
them the environment and support they need, and trust them to get
the job done. (6) The most efficient and effective method of conveying

Journal of Universal Computer Science, vol. 15, no. 16 (2009), 3101-3125
submitted: 30/5/09, accepted: 29/9/09, appeared: 1/10/09 © J.UCS



information to and within a development team is face-to-face conversa-
tion. (11) The best architectures, requirements, and designs emerge from
self-organizing teams.” [Beck et al., 2001]

Taking these principles seriously would imply that a distributed application
of agile methods, especially the application of distributed eXtreme Programming
(DXP), is a paradox predetermined to failure. In the same sense, global software
development and outsourcing could not go together with agile approaches.

On the other hand, researchers have proposed several tools to better sup-
port distributed agile software development. The first notable publications that
related distributed collaboration with agile methods were presented at the first
international conference on eXtreme Programming. The Team Streams system
[des Rivieres et al., 2001] provided support for asynchronous interaction in XP
while the TUKAN system [Schümmer and Schümmer, 2001] had a focus on part-
ner finding and synchronous interaction. Both of these tools mapped the social
practices to groupware applications in order to improve the interaction between
the participants. In the following years, additional tools were presented that
again mapped social processes of XP to groupware solutions. These include tools
for distributed pair programming and tools for better supporting the planning
process in XP.

Eight years later, we still see the need for additional research on tools and
processes for DXP, especially for solutions that extend the most obvious solution
of providing a shared code editor. For that reason, we have revisited well-known
assumptions for tool support in DXP [Schümmer and Schümmer, 2001] and ex-
tended these assumptions with novel interaction settings. These interaction set-
tings focus on knowledge transfer and testing which are integral parts of most
agile processes.

Our findings are presented in this paper: We first summarize the social prac-
tices of pair programming before we present XPairtise, yet another but different
tool for distributed pair programming. We describe the interaction metaphors
used in XPairtise and present first observations from a long term evaluation
where two software development teams used XPairtise during a 6 month project.
Our experiences show that XPairtise can be a valuable component in a DXP
practitioner’s tool suite and thus contribute to making DXP reality at the end.

2 The social practices of pair programming and its technology
implications

In this section, we briefly summarize the interaction that takes
place in pair programming, i.e. coordination, coding, communication,
teaching, and testing. Our assumptions are based on findings re-
ported in [Schümmer and Schümmer, 2001, Braithwaite and Joyce, 2006,

3102 Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



Kircher et al., 2001]. As in [Schümmer and Schümmer, 2001], we take a look at
the interaction between developers in a pair programming setting and discuss
possible design alternatives for mapping this interaction to a computer-mediated
setting by using a collaborative application. We make use of design patterns
for computer-mediated interaction (P4CMI) [Schümmer and Lukosch, 2007]
to describe the core design considerations. These patterns capture commonly
used collaborative system design solutions and thus allow us to describe
a hypothetical DXP system. We also use the patterns to compare existing
solutions with the hypothetical solution by identifying the presence of patterns
in the existing solutions. Summaries of the most important patterns will be
given if the pattern is used in the design of XPairtise. More details on the
individual patterns can be found on the CMI patterns repository web site
at http://www.cmi-patterns.org/. Note that we will use Small Caps to
identify a pattern name.

2.1 Coordination

The traditional setting: eXtreme Programming employs a lightweight planning
metaphor using index cards as a main planning artefact. The use cases of the
system under development are written down in the form of user stories on index
cards (non-digital paper). In the planning game, these stories are discussed and
sorted according to their importance. User stories are further decomposed to
development tasks. Again, developers use index cards to store task details.

Before a pair programming session can start, a developer picks a task (from
a set of shared task cards) and looks for a peer. In co-located settings, finding a
partner is easy. The developer looks for other people who are currently finishing
their tasks or work alone on other tasks. During daily planning meetings (the
daily stand-up meetings), teams can be assigned for the day.

The computer-mediated setting: In distributed settings, both, the handling
of story and task cards as well as the formation of pairs is much more challeng-
ing. Cards need to be stored in a light-weight planning environment. For group
formation it is not as easy to detect the current status of remote users. Time
shifts may make a stand-up meeting for coordination difficult or impossible. It is
thus required that the developers become aware of one another, e.g., by having
Activity Indicators, i.e., peripheral status views communicating the other
users’ current actions. Task cards, in addition, need to be available as shared
objects, e.g., by organizing them in a Shared File Repository or by means
of a planning wiki.

3103Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



Activity Indicator

Problem: Users need time to perform a task but only the results are
shared among them. In a collocated setting users are accustomed to
perceive non-verbal signals such as movement or sounds when another
user is active. If the users are distributed, these signals are missing.
Users are therefore not aware of other users’ activities, which can result
in conflicting work or unnecessary delays.
Solution: Indicate other user’s current activities in the user interface.
To reduce interruptions, use a peripheral place or a visually unobtrusive
indicator.

Shared File Repository

Problem: Users share intermediate results by passing files to one or
more users. Ensuring that every user stays in the loop is error-prone.
Solution: Provide a Shared File Repository where users can place
and retrieve files. Allow users to organize the files in folders.

2.2 Coding

The traditional setting: Once the team is formed, the team members sit together
in front of the same screen and discuss a possible solution for the task. They
maintain task awareness by placing the card next to the screen. One developer
takes the role of a driver (the user having the keyboard) while the other user
acts as a navigator. The navigator’s task is to comment on the possible solutions
for the task and check the quality and understandability of the created code.

The computer-mediated setting: In the distributed case, this should be sup-
ported with a Shared Editor. The editor should be part of the integrated
development environment and automatically open for the navigator when the
driver opens it on his screen (whenever they join the same Collaborative

Session). The content of the driver’s and the navigator’s editor should be cou-
pled so that both developers can see the same file at the same time (as described
in the Shared Browsing pattern). The complexity of the shared editor can be
reduced by following the Floor Control model proposed by XP. Since only
one developer should have the keyboard at a time, this developer also controls
the current scrolling and cursor position. Without Floor Control driver and
navigator would be able to type at the same time (note that the users may
then produce edit conflicts so that the solution would require mechanisms for
Conflict Detection and means for resolving conflicting changes, e.g., using
an Operational Transformation approach). However, synchronous editing
blurs the Roles in the pair programming session, leading to two developers that
lose a common focus.

3104 Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



Shared Editor

Problem: Users are sharing data for collaboration. The need to edit the
shared data simultaneously emerges, but the shared single-user applica-
tion (see Application Sharing) does not allow concurrent editing.
Solution: Provide a shared editor in which users can manipulate the
shared artifacts together. Ensure that state changes are instantly re-
flected in all other users’ editors, and provide mechanisms that make
users aware of each other.

Collaborative Session

Problem: Users need a shared context for synchronous collaboration.
Computer-mediated environments are neither concrete nor visible, how-
ever. This makes it difficult to define a shared context and thereby plan
synchronous collaboration.
Solution: Model the context for synchronous collaboration as a shared
session object. Visualize the session state and support users in starting,
joining, leaving, and terminating the session. When users join a session,
automatically start the necessary collaboration tools.

Floor Control

Problem: Synchronous interaction can lead to parallel and conflicting
actions that confuse the interacting users and makes interaction difficult.
Solution: Model the right to interact in the shared collaboration space
by means of a token and only let the user holding the token modify or
access the shared resources. Establish a fair group process for passing
the token among interacting users.

One could think of using an Application Sharing approach for supporting
this kind of interaction. The problem is that this takes reasonable bandwidth
and that it is sometimes difficult to focus communication, which brings us to the
next interaction in XP.

2.3 Communication

The traditional setting: Communication between developers and between devel-
opers and customers is the core of any agile method. By developing in pairs, com-
munication naturally takes place between the developers. By changing partners
frequently, knowledge is distributed epidemically. Communication is focussed by
the shared display and gestures. Quick sketches on a sheet of paper can fur-
ther support the communication. Having all developers in the same room allows
other pairs to overhear conversations and thereby dynamically react to issues
discussed in another pair.

3105Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



The computer-mediated setting: For distributed interaction, communication
poses the biggest problem in agile methods. On one hand, we would benefit from
a media-rich communication channel, such as a video channel. On the other hand,
the communication channel should not consume too much network bandwidth,
be stable enough, and establishing connections needs to be quick and easy.

The simplest communication means would be an Embedded Chat. In addi-
tion, scribbles could be drawn in a synchronous graphical Shared Editor and
gestures could be conveyed in forms of Remote Selections in the source code
that allow the navigator to point out relevant sections in the code. These kinds
of communication have the advantage that they can be easily kept persistent
and thereby enrich the comments of the discussed software artifacts.

Embedded Chat

Problem: Users need to communicate. They are used to sending elec-
tronic mail. But since e-mail is asynchronous by nature, it is often too
slow to resolve issues that arise in synchronous collaboration.
Solution: Integrate a tool for quick synchronous interaction into your
cooperative application. Let users send short text messages, distribute
these messages to all other group members immediately, and display
these messages at each group member’s site.

Remote Selection

Problem: Users select artifacts to start an action on the artifact. Select-
ing an artifact is considered as taking the artifact under personal control.
Whenever two users select the same artifacts, this leads to coordination
problems.
Solution: Show remote users’ selections to a local user. Make sure that
other users who are interested in a specific artifact are aware of all dis-
tributed co-workers who have selected the object.

The disadvantage of textual communication for DXP is that the developers
need their hands to produce code. Normally, coding and talking goes hand in
hand. Thus, we expect that textual chats will not be the most important com-
munication medium. As an alternative or addition to the communication func-
tionality an audio channel can be embedded. An audio channel supports parallel
communication and coding. However, audio channels are typically transient and
even recorded communication is not easily accessible. The latter becomes im-
portant when communication logs should be used for teaching.

2.4 Teaching

The traditional setting: The intensive communication fosters peer-to-pear learn-
ing. By pairing a strong developer with a novice, the novice will learn best prac-
tices and gradually take more responsibilities. The expert will learn by making

3106 Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



his knowledge explicit. We propose to extend this model for classroom education
where an additional number of students can participate as spectators (following
the Show Programming pattern of [Schmolitzky, 2008]).

The computer-mediated setting: Supporting the Mentor interaction in dis-
tributed settings may be much easier. Due to the fact of global distribution, the
opportunity for finding an expert for a specific problem domain may increase. An
almost unlimited number of Spectators [Lukosch and Schümmer, 2008] can
be added to the application by distributing the actions of driver to all of them.
Since learning becomes more effective when learners actively interact with the
subject, we envision that Spectators become active learners who comment and
analyze the activities of the driver and the navigator. The computer-mediated
setting allows parallel communication channels for the audience and the pair of
developers (multiple Embedded Chats). The developers can perform their pair
interaction and communication and the audience can in parallel perform a meta
discussion (a comparable interaction has been applied in several scientific con-
ferences where the presentation was complemented with a textual chat channel,
e.g. in [Rekimoto et al., 1998]).

Mentor

Problem: Newcomers do not know how community members normally
act in specific situations. They are not used to practices that are fre-
quently applied in the community.
Solution: Pair newcomers with experienced group members who act as
mentors. Initially let newcomers observe their mentors, and gradually
shift control to the newcomer.

Spectator

Problem: Users are interacting in a computer-mediated environment
but are not familiar with the environment. These users perform activities
which disturb the interaction and collaboration of other users.
Solution: Allow users to view and follow the interaction in an ongoing
Collaborative Session as Spectator. Ensure that these Specta-

tors cannot influence the interaction.

Capturing the interaction would further allow that students Replay inter-
esting pair-programming episodes and thereby better understand the evolution
of software artifacts (this is an argument why textual communication may be
more suitable than audio in some cases).

3107Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



Replay

Problem: When users join an ongoing collaboration as latecomers or
when users rejoin a collaboration after a time of absence, it is hard
for them to understand how the current state of the collaboration has
been reached, or what has changed since their last participation, by only
perceiving the current state of the collaboration.
Solution: Capture all changes to the shared objects used in the collab-
oration in an Activity Log. When users join or rejoin a collaboration,
replay the captured changes to show them how the current state of the
collaboration has been reached.

2.5 Testing

The traditional setting: eXtreme Programming advocates a test-first approach.
This means that no code is written as long as no test fails. In a co-located
setting, developers first think about how to test a feature that is requested
in a specific task. They then create test code that tests the functionality of
the feature. This test is executed by a test automation tool such as jUnit
[Beck and Gamma, 2002]. Usually the test fails since the feature is not yet im-
plemented. In a next step, the developers create code that fixes the broken test.

Driver and navigator use debugging tools that allow stepwise execution of
the developed software. Additionally, they can inspect and modify variables and
provide input values for the software.

The computer-mediated setting: This practice shows that it is not sufficient
to have a Shared Editor when considering tool support for distributed XP.
Instead, the developers need support for collaborative execution of tests. In a
first approach, the system would create Distributed Commands for triggering
unit tests. This would allow the developers to execute the tests locally at their
machines and inspect the results. In a next step, the system would allow coupled
debugging including collaborative inspectors of application data and collabora-
tive stepwise execution of a program. To enable collaborative use of debugging
tools, one could capture and replicate the commands performed by the driver
to control the debugger (Distributed Command). Additionally, break points
can be modeled as shared objects and views of the variables could be shared.
The challenge with such an approach is to keep both client machines (or even
more in a setting with spectators) synchronized.

3108 Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



Distributed Command

Problem: Clients can apply changes to replicated objects locally. When
you distribute the new versions of locally changed replicated objects, you
might distribute more information than is necessary to keep the other
replicas consistent, especially if only a small part of the replicated object
has changed. This increases the network load and the response time of
your application unnecessarily.
Solution: Capture the method calls that a client uses to manipulate
their local replicas as Commands [Gamma et al., 1995]. Distribute the
captured Commands to all other clients that also maintain replicas via
the network. Let these clients re-execute the Commands on their replica.

Application Sharing may ease the technical problems at this stage. How-
ever, the application will not be collaboration aware, which makes it again dif-
ficult to, e.g., point at specific artifacts.

3 Related work

As briefly mentioned in the introduction, existing approaches for supporting dis-
tributed pair programming either use an Application Sharing approach to
enhance an existing tool suite or provide customized tools that include various
groupware features such as Shared Editors or Shared Browsing support.
As Hanks [Hanks, 2005] pointed out, customized groupware tools often do ”not
provide all of the features used by a particular software developer” and thus
”limit her ability to successfully accomplish her work.” On the other hand, Ap-

plication Sharing solutions lack process support and are thus not collabora-
tion aware. Examples for systems with an Application Sharing Approach

are JAZZ and MILOS.
The JAZZ system [Hupfer et al., 2004] is an extension of eclipse that supports

the whole XP life cycle. Its main focus lies on supporting the workflows in asyn-
chronous interaction. With respect to synchronous interaction, users can stay
aware of co-workers and initiate chat sessions with co-workers who are logged in
at the same time. Using an Interactive User Info, available users can also
be invited to a synchronous pair programming session using an Application

Sharing system. JAZZ can be complemented with a plugin for Shared Edit-

ing (e.g., the DocShare (http://wiki.eclipse.org/DocShare_Plugin) plugin
that provides a synchronous shared code editor based on Operational Trans-

formations). The problem with this plugin is that it is not integrated into the
workflow of pair programming. Especially, it does not provide awareness and has
no explicit notion of roles.

MILOS [Maurer, 2002] aims at supporting the coordination between software
developers in an XP team. As in JAZZ, MILOS provides awareness of co-present

3109Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



users and allows users to initiate pair programming sessions using Application

Sharing. Both JAZZ and MILOS make use of existing IDEs and thereby pro-
vide the full functionality that developers know from single-user development
environments.

Some research prototypes have approached this gap by creating special pur-
pose groupware for all phases of the eXtreme Programming process. Examples for
such an approach are TUKAN and Moomba. Providing awareness is one of the
central aspects of the TUKAN system [Schümmer and Schümmer, 2001]. The
main focus lays on partner finding for pair programming. Developers working on
related artifacts are identified and the system proposes them to create a pair for
distributed pair programming. Shared Editors are provided for manipulating
code together. Users can highlight important code using a Remote Selection.
Unfortunately, TUKAN was built as an extension of a relatively unpopular de-
velopment environment, namely ENVY for VisualWorks Smalltalk. This is one
of the reasons why it has not gained high popularity.

Moomba [Reeves and Zhu, 2004] extends the awareness model of TUKAN
and translates it to a Java environment. Developers are made aware of other
developers who work on related tasks. Once they decide to join closer collabora-
tion, they can launch a collaborative Java IDE where the developers can use a
Shared Editor. Although Moomba supports Java development, it is still built
as a proprietary tool and thereby can not provide the same domain-specific tool
support as it is present in modern IDEs.

Solutions that combine the two approaches mentioned above extend profes-
sional IDEs with collaboration facilities so that they become collaboration aware.
Examples for IDEs that are extended this way are TogetherJ and Eclipse. Cook
[Cook, 2006] created the CAISE architecture to allow users of the Together Ar-
chitect for Java to share different tools of the IDE. Unfortunately, this IDE
does not propagate key-strokes to the CAISE system which has the effect that
code changes can only be shared on a per save basis. Eclipse is a more open
environment that allows closer coupling of the developers’ IDEs. Thus, we will
concentrate on plugins for making Eclipse collaboration aware in the remaining
part of this section.

The Eclipse Communication Framework (ECF - http://www.eclipse.org/
ecf) aims at integrating a collaboration infrastructure with the IDE. This allows
users of the IDEs to collaboratively work on the same set of files in real time.
All changes are combined by using Operational Transformations so that
all collaborators keep a consistent state. However, both solutions do not address
the collaboration process: Users can, e.g., type at the same point in time or view
different documents. This weakens the strict separation of roles as it was present
in XP.

Coordination work can be integrated into Eclipse in two ways: Tradi-

3110 Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



tional web-based systems can be shown inside the internal browser window
or special-purpose planning plugins can be added to the Eclipse workbench.
An example for the first approach is to integrate a planning Wiki (e.g., XP-
Swiki [Pinna et al., 2003], which was also integrated into the IntelliJ IDE be-
fore). An example for a tighter integration is the use of the Mylyn plu-
gin (http://www.eclipse.org/mylyn/). This plugin interacts with web-based
project management systems such as SourceForge (http://sourceforge.net/)
and adds views and editors for all planning artifacts from this external system
to the Eclipse workbench.

In addition to ECF’s Shared Editor, there are some additional collabo-
rative code editors for Eclipse that integrate distributed editing in the context
of the IDE. Besides the DocShare plugin mentioned above, we have analyzed
three other solutions. The oldest plug-in that we are aware of is the Sangam
system [Ho et al., 2004]. It allows developers to couple editors. Commands are
replicated between the editors so that all connected developers can see and edit
the same code. In our tests, we were able to create inconsistencies between the
different editor instances. This means that the developers could end up with
different data in their editors.

The Saros plugin [Djemili, 2006] supports driver-navigator interaction in
Eclipse. Once users decide to start a distributed pair programming session, the
system synchronizes the code base of both developers and provides awareness
on files that are opened at the driver’s site. A Shared Editor allows collab-
orative code creation and Remote Selections allow the navigator to point
at relevant pieces of code. Saros is available under an open source licence at
http://dpp.sourceforge.net/.

Finally, the XecliP plugin for Eclipse provides to a large extent a comparable
functionality as the XPairtise system that we will present in the next chapter.
The reason for this is that XecliP was developed in competition in another sub-
team of our research group. The developers had the same goals as those who
developed XPairtise. However, there are slight differences with respect to project
sharing, where XPairtise provided the simpler solution. This is the reason why
we present XPairtise in this paper. More information on XecliP can be found on
its project home page at SourceForge: http://xeclip.sourceforge.net/.

Debugging support is available in several distributed development tools. One
of the oldest references is the FLECSE system, that supports users in step-
wise execution of text-based software [Dewan and Riedl, 1993]. More recently,
Moomba [Reeves and Zhu, 2004] allows developers to share the textual output
of a program and to collaboratively execute jUnit tests using a Distributed

Command approach. The Jazz system [Hupfer et al., 2004] uses an Applica-

tion Sharing approach for supporting shared debugging. We are not aware of
any system that allows loosely coupled interaction in the debugging context (e.g.,

3111Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



independent exploration of variables). This is still an open research problem.
In summary, we can observe a trend to better integrate support for Shared

Editing in professional IDEs. Not surprisingly, the Eclipse IDE becomes more
popular for such developments. However, we still see the need for better sup-
port of the interaction, especially with respect to the roles in distributed pair
programming. None of the tools explicitly addresses learner interaction. Saros
seems to be one of the most promising plug-ins so far, but even this plug-in lacks
a sophisticated role support.

4 Approach

In this section, we present XPairtise, our approach for supporting distributed
pair programming. XPairtise is an Eclipse plugin that offers shared editing,
project synchronization, shared program and test execution, user management,
built-in chat communication, and a shared whiteboard.

Figure 1 shows two instances of the XPairtise plugin for Eclipse. In the
following, we present the functional and user interface properties of XPairtise in
more detail and relate them to the identified social practices.

Figure 1: XPairtise

3112 Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



4.1 Coordination

Story card management is not part of the XPairtise system. The reason for
that is that we decided to integrate a traditional web-based solution for cap-
turing and editing the user stories and the task cards and use eclipse’s embed-
ded web browser to access the cards. In our setting, we used the CURE wiki
[Haake et al., 2005] that provides templates for story cards and thus helps to
ensure that all required information for a story card is present.

Concrete distributed pair programming sessions are modeled as Collabora-

tive Sessions in XPairtise. When users feel the need for a pair programming
session, they create a new collaborative session in Interaction Directory

that is visible for all other XPairtise users (see Figure 2.1). Note that we decided
to relax the rule of eXtreme Programming that said that every code should be
created in pairs. This would be very problematic in distributed setting, espe-
cially in a global team. It is thus up to the developer to decide whether or not
the task requires pair programming. If not, distributed developers can use the
same tools and act as the driver. Others will still stay aware of such single-user
sessions and can inspect changes afterwards as if it was a team session.

1) XPairtise Interaction

Directory

2) XPairtise User Gallery

3) Driver invites another user 4) Invitation dialogue

Figure 2: Setting up a distributed pair programming session with XPairtise

Collaborative Sessions have a name (typically the name of the task card)

3113Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



and an Eclipse project that is going to be shared via the proprietary XPairtise
server. Once such a session has been created, it is listed in the Interaction

Directory (see Figure 2-1). Each user who is currently connected to the XPair-
tise server can now join the session. When joining the session users can decide
to join as navigator or driver. Of course, this is only possible when no other
user has joined with the selected role so far. Thereby, users can decide to start
a session in the role which from their perspective fits best to the task that as to
be accomplished. Users might, e.g., decide to join in the role of a navigator and
then invite someone else as driver because they are aware of the importance of
the task but do not feel confident enough to take the lead to solve it. As shown in
Figure 2, XPairtise offers the necessary means to create, invite and join sessions
and no additionally support is necessary.

Users can browse for other users who are connected with the XPairtise server
via the User Gallery (see Figure 2-2). This view includes the remote users’
current Availability status and thereby eases the selection of an appropriate
partner. By sending an Invitation they can invite another user to the pair
programming session (see Figure 2-3). This opens a request at the invited user’s
site and the user can decide whether to join or not (see Figure 2-4).

The local workspace of a joining user is stored and the project for the dis-
tributed pair programming session is retrieved from the XPairtise server. This
ensures that driver as well as navigator have synchronized workspaces when
starting the session. Additionally, this approach makes XPairtise independent
from code repositories like CVS or SubVersion and allows to establish ad-hoc
distributed pair programming sessions.

4.2 Coding

Once a distributed pair programming session is established, driver and navigator
can cooperate in a Shared Editor (see Figure 3). All actions of the driver
are also performed at the navigator’s site. This, e.g., includes opening source
files, scrolling the window, marking text, moving the text cursor, highlighting
lines, editing text, as well as refactoring source code. Thereby, the navigator is
constantly aware of the changes that are performed by the driver.

Like in traditional XP settings, the navigator cannot change the code. To fur-
ther support collaboration awareness, we integrated a Remote Cursor. This
cursor shows the current working location of the driver. To foster collaboration
and simplify coordination of driver and navigator, we additionally integrated a
Remote Selection. The selections of the driver are also shown in the naviga-
tor’s editor and vice versa. To avoid conflicting selections, the navigator’s selec-
tion does not affect the clipboard content, as it only intended to highlight specific
code fragment for coordination and communication purposes (see below). Such

3114 Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



highlighting functionality avoids that driver and navigator talk about different
code fragments.

Figure 3: Shared Editor in XPairtise

In co-located settings, driver and navigator switch roles by passing the key-
board among each other. To reflect this in a distributed setting, XPairtise makes
use of a Floor Control technique. Driver as well as navigator can request to
switch roles (see Figure 4.1) by pressing a role change button. This request
is highlighted in the user interface at the other user’s site (see Figure 4.2). A
role change cannot be forced. It only takes place when the other agrees by also
pressing the role change button.

1) Role change request 2) Request notification

Figure 4: Changing roles in XPairtise

4.3 Communication

XPairtise supports multiple communication channels: driver and navigator can
use the integrated shared whiteboard and a graphical Shared Editor (see
right part of Figure 3) to exchange ideas. They can use the Embedded Chat

3115Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



for textual communication within a session as well as globally with all users
currently logged in to the XPairtise server. The different chats can be accessed
via different tabs (cf. Figure 5). Furthermore, XPairtise offers an integrated
Skype control to establish audio connections. As mentioned above, the shared
editor also supports Remote Selections. This allows the navigator to raise
the driver’s attention to specific parts of the source code and thereby start and
focus communication.

Figure 5: Embedded Chat in XPairtise

4.4 Teaching

With the above functionality, XPairtise already enables distributed pair pro-
gramming. As it is also possible to create ad-hoc distributed sessions via the
XPairtise server without the need of project-specific code repositories, a novice
can easily invite an expert to a pair programming session. The expert can then
act as a Mentor and teach the novice on how to solve current problems.

To widen the audience of a pair programming session, XPairtise furthermore
supports the additional role of a Spectator. Users who join an ongoing pair
programming session as Spectator can watch the interaction among the driver
and the navigator. For that purpose, XPairtise also retrieves the project of the
session from the XPairtise server. When a Spectator joins as a latecomer
and the driver already performed some changes, XPairtise still ensures that the
workspaces are synchronized.

Spectators cannot change the code nor can they select or highlight any-
thing in the editor. Still, they are allowed to participate in the session chat and

3116 Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



thereby can, e.g., ask questions for clarification or highlight possible problems
in the shown code. Like in traditional settings, the driver and navigator have to
decide when and how they are going to address the posted messages. Thereby,
XPairtise can easily be used to teach a group of novices in a specific problem
domain when the driver is an expert in that domain. Additionally, this also al-
lows to teach distributed pair programming, when novices join an ongoing pair
programming session among two experts in eXtreme Programming.

4.5 Testing

When the driver performs run actions or starts tests, these are started at the
navigator’s site as well. Thereby, XPairtise enables basic collaborative testing.

However, since testing is more than the execution of JUnit tests, we have
recently added an XPairtise extension that supports collaborative debugging.
Break points are modelled as shared objects as well allowing all participants
to stop the program under test at the same place. In the same way as editor
inputs were shared among the members of a collaborative session, the use of the
Eclipse debugger can also be coupled: Eclipse commands at the driver’s client
such as stepwise execution of code or inspection of variables are monitored by
the XPairtise plugin and distributed to all other clients. Floor Control is an
important issue here again since it needs to be ensured that only one client at a
time is able to continue the execution of the program under test.

The main reason why our debugging support for XPairtise is not yet part of
the official open-source release is that we are still working on synchronizing the
effects of external influences on the execution of the program under test. This
includes that all input (e.g., files, streams, mouse movements or hardware signals
like timer values) used by the tested program needs to be identical to ensure the
same execution. To what extent this can be solved is still an open issue.

4.6 Implementation of XPairtise

XPairtise makes use of a client server architecture. On a technical level, XPairtise
clients communicate with the XPairtise server using a JMS infrastructure (Java
Messaging Service), namely the ActiveMQ messaging server (see Figure 6).

During the bootstrap phase of the XPairtise infrastructure, the XPairtise
server connects to the message bus and creates a message channel that allows
clients to request information on shared objects stored in the HSQL database
that acts as XPairtise’s object repository (Centralized Objects).

Whenever clients register by sending a registration message to the server’s
message queue, the XPairtise server creates a message queue for the client. The
client subscribes to this queue and from then on receives updates on changes to

3117Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



JMS

Message

Broker
XPairtise

Server

XPairtise

Client 1

XPairtise

Client 2

Server Queue

Client Queue 1

Client Queue 2

Session Queue

HSQLDB

Shared

Objects

Local Replicas

Local Replicas

Figure 6: XPairtise conceptual system architecture

shared objects (Remote Subscription). To accommodate latecomers, XPair-
tise uses a State Transfer approach, i.e. the initial state is transferred to the
latecomer and later on only updates have to be applied.

Collaborative Sessions are also modelled as shared objects. In addition,
each collaborative session has a message queue to which the server can add up-
dates needed by all participants in the session. These updates are either sent
as state updates (e.g., when users add drawings to the shared whiteboard) or
as Distributed Commands. When a client, e.g., changes the selection in the
Shared Editor of Eclipse, the XPairtise plugin captures the selection com-
mand and sends this to the server. The server in turn adds the command to the
session’s message queue so that it is received by all members of the Collabo-

rative Session. Each client executes the selection command locally with the
effect that all clients can see the Remote Selection.

Due to the XPairtise system architecture and the used approach for latecomer
accommodation, XPairtise can easily deal with connection losses. Users that
loose connection simply re-join a session and thereby receive the most recent
session state.

5 Experiences

XPairtise was developed in our 2006/07 lab course on cooperative system devel-
opment. As our university is a distance teaching university, the team members
only met at the beginning and the end of the lab course. In the meantime, the
team members collaborate at a distance. Once the team had a first running pro-
totype, the team used XPairtise for distributed pair programming. This allowed
the team to identify problems early in the development cycle and address such
problems directly. At the end of the lab course, all team members reported that
XPairtise simplified their collaboration a lot. Since then, XPairtise is available
at sourceforge.net.

3118 Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



5.1 Hypotheses and setting

While the first informal evaluation gave us anecdotal evidence that XPairtise
can be used for distributed pair programming, a more detailed evaluation was
needed to better understand the tool’s contribution to the pair programming
interaction, especially with respect to the individual users’ contributions. Thus,
a second evaluation was performed in our 2007/08 lab course. Besides general
observations of distributed pair programming, we wanted to test the following
hypotheses:

1. Students with comparable skills will make equal contributions to the pair
programming sessions, which means that they will have frequent role
switches.

2. In a pair with different experience levels, the experienced partner will use
XPairtise for training less experienced students. The experienced partner
will keep the driver role throughout the session.

3. In both constellations, driver and navigator will frequently use the Remote

Selection to focus the discussion on a specific position in the source file.

We observed two teams of 5-6 students for a period of 18 weeks. During that
time, we recorded the JMS messages exchanged in 52 XPairtise sessions. This
allowed us to make a detailed analysis on actions performed in the sessions. In
addition, we recorded the audio communication in seven (randomly selected)
sessions where XPairtise was used. In order to relate the level of participation in
XPairtise to the individual’s participation in the software project, we also logged
the interaction with the version management system (CVS). We correlated log
entries of the CVS system with activities performed in XPairtise Sessions which
allowed us to better understand the role of collaboration in distributed eXtreme
Programming. Again, the results from the CVS analysis are not statistically
significant but they can still point our analysis to interesting differences between
the two teams. Finally, we conducted semi-structured interviews in order to get
feedback on the perceived usefulness of XPairtise.

5.2 Results

Based on this observation, we report first anecdotal results in relation to the
social practices presented in the previous sections. In total, we logged about 80
hours in which XPairtise was used. Users performed 80.000 commands that led
to change notifications to other clients. They created 5514 versions of classes
(CVS check-ins). The two groups differed significantly in their tool use: The first
group used XPairtise five times as long as the second group. They created ten
times as many editor events as the second group. On the opposite, the second

3119Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



group performed 31% more check-ins in the CVS system. The check-ins of the
second group were in most cases the result of isolated work without XPairtise
(98% of all check-ins). The first group showed a different behaviour: 28% of the
check-ins were performed during a pair-programming session. These differences
suggest that the first group interacted in a very synchronous way while the second
group distributed tasks and solved the tasks asynchronously without much pair
programming.

5.2.1 Coordination

The observed groups created between 120 and 250 planning cards. The cards
were stored in the group’s project wiki. Interestingly, the group members made
heavy use of the cards in the early planning phases of the project but did not
maintain the cards in later implementation phases. This raised the problem
that some group members lost track of the project’s progress due to the lack
of awareness information (Change Warnings). Shortly before the end of the
project, both groups revisited the planning cards and marked them as finished.

The existence of the sessions is already an indication that users were able to
meet in Collaborative Sessions or join existing sessions as spectators (in 17
of 51 sessions).

5.2.2 Coding

In all 52 observed sessions, code was changed. The shared editor was used as
expected. Surprisingly, we could observe a less agile interaction between driver
and navigator. While in co-located pair programming sessions, role switches are
expected to happen every 20 minutes [Hanks, 2004], we could observe only 21
of 52 sessions where a role change took place at all. And even where a role
change took place, there were only 4 sessions where the navigator was active
for more than 30% of the time. An ideal pair programming session would have
frequent role switches and lead to an equal participation of both partners. This
could not be confirmed in our observations. Even the first group that showed
a very cooperative work style did not change roles often (on average 2.2 role
switches per session). One reason for this was that in many cases experienced
developers interacted with novice navigators (see section on teaching below).
Even when considering only those sessions where both students had comparable
background knowledge, we can not observe the same frequency of role changes
as in co-located settings [Hanks, 2004]. Only one out of 17 sessions showed a
relatively large number of role switches (8 role switches in 150 minutes). This
gives us at least an indication that our first hypothesis was not confirmed in our
observational setting.

3120 Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



5.2.3 Communication

When designing XPairtise, we expected that audio communication would be the
most prominent communication channel but that the Embedded Chat would
also be used frequently. However, there was almost no use of the text-based chat.
Only 9 of 52 sessions had any chat entries in the session chat. Even fewer sessions
had entries in the global chat that was intended as a meta communication chan-
nel. Using chat logs for augmenting code comments would thus not be possible
in the observed groups.

Only 4 sessions utilized the whiteboard. These sessions were not used for
pair programming but for creating sketches for the final project presentation.
The interviews did not provide any further clues why the whiteboard was not
used more frequently. Actually, students reported that they liked the feature of
the whiteboard, which is in contrast to the log data that shows that the students
did not use the whiteboard frequently.

The analysis of dialogues in the audio communication channel gave us more
information regarding situations where the navigator did not perform actions in
XPairtise. The developers frequently searched the web for missing information.
At the same time, the driver continued coding. Once the navigator found the
required information, he informed the driver who then used the information and
modified the code.

The Remote Selection was used in all sessions. In all but 9 sessions, the
navigator also selected code to focus the communication on a specific part of
the code. However, there were much fewer occasions of remote selections than
expected. In average, the ratio between driver selections and navigator selections
was 92 to 8. The interviews on the other hand indicated that the users perceived
the remote selections as a very important feature of XPairtise. The third hypoth-
esis thus could be confirmed for the driver but not for the navigator. Although
the navigator considered the remote selection as useful for him, he did not use
it to focus the driver’s attention on a specific part of the code.

5.2.4 Teaching

To our surprise, there were fewer than expected sessions with Spectators (17
of 52 sessions). In most of these cases, there was exactly one Spectator (12
cases) who joined the XPairtise session for a short time. From the developers’
feedback, we can say that in some cases, the guest was an expert who joined
the session with the goal of explaining a specific part of the code. Instead of the
driver educating the Spectators, these were directing the driver in this case.

In addition to these sessions, we could observe teaching to a large extent:
Many pair-programming sessions brought together expert developers as drivers
with novices as navigators (approx. 40% of the sessions). In these settings, there

3121Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



were almost no role switches (only 36% of all observed sessions included a role
switch). The driver kept his role throughout the session (between 1 and 2 hours).
In many cases (especially in the second group), the navigator stayed passive
throughout the whole session. This confirms our second hypothesis that assumed
that the novice will not take the role of the driver.

Looking at the audio logs of these sessions, we could observe that the driver
was speaking much more than the navigator (in four of the seven observed ses-
sions, the driver talked more than 85% of the time). All these observations
indicate that the driver was presenting his code to a rather passive navigator.
However, especially the inexperienced developers who participated as navigators
in these sessions reported that observing the expert was very helpful for them.

5.2.5 Testing

Since the observed version of XPairtise only provided collaborative unit test
execution, we cannot provide proofs on the usability of further testing support.
Interestingly, many developers reported that they would prefer testing alone.
But some developers also highlighted the expectations that they would have for
a stable testing support. One participant mentioned that debugging

”would be an excellent feature because you would learn a lot. Since you would

know that your partner reads the same code, you know that he will see bugs

that you simply miss because you read the code in a different way. In your

head, you have an idea of what code should be present although it isn’t there.

Your partner does not have the same image in his head and he may see it that

you are writing rubbish.”

This quote shows that at least some of the students were able to imagine the
benefits of collaborative test execution.

5.3 Summary

The above evaluation shows that XPairtise supports the social practices for
distributed pair programming. However, compared to pair programming in a
traditional setting, our observations highlight some interesting differences. For
coding, it is interesting to note that role switches did not occur as often as
expected from a traditional setting (in contrast to hypothesis one. When con-
sidering communication, the Embedded Chat was used less than expected and
almost all communication was handled via an audio channel. It is interesting to
note that the whiteboard as well as the Remote Selection feature were rarely
used but still considered as an important feature by the users which makes us
confident that the Remote Selection should be an important feature in all
distributed pair-programming tools.

3122 Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



Concerning teaching, we also expected a different behavior. Instead of laymen
in the role of the Spectator, experts were using this role. Still, this feature
enabled the transfer of knowledge which is the basic task of teaching. Teaching
did – as expected in hypothesis two – not press the learning navigator into
the more active role of the driver. Finally, when considering testing, the basic
support was not used at all. But, this is mainly due to the fact that developers
preferred testing on their own as well as developers not being experienced in
testing at all.

6 Conclusions

In this paper, we have discussed the main social practices for distributed pair
programming, i.e. coordination, coding, communication, teaching, and testing.
We analyzed the technology implications when transferring these practices to
distributed settings and provided guidance for developing technology support.
We have discussed to what extent existing systems support these social practices
and presented a tool that integrates support for the practices in Eclipse.

First experiences, when using our tool during its development and during
two long term development projects indicated that XPairtise supports the so-
cial practices for distributed pair programming. The evaluation revealed some
interesting aspects on the tool usage. The evaluation of XPairtise during the lab
course has of course a different context from the real. Students in a lab course
that uses a blended setting cannot be exactly compared to professionals develop-
ing a product which has to be delivered to a real customer with scheduling and
deadlines to be followed. Still, the contexts are similar and this initial evaluation
provides insights on how XPairtise supports distributed pair programming. Nev-
ertheless, we plan to continue the evaluation of XPairtise in further lab courses
and especially in commercial distributed development projects. In these eval-
uations, we aim to better understand the impact of the plugin on distributed
team performance and to identify additional functionality to further support
distributed pair programming.

Independent from these findings, we will in the next future improve the func-
tionality for pair formation. For that purpose, we will include Activity Indi-

cators or Expert Finder mechanisms as they were, e.g., present in TUKAN
[Schümmer and Schümmer, 2001] that allow to retrieve experts from the reg-
istered users for specific problem domains. This retrieval could, e.g., be based
on source code analysis or activity analysis of pair programming session. For
improving the teaching functionality, we plan to include a Replay mechanism
which records pair programming session and allows to review them afterwards.

3123Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



Acknowledgements

Special thanks are due to the members of the lab group who developed the ini-
tial version of XPairtise (in alphabetical order): Karsten Juschus, Timo Kanera,
Manfred Krapf, Nicolas Lavit-Justen, Robert Mischke, Heiko Schlenker, Roland
Wielnig. The implementation of the debugging support for XPairtise was pro-
vided by Manfred Krapf. Additional repository support was added by Timo
Kanera. Dominik Kröger substantially contributed to the evaluation of XPair-
tise. Last but not least, we thank all students who used XPairtise during our
2007/08 lab course and thereby helped us to study the application of XPairtise
in distributed development projects.

References

[Beck, 1999] Beck, K. (1999). eXtreme Programming Explained. Addison Wesley,
Reading, MA, USA.

[Beck et al., 2001] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunning-
ham, W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J.,
Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., and Thomas, D.
(2001). Manifesto for agile software development.

[Beck and Gamma, 2002] Beck, K. and Gamma, E. (2002). Junit cookbook.
[Boehm and Turner, 2004] Boehm, B. and Turner, R. (2004). Balancing Agility and

Discipline – A Guide for the Perplexed. Addison Wesley, Boston, MA.
[Braithwaite and Joyce, 2006] Braithwaite, K. and Joyce, T. (2006). Xp expanded:

Patterns for distributed extreme programming. In Longshaw, A. and Zdun, U., edi-
tors, Proceedings of the 10th European Conference on Pattern Languages of Programs,
EuroPLoP’05, pages 337–345, Konstanz, Germany. UVK.

[Cook, 2006] Cook, C. (2006). Towards Computer-Supported Collaborative Software
Engineering. PhD thesis, University of Canterbury, Christchurch, New Zealand.

[des Rivieres et al., 2001] des Rivieres, J., Gamma, E., Mätzel, K.-U., Moore, I.,
Weinand, A., and Wiegand, J. (2001). Extreme Programming Examined, chapter
Team Streams: Extreme Team Support, pages 333–353. Addison Wesley.

[Dewan and Riedl, 1993] Dewan, P. and Riedl, J. (1993). Toward computer-supported
concurrent software engineering. IEEE Computer, 26(1):17–27.

[Djemili, 2006] Djemili, R. (2006). Entwicklung einer Eclipse-Erweiterung zur Real-
isierung und Protokollierung verteilter Paarprogrammierung. Master’s thesis, Freie
Universität Berlin.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA.

[Haake et al., 2005] Haake, A., Lukosch, S., and Schümmer, T. (2005). Wiki-
templates: adding structure support to wikis on demand. In WikiSym ’05: Pro-
ceedings of the 2005 international symposium on Wikis, pages 41–51, New York, NY,
USA. ACM Press.

[Hanks, 2004] Hanks, B. (2004). Tool support for distributed pair programming: An
empirical study. In Proceedings of XP/Agile Universe 2004: 4th Conference on Ex-
treme Programming and Agile Methods, Calgary, Canada.

[Hanks, 2005] Hanks, B. F. (2005). Empirical Studies of Distributed Pair-
Programming. Dissertation, University of California Santa Cruz.

3124 Schuemmer T., Lukosch S.: Understanding Tools and Practices ...



[Ho et al., 2004] Ho, C.-W., Raha, S., Gehringer, E., and Williams, L. (2004). Sangam:
a distributed pair programming plug-in for Eclipse. In Eclipse ’04: Proceedings of
the 2004 OOPSLA workshop on eclipse technology eXchange, pages 73–77, New York,
NY, USA. ACM Press.

[Hupfer et al., 2004] Hupfer, S., Cheng, L.-T., Ross, S., and Patterson, J. (2004). In-
troducing collaboration into an application development environment. In CSCW ’04:
Proceedings of the 2004 ACM conference on Computer supported cooperative work,
pages 21–24, New York, NY, USA. ACM Press.

[Kircher et al., 2001] Kircher, M., Jain, P., Corsaro, A., and Levine, D. (2001). Dis-
tributed extreme programming. In Proceedings of XP2001 - eXtreme Program-
ming and Flexible Processes in Software Engineering, pages http://www.kircher–
schwanninger.de/michael/publications/xp2001.pdf, Villasimius, Sardinia, Italy.

[Lukosch and Schümmer, 2008] Lukosch, S. and Schümmer, T. (2008). The role of
roles in collaborative interaction. In 13th European Conference on Pattern Languages
and Programs (EuroPLoP’08).

[Maurer, 2002] Maurer, F. (2002). Supporting distributed extreme programming. In
Proceedings of the Second XP Universe and First Agile Universe Conference on Ex-
treme Programming and Agile Methods - XP/Agile Universe 2002, pages 13–22, Lon-
don, UK. Springer-Verlag.

[Pinna et al., 2003] Pinna, S., Mauri, S., Lorrai, P., Marchesi, M., and Serra, N. (2003).
XPSwiki: An agile tool supporting the planning game. In Marchesi, M. and Succi,
G., editors, Extreme Programming and Agile Processes in Software Engineering, 4th
International Conference, XP 2003, number LNCS 2675, pages 104–113. Springer-
Verlag Berlin Heidelberg.

[Reeves and Zhu, 2004] Reeves, M. and Zhu, J. (2004). Moomba – a collaborative
environment for supporting distributed extreme programming in global software de-
velopment. In Lecture Notes in Computer Science : Extreme Programming and Agile
Processes in Software Engineering, pages 38–50. Springer.

[Rekimoto et al., 1998] Rekimoto, J., Ayatsuka, Y., Uoi, H., and Arai, T. (1998).
Adding another communication channel to reality: an experience with a chat-
augmented conference. In CHI ’98: CHI 98 conference summary on Human factors
in computing systems, pages 271–272, New York, NY, USA. ACM.

[Schmolitzky, 2008] Schmolitzky, A. (2008). Patterns for teaching software in class-
room. In Hvatum, L. and Schümmer, T., editors, Proceedings of EuroPLoP’08, pages
37–54, Konstanz. UVK.

[Schümmer and Lukosch, 2007] Schümmer, T. and Lukosch, S. (2007). Patterns for
Computer-Mediated Interaction. John Wiley & Sons, Ltd.

[Schümmer and Schümmer, 2001] Schümmer, T. and Schümmer, J. (2001). Support
for distributed teams in extreme programming. In Succi, G. and Marchesi, M., edi-
tors, eXtreme Programming Examined. Addison Wesley.

3125Schuemmer T., Lukosch S.: Understanding Tools and Practices ...


