DELFT UNIVERSITY OF TECHNOLOGY

Containerization for High Performance
Computing

Author:

Nienke Eijsvogel

MASTER OF ENGINEERING
n
COMPUTER SCIENCE

November 23, 2022

Delft
e t University of
Technology

Nienke Eijsvogel
Student Number: 5428599

Graduation committee:

Prof. Dr. Jan Rellermeyer
Dr. Lydia Chen
Dr. Matthias Moller

Abstract

Containerization, a lightweight form of virtualization, increasingly became more popular in
the last decade. Containers can offer a level of isolation and privacy to the user, which are not always
sought after. High performance computing workloads benefit from having a custom container filesys-
tem, but would suffer from any overhead incurred by isolation. This research assesses overhead from
Singularity containers for workloads that work on different levels of the memory hierarchy. Different
configurations for number of processes and threading are tested for different types of benchmarks.
No significant overhead was found which encouraged to test Singularity outside the high performance
computing world. Singularity was implemented in Kubernetes, a dynamic container scheduler, by
restructuring and rewriting the deprecated Singularity container runtime interface. The re-newed con-
tainer runtime interface was implemented in Sykube, a local Kubernetes framework for Singularity. A
Kafka streaming application was used as benchmark to assess latency in messaging and deployed in a
local Docker container network and a local Singularity container network. The results of the local con-
tainer networks were compared against the performance of the benchmark in Kubernetes. In the local

setup Singularity outperformed Docker, while in Kubernetes setup Docker outperformed Singularity.

Contents

1 Introduction

1.1 Problem statement e e e e e
1.2 Approach and Scope
1.3 Thesis Outline and Contribution 0

2 Background

2.1 Hypervisor e e e e e
2.2 Containerization L e
2.3 Operating systems L e
2.4 Related Work L e
2.5 Linux Kernel e

2.5.1 NamesSpaces v v v v v i e e e e e e
2.6 Linux Filesystem e

3 Frameworks

3.1 Docker e
311 Images. oL
3.1.2 Docker daemonl
3.1.3 Docker runtimeo e

3.2 Singularity 22

3.2.1 Singularity Image 22

3.2.2 Starter-Suid 22

3.2.3 Stage 1 e 23

3.24 Stage 2 ... e e 24
3.3 Slurm . ..o e 25
3.4 Kubernetes e 25
3.5 Framework discussion 27
Benchmarks 29
4.1 Linpack e 29
4.2 Stream e e e 30
4.3 Parallel Matrix Transpose oo e 31
4.4 Random Ring Latency Bandwith Benchmark 32
4.5 FET . e e 33
4.6 Random Memory Access 34
Singularity High Performance Cluster 36
5.1 Singularity and MPI oL 36
5.2 MPI Communication Layers L 37

5.3 Runtime 38

5.4 Benchmark Input Configuration o 38
5.5 Thread and Node Configuration 39
Results 41
6.1 Linpack e 41
6.2 Stream e 45
6.3 Ptrans 49
6.4 RandomAccess 53
6.5 Fast Fourier Transform 55
6.6 Bandwith/Latency Benchmarks 58
Singularity in Kubernetes 63
7.1 Sykube. e 64

7.1.1 SykubeImage e 64

7.1.2 Sykube Executable L 65
7.2 Singularity-cri.o 66
7.3 Kafkao 67
7.4 Kafka Application L 68
7.5 Local Container Network 69

7.6 Kubernetes container network

8 Conclusion

71

1 Introduction

Virtualization is a technique that aims to separate a service from the underlying physical form of that
service. This can include virtualization of hardware, operating systems and storage devices. When
computing environments are independent of physical infrastructure a level of flexibility is introduced
that allows for multiple services to use the same infrastructure. Each virtual service can interact
independently and run different applications or even operating systems, while sharing resources of
a single host machine. Since Virtualization can provide a completely separate environment, it also
introduces a level of isolation. This feature of virtualization can be useful to any user who values
privacy and security. For example, it can provide users of a cluster to have an isolated view on their

own file system, without the risk of any user intervening.

Virtualization can also provide cluster users with the flexibility to use custom libraries, with-
out the need to alter the state of the cluster. Clusters are primarily overseen by an admin that controls
the system, its state and its users. For security reasons users are often not allowed to make changes
to the system, which results in limited flexibility with regards to application implementations. Imple-
mentations have to be compatible with the state of the cluster. This can strongly decrease efficiency
and result in a sub-optimal workflow. There is also no guarantee that proper working code still work
in the future as the state of the cluster evolves. Containerization, a lightweight form of virtualization,
can soothe this problem. Containers can provide the user with a custom read only file system that
provide an application all required dependencies. These container environments offer the reassurance
that if an application runs properly, it will run properly every time it is deployed in this container

environment.

Previous mentioned features of virtualization are isolation, privacy, security and flexibility.
These properties however, are not always sought after by every user. Users who not seek any iso-
lation or privacy but rather intend to achieve low latency on communication might have to debate
on whether virtualization is beneficial. Examples of workloads that suffer from any latency and ex-
ert high demand on resources are advanced computing problems. Advanced computing problems as
in Physics, Aerodynamics and other engineering fields are computational problems that require more
computing power and resources than a single machine can offer. High performance computing is a field
that works to support these advanced computing problems by aggregating computing power to deliver
much higher performance. High performance computing is a field that would benefit from having flexi-
bility of installment on a shared cluster, but can suffer from isolation overhead with its tightly coupled
applications. Data intensive workloads can require a high degree of data exchange between processors
and therefore inter container communication. This research aims to assess the effect containerization
has on high performance computing and provide a clearer view on its trade offs. Are the benefits of
containers worth any overhead it causes?

1.1 Problem statement

This research aims to assess the effect of containerization on High performance computing. To be able
to discover any weak point, this research aims to extensively assess different type of workloads with
various configurations. Only by extensively searching among multiple axes, a balanced conclusion can
be conducted on the benefits and overhead of containerization. Heavy, data intensive, workloads are
deployed that work on different levels of the memory hierarchy. To assess overhead of containerization
related to the over-threading, configurations are run that force the applications to spend more time in
the kernel space. This is effectuated by subscribing processes on a machine with more threads than
the number of physical threads. Both over-threaded and non over-threaded implementations of the
same workload are run. To assess any architecture specific overhead, all workloads are run various
times with different configurations regarding the number of containers. All results are compared to
bare metal implementations, which are a benchmark for any overhead incurred. Every configurations
possible among the axes of memory hierarchy, architecture and threading is being made and tested.
Meaning, every workload that works on a specific level of the memory hierarchy is being tested with
a varying number of containers and with a varying level of over-threading. This research will be
extended by testing Singularity, a high performance computing container framework, outside of the
high performance world by implementing it in Kubernetes, a dynamic container scheduler. In addition
the container runtime interface will be implemented in Sykube, a local Kubernetes Singularity container
scheduler. The framework will be tested and performance will be compared to the industry standard
container framework, Docker. To guide the process of researching the effect of containerization on

High performance computing, the following three research questions are going to be answered.

e Research Question 1: Are there levels of the memory hierarchy for which containerization causes

performance degradation?

e Research Question 2: How much overhead is related to architecture of container deployment or

oversubscribing threads?

e Research Question 3: How does the High Performance Computing framework Singularity per-

forms outside the high performance world?

1.2 Approach and Scope

To answer Research Question 1, applications of the High Performance Computing Challenge (HPCC)
are used [1]. The Challenge is a benchmark suite that measures a range of memory access patterns
among different levels of the memory hierarchy. The benchmarks applications assess performance
of the system in Gflop/s, Gup/s, bandwith and latency. Since not only system performance is of
interest in this research, run-time is added as a metric to all applications. Results of the bare metal
implementation will be compared to the results of the container implementation, to determine any
overhead.

To answer Research Question 2, the results of the previous mentioned HPCC are used as
well. For every application, various configurations of the number of containers and processes are
deployed to the cluster. For the not over-threaded implementation, the number of threads on a node
has to be divisible by the number of containers scheduled, otherwise threads will be left idle or slightly
oversubscribed. Different levels of over-threading are run which is effectuated by incrementing the
processes on machine that all have the logical number of threads that are present on a node subscribed
to them. Results of the bare metal implementation will be compared to the results of the container

implementation, to determine any overhead.

To answer Research Question 3, Singularity will be tested in an environment that has dif-
ferent characteristics than traditional high performance computing environments. High performance
computing workloads are inherently not dynamic and therefore implementing Singularity in a dynamic
container scheduler as Kubernetes will serve as a good starting point for testing its generalizability. The
Singularity container framework and container runtime interface will be implemented in Kubernetes
and tested in a local Kubernetes setup. Since the Singularity container runtime interface and the local
Kubernetes framework Sykube, are deprecated, both will have to be restructured and extended with
new modules that enable them to work properly on newer Linux kernels. In addition to implementing
Singularity in Kubernetes, Singularity will be tested with a workload that has different characteristics
than traditional high performance computing workloads; An Apache Kafka streaming application is
constructed that measures delay in messaging. The performance of the Kafka streaming application
in Kubernetes with Singularity will be compared to the performance in Kubernetes with Docker, the

industry standard container.

1.3 Thesis Outline and Contribution

The key contributions of this thesis are the following:

1 A comprehensive survey on relevant container frameworks for high performance computing

and the underlying features that adhere to these frameworks.

2 An in-depth quantitative analysis on overhead incurred by deploying containers for different
levels of the memory hierarchy. This in depth analysis is being done on the axes of memory hierarchy,

container architecture and threading level.

3 Discussion of underlying features of container frameworks that can cause performance degra-
dation by qualitative research and by deploying different container frameworks in a Kubernetes cluster.

4 New modules and extensions of the deprecated frameworks Sykube, a framework for a local
Kubernetes cluster, and the Singularity container run-time interface that enable the frameworks to

work for newer Linux Kernels and provide new features.

2 Background

This section starts with a brief history of containerization followed by an explanation of its key fea-
tures and underlying techniques. These features and techniques form container frameworks and are
affecting how these frameworks operate and therefore their performance. A key understanding of these
underlying techniques is required to understand how they attribute to container frameworks and how

they can cause weak points or overhead.

2.1 Hypervisor

Before container use increased in popularity, hypervisor virtualization, also known as virtual machines,
was the norm. A Hypervisor is a piece of software that abstracts operating systems from the underlying
hardware. Because the abstraction layer provides the user with an emulated version of the underlying
hardware, the hardware can be shared among multiple virtual machines. Virtual machines are isolated
from the host operating system and therefore provide an isolated environment to its user. Since
virtual machines stack new operating systems on host machines, they demand a substantial amount
of resources. Under certain circumstances, as when no other operating system than the host operating
system is required or no strict security issues apply, the high demand on resources lacks substantiation

and hardware virtualization might not be necessary.

2.2 Containerization

Moving one level up from hardware, containerization is a form of operating system level virtualization.
The main idea of a container is that containers are standard units of software that packages up code and
all its dependencies as an immutable file system effectuating that an application in this environment can
run reliably from one computing environment to another. Containerization is a more lightweight form
of virtualization since it does not require installment of a new operating system on the host machine.
Containers run a user space on top of the host operating system kernel, requiring substantially less
resources than virtual machines. When multiple containers are deployed, each container shares the
operating system kernel with the other containers as normal processes would. The lightweight nature
of containers is important with regard to the performance of high performance computing workloads,
which can have a strong demand on resources itself. There are certain features containers can provide

to the user;

e Scalability. The scalability feature accentuates the seamless way container clusters are able to
scale up and down. The required time to deploy new instances on a running host is lower than
instantiating a new operating system on virtualized hardware. Because of their lightweight nature
and low instantiation time, containers are well scalable [2] [3]. High performance computing

10

benefits from quick instantiation of containers, however it does not require dynamic scheduling
of new containers since the workload is typically set at the start. This feature is more of concern

for any auto-scaling of services.

e Portability. The portability feature of containers ensures that containers can run reliable from one
computing environment to another. This feature is of concern to high performance Computing,
since it ensures the containerized workload will run properly on every shared cluster or machine,

regardless of its state.

e Configurability. Containers offer a high level of configurability. The virtualization of the oper-
ating system can be configured allowing for custom container environments that serve different
type of workloads. Containers can be regarderd as special type of processes with variability
in isolation levels, features and privileges. Configurability is of interest to High performance

computing since performance can be dependent on characteristics as resources and isolation.

e Isolation. As previously mentioned, virtualization can offer privacy and isolation [5] [6]. Isolation
can affect performance of containerized workloads since workloads of high performance computing
are commonly tightly coupled. All though dependent on the level of data locality, these workloads
can require a high level of inter-container communication. The isolation property of containers

is not a feature high performance computing typically gains from.

2.3 Operating systems

A container relies on the way operating systems isolate their resources and features to create its own
environment during runtime. Since containers rely on the operating system, the characteristics of
these kernels are important pillars for container frameworks. For containers to work properly, they
have to be compatible with the low-level characteristics of the kernel. Containers can be build and
deployed on all types of operating systems. Throughout the years various container frameworks have

been introduced for different type of operating systems.

Oracle Solaris container framework [13] was the first official container release which combined
system resource controls and boundary separation provided by zones, which were able to leverage
features like snapshots and cloning from ZFS. LXC [15] is a container framework specifically designed
for the Linux kernel and is not as lightweight as other container frameworks, but it resembles a virtual
machine without the need of an operating system. An initiative has been proposed for a MacOS
Containers to extend Containerd [14], a Linux container framework, to enable it to run natively on
Macos [36]. Containerd is a container daemon that runs on Windows and Linux [14] and virtualizes
Linux namespaces. Running Linux based containers on non-Linux operating systems, requires the

presence of a Linux kernel on the host machine.

11

The Linux Kernel is also the base of Docker, one of the most widely adopted container
frameworks [7]. Docker works as well on Windows and Macos, because the Docker packages for these
operating systems contain a Linux kernel. Docker is a container framework adopted by big tech
companies as Netflix, Spotify, Pinterest and Airbnb. The framework was for a while even hardcoded
in Kubernetes, a container manager used by e.g. previous mentioned tech companies and developed by
Google [12]. This emphasizes how dominant Docker is in the container landscape. However, Kubernetes

announced to move away from the hardcoded Docker shim in December 2020 [37].

Kubernetes stated that containerization became an industry standard and therefore they
added support for other container run-times. Docker has the benefit that it was already adopted
by any company that wished to use Kubernetes up till December 2020. This does not necessarily
mean Docker is the optimal container for the diverse types of workload run by previous mentioned
tech companies and other companies. Kubernetes moving away from Docker insinuates that there is
a demand for other frameworks with different characteristics than Docker. Singularity is a container
framework which was constructed to accommodate high performance computing and can operate with
a low level of privileges [8]. The Linux kernel is, in addition to Docker, also the base operating system
of Singularity and therefore this research will narrow its scope to container frameworks that virtualize

the Linux Kernel.

2.4 Related Work

There has been previous research into the usage of these frameworks for high performance computing
to some extend and it is still an ongoing research topic [34] [35]. There has been work that assesses
performance of single-container deployments and emphasize the possibility that deploying a high per-
formance computing workload into a single Docker container can achieve near bare metal performance
[24] [25]. These type of implementations provide a good set up for comparing hypervisor virtualization
with containerization, but are somewhat restrictive in what they can say about container overhead for
high performance computing in general. There recently, in 2022, has been research by Liu et al.[29]
that has a more in-depth approach by also incorporating the container granularity. Liu et al. present
an interesting approach where they schedule 32 processes per node, encapsulated in different numbers
of containers varying from 1 to 32, incremented by multiplication with a factor 2 [29]. This research
differs from Liu et al in the sense that workload is distributed among a different number of containers
per host, but not in finer grained number of processes per container. This type of scheduling, without
fine graining, produces results for a one on one comparison with the bare metal implementation. Liu
et al. use metrics of the HPCC benchmark [1] which are used to assess the peak capabilities of a
system in terms of gup/s, bandwith, flop/s. The peak values of these metrics describe a system and
are determined by timing only smaller parts of the benchmarks that are relevant for the metrics. It is
not ensured that these metrics are a one to one mapping to application performance and therefore con-
tainer overhead. This research adds a runtime metric to have a well rounded base to do any claims up
on about container overhead for high performance computing performance. In addition this research is
run on up to 40 nodes opposed to 5 nodes in the research of Liu et al. Liu et al. have published another

work where they test the time spent in MPI functions and assess the effect of oversubscribing cpu’s

12

[33]. The technique they use differs from this research in the sense that they disable hyperthreading
and oversubscribe on a process level by limiting the number of available cpu’s to the mpi processes
and they run their experiment on a single host. This research occupies all available cpu’s, uses hyper-
threading and oversubscribes threads on an application level and is run on a up to 40 node cluster. No
other previous research has been found that assesses overhead from oversubscribing threads for high

performance computing workloads in containerized environments.

2.5 Linux Kernel

Linux based container frameworks lend the way the Linux kernel isolates global system resources and
use it as building blocks for a (secured) container environment. To have a clear understanding of
the characteristics of different container frameworks, a low level understanding of the Linux kernel is

required.

The Linux Kernel relies on the notion of namespaces. Namespaces are a feature of the Linux
kernel that partitions kernel resources. A namespace wraps a global system resource in an abstraction
that makes it appear to the processes within the namespace that they have their own isolated instance
of the global resource. Namespaces can provide users of a shared cluster, commonly used in high
performance computing, with their own private work space on the machine. Privacy is attained by
ensuring that the private portion of a user space is only visible to its owner and no damage can be done
to violate this private space. This form of privacy can be obtained by isolation which is feasible through
namespaces. Namespaces have different features and effects, thus the use case of a container is decisive
in which namespaces best be isolated. For example with a workflow that relies on communication
between containers, isolating more than absolutely necessary can induce performance regressions while
other tasks are better suited for isolation (e.g. database services or webservices). Different use-cases

thus should be configured with the fitting namespaces.

2.5.1 Namespaces

User Namespace The user namespace allows processes to run with different user identifiers and/or
privileges inside that namespace than are permitted outside. User namespace capabilities are not
the same as capabilities on the host, but namespaced capabilities. The user namespace enables
the Linux chroot() systemcall to change the root directory of a process and its children to a new
location in the filesystem. The chroot() command was developed for Unix V7 in 1979 and was
the beginning of process isolation and ultimately containers. In container context this means
the root of a container has capabilities only within the container and across the range of User
IDs that were mapped into the user namespace. For the user inside the container it means that
the process has full privileges for operations inside the user namespace, but is unprivileged for

operations outside the namespace.

13

Init usernamespace

Container
namespace

/ 01000

Container
namespace

1000..2000

3000..4000 - 0..1000

- 1001..2000

4000..5000

Figure 1: UID/GID Mapping

Fake root mode of a container allows an unprivileged user to run a container seemingly as a root
user by leveraging user namespaces with user namespace UID/GID mapping. User namespace
UID/GID mapping allows a user to act as a different UID/GID in the container context than
they are on the host. A user can access a configured range of UIDs and GIDs in the container,
which map back to a (possibly) unprivileged user UID or GID on the host. This enables a user
to act as root (UID 0) inside a container with a level of privilege that only exist in the container

environment, but with no privilege on the host.

UNIX Time-Sharing Namespace (UTS) Despite its name, the UTS namespace controls the host-
name and the NIS domain. It can be used for setting the hostname and the domain which are
visible to running processes in the same namespace. By assigning a container its own UTS
namespace, the hostname for the process can be changed independently of the host or VM on
which the process is running. Isolating the UTS namespace is required if one aims to construct

a container network in which containers can access one another by their name.

Interprocess Communication (IPC) namespace . Interprocess communication provides seper-
ation of named shared memory segments, message queues and semaphores. When the host’s
IPC namespace is shared with the container, it would allow processes within the container to
see all the inter process communications on the host system. The IPC namespace is of interest
for high performance computing since shared memory is the fastest interprocess communication
mechanism and can be used in order to accelerate inter container communication. The operating
system maps a memory segment in the address space of several processes to read and write in
that memory segment, without calling operating system functions. For workloads that exchange
large amounts of data, shared memory is superior to message-passing techniques like message

queues, which require system calls for every data exchange.

14

Network namespace A network namespace is a logical copy of the network stack from the host

system. The network namespace virtualizes the network stack and provides a virtual network
interface. Every network namespace owns a private set of IP addresses, a routing table, socket
listing, firewall, and other network-related resources. Virtualizing the network namespace allows
for applications running in different containers to bind to the same port, while running on the
same host. Firewall settings and iptabling are of interest for inter container communication when
the network stack is isolated. When a network namespace is terminated, any virtual interfaces
within it is terminated and any physical interfaces within it moved back to the initial network

namespace.

Control group (Cgroup) namespace Cgroup namespaces are employed to control the system re-

PID

sources. The cgroups limits what resources (i.e Memory, CPU) are available to the group. De-
ciding whether this namespace is isolated or not within a container context, is very dependent on
the use-case of the container. For data intensive workloads it can be best to not isolate any more
than necessary on behalf of hardware to avoid performance degradation. Linkedin employees who

investigated the effect of cgroups on Docker mentioned several issues regarding high performance
[38].

namespace The PID namespace provides processes with an independent set of process IDs
(PIDs) from other namespaces. PID namespaces allow functionalities such as suspending, re-
suming or migrating a set of processes. In terms of containerization this namespace allows for
migrating the container to a new host while the processes inside the container maintain the same
PIDs. the PID system works almost identically to that outside of the namespace. The process
IDs inside the PID namespace start at 1 since they have their own process list, with the first
process considered as the init process. The PID namespace ensures that the processes running
inside a container are isolated from the host. With an isolated PID namespace, When you run a
ps command inside a container, you only see the processes running inside the container and not
on the host machine.

Mount namespace A mount namespace is the set of file system mounts that are visible to a process.

Mounting itself is a process by which the operating system makes files and directories on a storage
device available for users to access and can be seen as opening a file before reading/writing from
it. The mount namespace is an important namespace for containerization because it allows
for a container to have their own custom filesystem. The directory on which a filesystem is
mounted is called the mount point and being a tree of directories, every filesystem has its own
root directory. If a filesystem is present on disk, an empty directory in the tree is created which
the filesystem should be mounted to before it can be used by other programs. Other filesystems
can be mounted, either by the initialization scripts or directly by the users, on directories of
already mounted filesystems. Container frameworks typically have the command line option to
mount directories from the host into the container during initialization. A mounted filesystem
is a child of the mounted filesystem to which the mount point directory belongs, in this case the

host of the container.

15

2.6 Linux Filesystem

Until now it was discussed that namespaces have the ability to virtualize resources and limit visibility
of files. On a file level there can also be restrictions; Linux files have features that describe who
has which permissions over the file. Privileges and capabilities over files are of interest for containers
because running containers requires some level of privilege escalation. Mounting a container filesystem,
creation of namespaces and binding directories into containers are all actions that require a level of
privilege. Since everything in the Linux kernel is considered a file, privileges are eventually granted on

a file level which makes it worth to examine the Linux filesystem.

For Unix operating system and its derivatives such as Linux, everything is considered a file.
A Unix file is an information container and is structured as a sequence of bytes. All files have file
descriptors which contain information on the characteristics of the file. Particularly important in
regards to containerization, are the access rights and file modes. File permissions on bind mounts are
shared between the host and the containers. A file is marked by three types of flags:

e SUID: Default: A process executing a file keeps the UID of the process owner. If an executable
file has a SUID flag set, the process gets the UID of the file owner.

e SGID: Default: A process executing a file keeps the user group ID of the process group. If an
executable file has the SGID flag set, the process gets the user group ID of the file.

e Sticky: If an executable file has the sticky flag set, a request is made to the kernel to keep the

program in memory after its execution terminates.

Setting up container environments requires system calls and functions which are considered
privileged and require capabilities to execute. There are different ways to provide container frameworks
with the required capabilities and privileges. Privilege levels can vary from all root access to only

assigning capabilities to certain files. To run a container one of the following protocols has to be used:

e Root: Root user or sudo-granted users are capable of running containers.

e Root owned daemon process: A root owned daemon process manages containers. An IPC control
socket is used for communication with this process. If trusted users are allowed to control the
daemon they must acquire access to the control socket. This implementation caries the risk that

user are given access to a control socket of a daemon process that is root owned.

e SetUID: A process with this capability can change its UID to any other UID. Binaries with the
setUID bit enabled, are being executed as if they were running under the context of the root
user. This enables normal (non-privileged) users to use special privileges, like opening sockets
and isolating namespaces. A SetUID root program runs as root with all capabilities that come
with root. If your container processes do not change UIDs/GIDs and are always running as the

same UID they do not need this capability.

16

e User Namespace: Run a container with a limited set of privileged functions inside a user names-
pace. Privileges are only applicable within this namespace and not on the host.

o Capabilities: Manage privilege via capability sets. Non-privileged users can acquire privileges on

a per file and process basis, which is the most fine-grained option out of the previous mentioned.

Certainly for high performance computing environments, the level of privilege that can be
granted to users is a discussion point. High performance workloads are often being deployed on admin
controlled shared clusters, on which root access is preferably not given to any user account. The risk
is not necessarily in ill-intentioned users, but also malicious workloads that run inside a container. For
high performance environments preferably one of the latter three previous mentioned protocols is used;
setUID, User namespace or capabilities.

17

3 Frameworks

This section provides a background on container frameworks that are based on the Linux kernel and
container schedulers. The Docker container framework and the Singularity container framework will
be discussed. The Docker container is discussed since it is a framework widely adopted by tech
companies and is very dominant in the container market. The Singularity framework is a framework
specifically designed for High Performance Computing. The two container schedulers discussed are
Slurm and Kubernetes. Slurm is a process and resource manager commonly used in high performance
environments. Kubernetes is a dynamic container scheduler created by Google and deployed by various
big tech companies.

3.1 Docker

The first container framework discussed is Docker, a lightweight and popular container framework [22].
Docker was created based on the idea of dotCloud which is a platform as a service (PaaS) for developers
that enabled them to host, assemble and run their applications on the service. Developers were asking
for the underlying technique and therefore Docker was created. Docker can provide virtualization of a
single application and has a strong emphasis on enabling modularity. Modularity is the degree to which
a system’s components may be separated and recombined. This modularity translates into the use of
microservices; Microservices are an architectural approach in which a single application is composed
of many loosely coupled and independently deployable smaller components or services. Docker has a
microservices-based architecture and enables easy linking of multiple containers together to create an
application. Docker isolates the network stack and containers can communicate by container names.
An essential principle of the microservice architecture is loose coupling. The micro service architecture
makes it straightforward to elastically scale or update components of an application independently.
Loosely coupled architectures are lean; With a single responsibility and without many dependencies.

Communication should be lightweight as well and is often an HTTP resource API.

3.1.1 Images

Docker uses images which form a base for a containers’ root filesystem. For Docker these images are
not just one monolithic block, but are composed of multiple layers. Layering the filesystem creates a
modular architecture that enables a more efficient workflow; For an update on an image, only a single
layer has to be changed while the other layers can stay intact. Previously build layers can also be
shared among images and if images are pulled, there will be no redundant copies of layers that are
already present at destination. Each layer is a mapping with a command and this command is nothing
but a file which will be stacked in to the image.

18

The container image layers are composed with the use of the Unionfs filesystem which gives a sin-
gle coherent and unified view to files and directories of separate file-system. A storage driver handles

the details about the way these layers interact with each other.

A different Linux distribution than the host OS can be used as the base of an image, which
is commonly the first layer. Since all Linux distributions run the same Linux kernel and differ only
in UserLand software, it is possible to simulate a different distribution environment by installing the
required UserLand software and pretending it is another distribution. More specific, running a CentOS
container on Ubuntu OS will mean that you will get the UserLand from CentOS, while still running
the same kernel. The implication of this is, that while building the image, the installation repositories
from package managers as apt-get and yum are from the specific base operating systems, in this case
CentOS. After the base image layer, following layers can have varying purposes as installment of
libraries, copying in local files or setting environment variables. These layers combined are able to
compose a work-environment for a container that is customized to the workload it intends to carry.
Docker images can be build locally or can be retrieved from the Docker hub, a public registry for

Docker images.

3.1.2 Docker daemon

The Docker daemon runs as a service on the host operating system and can be seen as the executive force
in the Docker framework. The root owned daemon does all the heavy lifting, listens for Docker API
requests and manages Docker objects such as containers, images, volumes and networks. The daemon
provides a place for shared state of all container objects and is able to manage resources as networks
and volumes that may be shared between multiple containers. The Docker command line interface
(CLI) and Docker daemon follow a client-server architecture; The Docker daemon runs as a background
process that listens to requests on a unix domain socket (or IPC socket) at /var/run/docker.sock. The
CLI checks if the syntax of the request to the daemon is correct and will create an API request. The
unix domain socket Docker uses is root owned and anyone wishing to use Docker requires either root
permission or Docker group membership. The Docker group is overseen by the administrator of a
system and is intended for users who are not root, but want to make use of Docker. The security
risk however is not mitigated by this group, because the attendees of this group still are given root
permissions to use Docker they just do not have permission to run sudo commands for other purposes
than Docker. The fact that the Docker daemon always runs as the root user has been a point of

discussion with regard to security and is more importantly not always feasible for every user.

3.1.3 Docker runtime

. The Docker daemon itself does neither create nor run containers directly, but rather initiates their
creation. Docker actually uses Containerd, another container framework, as its internal container

runtime abstraction. Containerd pulls the container image from the docker registry and creates a

19

bundle based on the parameters provided by the Docker Daemon and the image. The default Docker
(and Containerd) container runtime is Runc which is connected to Containerd via a shim (Fig.2). This
shim is not only an entrypoint for Containerd but also a point of decoupling between the Docker daemon
and actual running containers, which enables restarting the Daemon without affecting containers.
Runc creates a new isolated container environment based on the given bundle and any meta data
configuration files. The specified namespaces are the building blocks for the isolated environment and
the image serves as the root file system of this environment. The namespaces Docker isolates by default

are all namespaces except cgroup and user namespace:

PID namespace for process isolation.

e NET namespace for managing network interfaces.

IPC namespace for managing access to IPC resources.
e MNT namespace for managing filesystem mount points.

e UTS namespace for isolating kernel and version identifiers.

‘ Docker Daemon ‘

Containerd
Containerd-shim Containerd-shim Containerd-shim

‘ Runc ‘ ‘ Runc ‘ ‘ Runc ‘

Figure 2: Docker Architecture

The isolation of namespaces in Docker also serves a security purpose; Since the Docker dae-
mon is root owned, Docker containers could make changes to host namespace settings. Isolation of
namespaces provides a barrier between the host and the container which reduce the security risk for
the host. The UTS namespace is isolated because sharing the UTS namespace with the host provides
full permission for each container to change the hostname of the host. The Docker documentation
states that not isolating the UTS namespace is not in line with good security practice and should not
be permitted.

20

Docker uses storage drivers not only to store image layers but also to store data during runtime
in the writable layer of a container. The runtime environment can be seen as taking the filesystem
that is created from the Image file and adding a writable layer. The container’s writable layer does
not persist after the container is deleted, but is suitable for storing short term data that is generated
during runtime. It is preferred to write little data to a containers’ writable layer and instead use Docker
volumes to write data (Fig.3). Volumes are the favoured mechanism for persisting data generated by
and used by Docker containers because bind mounts are dependent on the directory structure and
operating systems of the host machine, while volumes are completely managed by Docker. Dockers
philosophy is to have an environment that is only to a low extend integrated with the host and this

includes how it persists data.

Tmpfs
Container ﬂb Memaory
Bind
Mount Volume
Filesystem
\d
Docker Are.

Figure 3: Docker volume mount architecture

21

3.2 Singularity

Singularity is designed for the field of high performance computing thus it deliberately works around
root access requirements, which are often not feasible on a shared cluster. Singularity can be installed
in any directory, but it must be ensured that the location you select supports programs running as
SUID. Singularity containers are by default not isolated from the host filesystem. Singularity on
purpose blurs the lines between the host and the container filesystem, enabling reading and writing of

persistent data and easy leverage of hardware like GPUs and networks like Infiniband.

3.2.1 Singularity Image

Singularity uses a more simplified approach than Docker for building its images. Instead of a layered
file-system, Singularity containers are stored in a single file which is recognizable by the .sif extension.
This simplifies the container management lifecycle and facilitates features such as encryption and
image signing to produce trusted containers. The execution of images is being done with use of the
user privileges from the setUID functionality that allow to shortly change the UID to 0 (root) and
do privileged system calls. The sif-file can be generated in various ways; Images can be build locally
or pulled form hubs which serve as a warehouse for pre-generated images. Besides the Sylabs library,
Docker images can also be pulled from the Docker hub, due to the Open Container Initiative that
creates open industry standards around container formats and runtimes. After images from Docker
are pulled the layers are being converted into a single file-system. The filesystem used by Singularity

is a squashfs which is a compressed read-only filesystem for Linux.

3.2.2 Starter-Suid

The starter-SUID of Singularity is a root owned binary that starts the initialization of the container
environment. During the building stage of the container root privileges are shortly granted to allow for
privileged system calls and are dropped after this stage. The only code that escalates privilege within
Singularity resides in the init function of the binary. Because starter-suid is a setuid binary, it starts
execution as root and de-escalates privilege to the calling user’s UID. Only when elevated privilege
is required, for example when creating new namespaces, changing process capabilities or creating the
root owned RPC process, does Singularity init re-escalate privilege. Once the privileged operation

finishes, privilege immediately drops again.

22

3.2.3 Stage 1

The first process created is stage 1 which is mostly occupied with gathering configuration information
and setting configuration options to be used later in execution. The root owned files that are gathered
in this stage give the (unprivileged) user allowance to do certain privileged system calls, after which

these privileges are immediately withdrawn. Stage 1 accesses the following resources:

e image.sif : User owned. A custom image file in SIF (Singularity Image Format) is a single

executable file based container image.

e ecl.toml : Root owned. This file describes execution groups in which SIF files are checked for
authorized loading/execution. The decision is made by validating both the location of the sif file

in the file system and by checking against a list of signing entities.

e capability.json : Root owned. capability.json is the file maintained by Singularity where the

capability commands create/delete entries accordingly.

e singularity.conf : Root owned. This is the global configuration file for Singularity. This file
controls what the container is allowed to do on a particular host, and as a result this file must

be owned by root.

Stage 1 begins with a SetContainerEnv() function that forwards any environment variable set
for the container environment. Subsequently the init() function starts which will set a process running
as [U=3000,P=2000] temporarily to [U=0,P=2000], allowing the execution of privileged systemcalls.
During stage 1 privileged calls are the starter initialization, trying to load the overlay kernel module
and checking if we are running as setUID. The starter configuration is initialized in shared memory
to later share with child processes. After the privileged initialization part of the code is executed, a
priv_ drop() function is called that drops all root privileges and returns the process to its previous user
id.

23

D Root owned
. User owned

singularity.conf —‘ Launch stage 1
Read
configuration
files
ecl.toml
ity json Open sif file

Figure 4: Stage 1 Singularity

3.2.4 Stage 2

Stage 2 is occupied with the execution of the action script that describes what should be done in the
newly created container environment. After stage 1 finishes stage 2 starts with creating 2 socketpairs;
A socketpair for master communication channel and a RPC socketpair for communication between
stage 2 and the gRPC server. The container context, is in case of singularity the gRPC server which
serves runtime engine requests via socket communication with the Master. The process where the

gRPC server resides is root owned.

A function priv_escalate() is called that again sets the UID temporarily to 0 to allow privi-
leged system calls. When the system calls during runtime of Singularity are being traced it is evident
that the only namespace that is isolated is the mount namespace. An unshare(clone newns) call
is executed that unshares the mount namespace so that the calling process has a private copy of
its namespace which is not shared with any other process. In privileged mode, first the filesystem
UID is changed to the UID that the container runs in on the host, meaning the unprivileged UID.
A mount namespace is created in ns/mnt after which a function apply privileges() sets capabilities
for this namespace. Privileges are then dropped after which the UID returns to its previous UID. An
addRootfsMount() function adds the container image as the root filesystem in a read only mode, a
requirement for container images. Other required directories as /sys, /proc, /dev are mounted into the
container as well as the home directory and user defined mount binds provided through the command

line. Stage 2 waits for the gRPC server to finish executing any instructions it receives.

24

After stage 2 has finished, a container environment with a custom file system runs in a way
that resembles how a normal process would run on the host. No isolation of the cgroup and network
namespace allows singularity to incorporate network drivers as infiniband and make use of shared
memory communication layers. No isolation of the UTS namespace results in a localhost.domain entry
in the /etc/hostname file. No isolation of the IPC namespace results in all containers being able
to take note of all of the IPC on the host system, including of other containers. Since by default
various host directories are bind mounted into the container, building a Singularity container in the
/home directory, will give access to all files in this directory as well as its sub directories. The lines
between the host filesystem and the container filesystem are intentionally blurred, which enables a
Singularity container to run with strong resemblance to a normal process on the host, only with a

custom filesystem.

3.3 Slurm

The Simple Linux Utility for Resource Management (Slurm) is an open source, fault-tolerant, and
highly scalable cluster management and job scheduling system for large and small Linux clusters [9].
The scheduler contains an overview of the system resources and schedules processes or containers
accordingly. Slurm is not primarily constructed to schedule containers but is a more general resource
manager. The Slurm scheduler has three key jobs; The scheduler assigns resources for a period of time
to anyone requesting to execute a job. This is done by slurmctld, the central management daemon of
Slurm. Second, it provides a framework for starting jobs and monitoring their workflow on the set of
allocated nodes. Finally, it arbitrates contention for resources by managing a queue of pending work.
Slurm is commonly used in the high performance computing world to schedule distributed workflows.
Slurm is a quite static scheduler and not particularly fit to dynamically (re)start containers. If the

workload does not require dynamic schedulling, Slurm will suffice.

3.4 Kubernetes

Containers with their lightweight features are able to quickly instantiate and carry various types of
workloads. Kubernetes is a container scheduler that caters to these features. Kubernetes is an open-
source system for automating deployment, management, and scaling of containerized workloads [12].
Kubernetes provides its user with a dynamic scheduling service that can seamingless scale any service
that is scheduled to it.

A pod is the basic object of Kubernetes which is the smallest component of a Kubernetes
cluster, but can contain multiple containers. Just like Singularity, Kubernetes makes use of a gRPC
server for constructing a client server architecture between pods. Pods manage most namespaces of the
containers. Within pods network, UTS, IPC and cgroup are not isolated between containers. Kuber-
netes provides every pod its own cluster-private IP address and therefore there is no need to explicitly

create links between pods or map container ports to host ports (Fig.5). Once a Pod is scheduled

25

to a node, the Kubelet on the node creates a new cgroup namespace for the Pod. The pod which
contains the containers can be seen as an abstraction on top of an abstraction. The containers create
their own environment which allows for communication via the container runtime interface. The pod
can be seen as an abstraction on top of this that also has its own environment and communication
protocol. Together they provide the user with a dynamic scheduling environment in which one can

easily instantiate, update or destroy services and pods.

o cbr0
71 10.44.0.1
|
vethO | vethl
10.44.02 [10.44.0.3
Pod 1 Pod 2
Call localhost:80 Call 10'14-0'3-80
Container 2 Container 1
Container 1 Service on port Service on port |-
80 80

Figure 5: Pod network

The Kubelet is the primary node agent that runs on each node, which is responsible for
managing the deployment of pods to Kubernetes nodes. The Kubelet communicates with containers
via the container-runtime interface which is a plugin interface that enables the Kubelet to use a wide
variety of container runtimes. During instantiating, the Kubelet is configured with a container endpoint
and a container endpoint string. The string can have the value 'remote’ or ’Docker’ and the endpoint
is a socket for container communication, which combined define where to pull images and where to
post Kubelet requests. When a container on a node has to be destroyed, the Kubelet acting as a
client sends a message to the gRPC server running on the node’s container runtime interface instance.
Subsequently the container runtime interface interacts with the container runtime engine installed on

the worker node.

A Service is an abstraction which defines a logical set of Pods and a policy by which to access
them. This can be referred to as a micro-service, which is an abstract way to expose an application
running on a set of Pods as a network service. Services in Kubernetes maintain a clear endpoint for
pods which remain the same, even when the pods are relocated to other nodes. While a service is
the interface of a micro-service, the deployment is what keeps the actual underlying pods running.
The deployment is what describes the state of the pods and updates them accordingly if required. As

pods are an abstraction layer on top of containers, a deployment is an abstraction on top of pods and

26

a service is an abstraction on top of deployments. Together they provide the user with a dynamic

scheduling environment in which containers can be easily instantiated, updated or destroyed.

3.5 Framework discussion

The container frameworks Singularity and Docker and the scheduling frameworks Slurm and Kuber-
netes have been described. Four frameworks developed for different use cases and with different strong-
and weak-points. Kubernetes and Docker receive a lot of attention from the industry and greatly con-
tribute to the wide adoption of containers on a larger scale. Slurm is a more general resource scheduler
not optimized for container usage, but a well known framework in the high performance comput-
ing world. Singularity is developed to be operative in environments where only a limited amount of
privilege is obtainable, often seen in high performance computing. This section will discuss which
frameworks, not only on a privilege level, will best be suited for high performance computing and in

this research.

Docker is mimicking a virtual machine on a software level, while Singularity can be regarded
as a process with its own filesystem. Docker has a daemon process that runs in the background listening
to requests on /var/run/docker.sock while Singularity uses no such socket and is started by its binary,
located in the PATH environment variable. Docker isolates more namespaces compared to Singularity
and by default has no connection to the host filesystem. Singularity favors isolation over integration
which a suitable choice for high performance computing with data intensive workloads, with a high

level of inter process communication.

During the building of Docker containers, the root owned control socket is passed through
to a container and the control of this root owned socket is what makes Docker vulnerable for security
issues. Anyone who accesses a container running as root, is able to start undesirable processes in it.
For this reason, Docker is not installed on the cluster available in this research, the DAS-5 cluster.
Singularity on the other hand follows the paradigma ’untrusted users running untrusted containers’.
Neither the user scheduling a Singularity container nor the workload should be able to do any harm to
a system. Singularity works with setUID which escalates privileges to root shortly; A technique that
still caries some risk because the container is still given a UID=0 for a short time frame. A risk that
system admins have to weigh, but can be regarded as acceptable since privileges are dropped without
opportunity to regain. Sylabs is working towards instantiation of containers with capabilities, which

allows for finer grained capability control and will still support all of Singularity’s features.

What is interesting is how the two frameworks approach security issues in a different manner.
Docker virtualizes the UTS namespace because otherwise the container would be able to change the
UTS configuration of the host, since Docker runs as root. Docker has a security issue with its root
setup and therefore isolates the container more from the host to introduce the idea of more secu-
rity. Singularity does not have this issue since the container does not have root privileges, meaning

Singularity could never make changes to the host UTS namespace.

27

Kubernetes is a dynamic scheduling service which introduces different abstractions, as pods,
services and deployments, that provide the user with an environment that can be easily customized
and updated. For high performance computing, which often contains static workloads, the Kubernetes
framework has a redundant richness in features. A high performance computing workload can be
scheduled not requiring any services and deployments and no duplication of the workload. The Slurm
scheduler has some similar components as Kubernetes in terms of resource management, but it lacks

the abstractions Kubernetes adds to the process in addition to the root privilege issue.

After evaluating the two container frameworks and two container schedulers and bearing
in mind the restrictions of resources available, Singularity and Slurm will be used in the testing set
up for containers and high performance workload. Not only in terms of security issues but also the
minimal level of namespace isolation, makes Singularity is a better choice for shared high performance
computing clusters. Less isolation also enables a transparant integration of message passing libraries for
communication between tightly coupled processes of high performance computing. While Docker is a
framework with an impressive user community, its features seem unfit for high performance computing.
Kubernetes has a redundant richness in features for the static workload of high performance computing
and also has privilege issues on a shared cluster, while the Slurm scheduler will suffice and is available

on the Das-5 cluster.

28

4 Benchmarks

This section discusses different benchmark applications that pressure different levels of the memory hi-
erarchy and will serve as test benchmarks for bare metal and containerized workloads. The benchmarks
are originally measuring the maximum number of glop/s, gup/s and network bandwith to quantify the
maximum performance of a supercomputer or cluster and therefore only smaller parts of the bench-
marks that are relevant for these metrics are timed. This research is not aimed at quantifying the
maximum performance of a system, but more aimed at quantifying overhead for containerized applica-
tions in its entirety. Measured peak performance is therefore not conclusive enough for bare metal and

container performance comparison. In this research also a runtime metric is added to each benchmark.

4.1 Linpack

High performance Linpack (HPL) is a floating-point benchmark that solves a dense system of linear
equations in parallel. The benchmark is solved in double precision (64 bits) arithmetic on distributed-
memory computers. HPL is a compute intensive and a highly parallel process. The processors cache
is utilized up to the maximum limit, though the HPL benchmark itself may not be considered as a

memory intensive benchmark.

Ax =1»

Here A is a given n X n matrix and b is a given n-vector. The dense linear system is solved for the
unknown n-vector x. The size of the matrix is defined in the input file as well as the dimensions of the
process-grid P and Q. The process grid defines the MPI Ranks (P*Q).

[Cache]
!

[Local Memory]

!

[Remaote Memory]

!
I

Figure 6: Linpack Memory Hierarchy impact

Linpack ———®

29

HPL is a cache intensive application. The HPL benchmark mostly stresses the register and
cache levels in the memory hierarchy (Fig. 6). For HPL the dominant cost is CPU-related because
computation has higher complexity order than communication: O(n3) versus O(n2) [10]. Previous
research found that computational intensive jobs, either running on CPU or GPU, have small over-
head for Docker containers [11]. Following these results it is not expected that Singularity will cause

substantial overhead for cache intensive applications either.

4.2 Stream

The Stream benchmark is a benchmark for measuring sustainable memory bandwidth. This bench-
mark does not have a MPI implementation but only a Star and Single implementation. All three
implementations do use the MPI library, but no substantial messaging between the separate processes.
The single implementation schedules the whole workload on one cpu while the star-implementation

can use multithreading.

[Cache]

Stream — » I
[Local Memory]
[Remote Memory]

!
I

Figure 7: STREAM Memory Hierarchy impact

Stream is a benchmark that measures sustainable RAM memory bandwith which is located
in the higher levels of the memory hierarchy (Fig. 7). Stream uses four simple vector kernels: Copy,
Scale, Add and Triad and reports the corresponding computing rate in MB/s. Since the aim of this

benchmark is not to assess any network performance, a MPI implementation would be redundant.

30

4.3 Parallel Matrix Transpose

The Ptrans benchmark performs a parallel matrix transpose. On a uni-processor a matrix transposition
does not require matrix data to be transposed in physical memory. It can be transposed by exchanging
row and column indices. In a distributed memory environment, as on a cluster, memory locations can
not be simply interchanged between rows and columns. It should be noted that the performance of
Ptrans can be dependable on the configuration of the processes grid. The performance of the bench-
mark is at best when the numbers of communicating pairs are at minimum. For example, for a matrix
of 9x9, 3x3 processes grid has 3 communicating pairs (2-4, 3-7 and 6-8). However, a 1x9 processes
grid has 36 communicating pairs. According to HPCC benchmark rules, only one configuration of a
processes grid should be used for the entire benchmarks suite. If the process grid variables P and Q
are relatively prime, the matrix transpose algorithm involves complete exchange communication [16].
If communication causes overhead for container implementations, different process grid configurations

can cause fluctuating results.

o 3 1 4 2 5 0 a 1 4 2 5
>
0 0
P1 P2 P3 P1 P2 P3
2 2
4 4
P4 P5 PG Transpose P4 PS5 P6
1 — 1
3 3
P7 P8 Pa P7 P8 PO
5 5

Figure 8: P=3,Q=3 Ptrans Processors, drawn from [16]

0o 3 1 4 2 5 0o 3 1 4 2 5
" "1 L]
2 P1 P2 P3 2 P1 P3 P2
4 4
Transpose

1 e 1

a3 P4 P5 P6 2 P2 P4 P4
5 5

Figure 9: P=3,Q=2 Ptrans Processors, drawn from [16]

Ptrans measures communications where pairs of processors exchange messages of significant
size simultaneously. This benchmarks assesses the total communication capacity of the system inter-
connect. Two random distributed matrices A and B of size m-by-m are created and subsequently A’
+ B is computed.

31

A« A'+B

Ptrans benchmark makes use of a block-cyclic distribution for which the variable 'NB’ is set
to define the block size for the data distribution in the input file for the benchmarks. For every process
scheduled first the master thread is active which performs the block-cyclic division of the matrix parts.
Current computer architectures own hierarchical memories in which access to data in upper levels
of the memory hierarchy, namely registers, cache and local memory, are faster than access to lower
levels, shared or disk memory. To exploit this hierarchy, block-partitioned algorithms are preferred for

dense linear algebra systems, where operations are performed on sub-matrices rather than individual

[Cache]
!

[Local Memory]

elements.

Ptrans ———» i

[Remate Memaory]

!
I

Figure 10: PTRANS Memory Hierarchy impact

This benchmark ultimately stresses the interconnect and the result is returned in gigabytes
per second (Fig.10). The transfer rate of a communication mechanism is the amount of data that can
be sent per unit time. The data transfer rate (in gbyte/s) is calculated by dividing the size of n 2
matrix entries by the time it took to perform the transpose and generation time of the matrix is not
included in this rate.

4.4 Random Ring Latency Bandwith Benchmark

The Latency Bandwith benchmark measures the communication pattern with a parallel all-processes-
in-a-ring architecture to assess the bandwith of a network (Fig.11). All processes are arranged in a
ring topology and each process sends and receives a message from its left and its right neighbor in
parallel. The ring is the geometric mean of the bandwidth of ten different randomly chosen process
orderings in the ring. With this type of parallel communication, the bandwidth is defined as total
amount of message data divided by the number of processes and the maximum time needed for all

processes. The operation count is linearly dependent on the number of processors in the tested system

32

and the time the tests take depends on the parameters of the tested network. This benchmark takes
into account interprocess communication as well so different process configurations have an effect on

the benchmark results.

[Cache]
!

Local Memory]

RRB/RRL —» I

[Remaote Memory]

!
I

Figure 11: RandomRing Bandwith and Latency Memory Hierarchy impact

4.5 FFT

Fast fourier transform computes the discrete fourier transform (DFT) of a sequence or its inverse
(IDFT). DFT converts a finite sequence of equally-spaced samples of a function into a same-length
sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-
valued function of frequency. FFT is mainly used for audio and acoustic measurement. A signal is
converted into spectral components and provides frequency information about the signal. The bench-
mark measures the floating point rate of execution of double precision complex one-dimensional discrete

fourier transform. The formula for FFT used is:

jk
Zk<—Zz]‘e 271:1’;’ 1<k<m
J
Figure 12

FFT can be described as a memory-bound application that will not correspond strong to an
increase in the number of cpu cores [17]. While compute-bound application such as matrix multiplica-
tion gain performance from an increased number of computational units, memory-bound applications
such as the Fourier transform (FFT) have not benefited as much. Large Fourier transforms do not

use the cache hierarchy and bandwidth to main memory efficiently due to the non-unit stride access

33

patterns inherent to the algorithm [17]. This makes the task of hiding the latency of strided mem-
ory access patterns when accessing main memory difficult. This benchmark puts most pressure on
the network and is aimed to assess latency in messaging and bandwith of a system. Both the local
memory bandwidth and the network bandwidth of a cluster. A sequential implementation is mainly
pressuring memory IO while a parallel implementation is mainly pressuring the network [18]. The FFT

benchmark is intended to to pressure the mid and lower levels of the memory hierarchy (Fig.13).

[Cache]
!

[Local Memory]

!

FFT ———» [Remote Memory]

!
I

Figure 13: FFT Memory Hierarchy impact

4.6 Random Memory Access

The Random Access tests the speed at which a machine can update the elements of a table spread across
global system memory (Fig.14). Random memory performance often maps directly to the application
performance. A small percentage of random memory accesses (cache misses) in an application can
significantly affect the overall performance of that application. Giga updates per Second (gup/s) is a
measurement of how frequently a computer can issue updates to randomly generated locations. The
RandomAccess benchmark stresses the latency and especially bandwidth capabilities of a machine.
The gup/s of a system is computed by the amount of memory locations that can be updated randomly
in one second, divided by 1 billion (1e9). The term 'Random’ here does not refer to RAM memory
but means there is little to no relation between the current and next address to be updated. A table is
constructed and divided among processors and processes. Subsequently an address stream is generated
for every process. The value at that address is read and modified by an integer operation; Add, And,
Or or Xor with a literal value. The updated value is written back to memory. Every cpu in the system
operates on its own address stream.

34

[Cache]
l

[Local Memory]

!

RandomAccess ————» [Remote Memory]

!
I

Figure 14: RandomAccess Memory Hierarchy impact

35

5 Singularity High Performance Cluster

This section will describe the setup and specifications of the Singularity and bare metal implementations
of the hpcc benchmarks. The experiment is set up on the DAS-5 cluster of the TU Delft. DAS-5 is
a cluster of 68 machines with dual 8-core CPUs connected with InfiniBand FDR links. Infiniband is
a network commenly used in high performance computing. InfiniBand sends data in serial and can
carry multiple channels of data at the same time in a multiplexing signal. The network has a point-
to-point switched io fabric architecture designed to increase the communication speed between cpu’s
and devices within servers and subsystems located throughout a network. Singularity does not isolate
the network and hardware and can incorporate Infinband with ease. Slurm is used as the process and

container scheduler and the DAS-5 cluster has 45 nodes available for Slurm usage.

5.1 Singularity and MPI

The hpce benchmarks and commonly High performance applications use the message passing interface
(MPI) for communication between the tightly coupled processes. Since Singularity isolates no network
namespace or cgroup, the MPI library can be used in an identical manner as in bare metal set up.
Sylabs mentions two ways to deploy MPI; a hybrid approach or a bind approach [19]. The only
requirements is that all MPI containers specifically have to live in the same user namespace as the
host. MPI commands as mpirun and mpiexec can be used as they normally would in bare metal setup.

The specific steps are as following;:

e The mpirun command is called by the the resource manager or by the user from shell

e OpenMPI then calls the process management daemon; the run-time layer or Open Run-Time
Environment (ORTED)

e The ORTED process launches the Singularity container requested by the mpirun command
e Singularity builds the container and namespace environment

e Singularity launches the MPI application within the container

e The MPI application launches and loads required OpenMPI libraries

e The Open MPI libraries connect back to the ORTED process via the Process Management
Interface (PMI)

e Processes within the container run as they would run directly on the host.

The Hybrid Approach. The hybrid approach uses the host installed MPI and also the MPI
library installed in the container filesystem. The launcher commands called on the host are from the

host MPI while inside the container environment the MPI from the container filesystem is used.

36

The Bind Approach. The bind approach only uses the MPI version on the host. This is called
the Bind model since it requires to bind mount the MPI version available on the host into the container.
For this approach mounting user-specified files, which is sometimes disabled by system administrators

for operational reasons, should be allowed.

The hybrid approach was first used in this experiment; The same MPI version 4.0.2 was
installed in the container environment as on the host. The disadvantage of this implementation is that
if the container filesystem and therefore MPI is not build on the same machine that the container is
run on, it is not an optimized version for the specific machine. Building a Singularity image requires
’sudo’ privileges which are not feasible on the DAS-5 cluster. The image is therefore build remote and
pulled to the DAS-5 cluster. The hybrid approach can therefore result in a sub-optimal performance of
the MPI benchmarks. The dynamic linkloader showed different dependencies, as expected, since both
libraries were compiled and run in different environments. This is a side-effect of the hybrid approach

that can skew results.

To obtain results that would not be skewed in any way, the host MPI was binded into the
container. To exactly mimic the host environment, the MPI directory and recursively all files of all
dependent objects were bind mounted into the container. The main reason why dynamic linking is
usually not preferable for containers is that the system om which the executable is build can be different
from the system on which the application is run. Even for similar Linux distributions as Ubuntu and
Debian this can cause issues with naming of files and libraries. This is why executables are preferably
build in the same container image as where they run. In this research the same executable was used
for the bare metal as the container setup, to limit the possibility of any causes that could skew results.
The bind approach sidelines the portability feature of containers. However, for this specific use-case
it is required to obtain results that serve as a proper base for comparison of bare metal and container

performance and are not skewed in any way.

5.2 MPI Communication Layers

The Openib btl layer is used for infiniband communication between processes. The vader BTL is a
low-latency, high-bandwidth mechanism for transferring data between two processes on the same node
via shared memory. The vader BTL layer is supported by the Open Portable Access Layer (OPAL)
which enables sharing memory between processes on the same server. Since no isolation of network or

cgroups is being done by Singularity, all MPI communication layers can be used without any issue.

37

5.3 Runtime

In addition to the benchmark metrics that measure the peak in processing or the highest bandwith use
of a system, a script that measures the run-time of an application is added. Run-time is an important
measure to assess overhead incured by containers opposed to bare metal. Runtime is measured by
adding a MPI_Wtime () functions before starting a benchmark and after a benchmarks returns and

subtracting the two time points.

5.4 Benchmark Input Configuration

The configurations for the benchmark are given in a input file named "hpccinf.txt’. Most important

for the experiment are the following parameters:

Ns : The problem size of the matrix. The matrix will have dimensions : problem size x problem

size.
e NBs : The number of block sizes that one wants to use.

e Ps: Number of grid rows

Qs : Number of grid columns

The variables P an Q together account for the process grid size to which the workload is
divided. The data is distributed into a two dimensional P-by-Q grid of processes according to the
block-cyclic scheme to ensure the scalability of the algorithm as well as proper load balance. The
n-by-n+1 coefficient matrix is logically partitioned into nb-by-nb blocks, that are cyclically divided
onto the P-by-Q process grid. The input tuning file states that for two possible Px(Q settings of 1x6
and 2x8:

"If one was starting xhpl on more than 16 nodes, say 52, only 6 would be used for the first
grid (1x6) and then 16 (2x8) would be used for the second grid. The fact that you started the MPI
job on 52 nodes, will not make HPL use all of them. In this example, only 16 would be used." This
is an important notion for the settings of the experiment because it implicates that the process grid
dimensions should be at least as large as the number of nodes that are used. If the process grid has
more processes than the number of MPI processes scheduled, P and Q are refactored to match the
number of MPI processes and also the problem size is refactored. The Px(Q grid-size set is for the
Ptrans and HPL benchmarks while the other applications receive an input based on the grid-size. The
benchmark is designed to exploit resources at its maximum and therefore also scales up problem size
to what it believes is appropriate for the number of processes. To ensure the same problem size for
all experiments, for comparison reasons, the process grid should match the number of MPI processes.

Since the dimension of the process grid can affect communication and results, the process grid is aimed

38

to be as square as possible for the given input of nodes and processes. A function is implemented
in the init script that adheres to this. The Ns variable describes the input size for Ptrans. A Ns
input of 600.000 accounts for a 300.000 x 300.000 matrix. The other benchmarks receive other forms
of input, for which the size is derived from the Ns variable. Linpack is run with a different input
configuration file than the other benchmarks, since the application has different memory requirements.

Linpack showed memory errors for problem sizes, which the other benchmarks could still handle.

5.5 Thread and Node Configuration

The init script can run subsequent number of nodes and processes. The script takes in the following

arguments:

e start node range
e end node range (exclusive)
e start number of process per node

e end number of process per node (exclusive)

There is a correction being made on the number of processes per node; The nodes of the DAS
5 cluster are dual 8 core. A single process or container is only able to use 8 of the 16 cores of a node and
therefore 16 of 32 threads. The correction made is that if you mean to assign a single process occupation
to a node, 2 processes/containers are scheduled. A single process/container scheduled would leave half
of the node idle. Problem size, the input matrix dimension, will correlate with increase of the number
of nodes.

The multi-thread library used is Openmp which is aware of the number of threads owned
by the node which it is scheduled on, but is not aware of any other processes being scheduled on the
same node. This default way of operating is used for the overthreading implementation; For every
new process scheduled 16 threads, the number of threads Openmp identified on the node, are being
used. For the non-overthreaded implementation, processes are gradually increased and the number
of threads are divided equally among the number of processes per node. For the no overthreading
implementation only configurations for which the following equation, for which NP is the number of
processes scheduled per node, holds are considered:

32modNP =0

Other configurations would slightly over subscribe threads or use less threads than available.

Configurations of 2, 4, 8 and 16 processes per node satisfied this equation. An environment variable

39

for the number of threads is set in the Slurm scheduling script. The over threaded implementation
is run in configurations of 2 to 8 processes per node. Higher configurations would cause too much

performance degradation due to too heavily over subscription of threads.

e Overthreading: for every process added 16 more threads are used.

e No overthreading: the number of threads available are divided over the number of processes.

For all benchmarks Multi-threading is used, except the RandomAccess benchmark which only
has a single-thread implementation. Overthreading is used for every benchmark except RandomAcess
and Linpack. Overthreading the register and cache intensive Linpack benchmark causes extreme strong
performance degradation and was therefore not included. The number of nodes used for the benchmarks
was subjective to the number of nodes on which Slurm is installed and to the activity of other users.
Due to different configurations, repetition and signficicant problem sizes, runtime could take up to
several days. Benchmarks that pressure the network, Ptrans, Random Memory Access, Random Ring
Latency Bandwith and FFT, were run on 40 nodes with a problemsize of 600.000. To enable other user
activity on the cluster, cache intensive Linpack was run on 25 nodes with a problemsize of 200.000.
Stream that measures the local memory bandwith has a workload that can not be distributed and
is therefore run on 1 node. The blocksize NBs is set to 1000, which enables an even division of the

workload.

40

6 Results

This section covers the results from the 5 benchmark applications; Linpack, Ptrans, Random Memory
Access, Stream and the Bandwith Latency benchmarks. The official benchmark results and runtime
results will be discussed. To be able to answer the 3 research questions, results will be discussed for
different levels of threading and for different architecture configurations. Also an analysis will be done
that aims to reason about the benchmark implementations and their optimal process configuration.
For convenience the word ’processes’ covers both container processes as well as bare metal processes,
in case no other specification is made. To determine whether results are statistically significantly
different, a T-test with a p value 0.05 is used that tests whether the runtime is lower for bare metal-
than for container- implementation and tests whether the hpcc benchmark results are higher for bare
metal- than for container- implementation. A p-value near the left tail of the test (<0.05) meaning
the runtime or hpcc metric distribution indeed follows the relation as stated in the null hypothesis,
but with a neglectible difference. A p-value near the right tail of the test (>0.95) meaning the runtime
or hpcc metric distribution does not follow the relation as stated in the null hypothesis, but with a

neglectible difference.

6.1 Linpack

The Linpack benchmark that performed the floating point operations on a dense linear system shows
stable results for every repeated run. The Linpack benchmark was run on 25 nodes with a problem size
of 200.000. For the no overthreading configuration, The MPI implementation and Container implemen-
tations show close to equal run-time results (Fig. 15). One process or container per core is the optimal
configuration in terms of run-time. Linpack is stated to be perfectly parallel and can fully utilize the
cpu space. For a compute intensive application that benefits from efficient cache and register-use, it
appears that dividing the workload over multiple smaller processes adheres to the efficiency of the
benchmark. The workload of the master thread is also parallelized by adding more processes, which

can cause a decrease in runtime.

41

runtime(s)

1000

800 -

600 -

400 -

200 A

2 4 8
processes per node

. MPI

16

Figure 15: No overthreading: NBs 200.000, Nodes 25

42

The gflop/s of a system that the Linpack benchmark aims to approximate, is almost perfectly
linearly correlated with runtime (Fig. 17). This should be taken into account when interpreting the
actual meaning of this gflop metric. Runtime shows correlation with the number of processes scheduled
per node. This can be seen in Fig. 15 by the gradual (linear) decrease of runtime. As expected there
is also correlation between gflop/s and processes per node (Fig. 16). The 3 metrics all approximate
a linear correlation. These results implicate that the gflops measure, even for a perfectly parallel
application as Linpack, is actually reflecting a suboptimal configured application instead of being a
system metric. For the gflop metric to have meaning with regards to the system, any bottleneck within
an application should be removed. The gflop metric, as the runtime metric, shows near equal results

for mpi and container implementation.

—— con
6.8

6.6

6.4

gflop/s

6.2

6.0 -

2 4 8 16
processes per node

Figure 16: No overthreading: NBs 200.000, Nodes 25

43

950 A — mpi
con

925 A

900 ~

ee]

~

w
L

runtime(s)

[o2]

(%

o
L

825 1

800 -

6.0 6.2 6.4 6.6 6.8
gflop(s)

Figure 17: No overthreading: NBs 200.000, Nodes 25

The null hypothesis being tested are container runtime is larger than mpi runtime and con-
tainer gflop/s is lower than mpi gflop/s (Tab.1). As expected, a higher runtime results in a lower gflop
metric meaning if mpi runtime is slightly lower than container runtime, mpi gflop is slightly higher
than container gflop. With p-values below 0.05, runtime and gflop distributions of mpi and container
implementation are not significantly different. For a compute intensive application as Linpack that is

cache and register intensive, deploying Singularity seems to have little to no effect on performance.

T-test 2 proc 6 proc 8 proc 16 proc
Con Runtime > Mpi Runtime | p=0.0101 | p=0.0184 | p=0.0202 | p=0.0304
T-test 2 proc 6 proc 8 proc 16 proc

Con gflops < Mpi gflops p=0.0095 | p=0.0116 | p=0.0215 | p=0.0337

Table 1: T-test HPL, p=0.05

44

6.2 Stream

The benchmark Stream measures sustainable memory bandwith which is located between local mem-
ory and cache. Only an overthreaded configuration is run, since workload can not be divided among
multiple processes but only replicated, meaning scheduling more processes on a machine is only dou-
bling the workload. The mpi implementation of Stream is useful for profiling the entire sustainable
memory bandwith of distributed system and finding any nodes that are lagging. Since this research is
not aimed at specifying features of a particular system but on assessing overhead of containerization,

Stream is run on one and the same node.

Stream is scheduled with a single processes of which the threads gets incremented with 16 for
every new iteration and the input size of the array is 60.000. The graphs of the four kernels that were
run were Add, Copy, Scale and Triad (Fig. 18, Fig. 19, Fig. 20, Fig. 21) are from a single run as well as
runtime in Fig. 22. The graphs emphasize the randomness that occurs when running Stream and that
supremacy of one implementation over the other is not conclusive. The first configuration of 16 threads
is occupying all available threads while the subsequent configurations are over subscribing the machine.
The benefit applications can have from oversubscribing threads when waiting for other processes and
communication, does not apply to the Stream benchmark since no division of the workload is possible.
Oversubscribing threads by 16 threads shows to not be beneficial for either of the kernels since the
peak memory bandwith lowers (Fig. 18, Fig. 19, Fig. 20, Fig. 21) while runtime increases (Fig. 22).
The mpi and container implementation show overall close results and the T-test shows no sigfnicant
differences between the mpi and container implementations (Tab. 2, Tab. 3, Tab. 4, Tab. 6, Tab. 5).
There is no reason to assume for an application as Stream that works on the local memory level of the

memory hierarchy, Singularity causes performance degradation.

—— mpi-add
100 4 - con-add

90
80

70 1

gb/s

60 1

50 A

40 \

30 ¥

16 32 48 64 80 96 112 128 144 160
threads

Figure 18: STREAM Add Kernel

45

100 A

90 1

80 1

70 1

60

gb/s

50 4

40

30 1

20 A

—— mpi-copy
——— con-copy

16

32 48 64 80 96 112 128 144 160
threads

Figure 19: STREAM Copy Kernel

—— mpi-scale
——— con-scale

16

32 48 64 80 96 112 128 144 160
threads

Figure 20: STREAM Scale Kernel

46

100 A

gb/s

runtime(ms)

90 1

80

70 4

60

50 1

40 1

30 A

—— mpi-triad
—— con-triad

16

32 48 64 80 96 112 128 144 160
threads

Figure 21: STREAM Triad Kernel

40

351

w
o
L

N
(%]
1

201

- con

— mpi

16

32 48 64 80 96 112 128 144 160
threads

Figure 22: STREAM Runtime

47

T-test 2 proc 4 proc 6 proc 8 proc
Con Runtime > Mpi Runtime | p=0.0131 | p=0.0392 | p=0.0312 | p=0.0403
10 proc 12 proc 14 proc 16 proc
Con Runtime > Mpi Runtime | p=0.0021 | p=0.9911 | p=0.0237 | p=0.9845
Table 2: T-test Stream Runtime, p=0.05
T-test 2 proc 4 proc 6 proc 8 proc
Con Add > Mpi Add | p=0.0321 | p=0.0089 | p=0.0221 | p=0.0019
10 proc 12 proc 14 proc 16 proc
Con Add > Mpi Add | p=0.0263 | p=0.9721 | p=0.0126 | p=0.0248
Table 3: T-test Stream Add, p=0.05
T-test 2 proc 4 proc 6 proc 8 proc
Con Copy > Mpi Copy | p=0.9927 | p=0.0256 | p=0.0241 | p=0.0018
10 proc 12 proc 14 proc 16 proc
Con Copy > Mpi Copy | p=0.9887 | p=0.0011 | p=0.0133 | p=0.0444
Table 4: T-test Stream Copy, p=0.05
T-test 2 proc 4 proc 6 proc 8 proc
Con Scale > Mpi Scale | p=0.997 | p=0.0148 | p=0.0391 | p=0.0227
10 proc 12 proc 14 proc 16 proc
Con Scale > Mpi Scale | p=0.0007 | p=0.0022 | p=0.9969 | p=0.0021

48

Table 5: T-test Stream Scale, p=0.05

T-test 2 proc 4 proc 6 proc 8 proc
Con Triad > Mpi Triad | p=0.0222 | p=0.0208 | p=0.0012 | p=0.0373
10 proc 12 proc 14 proc 16 proc
Con Triad > Mpi Triad | p=0.9910 | p=0.0116 | p=0.9933 | p=0.0401

Table 6: T-test Stream Triad, p=0.05

6.3 Ptrans

The Ptrans benchmark measures the inter process communication speed of the system. The run-
time results for the no over-threading configuration show a strong decrease in runtime for more than
2 process per node (Fig. 23). The mpi configuration shows overall a slightly faster runtime than
container configuration, but only marginal for the optimal configuration of one process per 2 cores i.e.
8 processes per node. Since the master thread of a process can only communicate with one node at a
time, processes can be stuck in blocking communication. An improvement in runtime can be explained
by the diminished workload of the master thread and less blocked waiting time. More processes with
smaller workloads can have handle the smaller MPI_Sendrecv messages faster and leave their blocked

stage.

The Ptrans benchmark determines flops based on a timer that starts after the matrix is gen-
erated. The function sltimer is started right before the transpose function and stopped immediately
after. The timer does not incorporates generation time of the matrix or any other function. This timer
function differs from the timer function used for Fig. 23 and Fig. 25. The runtime timer function
measure the entire runtime of the benchmark and does not isolates the transpose part. There were
slight fluctuations in the difference in runtime between containerized and bare metal form for different
runs and neither configuration showed a clear preference for one implementation over the other. The
run in Fig. 23 shows the mpi implementation has a lower runtime for 2 and 16 processes per node but
the container implementation a slight lower runtime for 4 processes per node. The optimal configura-
tion of 16 processes per node show near equal results. This optimal configuration is stating that every
core should have their own process or container. The terra flop performance of the benchmark shows
the highest rate at a configuration of 8 processes per node (Fig. 24). A slight lower runtime for the
16 processes per node in Fig. 23 indicates that the transpose of the matrix is executed faster with 8
processes but the generation of the matrix is executed faster with 16 processes. Following the T-test
results (Tab. 7), there is no reason to assume Singularity causes significant performance degradation

for the not overthreaded implementation of a communication intensive, parallel matrix transpose.

49

runtime(s)

terra flop/s

EEE mpi
I con
300 -
250 -
200 -
150 -
100 A
50 -
O -
2 4 8 16
processes per node
Figure 23: No overthreading: NBs 600.000, Nodes 40
- con
0.009 A —— mpi
0.008 -
0.007 A
0.006 A
0.005 A
2 4 8 16

processes per node

Figure 24: No overthreading: NBs 600.000, Nodes 40

T-test 2 proc 6 proc 8 proc 16 proc

Con Runtime > Mpi Runtime | p=0.0230 | p=0.0175 | p=0.0011 | p=0.9969

T-test 2 proc 6 proc 8 proc 16 proc

Con terraflops < Mpi terraflops | p=0.0167 | p=0.0229 | p=0.0010 | p=0.0023

Table 7: T-test PTRANS not-overthreaded, p=0.05

The overthreaded implementation shows an optimal configuration of 2 processes per node for
the runtime metric (Fig. 25). Results show near equal runtime for the container and mpi implemen-
tation for all different configurations. Overthreading seems to be disadvantageous for the performance
of the benchmark. The terra flop performance of the transpose part of the benchmark peaks at 8
processes per node which is a strongly overthreaded implementation (Fig. 26). The sudden drop at 6
processes can be caused by a higher transpose time. As discussed the configuration of the process grid
can have a strong effect on the amount of communication required. The terra flop performance of 8
processes per node can be influenced by factors as overthreading being beneficial for the transpose part
which uses blocking mpi communcation or by the amount of communication required for the transpose.
For overthreaded as not overthreaded implementation on a 40 node cluster, no significant difference
was found. With a p value of 0.05, the null hypothesis Container Runtime is higher than Mpi Runtime
and Con terraflops is lower than Mpi terraflops would both be rejected. Following these results there
is no reason to assume Singularity causes significant performance degradation for a communication
intensive, parallel matrix transpose.

1400

= MPI
mm CON
1200 4

1000 4

800 -

runtime(s)

600 -

400 A

200 1

2 4 6 8
processes per node

Figure 25: Overthreading: NBs 600.000, Nodes 40

o1

—— con
0.009 -

mpi
0.008 -

0.007 A

0.006 A

terra flop/s

0.005 ~

0.004 -

0.003 A

4

6

processes per node

Figure 26: Overthreading: NBs 600.000, Nodes 40

T-test 2 proc 4 proc 6 proc 8 proc
Con Runtime > Mpi Runtime | p=0.0210 | p=0.0165 | p=0.0119 | p=0.0193

T-test 2 proc 4 proc 6 proc 8 proc
Con terraflops < Mpi terraflops | p=0.0118 | p=0.0277 | p=0.0163 | p=0.0180

Table 8: T-test PTRANS overthreaded, p=0.05

52

6.4 RandomAccess

The Random Access benchmark does not have a multithreaded implementation and is only able to be
run with a single thread. The input size is derived from the NBs 600.000 that is provided to Linpack.

total Maintablesize = 238 = 274877906944

RandomAccess uses mostly small sized non-blocking communication. RandomAccess accesses
data from all the processes but has the advantage to exploit shared memory benefits from processes
sharing the same node. The benchmark was run multiple times and the random pattern in fluctuating
differences in performance between mpi and container implementation were seen in every run. the
results captured in Fig. 27 and Fig. 28 are from a single run to emphasize this. This type of results
are in line with the strong randomness that is inherent to this benchmark. Memory can be accessed
all over the cluster and can be local, shared or on another node. Also the number of mpi invocations
made to a specific node can strongly fluctuate. It is most notable that although the benchmark is
single thread it does not react extremely strong to an increase in processes and threads (Fig. 27).
The optimal configuration is 6 processes per node, but run-time difference is only slight compared to
4 processes per node. The restricted number of processes that perform optimal seem to indicate the
io bound nature of this benchmark. The slight lower gup/s performance for the configurations of 2
and 4 mpi processes per node are in line with the higher runtime seen for these configurations. For
the runtime performance as well as for the best gup/s performance a configuration of 6 processes per

node is optimal.

350
E MPI

I CON
300 1

250 1

S

T 200 1

runtime
=
w
o
)

100 A

50 1

2 4 6 8 10 12 14 16
processes per node

Figure 27: Single threaded: Input Size 274877906944 , Nodes 40

53

— con
mpi
0.35

0.30 A \

0.20 A

0.15 1

2 4 6 8 10 12 14 16
processes per node

Figure 28: Single threaded: Input Size 274877906944 , Nodes 40

A repeated number of runs evens out the fluctuations seen in Fig. 27 and Fig. 28 and
results in insignificant differences for all process configurations on both the gup/s metric as well as
the runtime. Following the T-test results in table 9, there is no reason to assume containerization
causes performance degradation for a random memory access application with a high number of MPI

invocations with random memory access.

T-test 2 proc 4 proc 6 proc 8 proc

Con Runtime > Mpi Runtime | p=0.0118 | p=0.9654 | p=0.9891 | p=0.0239

10 proc 12 proc 14 proc 16 proc

Con Runtime > Mpi Runtime | p=0.0300 | p=0.0162 | p=0.9912 | p=0.9784

2 proc 4 proc 6 proc 8 proc

Con gups < Mpi gups p—0.0218 | p—0.0006 | p—0.9900 | p—0.0033

10 proc 12 proc 14 proc 16 proc

Con gups < Mpi gups p=0.0118 | p=0.0115 | p=0.9611 | p=0.0221

Table 9: T-test RandomAccess not-overthreaded, p=0.05

54

6.5 Fast Fourier Transform

The FFT benchmark measures the number of floating point operations a system can handle. The

input size N is derived from the input file configuration:

N = 34359738368

FFT uses MPI AllReduce and MPI Alltoall as a communication pattern to transfer large
data messages. FFT performance of MPI and container implementations show near similar runtime
results for the optimal configuration of 4 processes per core (Fig. 29). Terra flop/s is at its highest at 4
processes per node, which matches the optimal runtime configuration (Fig. 30). However Terra flop/s
for a configuration of 6 processes are lower than for the configuration of 2 processes which does not
hold for their runtime performance. For the terraflop/s a differentiaton is being made on computing
and generation time of the data and therefore the timer functions of Fig. 30 and Fig. 29 differ. The
results indicate that 8 processes per node results in a lower runtime for generating the data, but 2
processes results in lower runtime for the computing part of the FFT. Following the results of the T-test
there is no reason to assume containerization causes performance degradation for a not overthreaded
implementation of FFT (Tab. 10).

. MPI

1207w coN

100 A

80

60

runtime(s)

40 A

20 1

2 4 8 16
processes per node

Figure 29: No overthreading: N=34359738368, Nodes 40

55

0.022 A — con

0.020 A

0.018 -

0.016 A

flop/s

0.014

0.012 A

0.010 A

0.008 -

2 4 8 16
processes per node

Figure 30: No overthreading: N=34359738368, Nodes 40

T-test 2 proc 6 proc 8 proc 16 proc

Con Runtime > Mpi Runtime | p=0.0110 | p=0.0126 | p=0.0271 | p=0.9990

T-test 2 proc 6 proc 8 proc 16 proc

Con terraflops < Mpi terraflops | p=0.0143 | p=0.0162 | p=0.0011 | p=0.9808

Table 10: T-test FFT not-overthreaded, p=0.05

The overthreaded implementation of FFT shows an optimal runtime result for 6 processes
per node (Fig. 31). This runtime result is lower compared to the lowest not overthreaded runtime
result (Fig. 29) and indicates that the overall performance benefits from overthreading. The peak
performance of flop/s is measured at 4 processes (Fig. 32), which does not match the optimal runtime
configuration. The results of the T-test indicate that containerization causes no overhead for an
overthreaded implementation of FFT (Tab. 11).

56

runtime(s)

flop/s

120 A

. MPI
B CON
100 A
80 -
60 -
40 -
20 -
0 m
2 4 6 8
processes per hode
Figure 31: Overthreading: N=34359738368, Nodes 40
0.022 - — con
——— mpi
0.021 -
0.020 -
0.019 -
0.018
0.017
0.016 -
0.015 -
2 4 6 8

processes per node

Figure 32: Overthreading: N=34359738368, Nodes 40

T-test 2 proc 4 proc 6 proc 8 proc
Con Runtime > Mpi Runtime | p=0.0033 | p=0.0049 | p=0.9760 | p=0.0044

T-test 2 proc 4 proc 6 proc 8 proc
Con terraflops < Mpi terraflops | p=0.0218 | p=0.0305 | p=0.0002 | p=0.0032

Table 11: T-test FFT overthreaded, p=0.05

6.6 Bandwith/Latency Benchmarks

The bandwith and Latency benchmark assesses the bandwith and latency of a system by examining
a random ring communication pattern. The lowest runtime for the not overthreaded implementation
is measured at 4 processes per node (Fig. 33). Most notable is that the communication latency is
higher for this configuration (Fig. 34) while the bandwith is lower (Fig. 35). The inconsistency in this
benchmark is that inter-process communication is also included. This effects both the bandwith and
latency results which inversely follow the same slope. No notable or signficiant differences were found

between container and bare metal implementation for the not-overthreaded implementation (Tab. 12).

The overthreaded implementation shows an optimal result of 6 processes per node. Over
threading is preferred over not overthreading when it comes to runtime results (Fig. 33, Fig. 36). The
bandwith and latency decrease and increase, as the number of processes increases, equal to the not
overthreaded implementation. Results for containerized and bare metal form are close to equal which
is shown by the T-test results 12. Following these results there is no reason to assume containerization

causes overhead for the random ring bandwith latency application.

58

300
. MPI
s CON

250

200 A

150 A

runtime(s)

100 A

2 4 8 16
processes per node

Figure 33: No overthreading: Runtime, NBs 600.000, Nodes 40

. MPI
s CON

12~

10

latency(micro-seconds)

2 4 8 16
processes per node

Figure 34: No overthreading: Communication Latency, NBs 600.000, Nodes 40

59

- con

1.41 —— mpi

1.2 1

1.0 A

0.8 1

bandwith

0.6

0.4 1

0.2

4 8 16
processes per node

N 4

Figure 35: No overthreading: Bandwith, NBs 600.000, Nodes 40

140 A
. MPI

mw CON
120 A

100 A

80 4

runtime(s)

60

40 A

201

2 4 6 8
processes per node

Figure 36: Overthreading: NBs 600.000, Nodes 40

60

. MPI
4.0 W CON

NN W
o w o

latency(microseconds)

=
wv
1

1.0~

0.5 1

0.0 -
2 4 6

processes per node

©

Figure 37: Overthreading: NBs 600.000, Nodes 40

1.6

— con
—— mpi
1.4

1.2 1

1.0 A

bandwith

0.8 -

0.6 A

0.4 A

4 6
processes per node

N 4
0 -

Figure 38: No overthreading: Bandwith, NBs 600.000, Nodes 40

T-test 2 proc 4 proc 8 proc 16 proc

Con Runtime > Mpi Runtime | p=0.0290 | p=0.0142 | p=0.9929 | p=0.0036
Latency

2 proc 4 proc 8 proc 16 proc

Con Runtime > Mpi Runtime | p=0.0019 | p=0.0003 | p=0.0029 | p=0.9999
Bandwith

2 proc 4 proc 6 proc 8 proc

Con latency < Mpi latency p=0.0280 | p=0.0021 | p=0.9991 | p=0.0042

2 proc 4 proc 8 proc 16 proc

Con bandwith < Mpi bandwith | p=0.9980 | p=0.0341 | p=0.022 | p=0.9984

Table 12: T-test Bandwith/Latency not-overthreaded, p=0.05

T-test 2 proc 4 proc 8 proc 16 proc
Con Runtime > Mpi Runtime | p=0.0182 | p=0.0302 | p=0.0211 | p=0.0099
Latency
2 proc 4 proc 8 proc 16 proc
Con Runtime > Mpi Runtime | p=0.0269 | p=0.9861 | p=0.0022 | p=0.9900
Bandwith
2 proc 4 proc 6 proc 8 proc
Con latency < Mpi latency p=0.0091 | p=0.0012 | p=0.0393 | p=0.0193
2 proc 4 proc 8 proc 16 proc
Con bandwith < Mpi bandwith | p=0.9981 | p=0.0325 | p=0.0117 | p=0.9666

Table 13: T-test Bandwith/Latency overthreaded, p=0.05

62

7 Singularity in Kubernetes

The results that where produced during the first experiment that showed low to zero overhead sparked
the curiosity to test Singularity outside the high performance computing world. There were no signs of
existent overhead when Singularity was tested with different HPC workloads, which encourages to test
how well Singularity performs in a different setting with a different type of workload. In order to assess
how Singularitys performance generalizes to other type of workloads, Singularity will be implemented
in Kubernetes. A scheduler as Kubernetes is particulary well fit for dynamic workloads, which high
performance workloads are inherently not. The distributed streaming framework Apache Kafka will be
used as a workload with different characteristics than traditional high performance workloads. Apache
Kafka is a created by Linkedin and the problem they originally set out to solve was low-latency ingestion
of large amounts of event data from the LinkedIn website [21]. A Kafka pipeline is constructed and
deployed in Singularity and Docker, with Kubernetes as a container scheduler. Since Docker is the
industry standard and was integrated in Kubernetes it will serve as a benchmark for the performance

of Singularity.

Sylabs had put some effort in 2019 into producing a container run-time interface [40] and a
local Kubernetes setup named Sykube [39], which is the equivalent to Dockers Minikube [31]. Minikube
is a local Kubernetes setup that uses two containers that serve as nodes, in which Kubernetes and
Docker are installed. The containers will host the Kubelet and instantiate containers and pods within
the container environment itself. Sykube uses the same architecture as Minikube, but with Singularity
containers. Sylabs stated that they are looking for a new home for Sykube and while they recon the
interest in using Singularity with Kubernetes, their time and effort will go into optimizing Singularity.
Since Sylabs last commits in 2019 to their container runtime interface and Sykube, the container
market has changed. The latter years the container market has gotten more attention, became more
mature and most importantly, Docker and its shim were removed from the Kubernetes source code.
Rewriting and restructuring the Singularity-cri and Sykube is a reasoned next step. The second part
of this research aims to make Singularity more widely applicable by integrating the framework with

Kubernetes and assess its performance outside high performance computing.

Besides the curiosity to assess how well Singularity performs with different workloads, Singu-
larity its security benefits be shown to advantage even more in a Kubernetes setup. The security risk
that Kubernetes carries is that infected workloads who can get control over a root owned container
socket, ultimately could control the Kubelet and schedule unwanted new workloads. The increase in
cybercrime has been alarming with a reported global rise of 50% between 2018 and 2020, costing the
global economy just under 1 trilion USD in 2020 [41]. With the rapid increase of adoption of containers
and container schedulers, the liability risk of any security issues these frameworks carry increases as
well. A characteristic of the container frameworks that carries substantial risk are the image hubs that
offer a off the shelf marketplace for applications. Pre-build filesystems of other users or companies can
be infected and while layers with statements as pip and apt-get can be traced, files copied in by the
builder can not. Singularity will significantly reduce security risks since unsecure workloads can not
escalate any privilege or get control over the Kubelet. Users who did not have the option to deploy

Kubernetes because of security risks will now have the option to deploy Kubernetes with Singularity.

63

Having a broader range of container frameworks to choose among for different type of workloads or do-
main restrictions, as in HPC environments, will only adhere to the quality of workflow. The movement
away from the docker shim by Kubernetes was the first step in this process and integration of Singu-
larity will be a reasoned next step. Additionally, integrating a container framework with Kubernetes
is an enabler of the adoption of a container framework on a wider scale. Container frameworks that
are well integrated with Kubernetes have the advantage that any line of business or research wishing

to use Kubernetes are restricted to containers with a proper container runtime interface.

7.1 Sykube

Sykube is a local setup for Kubernetes with Singularity and sets up 2 Singularity containers with
Kubernetes installed, one acting as master and one acting as a worker node. Requirement is only
having Socat and Singularity >=3.2 installed. Building and running their image locally, as well as
pulling it from the Singularity registry do not work. User community discussions on Singularity-cri
and Sykube commonly mention inability to deploy any of the frameworks. First an overview of the
Sykube definition file is being made and all its implications. Subsequently an overview of the Sykube

executable is being made.

7.1.1 Sykube Image

The Sykube github repository contains an image definition file that can be build locally or can be
pulled from the Sylabs library and a executable that will be copied in /usr/local/bin after running
the image. The definition file has an Ubuntu:xenial (16.04) base image which uses a Linux kernel v4.4.
The definition file creates directories and sets environment paths after which the Sykube executable
is copied into the image. The proper libraries as Kubernetes, Singularity, Singularity-cri and other
dependencies are installed and importantly the supervisor library is installed. Supervisor is a core
component in enabling running Kubernetes and a container inside a container. In a host setup the
Kubelet as well as the Singularity container runtime interface run as a Systemd service. Systemd is a
process manager and handles the management of services like reaping, restarting, and shutting down.
The issue with running Systemd inside a container is that Systemd does not run as chroot, meaning
starting a Systemd service inside a Singularity container is not feasible. Supervisord does not require
root access as Systemd and is able to run services within a container environment. Three Supervisord
files are created; A Kubelet service, a Singularity-cri service and a Kube-proxy service to access a
dashboard. Kube-proxy is a network proxy that runs on each node in your cluster, implementing
part of the Kubernetes Service concept and maintaining network rules on nodes. These network
rules allow network communication to your Pods from network sessions inside or outside of your
cluster. Kube-proxy uses the operating system packet filtering layer if there is one and it’s available,
otherwise Kube-proxy forwards the traffic itself. The Kubelet service is executing a script where
Kubelet configurations are being set use the Singularity socket for communication and the Kubelet is

started. Other Kubelet configurations files are a ClusterRoleBinding file which assigns an adminrole

64

in the cluster and a Kubeadm file which specifies the Singularity socket for communication and the
podsubnet. A CNI loopback bridge and a /etc/hosts file, which contains information how to translate
container hostnames to IP-addresses, are written. During runtime of the container a RAM tmpfs is
mounted and the mount point is set to -make rshared to ensure the mount can be replicated and
containers can be instantiated inside the container as well. At last the Supervisord services are started
and the Sykube executable will be copied into the /usr/local/bin directory on the host which ends
the build of the image.

7.1.2 Sykube Executable

The Sykube executable takes in arguments from the command line and is used to instantiate the Sykube
cluster on the host. The sykube init command starts with configuring the host with proper networking
rules and other host configurations required for running Kubernetes. Iptables are configured which are
used to set up, maintain, and inspect the tables of IP packet filter rules in the Linux kernel which is
required for Kubernetes communication. A Container Network Interface (CNI) file is written which
contains the specifications on how the Iptables should be configured to allow communication on the

subnet.

A Singularity instance is started named sykube-master which is configured with a persistent
overlay directory which allows to overlay a writable file system on an immutable read-only container
for the illusion of read-write access. Some required directories are mount binded into the container
as the cgroup directory which is used by Kubernetes to instantiate pods. Furthermore the instance is
configured with network configurations and a -keep-privs flag that let the root user keep privileges
in the container. The /etc/hosts file within the container is extended with the container name and
ip address, hence when Kubernetes instantiates it can recognize the Singularity container in which it
is encapsulated as a proper node. The Kubeadm init command is run in the Singularity container
which then starts the Kubernetes master node with previous set configurations. After instantiation
the Kubernetes master node is running and able to be configured by the kubectl apply command.
The worker node is instantiated in the same manner as the master node and joined to the Kubernetes
cluster by the join token produced by the master node.

Running the Sykube image with Singularity updated to newer versions varying from 3.5.0 till
3.10.0 had no positive impact on newer operating systems as Ubuntu 20.04 and Centos 9. Previous
mentioned versions of Singularity do run properly without the intervening of the container runtime
interface on these operating systems. Testing Kubernetes with Docker as container runtime causes no
problems and runs properly. The Singularity container runtime interface is, as Sykube, deprecated
and can not connect to the Kubelet when run on the host, without the Sykube setup. Incompatability

between the host kernel and Sykube seems to be in the Container runtime interface, Singularity-cri.

65

7.2 Singularity-cri

The Container Runtime Interface of Singularity enables the communication between the Kubelet and
the container runtimes. Container runtime interfaces are able to interpet incoming messaging from the
Kubernetes API and translate messages to a format the installed container runtime can interpet. In
the case of Sykube, the Singularity-cri Supervisord service was up and running as well as the Kubelet
Supervisord service. Logs of the Kubelet do not always give full statements in logs or proper direction
to underlying causes of errors, requiring tracing of the error with kernel logs. Both supervisord services,
Sycri as well as the Kubelet were straced by adding a strace argument directly in the Supervisord files.

A blocking mount syscall showed the mount of a squashfs was invalid due to an unrecognized
argument. Error terms from the Kernel can be non conclusive and an eval argument will not be
sufficient to point out the cause of the issue. The incompatability is assessed further with dmesg, a
Linux utility that displays kernel-related messages retrieved from the kernel ring buffer. The dmesg
kernel logs showed an invalid error term was given to a squashfs mount and pointed to a wrongly
configured mount syscall of an SIF image. Examining the system calls that were made by Singularity-
cri, it became evident that these system calls were not compatible with the new Linux Mount api that
evolved between Linux Kernel 4 and 5. To enable Singularity-cri and Sykube to run properly on newer
Linux kernels and operating systems, all compatibility issues between the Singularity-cri source code
and Linux Kernel version 5+ api have to be resolved. Examining the code base of the Singularity-cri,
it became evident that runtime interface is not just an interface that translates requests and pass them
to the container runtime executable. The container runtime interface also incorporates part of the
implementation and execution phase of request that come in. Interestingly enough, the Singularity
version on the host as well as the version installed in the Sykube container image have restricted impact
on the runtime activity of Sykube or the Singularity-cri. The initial part of building and mounting
sif files is actually being executed by the Singularity-cri source code itself and not by the installed
Singularity executable.

The problem with the Singularity version that is incorporated in Singularity-cri, is that it
refers to an older singularity version. This version includes a syscall that is still configured for the
mount API from kernel version 3 and 4. Ubuntu version 18.04 and up, Centos 8 and up and most newer
operating systems use Linux Kernel 5. Since the Singularity-cri is, as discussed, not just an interface
but includes the implementation part, it therefore contains function calls to Singularity version 3.3.0.
These function calls are provided with arguments by the Singularity-cri, but are entirely tuned to the
Singularity 3.3.0 version. The deceiving part of this is that the Singularity version on the host as well
as the Singularity version installed in the Sykube.def have no influence over this. Solving this issue
requires, besides updating dependencies and versions, rewriting the source code and re-designing the
behaviour of Singularity-cri to make it compatible with newer Linux kernel versions.

66

e The Singularity-cri pkg/server/device/device.go file will be rewritten to incorporate nvidia

device plugins that work for newer linux kernels.

e The pkg/network/network.go file is extended with two new functions that add context to

networking functions.

e pkg/image/image.go file a new function call is introduced that also incorporates a context and

adds the option to verify every non-signature partition of an images.

e A Systemd service file is written and added to the README.md file to run the container runtime

executable as a service.

e A statement for the Kubelet that directly incorporates the Singularity socket and the podsubnet
is added to the executable.

As the rewritten and restructured Singularity-cri is now compatible with newer version of the
Linux kernel, it will be included in Sykube. The Sykube executable in /usr/local/bin is extended
with new modules and features. After addition of the following features Sykube did run without issues

and proper on Linux Kernel 5 operating systems.

7.3 Kafka

Kafka is a distributed data store optimized for ingesting and processing streaming data in real-time.
The main idea is that its messaging system is captured as a distributed commit log. Kafka its logs
are a sequence of records with append-only entries (Fig. 39). The Kafka frameworks consist of 4 main
components which all have their own specifc role and together construct a fault tolerant streaming

framework.

Next
Record
1st Record Written

1 i

'
0123456789101I1ZE

Figure 39: log use

o Zookeeper: Zookeeper is the manager that is primarily occupied with tracking the status of nodes
in the Kafka cluster and maintaining a list of Kafka topics and messages. Zookeeper managers
maintain an in-memory image of state, along with a transaction log and snapshots in a persistent

state store.

67

e Producer: The producer creates new messages and writes them to the appropriate Kafka broker.
Producers can be seen as the starting point of the Kafka streaming framework. Producers send
the data in a standardized binary message format. The data is written directly to disk by the
Brokers in the same format, without any modification.

e Broker: The Kafka broker handles all requests from all clients, both producers and consumers
as well as metadata. It also manages replication of data. The replication factor can be set based
on the risk of losing the data. Kafka breaks topic logs of producers up into partitions. Each

partition is an ordered, immutable sequence of messages written to log.

o (Consumer: Subsequently the logs are read from Disk by a consumer, an application that reads
records from Kafka brokers. The logs are read in the same unmodified binary data format.
The broker exposes the logs to consumers and consumers can build applications around it. The
consumer is an event loop that calls the application code to process incoming message. Kafka
also has a connect API that is written on top of the consumer API to read data into data sinks

as Hadoop or a database (Fig. 40).

Data Sources
Writes Writes Wites

- (LTI Gommitt [11]]

25 111
— 7

Stream
Processing

Hadoop Caches

Figure 40: Log use

7.4 Kafka Application

For this experiment a Kafka streaming application was constructed that measures the time-difference
between the point in time a message is produced by the producer and the point in time the message is
received and read by the consumer. A single zookeeper manager is used to from the confluentinc/cp-
zookeeper:3.3.0-1 Docker image. A single broker is used from the Docker confluentinc/cp-katka:4.1.2-2
image. A producer container and a consumer container are created from a custom images that take as
argument which container framework is used, which defines the server to bootstrap to. The producer
creates a message and produces this to a topic that is bind to a bootstrap server. The message
contains a time-stamp that is generated the moment the message is produced. Delay is calculated by
generating a time-stamp the moment a message is read inside the consumer container and subtracting

this timestamp from the producer timestamp which is tagged to the message.

68

7.5 Local Container Network

First, a local setup with no Kubernetes scheduling is deployed. A local cluster is set up in which the
containers directly communicate to one another with no scheduler in between. For this experiment the
resources of Google Cloud Platform were used. A Google cloud EC2 instance with 8 gb of memory and
8 cores was instantiated with Ubuntu 20.04 as operating system and 20gb persisted disk. The instance

was furthermore configured with allowance of HT'TP trafficking and with IP forwarding enabled.

This setup serves as a benchmark for the Kubernetes experiment. Singularity and Docker
are both installed on the instance. The same Kafka and zookeeper images are used for the Docker and
Singularity implementation. Singularity pulls the Docker image and stores it locally. Subsequently
Singularity converts the Docker image to a Singularity image-file. The Kafka producer generates
batches of messages. Every batch contains 100 messages which are send every second. The Kafka
consumer reads messages and calculates the delay. After receiving 10.000 messages the average delay
is written as output. The streaming application was run 20 times for both instances to ensure valid
results with all runs stopping after 60.000 messages. The local setup is run by starting 4 containers:
A Zookeeper container, a Kafka Broker container, a Consumer container and a Producer container.
The Network namespace is by default shared with the host meaning Singularity communicates through
localhost. The Docker implementation is configured by default with isolation of the network stack and
uses the Kafka network for communication between containers. Containers were addressed by their
name and port. The application is run for 60.000 messages after which it terminates. For every 10.000
messages the average delay is outputted. Meaning, the delay is specific per fraction of 10.000 messages.
The longest delay is measured for the first 10.000 messages for both implementations (Fig. 41). As
discussed, Docker by default has stronger isolation properties than Singularity and most importantly
for streaming, virtualizes the network stack. Average delay per 10.000 messages is lower for Singularity
compared to Docker after 20 repeated runs (Fig. 41).

0.024

—— sing
dock
0.022 A

0.020 A

0.018

delay(s

0.016 -

\k

0.014

0.012 A

0.010

10000 20000 30000 40000 50000 60000
messages

Figure 41: Local setup Kafka messaging delay

69

7.6 Kubernetes container network

For this experiment the resources of Google Cloud Platform were used. The same EC2 instance with
8 gb of memory, 8 cpu’s and Ubuntu 20.04 with 20gb persisted disk is used as in the local setup.
Sykube and Minikube are instantiated by their init commands and both start one master node and
one worker. A namespace is created of which the purpose in Kubernetes can be compared to the role
of a namespace in the Linux kernel; Namespaces provide isolation and access control, so that each
microservice can control the degree to which other services interact with it. Namespaces also allow
for different teams or users to work on their own isolated partition of a Kubernetes cluster. A pod
is scheduled with a zookeeper manager, a Kafka broker, a producer and a consumer. Just as for the
local setup, both implementations use the same images. The Minikube setup outperforms the Sykube

setup in terms of delay in messaging for 20 repeated runs (Fig. 42).

The important difference between the local container network and the Kubernetes cluster, is
that Pods are the entities that mainly provide isolation of resources by Linux namespaces. In local set
up this is managed on a container level, while with Kubernetes the Pod takes over some of the isolation
responsibilities from the containers. Relatively, Kubernetes adds more isolation to Singularity than to
Docker. Docker itself provides network isolation which gives all Docker containers a unique ip address.
If a Pod hosts Docker containers, network responsibilities are taken care off on a pod level and Docker
containers do not have their own unique ip address. Singularity does not provide network isolation but
when deployed in a Pod, a network isolation layer will be added by the Pod. Therefore, Singularity and
Docker containers will have the same level of network isolation in the Kubernetes cluster while this will
not hold for the local setup. The namespaces that are taken care off on a pod level are IPC namespace,
Network namespace, UTS namespace and cgroups. Therefore these namespaces do not provide a more
isolated environment for Docker. The container frameworks have equal isolation properties on behalf of
these namespaces. The abstraction layer of Kubernetes therefore makes the Singularity implementation
end up with approximately the same level of isolation as the Docker implementation. Docker remains

a very well developed framework with a lightweight container runtime.

0.024

—— sing

dock
0.022 A

0.020 A

0.018

delay(s)

0.016 -

0.014

0.012

10000 20000 30000 40000 50000 60000
messages

Figure 42: Kubernetes setup Kafka messaging delay

70

8 Conclusion

The first part of this research was attributed to assessing the effect of containerization on high per-
formance computing. High performance computing consists of tightly coupled processes that require
communication and integration with low latency. Different benchmark applications that work on dif-
ferent level of the memory hierarchy were tested in setups with different numbers of processes. The
experiments were as well run in over-threaded form to test the cost of thread switching in a container
environment. The hybrid setup, that scheduled a container for every MPI process scheduled, created
an identical setup for both bare metal and container implementation. What became evident during
this research, is that it is a fairly sensitive process to mimic bare metal performance inside a container.
Installing same versions of libraries that are used on the host, inside the container environment showed
to be insufficient. The environment in which libraries are compiled and run in can include libraries
which are included and end up effecting performance. Only by tracing these dependencies an exact
mimicked environment can be obtained that can serve as a proper base for comparison. Scheduling
hpce benchmarks in Singularity resulted in conclusive results: Little to no overhead was caused by
container isolation, for every level of the memory hierarchy. Singularity can be described as a process
with its own filesystem and a very low level of process isolation. The overthreaded implementation
as well caused little to no overhead. For neither of the levels of the memory hierarchy that these
benchmarks work on, overhead was detected when deployed with Singularity (Fig. 43).

HPL _—
[Cache]

STREAM — > i

[Local Memory]
PTRANS >
RRBFRRL ——» I

FFT —r[

Remote Memory]
RandomAccess —————————*

!
I

Figure 43: Benchmarks Impact on the Memory Hierarchy

The second part of this research was aimed at testing Singularity outside the high perfor-
mance computing world. To have a more clear view on what the effect of isolation is on performance,
both Docker and Singularity were tested in the same setup. Local, with no intervenience of Kuber-
netes, Singularity was at advantage. Singularity’s slogan ’Integration over isolation’ underlines the
aim to isolate at a bare minimum. Docker is a very well maintained framework that is more aimed
at supporting self sufficient, loosely coupled applications. The results of the Docker and Singularity

setups show that the frameworks differences in characteristics indeed result in different performance.

71

Dockers more isolated environment seems to have an effect on performance in a local streaming set
up. Singularity performed slightly better in terms of delay between message produced and message
consumed. The second setup was aimed at examining perfomance of Singularity in a local Kubernetes
cluster and comparing its results to Docker. To enable Singularity to work in an identical way as Dock-
ers Minikube, the container runtime interface was restructured and new modules were implemented.
Kubernetes infrastructure in a way has a similar goal as container frameworks but more on a scheduler
level: Both create separate environments and provide communication points. The Kubernetes layers
seem to have a more disadvantageous effect on Singularity’s performance, because Kubernetes has a
stronger isolating effect on Singularity compared to Docker. Following these results it can be concluded
that Docker in Minikube setup outperforms Singularity in Sykube setup. In a local setup, Singularity
performs better than Docker, with Singularity lacking IPC, UTS and Network isolation. After exten-
sive assessment of the results of the prior mentioned tests, the three subquestions that guided this

research will be answered.

e Research Question 1: Are there levels of the memory hierarchy for which containerization causes
performance degradation? The overhead incurred by containerization for high performance work-
loads and Singularity is non significant with a p value of 0.05, for every level of the memory
hierarchy. No significant disadvantageous effects were found for either of the benchmark applica-
tions when deployed in Singularity. The results of the Kubernetes setup and the local container
setup however indicate that the UTS, IPC and Network namespaces cause an effect on perfor-
mance for streaming application Kafka. When Singularity is tested in Kubernetes, which has a
stronger isolating effect on Singularity containers compared to Docker, the framework no longer
out performs Docker. These results indicate that isolating certain namespaces can introduce
delay in messaging. Conclusively, no significant overhead was found due to isolation when using
Singularity with the hpcc benchmarks, for neither levels of the memory hierarchy. Subjective
to its degree, isolation does have an effect on performance and therefore the statement that

containerization in general will not cause overhead will not hold.

e Research Question 2: How much overhead is related to the architecture of container deployment
or oversubscribing threads? The hpcc benchmarks were run with various configurations. Every
application showed different optimal configurations, both in terms of runtime and benchmark
results. The optimal configuration per benchmark for the hpcc metric and runtime were not
always conclusive. The optimal architecture for the container implementation was similar to the
architecture of the mpi implementation. This underlines the thought that the optimal configu-
ration is dependent on the application characteristics and not on using a container environment.
Conclusively, there is an optimal architecture to deploy containers, but this is strongly subjec-
tive to the type of application. No specific overhead is found related to container architecture.
Overthreaded container implementations do not show significant different results compared to
the mpi implementations. Conclusively, the more isolated environment of a container does not

causes performance degradation from overthreading .

e Research Question 3: How does the High Performance Computing framework Singularity per-
forms outside the high performance world? Singularity was tested outside the High Performance
Computing world. A different type of workload was used; a Kafka streaming application. Both
a local setup as well as an implementation in Kubernetes, a dynamic container scheduler, were

72

implemented. The delay in messaging was compared to the same implementation with Docker.
Singularity with a limited amount of isolation compared to Docker, performed better in local
setup. In Kubernetes setup, the virtualization layers of the Kubernetes framework provided
Singularity and Docker with a more equal level of isolation. In Kubernetes setup Docker out-
performed Singularity in terms of delay in messaging. Although Docker showed to be slightly
more performative with regards to supporting a Kubernetes Kafka cluster, Singularity with its
minimal level of isolation seems to be performative outside of the high performance world as
well. Singularity has the strong point that it lacks security issues, which makes it a fair choice

in Kubernetes clusters.

While there is a broader range of container frameworks to choose from, a well documented,
dominant framework as Docker has the benefit that it is already in use by many companies. Familiarity
with a framework and a user friendly documentation is a force that should not be underestimated. Now
containers are being used at a larger scale, advanced container schedulers as Kubernetes are becoming
more of a necessity than an option. Proper container runtime integration with Kubernetes is becoming
an enabler of capturing a market share, when Kubernetes is becoming an industry standard that to
boot shows an inclination towards rootless implementations. A highly developed and mature container
market where different types of container frameworks can be depict from for every use case, without

excludement because of poorly developed runtime interfaces, will only adhere to quality of workflows.

Although the Kafka application showed slightly less delay in Minikube, Sykube and the
Singularity-cri are interesting frameworks for the future with regards to the limited security risks.
With the rise of cybercrime and Kubernetes being a framework that has the ability to control a
cluster, security risks should not be taken lightly. One of the main advantages of Singularity is for it to
run as non-root, which remains a relevant feature also for Kubernetes clusters. Running Kubernetes
node components as a non-root user is a feature that is included in newer Kubernetes versions which
implicates a market demand [32]. Singularity is a good candidate for Kubernetes clusters which vows
for a well maintained Singularity-cri and Sykube. The fact that Singularity shows close to non existent

overhead is promising for container usage in high performance computing.

73

References

[1] Luszczek, Piotr Dongarra, Jack Koester, David Rabenseifner, Rolf Lucas, Bob Kepner, Jeremy
McCalpin, John Bailey, David Takahashi, Daisuke. (2004). Introduction to the HPC Challenge

Benchmark Suite.

[2] Horizontal and Vertical Scaling of Container-Based Applications Using Reinforcement Learning
July 2019 DOI:10.1109/CLOUD.2019.00061 Conference: 2019 IEEE 12th International Conference
on Cloud Computing

[3] Perri, Damiano and Simonetti, Marco and Tasso, Sergio and Ragni, Federico and Gervasi, Osvaldo,

2021, Implementing a scalable and elastic computing environment based on Cloud Containers
[4] Bovet, Daniel and Cesati, Marco, Understanding The Linux Kernel, 2005, Oreilly Associates Inc

[5] O. I. Alqaisi, M. S. Haq and A. S. Tosun, "Security of Containerized Computer Vision Applica-
tions," 2022 2nd International Conference on Computing and Information Technology (ICCIT), 2022,
pp. 115-120, doi: 10.1109/ICCIT52419.2022.9711600.

[6] S. Kehrer, F. Riebandt and W. Blochinger, "Container-Based Module Isolation for Cloud Services,"
2019 TEEE International Conference on Service-Oriented System Engineering (SOSE), 2019, pp. 177-
17709, doi: 10.1109/SOSE.2019.00032.

[7] Boettiger, C. (2015). An introduction to Docker for reproducible research. ACM SIGOPS Oper-
ating Systems Review, 49(1), 71-79.

[8] Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute.
PLoS One. 2017 May doi: 10.1371/journal.pone.0177459.

[9] Yoo, A.B., Jette, M.A., Grondona, M. (2003). SLURM: Simple Linux Utility for Resource Manage-
ment. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds) Job Scheduling Strategies for Parallel
Processing. JSSPP 2003. Lecture Notes in Computer Science, vol 2862. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/10968987 3

[10] J. Dongarra, The LINPACK benchmark: An explanation in Supercomputing, vol. 297, Springer,
Berlin, Heidelberg, 1988, pp. 456-474

[11] Performance Evaluation of Deep Learning Tools in Docker Containers August 2017
DOI:10.1109/BIGCOM.2017.32 Conference: 2017 3rd International Conference on Big Data Com-
puting and Communications (BIGCOM) Project: Performance Evaluation of Deep Learning Tools in

Docker Containers
[12] “Kubernetes,” Kubernetes. Available: https://kubernetes.io/. [Accessed: July 2022]

[13] Price, Daniel Tucker, Andrew. (2004). Solaris Zones: Operating System Support for Consolidat-
ing Commercial Workloads.. 241-254.

[14] Crosby, M. (2017). What is containerd? https: https://blog.mobyproject.org/
[15] S., Senthil. (2017). Practical LXC and LXD: Linux Containers for Virtualization and Orchestra-
tion. 10.1007/978-1-4842-3024-4.

74

[16] Jaeyoung Choi, Jack J. Dongarra, David W. Walker, Parallel matrix transpose algorithms on
distributed memory concurrent computers, Parallel Computing, Volume 21, Issue 9, 1995, Pages
1387-1405, ISSN 0167-8191, https://doi.org/10.1016/0167-8191(95)00016-H.

[17] D. T. Popovici, T. M. Low and F. Franchetti, "Large Bandwidth-Efficient FFTs on Multicore
and Multi-socket Systems," 2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2018, pp. 379-388, doi: 10.1109/IPDPS.2018.00048.

[18] Jeremy Kepner. 2009. Parallel MATLAB for Multicore and Multinode Computers (1st. ed.).
Society for Industrial and Applied Mathematics, USA.

[19] Sylabs userguide Singularity, https://docs.sylabs.io/guides/3.7 /user-guide/mpi.html
[20] Calico CNI Kubernetes bridge https://github.com/projectcalico/calico

[21] Tanvir Ahmed, Kafka’s origin story at LinkedIn, https://www.linkedin.com/pulse/kafkas-origin-

story-linkedin-tanvir-ahmed/

[22] M. T. Chung, N. Quang-Hung, M. Nguyen and N. Thoai, "Using Docker in high performance com-
puting applications," 2016 IEEE Sixth International Conference on Communications and Electronics
(ICCE), 2016, pp. 52-57, doi: 10.1109/CCE.2016.7562612.

[23] Saha, P., Beltre, A., Uminski, P., Govindaraju, M.: Evaluation of Docker Containers for Sci-
entific Workloads in the Cloud. In: Proceedings of Practice and Experience on Advanced Research
Computing (PEARC18). ACM, New York (2018). https://doi.org/ 10.1145/3219104.3229280

[24] Zhang, J., Lu, X., Panda, D.K.: Performance characterization of hypervisor-and container-
based virtualization for HPC on SRIOV enabled infiniband clusters. In: Proceedings of 30th
International on Parallel and Distributed Processing Symposium pp. 1777-1784. IEEE (2016).
https://doi.org/10.1109/ IPDPSW.2016.178

[25] 9. Zhang, J., Lu, X., Panda, D.K.: Is singularity-based container technology ready
for running MPI applications on HPC clouds? In: Proceedings of 10th International Con-
ference on Utility and Cloud Computing (UCC17), pp. 151-160. ACM, New York (2017).
https: //doi.org/10.1145,/3147213.3147231

[26] Saha, P., Beltre, A., Govindaraju, M.: Scylla: a mesos framework for container based MPI jobs.
CoRR (2019). arXiv:1905.08386

[27] Beltre, A.M., Saha, P., Govindaraju, M., Younge, A., Grant, R.E..: Enabling
HPC workloads on cloud infrastructure using Kubernetes container orchestration mecha-
nisms. In: Proceedings of CANOPIE-HPC 2019: 1st International Workshop on Contain-
ers and New Orchestration Paradigms for Isolated Environments in HPC, pp. 11-20 (2019).
https://doi.org/10.1109/CANOPIEHPC49598.2019.00007

[28] Analysis of linux os security tools for packet filtering and processing Translation of Title Linux
OS pakety filtravimo ir apdorojimo saugumo priemony analizé Authors Melkov, Dmitrij ; Paulikas,
Sartnas DOI 10.3846 /mla.2021.15180

[29] Performance characterization of containerization for HPC workloads on InfiniBand clusters: an

empirical study Peini Liu, Jordi Guitart

(0]

[30] Jha DN, Garg S, Jayaraman PP, Buyya R, Li Z, Morgan G, Ranjan R (2019) A study on the evalu-
ation of HPC microservices in containerized environment. Concurr Comput. https://doi.org/10.1002/
cpe.b323

[31] Gutierrez, Felipe. (2021). Minikube. DOI: 10.1007/978-1-4842-7460-6 12.

[32] Kubernetes guide - Running Kubernetes Node Components as a Non-root User

https://kubernetes.io/docs/tasks/administer-cluster /kubelet-in-userns/

[33] Liu, P., Guitart, J. Performance comparison of multi-container deployment schemes for HPC
workloads: an empirical study. https://doi.org/10.1007/s11227-020-03518-1

[34] M. T. Chung, N. Quang-Hung, M. -T. Nguyen and N. Thoai, "Using Docker in high perfor-
mance computing applications," 2016 IEEE Sixth International Conference on Communications and
Electronics (ICCE), 2016, pp. 52-57, doi: 10.1109/CCE.2016.7562612.

[35] Martin, J.P., Kandasamy, A. Chandrasekaran, K. Exploring the support for high perfor-
mance applications in the container runtime environment. Hum. Cent. Comput. Inf. Sci. 8, 1 (2018).
https://doi.org/10.1186/s13673-017-0124-3

[36] MacOS Containers Initiative https://macoscontainers.org/
[37] Kubernetes blog https://kubernetes.io/blog/2020/12/02/dockershim-faq/

[38] Zhenyun Zhuang, Cuong Tran, J. Weng, H. Ramachandra and B. Sridharan, "Taming mem-
ory related performance pitfalls in linux Cgroups," 2017 International Conference on Computing,
Networking and Communications (ICNC), 2017, pp. 531-535, doi: 10.1109/ICCNC.2017.7876184.

[39] Singularity Sykube implementation - Sylabs https://github.com/sylabs/sykube.

[40] Singularity container runtime Interface implementation - Sylabs

https://github.com /sylabs/singularity-cri.

[41] Cremer, F., Sheehan, B., Fortmann, M. et al. Cyber risk and cybersecurity: a sys-
tematic review of data availability. Geneva Pap Risk Insur Issues Pract 47, 698-736 (2022).
https://doi.org/10.1057 /s41288-022-00266-6

76

	Introduction
	Problem statement
	Approach and Scope
	Thesis Outline and Contribution

	Background
	Hypervisor
	Containerization
	Operating systems
	Related Work
	Linux Kernel
	Namespaces

	Linux Filesystem

	Frameworks
	Docker
	Images
	Docker daemon
	Docker runtime

	Singularity
	Singularity Image
	Starter-Suid
	Stage 1
	Stage 2

	Slurm
	Kubernetes
	Framework discussion

	Benchmarks
	Linpack
	Stream
	Parallel Matrix Transpose
	Random Ring Latency Bandwith Benchmark
	FFT
	Random Memory Access

	Singularity High Performance Cluster
	Singularity and MPI
	MPI Communication Layers
	Runtime
	Benchmark Input Configuration
	Thread and Node Configuration

	Results
	Linpack
	Stream
	Ptrans
	RandomAccess
	Fast Fourier Transform
	Bandwith/Latency Benchmarks

	Singularity in Kubernetes
	Sykube
	Sykube Image
	Sykube Executable

	Singularity-cri
	Kafka
	Kafka Application
	Local Container Network
	Kubernetes container network

	Conclusion

