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Communication
Constrained Infinitesimal Dipole Modeling-Assisted Ensemble Prediction of

Embedded Element Patterns via Machine Learning
Nehir Berk Onat , Ignacio Roldan , Francesco Fioranelli , Alexander Yarovoy, and Yanki Aslan

Abstract— A novel ensemble prediction technique is introduced to
enhance the accuracy of far-field embedded element pattern (EEP)
prediction under mutual coupling (MC) effects, while relaxing the
training data size challenge in neural network (NN)-based algorithms.
The proposed method integrates a two-stage NN for direct EEP prediction
from full-wave simulated pattern data in spherical coordinates with a
fully connected NN for the prediction of excitation coefficients of an array
of infinitesimal dipoles, approximating the full-wave simulated EEPs
via constrained infinitesimal dipole modeling (IDM). Quasi-randomly
distributed five-element pin-fed S-band patch antenna arrays are used for
demonstration purpose. It is shown that, for a large-sized (3500 topolo-
gies) and relatively small-sized (1500 topologies) dataset, incorporating
IDM-NN with the benchmarked direct EEP-NN in an ensemble technique
increases the pattern prediction accuracy by 11% and 60% on average,
respectively.

Index Terms— Aperiodic array, embedded element pattern (EEP),
infinitesimal dipole modeling (IDM), machine-learning, mutual coupling
(MC).

I. INTRODUCTION

Nonuniformly spaced (aperiodic) phased array antennas promise
achieving lower sidelobe levels (SLLs) at wide-angle scanning,
while keeping similar or higher gain as compared to their regular
counterparts [1], [2], [3]. Through array topology optimization, field-
of-view specific radiation patterns can be obtained at the peak
power amplifier efficiencies [4]. The optimization techniques have an
iterative nature [5], [6], [7], with convergence to the lowest possible
peak SLL depending on the type of the element, number of elements,
aperture size, and minimal element spacing [8]. The applications
include arrays for base stations [9], satellite communications [10],
radio astronomy [11], and automotive radars [12].

A major challenge in aperiodic array synthesis is to take mutual
coupling (MC) effects into account. Due to the complexity of estimat-
ing unique embedded element patterns (EEPs), many studies either
neglect or underestimate the MC effects via stand-alone element
or infinite-array assumptions [13]. This leads to unreliable results,
with an unpredictable performance degradation in the physical array.
A straightforward approach is to integrate full-wave simulations in the
optimization routine [14], [15]. Despite its solidity, such an approach
suffers from large computational requirements, while not allowing
the designers to synthesize large arrays, implement what-if scenarios
to test different topologies or parameters, and obtain prompt adaptive
responses for layout modulation when needed.

Several analytical and numerical techniques have been proposed
for modeling of MC and thus EEPs in phased arrays, such as
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infinite-to-finite array approach [16], an iterative technique based on
the concept of multiple scattering [17], spherical-wave expansion-
based technique [18], and active element pattern expansion (AEPE)
[19], [20]. However, they are either computationally expensive,
focused on specific element types, or not flexible enough for imple-
mentation in various topologies. More recently, machine-learning
(ML)-based techniques, especially neural networks (NNs) with
their ability to approximate highly nonlinear functions [21], have
been successfully utilized for MC and EEP estimations in aperi-
odic arrays [22]. However, the proposed methods have two major
limitations.

1) Data-driven ML techniques require a large amount of data
to avoid overfitting, significantly increasing the computational
time and load for data production.

2) There is high dependency of the result on the training data,
which results in large prediction performance deviations at
different array elements.

Therefore, there is a need to find a reliable method to ensure
sufficiently accurate EEP prediction under different MC effects, while
reducing the size of the training set.

The major contributions of this work are listed below.
1) The constrained infinitesimal dipole modeling (IDM)

approach [23], [24] is used for the first time in NN training
for robust pattern estimation under limited data size.

2) A novel ensemble prediction technique that combines direct
pattern prediction with IDM coefficient prediction is proposed
to enhance the performance of a single architecture in low-
complexity NNs.

3) An optimal data-size-dependent ensembling weight is intro-
duced for the best pattern prediction accuracy.

The rest of the communication is organized as follows. Section II
introduces the antenna under test (AUT) for feasibility and IDM
formulation. The proposed NN structures and ensemble prediction
are presented in Section III. Section IV discusses the results. The
conclusions are given in Section V.

II. SIMULATION SETTINGS

A. Antenna Under Test

To demonstrate the performance of the proposed technique,
five-element irregularly spaced pin-fed patch antenna elements
(at 2.85 GHz center frequency) have been designed as illustrated in
Fig. 1, where the main design parameters are listed in Table I. The
antenna element under test for EEP prediction is placed at the origin
(0, 0), while the neighboring elements are randomly distributed (to
create a dataset with full-wave simulations) in a defined region limited
by an inner and an outer circle. The radius of the inner circle, r1,
is equal to 0.5λ, where λ is the free space wavelength at the center
frequency. The radius of the outer circle (r1 + r2) is selected as λ to
observe the MC effect on the EEPs by keeping the elements close to
each other. The allowed minimum distance between the elements is
kept at 0.5λ, making the dataset quasi-random.
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TABLE I
ANTENNA DESIGN PARAMETERS

Fig. 1. Five-element aperiodic array topology where the AUT, highlighted
with the yellow color, is located at the center, (xo, yo) = (0, 0), and the
neighboring elements are randomly positioned in the defined green region:
r2
1 ≤ (x2

i + y2
i ) ≤ (r1 +r2)2 where (xi , yi ) is the location of the i th neighbor

element in λ.

B. EEP and Constrained IDM

The far-field radiation field of a phased array shown in Fig. 1 can
be formulated as

F (θ, φ) =

N=5∑
n=1

wn En (θ, φ) ejk(yn sin θ sin φ+zn cos θ) (1)

where wn is the weight and En(θ, φ) is the EEP of the nth element,
k is the wavenumber, and yn and zn are the positions of the
nth element in y- and z-axis, respectively.

Estimating En(θ, φ) for any given topology fast and accurately
will allow synthesizing the desired F(θ, φ) (e.g., for pattern shaping
or pattern nulling) reliably. In ML-assisted estimations of En(θ, φ),
the EEPs of each AUT in the training dataset can be simulated
via full-wave commercial software. Then, NN can be trained on
the pattern data on spherical coordinates [25]. Alternatively, the
EEPs can be efficiently approximated by using the constrained IDM
where the original array surface is populated with an equivalent
array of infinitesimal electric, e− and magnetic, m−dipoles [26]. The
excitation coefficients of the dipoles can be estimated via inversion
of a Vandermonde-type matrix [27], which is relaxed by introducing
a relatively small Gaussian noise [28], [29]. Although using both
dipole types along the y- and z-axes in a dense ID array provides a
more accurate approximation of the pattern, the inversion of a matrix
with a high condition number makes the ID coefficients very sensitive
against errors. Improving robustness is critical as it is expected that
NN predictions introduce errors in the ID coefficients. In [30], it was
shown that the best condition number versus pattern approximation
error trade-off is achieved when only m−dipoles oriented along the
radiating edges of a patch, i.e., along the z-axis, are used on a
sunflower ID array layout. In particular, for a maximal array radius
of λ as in Fig. 1, the use of 81 dipoles was motivated as the
optimal ID array size [30]. This preliminary study is exploited in this
communication in IDM formulation for NN-based EEP prediction.

III. PROPOSED METHODOLOGIES

In this section, two different methods for estimating the absolute
EEPs are presented. Both of them use as input the coordinates of the
four elements placed in the ring in Fig. 1. The first (benchmarked)
method directly estimates the center element’s EEP including the
neighbor elements’ effect. On the other hand, the second and novel

method estimates the ID coefficients, and with this, IDM is applied
to obtain the EEP. Moreover, both methods are combined in an
innovative ensemble model to generate better predictions than each
of them alone. Fig. 2 shows a block diagram of the full pipeline,
highlighting in blue the direct EEP prediction, in green the IDM
prediction, and in yellow the ensemble model.

In Sections III-A–III-C, each block is explained in detail.

A. Direct NN EEP Prediction

A NN inspired by the one presented in [25] has been designed to
predict the central element’s EEP directly in the θ -φ domain. The NN
consists of two different parts; the first one generates a low-resolution
EEP of 36×36, while the second part upscales it to the desired resolu-
tion of 180×180 (1◦ resolution in azimuth and elevation). In contrast
with the method presented in [25], both blocks are trained together,
and therefore, the intermediate low-resolution result is not provided.
The upscale block is based on the efficient subpixel convolutional
NN (ESPCN) [31]. A schematic of the proposed architecture can be
seen in the blue part of Fig. 2.

The input to the proposed network P ∈ R4×2 contains the
position in polar coordinates of the elements, and it is fed to a
1-D convolutional layer with 16 kernels, which encodes the spatial
relationships. Then, seven fully connected layers are used, increasing
the number of neurons in each step until it reaches 1296. The
number of layers and neurons have been tuned manually following
a heuristic search [32]. The output of the fully connected layers is
then reshaped from 1296 into a 36 × 36 matrix resembling a low-
resolution EEP. Finally, the ESPCN architecture is used to upscale
it to a 180 × 180 matrix. This architecture uses two convolutional
layers for feature map extraction and a subpixel convolution layer that
aggregates the feature maps from the low-resolution space and builds
the high-resolution image. In this work, the two hidden convolutional
layers have n=32 filters and 3 × 3 kernel size, while the subpixel
layer has r2=25 filters to achieve five times the input resolution
(upscaling from 36 × 36 to 180 × 180). The whole NN model is
composed of 2 million parameters, which is a small number for
NN architectures [33], with an estimation time several orders of
magnitude faster than full-wave simulations [25].

The key to a successful estimation of the EEP is the use of the
structural similarity (SSIM) index as a loss for training the NN. The
SSIM was originally developed as a metric for measuring image
quality given a reference image, usually to assess the losses due to
image compression. However, it has been used recently as a loss
function for training NNs [34]. Formally, the SSIM is defined per
pixel as

SSIM (p) =
2µxµy + C1

µ2
x + µ2

y + C1
·

2σxy + C2

σ 2
x + σ 2

y + C2
(2)

where as follows.
1) The means µ and standard deviations σ are computed with an

11 × 11 Gaussian filter of width 1.5.
2) C1 = (k1L)2, C2 = (k2L)2, are two constants.
3) L is the dynamic range of the matrix (i.e., the difference

between the maximum and minimum value).
4) k1 and k2 are set to the default values of 0.01 and 0.03.
Then, the loss for each matrix can be defined as

LSSIM (P) = 1 −
1
N

∑
p∈P

SSIM (p). (3)

The use of the SSIM loss is a critical component of this work since
the value of each matrix element in the EEP is strongly correlated
with its neighbors. The SSIM enforces this structural information,
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Fig. 2. Block diagram of the proposed method. The upper branch (in blue) directly predicts the EEP using a two-stage network based on the previous
study [25] and the ESPCN [31] architecture. The lower branch (in green) uses a NN to estimate the ID complex coefficients, and then the constrained IDM
generates the EEP. Finally, the ensemble model (in yellow) combines both predictions to generate a higher quality estimation.

in contrast with minimum squared error (MSE) or mean absolute
error (MAE) which are computed per cell independently.

B. IDM-NN EEP Prediction

A schematic of the network is presented in Fig. 2 highlighted
in green. The second approach aims to estimate the 81 z−oriented
m−type IDs complex excitations coefficients for given element posi-
tions. In this case, the estimation space is much smaller (81 complex
coefficients versus 32 400); therefore, a simpler network has been
used. Similarly, the first layer is a 1-D convolutional layer with
16 kernels to encode the spatial information. Then, in order to
maintain the same number of layers as in the previous architecture
(to have the same network depth and fair comparison of results),
seven fully connected layers are included with a final output vector
of dimension 81 × 2 (real and imaginary parts).

The network is trained using the ADAM optimizer [35] with the
default hyperparameters (η=0.001, β1=0.9, β2=0.999, ϵ=1e-7) and
the MSE between the estimated and the true ID coefficients as loss
function. Once the ID coefficients are predicted, the EEP can be
estimated using the IDM technique explained in Section II-B.

C. Ensemble Model

A common practice to tackle difficult tasks in ML is to use the
prediction of different models and combine the output to obtain better
performance of any of the models alone. This is known as ensemble
models, and this technique is used to overcome the limitations that
each of the proposed methods presents. Moreover, this allows the
design of low-complexity NN architectures suitable for problems
when the number of training data is limited. Although several tools
can be utilized to obtain an ensemble model, this study employs
a simple pixel-wise weighted sum to show the potential of the
ensemble prediction with the proposed methods, as illustrated in
Fig. 2 highlighted in yellow.

IV. RESULTS

Defining the cost function is a critical task due to the high differ-
ence between the minimum and maximum values of the EEP, causing
a challenge in quantifying the prediction error. In this study, the error
is computed for the region 45◦

≤ θ ≤ 135◦ and −45◦
≤ φ ≤ 45◦

which describes the angular region of interest for the typical array

Fig. 3. Analysis of the weighting value, β, for the ensemble prediction
where 11 and 12 represent the datasets comprising 3500 and 1500 data,
respectively. The MSE of each point is calculated over the validation set
where β1 = 0.6 and β2 = 0.35 provide the minimum error for the datasets
11 and 12, respectively.

applications, comprising the high gain part of the EEP. Therefore, the
absolute level of the resulting error is naturally expected to be high
regardless of the chosen error function. To this extent, a commonly
used error function, the MSE, has been selected to quantify the error
between the full-wave simulated and predicted EEPs

εp = 10 lg

 1

N 2
s

Ns∑
i, j=1

(
|E E PCST

(
θi , φ j

)
| − |E E P ′

p
(
θi , φ j

)
|

)2

(4)

where Ns is the number of samples for θ and φ, E E PCST is the
full-wave simulated pattern of the chosen element in the far-field
region that is generated by the commercial full-wave simulator CST,
E E P ′

p , and εp are the corresponding predicted pattern and its MSE
with p indicating the used methodology.

Two different-sized datasets with quasi-randomly generated
1500 and 3500 full-wave simulations by CST, where each data
comprise an EEP of an AUT with 180-by-180 samples (in terms
of E-field magnitudes in dB), were used for the training of the NNs.
These two datasets were chosen based on the average error analysis,
whereas reducing the dataset below 1500 data increases the error
significantly (larger than −3.7 dB), while error remains relatively
low (below −9.2 dB) beyond 3500 data for the considered topology.
Among these data, 300 of them were chosen as a validation for both
sets.

The results are presented for five different EEP methodologies,
which demonstrates the potential of the proposed ensemble predic-
tion. These methodologies include: 1) full-wave simulated isolated

Authorized licensed use limited to: TU Delft Library. Downloaded on October 28,2024 at 07:57:36 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. MSE comparison for the validation set with two different training data sizes. (a) 11 = 3500 training data and (b) 12 = 1500 training data.

TABLE II
RESULTS FOR EACH CASE STUDY AND THE AVERAGE OVER THE

VALIDATION SETS WITH THE BENCHMARK PATTERNS

element pattern (IEP); 2) full-wave simulated unit cell element
pattern in an infinite array (EEPUNT); 3) direct ANN predicted
EEP (EEPANN); 4) IDM-ANN predicted EEP (EEPIDM−ANN); and
5) ensemble-predicted EEP (EEPENS).

The weighting factor, β, is analyzed to obtain an optimum choice
for the ensemble prediction block for each training set. Fig. 3
illustrates the MSE results for each β value for the datasets 11,
comprising 3500 training data, and 12, comprising 1500 training
data. The cost function MSE is calculated over the same validation
set. While the minimum error is obtained by β = 0.35 for the network
trained with the dataset 12, the value of the weight factor shifts to
0.6 with the increase of the training data as shown in Fig. 3. It is
possible to use ensemble learning techniques to learn the best β for
each situation, which is left out of the scope of this work and will
be considered in future work.

First, each model is trained with the large dataset, 11, and the
corresponding results are illustrated in Fig. 4(a) for each validation
data, and Table II shows the average results. While the MSE of
the IEP and EEPUNT has an average of 0.3 dB, the NN-direct pre-
dicted element pattern EEP′

NN and the IDM-NN predicted element
pattern EEP′

IDM−NN have an average error of −8.3 and −7.1 dB,
respectively. Although the MSE of the ANN-based methods generally
remains low, the error in specific topology cases can be observed to be
higher than the others. These high errors are reduced by the proposed
ensemble prediction where the error in EEP′

ENS has an average MSE
of −9.3 dB over the validation set.

Fig. 5. Five-element array topologies with different case studies with the
corresponding EEPs (E-field, in dB) where the MC effect can easily be
observed. The green and black rectangles in the topology figures illustrate the
main and neighbor elements, respectively. (a) IEP, (b) EEPUNT, (c) topology
of Data 129, (d) topology of Data 205, (e) topology of Data 94, (f) EEPCST
of Data 129, (g) EEPCST of Data 205, and (h) EEPCST of Data 94.

When the size of the dataset is reduced by almost 60% to
1500 data, the prediction performance of the NN-based methods
becomes worse. Yet, the performance of the proposed ensemble
methodology remains in the acceptable range, as can be seen in
Fig. 4(b) and Table II. To illustrate the performance of the trained
networks visually and to highlight the benefits of ensemble prediction,
three extreme cases, namely Data 129, 205, and 94, have been
selected from the validation set as visualized in Fig. 4(b). The
topologies of these cases are illustrated in Fig. 5 with the full-wave
simulated AUT pattern (EEPCST) where the MC effect on the EEPs
can easily be observed as compared to the IEP and EEPUNT.
A summary of the average error result comparisons for the three
cases is also provided in Table II for completeness.
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Fig. 6. Case 1: EEP (E-field, in dB) prediction results for Data 129 with
the training set 12. (a) EEPCST is full-wave simulated EEP, (b) EEPENS is
the ensemble predicted EEP, (c) EEPNN is the direct NN predicted EEP, and
(d) EEPIDM−NN is the IDM-NN predicted EEP.

Fig. 7. Case 2: EEP (E-field, in dB) prediction results for Data 205 with
the training set 12. (a) EEPCST is full-wave simulated EEP, (b) EEPENS is
the ensemble predicted EEP, (c) EEPNN is the direct NN predicted EEP, and
(d) EEPIDM−NN is the IDM-NN predicted EEP.

A. Topology Case 1

In the first example in Fig. 6, while both models provide the outline
of the full-wave simulated pattern of the AUT, IDM-NN model
fails to predict particularly main beam region and corner regions
(e.g., −60◦ < φ < −25◦ and 30◦ < θ < 70◦) as can be observed
in Fig. 6(c). Errors in these regions are suppressed by the prediction
of the NN-direct model as a result of the ensemble prediction that
is shown in Fig. 6(b). In this way, the MSE between the full-wave
simulated pattern and prediction is reduced from −2.69 to −5.53 dB.

B. Topology Case 2

In a case like this, the NN methodology suffers from a higher
prediction error, while the IDM-NN model provides a better predic-
tion, as seen in Fig. 7. In this example, the error by the NN-direct
prediction is reduced from −0.67 to −7.51 dB by the superior
prediction by the IDM-NN model, as can be seen in Table II.

C. Topology Case 3

In rare cases, the error of both predictions can be relatively low,
as shown in Fig. 4(b). Particularly in these cases, the ensemble predic-
tion reduces and stabilizes the peak errors even more by averaging the
resulting patterns from the proposed ANN methodologies. Even with

Fig. 8. Case 3: EEP (E-field, in dB) prediction results for Data 94 with
the training set 12. (a) EEPCST is full-wave simulated EEP, (b) EEPENS is
the ensemble predicted EEP, (c) EEPNN is the direct NN predicted EEP, and
(d) EEPIDM−NN is the IDM-NN predicted EEP.

a simple averaging, the obtained ensemble prediction agrees with the
full-wave simulation by decreasing the error from −9.14 to −14.1 dB
as visually illustrated in Fig. 8.

V. CONCLUSION

A novel ensemble prediction technique is proposed to achieve suf-
ficiently accurate and fast EEP prediction under different MC effects
with reduced training data size. The method is based on combining:
1) a direct approach comprising a two-stage NN that predicts EEPs in
θ −φ plane from the full-wave simulated data and 2) the constrained
IDM, where ID excitations are predicted by a second NN, obtaining
the EEP from the predicted coefficients. For validation, quasi-random
five-element S-band pin-fed patch array topologies are employed. The
results have proven the potential of the proposed method in achieving
a lower MSE in EEPs (by about 60% on average) while reducing the
data size (by nearly 60%). Future work will explore more advanced
NN architectures and the training of the full ensembling model as a
single structure. Additionally, to improve the accuracy of the datasets
toward the real products, future work might also consider introducing
realistic parameter sensitivity-error models in the simulations.
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