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Abstract
The quantumuncertainty principle famously predicts that there existmeasurements that are
inherently incompatible, in the sense that their outcomes cannot be predicted simultaneously. In
contrast, no such uncertainty exists in the classical domain, where all uncertainty results from
ignorance about the exact state of the physical system.Here, we critically examine the concept of
preparation uncertainty and askwhether similarly in the quantum regime, some of the uncertainty
that we observe can actually also be understood as a lack of information (LOI), albeit a lack of quantum
information.We answer this question affirmatively by showing that for thewell knownmeasurements
employed in BB84 quantumkey distribution (Bennett and Brassard 1984 Int. Conf. onComputer
System and Signal Processing), the amount of uncertainty can indeed be related to the amount of
available information about additional registers determining the choice of themeasurement.We
proceed to show that also for othermeasurements the amount of uncertainty is in part connected to a
LOI. Finally, we discuss the conceptual implications of our observation to the security of cryptographic
protocols thatmake use of BB84 states.

1. Introduction

The uncertainty principle forms one of the cornerstones of quantum theory. Asfirst observed byHeisenberg
[15] and then rigorously proven byKennard [19], it is impossible to perfectly predict themeasurement
outcomes of both position andmomentumobservables. This notionwas generalised by Robertson to an
arbitrary pair of observables [26] showing that uncertainty is an inherent feature of any non-commuting
measurements in quantummechanics. The described uncertainty is often referred to as preparation uncertainty,
because it states that it is impossible to prepare a quantum state for which one could perfectly predict the
measurement outcome of both observables.

Amodernway of capturing the notion of preparation uncertainty is bymeans of a guessing game [2]. Such a
gamemakes the concept of preparation uncertainty operational and is of great use in proving the security of
quantum cryptographic protocols [7]. Figure 1 summarises the game, which in its simplest formworks as
follows. Bob prepares systemB in an arbitrary state rB of his choosing and then passes it to Alice. Alice performs
one of two incompatiblemeasurements labelled by r=0 and r=1 according to a random coin flip contained
in the registerR and obtainsmeasurement outcomeX. She then informs Bobwhichmeasurement she
performed by sending him the registerR. Bobwins the game if he correctly guesses Alice’smeasurement
outcomeX.

To seewhy this captures the essence of the uncertainty principle, note that if themeasurements are
incompatible, then there exists no state rB that Bob can prepare that would allow him to guess the outcomes for
both choices ofmeasurements with certainty. Uncertainty can thus be quantified by a bound on the average
probability that Bob correctly guessesX. That is, a relation of the form

OPEN ACCESS

RECEIVED

23August 2016

REVISED

15 January 2017

ACCEPTED FOR PUBLICATION

1 February 2017

PUBLISHED

20 February 2017

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2017 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aa5d64
mailto:f.d.rozpedek@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa5d64&domain=pdf&date_stamp=2017-02-20
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa5d64&domain=pdf&date_stamp=2017-02-20
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


( ∣ ) ( ) ( ∣ ) ( ) ( ∣ ) ( )= = = + = = z-P X p r P X r p r P X rBob 0 Bob, 0 1 Bob, 1 2 , 1guess guess guess

for all rB. Equivalently, we can relate the above defined guessing probability to themin-entropy
( ∣ ) ( ∣ )= -H X P XBob log Bobmin guess (in this article all logarithms are base 2), so that we obtain an inequality:

( ∣ ) ( ) zH X Bob . 2min

This expression forms an uncertainty relation as long as the RHS is non-trivial (i.e. z > 0). Analogous relations
exist for other entropies [7], but herewe focus on themin-entropy since it is the relevantmeasure for quantum
cryptography and randomness generation, and it quantifies thewinning probability for the aforementioned
guessing game.

In this work, we seek a deeper understanding of the uncertainty principle by considering amore general
scenario than the typical guessing game and observing the conditions under whichBob’s uncertainty vanishes.
In particular, the generalisationwe consider is to allowBob to have additional information—possibly quantum
information—about Alice’smeasurement choice. This generalisation is closely related to recent proposals for
quantum control experiments [5, 17]. To elaborate, we note that Alice’s randommeasurement choice in the
guessing game can be implemented by preparing a qubitR in themaximallymixed state r = 2R and then
performing a unitary operation onB conditioned on the state ofR (see figure 2 above). In the generalised game
thatwe consider, we allow rR to be amore general state, possibly with some coherence. Aswe discuss below,
allowing for coherence in rR corresponds to giving Bobmore information.

Ourmotivation for considering this scenario is to distinguish between uncertainty that is due to Bob’s lack of
information (LOI) versus uncertainty that is intrinsic or unavoidable. To help clarify these notions, we remark
that a classical theory admits no intrinsic uncertainty. Classical here refers to commutingmeasurements that are
jointly diagonal in one predefined basis. If Alice employed suchmeasurements in the aforementioned guessing
game, then the onlyway for her to prevent Bob fromwinning the gamewould be for her to add noise to her

Figure 1.Uncertainty guessing game. The game runs as follows: (1) First, Bob prepares systemB in a state rB and sends it to Alice.We
show in appendix A that Bob’s best strategy is to prepare a pure state ∣ ∣r f f= ñáB B. (2) Second, AlicemeasuresB in a basis determined
by the state of registerR. (3) Finally, Alice obtains the classical outcomeX and sendsR to Bob. Bob can thenmeasureR in order to help
him guessX. Note thatRmay be initially prepared in amixed state rR, and Bob does not have access to the purifying systemof rR,
denoted asP in thefigure. Hence, P embodies Bob’s lack of information in this game.

Figure 2.Quantum circuit of the uncertainty game. At time t1, Alice’s registerR andBob’s systemB are uncorrelated.Wewill assume
that Alicemeasures in the standard basis and one additional basis depending on the state of registerR. To allow formaximum intrinsic
uncertainty, we take the other basis to bemaximally incompatible. Here, we choose it to be the Fourier basis. Hence the two
measurements correspond tomeasuring in twomutually unbiased bases. IfB is a qubit, then thismeans that Alicemeasures in the
standard andHadamard basis, which are the two bases used in BB84 quantumkey distribution. This basis choice is performed byAlice
applying a controlled unitary between the two registers, leading to a correlated state at time t2. Alice thenmeasuresB to obtain the
measurement outcomeX. If the registerR is classical, then the two operations together correspond to performing a random
measurement. If the registerR contains some non-zero coherence, then those operations describe a procedure which could be
understood as a ‘measurement in a superposition of two bases’. After time t3, Alice sendsR to Bob. At this stage,

∣ ∣r r= å Ä ñáp x xRX x x R
x

X is a qc-state. Bob can thenmake ameasurement in order to distinguish the states rR
x , i.e., to help him guess

X. Note that Bob knowswhich states rR
x hewants to distinguish since he knows the form of the initial state ∣x ñRP and themeasurements

Alice can perform.

2

New J. Phys. 19 (2017) 023038 FRozpędek et al



measurement outcomes, i.e., implement noisymeasurements. Yet, wewould classify Bob’s uncertainty in this
case as LOI uncertainty, as he simply lacks the information about the noise Alice adds. Hence, the arising
uncertainty is clearly not an intrinsic feature of themeasurements.

Notice that preparing the registerR in themaximallymixed state r = 2R injects classical randomness into
the protocol. It is unclear whether or not this randomness is ultimately responsible for the uncertainty principle,
and this is a questionwe aim to answer.We emphasise that the scenario we consider differs fromother variants
of the uncertainty principle which derive bounds involving the purity or entropy of rB [2–4, 6, 8, 9, 11–14, 21–
23, 25, 27].

Interestingly wefind that in the special casewhere Bob’s system is a qubit (d= 2), there is no intrinsic
uncertainty but all the uncertainty is due to LOI. That is, if Bob has complete knowledge about the preparation of
R (i.e.,R is in a pure state), then his uncertainty vanishes. In contrast, for all dimensions >d 2, we find that there
is always some intrinsic uncertainty. That is, evenwith the full knowledge about the preparation ofR, Bob
cannotwin the guessing gamewith unit probability. Before we discuss these results in detail, let us outline the
physical setup.

2. Physical setup

2.1.Degrees of ignorance
In this sectionwe describe the generalised guessing game shown infigure 1.Here, Alice prepares a register
systemR in some state rR.Meanwhile Bob prepares systemB in state rB and sends it to Alice. AlicemeasuresB in
a basis determined by the state ofR. Then she passesR to Bob, and he tries to guess hermeasurement outcome,
possibly using the information stored inR.We are interested in understanding howmuch of Bob’s uncertainty
(i.e., his inability towin this game) is due to LOI and howmuch corresponds to intrinsic (or unavoidable)
uncertainty.

To better understand this, let us examinewhat Bob does and does not have access to infigure 1. Since rR is
generally amixed state, it can be purified by considering an additional system, P. Even thoughBob is given access
toR, we emphasise that he does not have access toP in our guessing game.Hence, we can think ofP as
representing Bob’s LOI.

For example, consider the case when r =  2R ismaximallymixed, which corresponds to the case where the
measurement choice is a classical coinflip (i.e., the typical uncertainty game considered in the literature [2]). The
purification is amaximally entangled state such as

∣ (∣ ∣ ∣ ∣ ) ( )x ñ = ñ ñ + ñ ñ
1

2
0 0 1 1 . 3RP R P R P

At the other extreme is the case where rR is pure, i.e.,

∣ ∣ ∣ ( )x x xñ = ñ Ä ñ 4RP R P

is a product state.Wewill take ∣ (∣ ∣ )x ñ = ñ + ñ0 1R
1

2
, i.e., we choose an equal superposition in correspondence

with the idea that bothmeasurements were previously chosenwith equal probability. Intuitively, when the initial
state ismaximally entangled, then Bobwill later suffer from amaximumLOI aboutP. However, in the case
where the two systems are uncorrelated, Bob does not needP at all. In other words, there is no LOI on his part,
becauseR is pure.

There aremanyways to interpolate between these two extremes in terms of ameasure of correlation between
R andP. Here, we choose one that is intuitive whenwe think about ‘howmuch’ ofPBob is actually lacking.
Concretely, we imagine that apart from the classical coinC (which is a part ofR),R andP are actually comprised
ofmany environmental subsystems ¼E E, , n1 , andwe quantify Bob’s LOI by the number of the environment
systems that are part ofP instead of part ofR. Specifically, we take

∣ ∣ ⨂∣ ∣ ⨂∣ ( )x a bñ = ñ Ä ñ + ñ Ä ñ
= =

⎛
⎝⎜

⎞
⎠⎟

1

2
0 1 , 5RP C

i

n

E C
i

n

E
1 1

i i

where = ¼RP CE En1 . The environments Ejʼs are two-dimensional registers and ∣ ∣ ∣ a bá ñ = -1 , with  > 0
and  1 so that each individualEj holds very little information about the state of the coinC. However, we see
that ∣a bá ñ  0n as  ¥n .We thus see that for  ¥n andR=C, = ¼P E En1 , we approach the extreme
case ofR being essentially classical, and ∣x ñRP beingmaximally entangled. This idea of approximating the notion
of a classical register by ‘copying’ information into a large number of environmental systems Ej is due to
Zurek [30].

We can now interpolate between the two extremes by letting = ¼R CE Ej1 and = ¼+P E Ej n1 .We have
that
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(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣) ( )*r g g= ñá + ñá + ñá + ñá
1

2
0 0 1 1 0 1 1 0 , 6R

where

∣ ≔ ∣ ⨂∣ ( )añ ñ Ä ñ
=

0 0 , 7R C
i

j

E
1

i

∣ ≔ ∣ ⨂∣ ( )bñ ñ Ä ñ
=

1 1 , 8R C
i

j

E
1

i

∣ ( )g a b= á ñ - . 9n j

We see that ∣ ∣g increasesmonotonically with j, the number of environmental subsystems contained inR, and
hence the number of subsystems towhich Bob is given access later on. The extreme cases g = 0 and g = 1
correspond respectively to j=0 and j=n (again note that the number of environment subsystems is very large
so thatwe always consider the limit  ¥n ). In appendix Awe show that for the uncertainty game it is only the
modulus of γ thatmatters. Therefore, wewill only consider the case of real and positive γ, i.e. [ ]g Î 0, 1 .

2.2. Uncertainty game
Let us now revisit our uncertainty guessing game (see figures 1 and 2)with amore detailed description. First, Bob
prepares systemB in a state rB and sends it to Alice. Second, AlicemeasuresB and obtains the classical outcome
X, with themeasurement basis determined by the state of registerR given by:

(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣) ( )r g g= ñá + ñá + ñá + ñá
1

2
0 0 1 1 0 1 1 0 . 10R

Specifically, as depicted infigure 2, states ∣ ñ0 and ∣ ñ1 onR are, respectively, associatedwithmeasuring in the
standard basis and Fourier basis onB (we have chosenmaximally incompatible bases tomaximise the ‘inherent’
uncertainty). Next, Alice sends Bob the registerR. Finally BobmeasuresR to help himproduce a guess forX.
This defines a two-parameter family of uncertainty gameswhich depend on: { }Î ¼d 2, 3, , the number of
possible outcomes (which fixes the dimension of the quantum state rB supplied by Bob and the dimension of the
Fourier transform infigure 2) and [ ]g Î 0, 1 , describing the amount of information aboutR that is held inP, or
equivalently the amount of coherence inR.

3.Methods

Herewe provide a high level overview of themethods used to obtain the results presented in the next section. For
complete analysis we refer the reader to the appendices.

After Alice has performed hermeasurement, at time t3 infigure 2 the resulting qc-state between the registerR
and the outcome registerX is:

( ) ˜ ( ) ∣ ∣ ( )år g r r g r= Ä ñád d x x, , , , , 11RX B
x

R
x

B X

where ˜ ( ) ( ) ( )r g r r r g r=d p d d, , , , ,R
x

B x B R
x

B is the subnormalised post-measurement state of the registerR
corresponding to the outcomeX=x. In terms of Bob’s input state rB, this state has the form:

˜ ( )
∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )
†

†r g r
r g r

g r r
=

á ñ á ñ

á ñ á ñ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

x x x F x

x F x x F F x
, ,

1

2
, 12R

x
B

B B

B B

as derived in appendix A. Since Bob later gains access to registerR, we see that in order to guess the resulting
outcomeX=x, Bob should try to determinewhich quantum state ( )r g rd, ,R

x
B he has received.Hence, his

guessing problembecomes equivalent to the problemof distinguishing quantum states { ( )}r g rd, ,R
x

B
occurringwith probabilities { ( )}rp d,x B .

The probability of Bob correctly discriminating those states with the optimal strategy, i.e., with the optimal
measurement onR (described by POVMelements { }Mx ), is given by [29]:

( ) ( ) [ ( )] ( )
{ }

åg r r r g r=
=

-

p d p d M d, , max , Tr , , . 13B
M x

d

x B x R
x

Bguess
0

1

x

In appendix Awe show that to achieve ( )gp d,guess
max , the guessing probability optimised over input states rB, it is

sufficient to consider only pure input states ∣ ∣r f f= ñáB B. Hence, themaximumvalue of ( )g rp d, , Bguess for a

given γ and d is the result of optimising the guessing probability over all input states ∣fñB of Bob (for convenience
wewill often omit the subscript ‘B’ from ∣fñB). That is,

4
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( ) ( ∣ ) ( )
∣

g g f= ñ
fñ

p d p d, max , , . 14
guess
max

guess

Solving this optimisation problem is not an easy task. Note that the functionwhichwewant to optimise over all
the POVMelements { }Mx in equation (13) is linear in those operators. Hence, for a specific input state ∣fñB the
optimisation can be performed using techniques of semi-definite programming. However, the above
optimisation problem in equation (14) involves optimisation both over POVMelements and input states ∣fñB.
Clearly, ˜ ( ∣ )r g fñd, ,R

x
B is quadratic in ∣fñB. Note that this problem can bemade linear in the input state by again

considering optimisation over allmixed states rB, i.e. our problem is then linear in rB. However, the full
problemof optimising over both { }Mx and rB:

( ) ( ) [ ( )] ( )
{ }

åg r r g r=
r =

-

p d p d M d, max max , Tr , , 15
M x

d

x B x R
x

Bguess
max

0

1

B x

turns out not to be jointly concave in both of those variables and so cannot be solved using techniques of convex
optimisation.

3.1. Two-dimensional game
Nevertheless, we can solve this problem analytically for d=2. For this case, we derived our result (stated below
in theorem1) by noting that the problemof optimising over the POVMelements in equation (13) (forfixed
states { }rR

x occuring withfixed probabilities { }px ) has been solved analytically byHelstrom [16]:

( ) ( ˜ ( ) ˜ ( ) ) ( ) g r r g r r g r= = + -p d, 2,
1

2
1 , , , 16B R B R Bguess

0 1
1

where · 1denotes the trace norm andwe have omitted the d=2 argument in r̃R
0 and r̃R

1. In this waywe obtain
an expression for ( )g r=p d, 2, Bguess whichwe then analytically optimise over the input states rB for every
value of [ ]g Î 0, 1 to obtain ( )g =p d, 2guess

max (see appendix B). For completeness, we still optimise over all qubit

states rB, not only the pure ones. This allows us tofind all the qubit input states that achieve ( )g =p d, 2guess
max .

3.2.Higher-dimensional games
For >d 2we cannot calculate ( )g >p d, 2guess

max analytically, since there exists no known analytical expression

for the probability of correctly distinguishingmore than two quantum states. However, we can find
( ∣ )g fñp d, ,guess for an arbitrary state ∣fñusing techniques from semi-definite programming.We obtain

numerical lower bounds for ( )gp d,guess
max , shown infigure 3, by solving a semi-definite programme for

( ∣ )g fñp d, ,guess and numerically searching for localmaxima of ( ∣ )g fñp d, ,guess with respect to the input state

∣fñusing theNelder–Mead algorithm.We repeat the searchmultiple timeswith a randomly generated initial
state in each run, that is drawn uniformly fromunit vectors on d.

4. Results

In section 1we discussed that classical uncertainty arises solely fromLOI.Herewe show that even in the
quantum case, uncertainty can in part be understood as a LOI that Bob has—namely a lack of quantum
information about the registerP. For the case of d=2 andBB84measurements as they are used in quantumkey

Figure 3.The optimal guessing probabilities ( )gp d,guess
max as a function of γ for different d. The solid line corresponds to the analytical

solution ( )g =p d, 2guess
max for a two-dimensional game. The remaining data corresponds to the numerical lower bounds ( )gp d,guess

max, lb

for =d 3, 4, 5. For g = 0 the numerical values coincide with the analytical solution ( )( )g = = +p d0, 1
dguess

max 1

2

1 . The crossing

of the dotted lines corresponding to d=4 and d=5 is discussed in section 5.
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distribution (QKD), this effect is indeed dramatic.Wefind (see theorem 1below) that there is nomore
uncertainty at all in the case whereR is pure andP is uncorrelated,meaning that Bob does not suffer from
any LOI.

First, we consider the typical uncertainty gamewhereR is a classical coin, i.e.,R andP aremaximally
entangled (g = 0). In this case themaximumvalue of the guessing probability (for completeness derived in
appendix C) is given by:

( ) ( )g = = +
⎛
⎝⎜

⎞
⎠⎟p d

d
0,

1

2
1

1
. 17

guess
max

The states rB that achieve the guessing probability of equation (17) are the pure states

∣ ≔ (∣ ∣ ) ( )†f wñ ñ + ñc j F l , 18jl
jl

where ( )= +c d d2 2 is the normalisation constant, Fdenotes a quantumFourier transformdefined in
appendix A,ω is the dth root of unity and j and l are integer indices that lie in the range { }¼ -d0, 1, , 1 so that
the pure states ∣ ñj and ∣ ñl denote the corresponding eigenstates of the standard basis. The states defined in
equation (18) are the states where the dominant classical outcome for themeasurement is j in the standard basis
and l in the Fourier basis.

Nowwe consider themore general case whereRmayhave some coherence. For d=2we have found the
analytical solution for all [ ]g Î 0, 1 . In this case the guessing probability is equal to the probability of
successfully distinguishing the two possible post-measurement states of the basis register, namely rR

0 and rR
1

corresponding to outcomes 0 and 1 respectively (seefigure 2).

Theorem1.Themaximum guessing probability for a two-dimensional game ( =d 2), optimised over all input
states rB is given by:

( ) ( )g
g

= = +
+⎛

⎝
⎜⎜

⎞
⎠
⎟⎟p d, 2

1

2
1

2 2

2
. 19

guess
max

2

In particular, for g = 1one achieves perfect guessing, that is ( )g = = =p d1, 2 1guess
max .

It is also possible to express this guessing probability in terms of the purity of the basis register:

( ) ( [ ] ) ( )g r= = +p d, 2
1

2
1 Tr . 20Rguess

max 2

For all [ ]g Î 0, 1 , this guessing probability can be achieved by one of two orthogonal input states of Bob,
∣ (∣ ∣ )f ñ = ñ + -ñc 001 and ∣ (∣ ∣ )f ñ = ñ + +ñc 110 , which aremapped by theHadamard transformation onto
each other. (For g = 0 this guessing probability can of course also be achieved by ∣f ñ00 and ∣f ñ11 , as then
equation (19) reduces to equation (17). For g = 1 the optimal input states form a continuous one-parameter
family, see appendix B.)

From equation (19)we see that Bob can achieve perfect guessing probability for the case whenR is
uncorrelated from P (and soPholds no information aboutR and there is no LOI about themeasurement process
onBob’s side). This is connected to the fact, that for g = 1and a suitable choice of input state rB, the joint state
rRB becomesmaximally entangled at time t2 just before Alice’smeasurement infigure 2 (see appendixD below
for discussion of this connection). The above results for d=2 are derived in appendix B.

Now it is interesting to askwhat happens to themeasurement uncertainty in the gamewithmore than two
measurement outcomes in higher dimension. It is intuitive that the dramatic effect we see for d=2 should be
less prominent here. After all, Bob is trying to guessmeasurement outcomes that can take on d values, whileR
andP each remain two-dimensional and can hence only contain limited information about the outcomes.We
firstmake this intuition precise in the following theorem.

Theorem2. For d-dimensional games with any >d 2 it is not possible to achieve perfect guessing, i.e.,

( ) [ ] ( )g g> < " Îp d, 2 1, 0, 1 . 21
guess
max

Crucially, however, coherence in registerRalways facilitates guessing.

Theorem3. For d-dimensional games with d being arbitrary, themaximum guessing probability when R has any
non-zero amount of coherence is always strictly greater than the case ofmaximallymixed R. That is,for all g¢ > 0

( ) ( ) ( )g g g= ¢ > = "p d p d d, 0, , 2. 22
guess
max

guess
max

Moreover, we show that for a subclass of the input states that are optimal for g = 0, the guessing probability
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monotonically increases with γ. Specific values of ( )gp d,guess
max are lower bounded numerically. Those results are

depicted infigure 3.

5.Discussion

Wehave shown that quantumpreparation uncertainty is not always inherent to themeasurement process but on
the contrary it depends on the amount of information that one has about this process. In particular, for d=2, if
Bob has all the information about themeasurement process, then he can perfectly predict themeasurement
outcome. In the cryptographic protocols that use BB84 states, rR is amaximallymixed state. Hence, from the
perspective of cryptographic security, this shows that it is important for the purification of rR to remain
inaccessible to the adversary. In particular, themore of the purificationP becomes incorporated intoR, the
larger the guessing probability becomes and so themore the security of our cryptographic protocols becomes
compromised. Passive encoding schemes [10], which generate theQKD signal states by performing a
measurement on a quantum register (analogous to ourR), would especially need to consider this issue.

On the other hand, we found that there is always some unavoidable uncertainty for guessing games in higher
dimensions, >d 2. This result is somewhat intuitive when one considers that our guessing game allows for two
measurements, and hence systemR is only two-dimensional. The intuition behind this unavoidable uncertainty
is that the state rR, inwhich the information about themeasurement outcome becomes encoded, is always a
qubit, while the number of outcomes is d. Hence, even if Bob inputs a state that results in entanglement between
the two systems, this entanglement lives in a two-dimensional subspace of the d-dimensional spaceB.
Therefore, the joint state cannot bemaximally entangled and since the Fourier transformation applied to
elements of the standard basis generates a basis that is unbiased to it, the correlations before themeasurement of
Alice do not alignwith the standard basis inwhich themeasurement is performed. This fact can also be seen by
noting that perfect guessing could only occur if only two of the resulting outcomes had non-zero probability and
if those outcomes produced orthogonal post-measurement states of the registerR. It turns out that all those
conditions cannot bemet simultaneously.

The crossing of the dotted lines corresponding to d=4 and d=5 infigure 3 is an interesting phenomenon.
We have investigated it extensively usingmultiplemethods and numerical solvers onwhichwe now elaborate.
Asmentioned in section 3 the problemof optimisation over both input states andmeasurements is in general
very hard because the optimisation problem that we face is not convex. That is we can have no guarantee that the
solution thatwe find is the globalmaximum. Therefore the numerical results are just the lower bounds on the
pguess

max , as they represent achievable values of pguess
max that have been found.Nevertheless we have usedmultiple

methods to look for these optimal bounds. Apart from themethod described in section 3.2 (where part of the
data was checked by rerunning the programmewithmultiple numerical solvers), we have tried imposing a net
over the statespace and solving the semi-definite programme over themeasurements for each of those states.
Then the procedure was repeatedwith a denser net in the regionwhere the highest guessing probability has been
found. This step of ‘zooming-in’has then been repeatedmultiple times. Finally we have also used the ‘Penlab’
solver, which can also provide achievability bounds for nonlinear problems. Application of those othermethods
however resulted inmuchworse bounds and so they shed no light on the nature of the crossing infigure 3.

Nevertheless, despite the fact that we only find achievable bounds, we believe that the crossing seen in
figure 3 could in principle arise even for the exact solution.Wenote that while asymptotically we expect

( )gp d,guess
max to tend to 0.5 as d tends to infinity, it is possible for ( )gp d,guess

max to be larger for d=5 than for d=4

above some threshold g g= 0. Aswementioned earlier, the optimal guessing probability depends on the
optimal correlations between two-dimensional registerR and d-dimensional registerB. The resulting state is
asymmetric and so it is possible that certain favourable correlations are possible for d=5, while not possible for
d=4. The complexity of the problem can be seen by looking at the Schmidt coefficients of the joint state of
registersR andB at time t2 infigure 2. For d=2 and g = 1 the optimal input states are precisely the ones that
lead to amaximally entangled state between those two registers at time t2. Onemight intuitively guess that also
for >d 2 formingmaximally entangled states within the two-dimensional subspace ofBwill lead to the optimal
guessing probability for g = 1. This turns out not be sufficient: we checked specific states that lead tomaximal
entanglement in dimensions =d 3, 4, 5 and their performance is suboptimal. At the same time, all the optimal
input states found numerically that achieve ( )g =p d1,guess

max,lb for =d 3, 4, 5 lead to unbalanced Schmidt

coefficients.While we have foundmultiple states that achieve ( )g =p d1,guess
max,lb for each of =d 3, 4, 5, all of

them lead to exactly the same Schmidt coefficients of the joint state, whichwe list in table 1. This fact, together
with the irregularity of our numerical curves, reveals the complexity of the geometry of this problem.
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In future work, it would be very natural to consider gameswithmore than twomeasurements. It would be
interesting to investigate whether a higher dimensional registerR could then encodemore information about
themeasurement outcome. Specifically, for the scenario with dmutually unbiasedmeasurements (if they exist)
and d possible outcomes, it is reasonable to askwhether one can again achieve perfect guessing (e.g., due to the
possibility of creatingmaximal entanglement betweenR andB).

Another natural extension of our gamewould be to provide Bobwith access to a quantummemory [2]. In
such a scenario an interesting taskwould be to investigate the effect of the trade-off between Bob’s amount of
accessible information about themeasurement process and the quality of entanglement betweenB andBob’s
quantummemory.

Finally, wewould like to emphasise that while the described guessing game seems to be only an abstract tool
that we use to investigate the connection between quantumpreparation uncertainty and LOI, the game
described infigure 1 could in fact be implemented experimentally, e.g., using aMach–Zehnder interferometer
for single photons. For simplicity consider the case d=2, although the following discussion can be extended to
>d 2 by considering an interferometer withmore than two paths. Suppose that systemR is the photon’s

polarisation, whileB is the photon’s spatial degree of freedom (the path that it takes in the interferometer).
Allowing Bob to have access to thefirst variable beam splitter of the interferometer allows him to prepare an
arbitrary pure qubit state rB inside the interferometer (Bob is allowed to freely choose the reflectance and the
relative phase of the beam splitter). The controlled Fourier transform infigure 2 is implemented bymaking the
second beam splitter of the interferometer a so-called quantumbalanced beam splitter [17]. That is, the photon’s
polarisation controls whether or not the balanced (50/50) beam splitter appears in the photon’s path.Hence,
this beam splitter can be effectively in a superposition of being absent and present, if one chooses the polarisation
to be in a superposition. This would be a so-called quantum control experiment [5]. Let us note that such a
quantumbeam splitter has been implemented experimentally [18, 24, 28]. Thewinning condition of the game
for Bob is correctly guessingwhich one of the two photon detectors clicked, after being able tomeasure the
polarisation state of the photon behind the quantumbeam splitter.
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AppendixA. The uncertainty game: definitions and basic derivations

A.1. Time evolution of the quantum circuit
Following the quantum circuit of the uncertainty game infigure 2 (in themain article), we derive the explicit
formof the densitymatrices that Bob needs to distinguish in order towin the game. There are different classes of
games depending on the parameter d corresponding to the dimension of the Fourier transformor equivalently,
the number of possible outcomes of Alice. Bob prepares a state rB of dimension d and sends it to Alice in register

B. She holds another registerR in a state ( ) (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣)*r g g g= ñá + ñá + ñá + ñá0 0 1 1 0 1 1 0R
1

2
, where g Î

and ∣ ∣ g 1. This γ determines how coherent the register is. Specifically, in the later part of this appendixwe
show that we can restrict γ to be real and [ ]g Î 0, 1 . Hence at the beginning (time t1) the total state of the entire
system is:

Table 1. Schmidt coefficients of the joint state onRB at time t2 for the input states that achieve ( )g =p d1,guess
max,lb .

Schmidt coefficients

d=3 0.8122 0.5834

d=4 0.8314 0.5556

d=5 0.7415 0.6709
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( ) ( ) (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )*r g r r g r g g r= Ä = ñá + ñá + ñá + ñá Ä,
1

2
0 0 1 1 0 1 1 0 . A1RB B R B R R R R B

The state ( )r gR determines themeasurement basis in the followingway: ∣ ñ0 corresponds to themeasurement in
the standard basis and ∣ ñ1 to themeasurement in the Fourier basis (which is represented by applying the Fourier
transformation to Bob’s state and thenmeasuring in the standard basis). Hence, the choice of themeasurement
basis can be represented by the controlled Fourier transform:

∣ ∣ ∣ ∣ ( )= ñá Ä + ñá ÄU F0 0 1 1 . A2R B R B

Weadopt the following convention for the Fourier transform: ∣ ∣wñ = å ñ=
-F j k

d k
d jk1

0
1 with ( )w = pexp

d

2 i

being the dth root of unity. After Alice applies the above unitary, the state at time t2 is:

( ) ( ) ( ( ) ) ( )† †r g r r g r r g r¢ = = Äd U U U U, , , A3RB B RB B R B

(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )† †*r g r g r r= ñá Ä + ñá Ä + ñá + ñá ÄF F F F
1

2
0 0 0 1 1 0 1 1 . A4R B R B B R B B R B B B

ThenAlice performs hermeasurement and the outcome is stored in the output register X. The total state after
themeasurement at time t3 is:

( ) [( ∣ ∣ ) ( )] ∣ ∣ ( )år g r r g r= Ä ñá ¢ Ä ñád x x d x x, , Tr , , . A5RX B
x

B R B RB B X

Hence, we see that the subnormalised post-measurement states of the basis register corresponding toAlice’s
measurement outcome x are:

˜ ( ) ( ) ( ) [( ∣ ∣ ) ]

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )
†

†

*

r g r r r g r r

r g r
g r r

= = Ä ñá ¢

=
á ñ á ñ

á ñ á ñ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

d p d d x x

x x x F x

x F x x F F x

, , , , , Tr

1

2
, A6

R
x

B x B R
x

B B R B RB

B B

B B

where ( ) [ ˜ ( )]r r g r=p d d, Tr , ,x B R
x

B is the probability that Alice observes outcome { }Î -x d0, 1, ..., 1 . Note
that px does not depend on γ, which only appears in the off-diagonal elements of r̃R

x. These subnormalised r̃R
xʼs

are the states towhichBob has access and so his ability to predict Alice’smeasurement outcome ∣ ñx is determined
by howwell he can distinguish the quantum states { }rR

x occurringwith probabilities { }px .

A.2. Simplifying lemmas
In the second part of this appendixwe prove two lemmas, which allowus to restrict the coherence parameter γ to
real and positive numbers and the input state rB to pure states.

Lemma1. In our problem, we can describe all the possible qualitatively different games just with [ ]g Î 0, 1 . That is,
all games corresponding to ∣ ∣ g gÎ , 1are equivalent to some gamewith [ ]g Î 0, 1 .

Proof. Let ∣ ∣g g= qei . Then:

˜ ( )
∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣
( )

†

†r g r
r g r

g r r
=

á ñ á ñ

á ñ á ñ

q

q

-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

x x x F x

x F x x F F x
, ,

1

2

e

e
. A7R

x
B

B B

B B

i

i

Let ( )qV denote the rotationmatrix in the xy plane of the Bloch sphere by angle θ. That is:

( ) ( )q = q
⎜ ⎟⎛
⎝

⎞
⎠V

1 0
0 e

. A8
i

Then it can be easily verified that:

˜ ( ) ( ) ˜ (∣ ∣ ) ( ) ( )†r g r q r g r q=d V d V, , , , , A9R
x

B R
x

B

where ∣ ∣ [ ]g Î 0, 1 . Hence all the output states ˜ ( )r g d,R
x up to a unitary rotation ( )qV are the same as the

corresponding states ˜ (∣ ∣ )r g d,R
x . Clearly, rotating all the output states of registerR by afixed angle θ does not

affect their distinguishability. Hence, it is sufficient to consider real and positive [ ]g Î 0, 1 . ,

The probability of successfully discriminating states ( )r g rd, ,R
x

B , optimised over allmeasurements is [29]:

( ) ( ) [ ( )] [ ˜ ( )] ( )
{ } { }

å åg r r r g r r g r= =
=

-

=

-

p d p d M d M d, , max , Tr , , max Tr , , , A10B
M x

d

x B x R
x

B
M x

d

x R
x

Bguess
0

1

0

1

x x

where { }Mx is a POVM.Here, by pguess we denote the guessing probability optimised over all POVM’s but for a
specific input state rB, while later wewill use pguess

max to denote the guessing probability pguess optimised over all
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inputs states of Bob. Both pguess and pguess
max are calculated for a specific game parameterised by d 2 and for a

specific [ ]g Î 0, 1 . Hence, we have ( ) ( )g g r= rp d p d, max , , Bguess
max

guessB
.

Lemma2.To achieve pguess
max it is sufficient for Bob to consider pure input states.

Proof. Firstly, let us consider the case whennot only does Bob hold no quantummemory, but he also does not
have any classicalmemory. Consider then a scenario inwhich Bob sends Alice amixed state ∣ ∣r f f= å ñáqB i i i i ,
where he is given freedom to choose the probabilities { }qi . Then using equation (12):

˜ ( )
∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣

˜ ( ∣ ) ( )

†

å

å

r g r
f g f f

g f f f

r g f

=
á ñ á ñá ñ

á ñá ñ á ñ

= ñ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d q

x x F x

x x F x F

q d

, ,
1

2

, , , A11

R
x

B
i

i
i i i

i i i

i
i R i

x
i

2

2

,

where ˜ ( ∣ )r g f ñd, ,R
x

i denotes a post-measurement register state ˜ ( )r g rd, ,R
x

B corresponding to Bob inputting a
pure state ∣ ∣r f f= ñáB i i . In this case the guessing probability from equation (A10) becomes:

( ) ˜ ( ∣ ) [ ˜ ( ∣ )]

( ∣ ) ( ∣ ) ( ∣ ) ( )

{ } { }




å å å å

å

g r r g f r g f

g f g f g f

= ñ ñ

= ñ ñ = ñ
=

-

=

-⎡
⎣⎢

⎤
⎦⎥p d M q d q M d

q p d p d p d

, , max Tr , , max Tr , ,

, , max , , , , , A12

B
M x

d

x
i

i R
x

i
i

i
M x

d

x R
x

i

i
i i

i
i m

guess
0

1

0

1

guess guess guess

x x

where ( ∣ ) [ ˜ ( ∣ )]{ }g f r g fñ = å ñ=
-p d M d, , max Tr , ,i M x

d
x R

x
iguess 0

1
x

and by indexmwedenote the largest of all

( ∣ )g f ñp d, , iguess over all iʼs. Hence it is optimal for Bob to prepare a state ∣ ∣ ∣ ∣r f f f f= å ñá = ñáqB i i i i m m (so
that d=qi i m, ), such that ∣ {∣ }f fñ Î ñm i and ( ∣ ) ( ∣ )g f g fñ = ñp d p d, , max , ,m i iguess guess .

Now, if we allowBob to have classicalmemory, he could then prepare amixed state rB which is classically

correlated to thismemory. Then for each of the states rB
i , corresponding to the state of the classicalmemory ∣ ñi M ,

we need to solve a separate optimisation problem given by equation (A10). Hence, if Bob prepares a state:

∣ ∣ ( )år r= Ä ñás i i A13BM
i

i B
i

M

according to the probability distribution { }si , then the guessing probability will be aweighted average of the
individual guessing probabilities corresponding to each of the states rB

i , namely:

( ) ( ) ( ) ( )åg r g r g r=p d s p d p d, , , , , , , A14B
i

i B
i

B
k

guess guess guess

where rB
k is the input state that gives the highest guessing probability out of all the states { }rB

i . Hence, classical

memory does not allow us to achieve guessing probability higher than individual rB
k , for which (aswe have just

seen) the guessing probability is upper bounded by its value corresponding to the optimal pure state ∣f ñm in the
decomposition ∣ ∣r f f= å ñáqB

k
i i i i . ,

Hencewewill restrict our attention to scenarios inwhich Bob prepares a pure state ∣fñB. In this case the post-
measurement states of the basis register are:

˜ ( ∣ )
∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣

( )
†

r g f
f g f f

g f f f
ñ =

á ñ á ñá ñ
á ñá ñ á ñ

⎛
⎝⎜

⎞
⎠⎟d

x x F x

x F x x F
, ,

1

2
. A15R

x
B

2

2

Appendix B.Guessing probability for two-dimensional game (d= 2)

In this appendixwe prove theorem1. That is, we derive the analytical formula for themaximumguessing
probability as a function of [ ]g Î 0, 1 , for a gamewith two-dimensional Fourier transform (Hadamard
transform) in our circuit and two possible outcomes. In this game the state rB that Bob prepares is a qubit. The
two possible outcomes for Alice are: 0 and 1.We firstly restate this theorembelow.

Theorem1.Themaximum guessing probability for a two-dimensional game ( =d 2), optimised over all input
states rB is given by:

( ) ( )g
g

= = +
+⎛

⎝
⎜⎜

⎞
⎠
⎟⎟p d, 2

1

2
1

2 2

2
. B1

guess
max

2

In particular, for g = 1one achieves perfect guessing, that is ( )g = = =p d1, 2 1guess
max .

10

New J. Phys. 19 (2017) 023038 FRozpędek et al



Proof.The guessing probability is determined by howwell Bob can distinguish states r̃R
0 and r̃R

1 defined in
equation (A15) (for convenience wewill omit writing out explicitly the dependence on γ and d). The problemof
distinguishing two states has been solved byHelstrom [16] and the guessing probability is:

( ) ( ) = +p G
1

2
1 , B2guess 1

where ˜ ˜r r r r= - = -G p pR R R R
0 1

0
0

1
1 and · 1denotes the trace-normof thematrix. Firstly we note that for

d=2, †= =F F H . Secondly, since rB is a qubit, it is convenient to use the Bloch sphere representation:

( ) år s= +
⎛
⎝⎜

⎞
⎠⎟c

1

2
, B3B

i
i i

with + +c c c 1x y z
2 2 2 . Althoughwe have already shown in appendix A that the optimal guessing probability

pguess
max will be achieved for a pure input state rB, here we are interested in all the qubit states that achieve this

maximumguessing probability (under the assumption of Bob having no classicalmemory; if Bob had access to
some classicalmemory, then anymixture of such optimal states correlatedwith thismemorywould also be an
optimal state). Hence, in this appendix we again assume rB to be an arbitrary (possiblymixed) qubit state.
Plugging the Bloch sphere representation of rB into equation (12), we canfirst calculate r̃R

0 and r̃R
1 and thenG:

( )
( · )

( · )=

g

g

-

+

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟G

c

c

1

2
. B4

z
c

c
x

1 i

2

1 i

2

y

y

The eigenvalues ofG are:

( ) ( ) ( )
( )l

g
=

+  - + +c c c c c1

4
. B5

x z x z y
2 2 2

Now, let us consider two cases:

(a) · l l 01 2 .
Then ∣ ∣ ∣ ∣ ∣ ∣  l l= + = +G c c 2x z1

a
1 2 (the superscript ‘a’ labels the case · l l 01 2 ).We are interested

in themaximumpossible value of G 1
a for a given γ. Hencewewant tomaximise the expression ∣ ∣+c cx z

subject to the constraint + +c c c 1x y z
2 2 2 . Clearly, this gives us ∣ ∣ +c c 2x z . And so  G 1

a,max 2

2
.

In particular, this bound is tight for cy=0 and = = c cx z
1

2
(those states clearly satisfy the condition

· l l 01 2 ). Hence,  =G 1
a,max 2

2
.

(b) ·l l < 01 2 .
Then:

( ) ( ) ( )
( )l

g
=

+ + - + +
>

c c c c c2 1

4
0, B6

x z x z y
1

2 2 2

( ) ( ) ( )
( )l

g
=

+ - - + +
<

c c c c c2 1

4
0. B7

x z x z y
2

2 2 2

Hence in this case:

( ) ( )
( )  l l

g
= - =

- + +
G

c c c2 1

2
. B8

x z y
1
b

1 2

2 2 2

Nowweneed to optimise this expression subject to the constraint + +c c c 1x y z
2 2 2 . Let us use a

substitution = -a c c

2
x z = +b c c

2
x z . Then the constraint becomes: + +a c b 1y

2 2 2 and the normofG is:

( )
( ) 

g
=

+ +
G

a c2 2 1

2
. B9

y
1
b

2 2 2

Clearly, since the term cy
2 is scaled by the positive factor g2 22 , while a2 is scaled by a factor of exactly 2,

optimising this expression corresponds to setting a2 to itsmaximumpossible value which is 1 (so that
= - = c cx z

1

2
). Then = =c b 0y (one can easily verify that those values satisfy the condition of (b)

·l l < 01 2 , for all [ ]g Î 0, 1 ). This gives:
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( ) 
g

=
+

G
2 2

2
, B101

b,max
2

Clearly   G G1
b,max

1
a,max for all [ ]g Î 0, 1 (the equality relation holds only for g = 0). Hence:

( ) 
g

=
+

G
2 2

2
. B111

max
2

Using G 1
max , for every γwe can now calculate themaximumvalue of the guessing probability:

( ) ( ) ( ) g
g

= = + = +
+⎛

⎝
⎜⎜

⎞
⎠
⎟⎟p d G, 2

1

2
1

1

2
1

2 2

2
. B12

guess
max

1
max

2

We see also that for a fully coherent register with g = 1, we obtain =p 1guess
max .

,

In order tofind the optimal states we need to consider 3 separate cases depending on the value of γ.

• g = 0. In this case  =G 1
max 2

2
. This value occurs for two classes of states. One of them satisfies =a 12 and

= =b c 0y which gives two solutions: = - = c cx z
1

2
. Hencewe obtain two states:

( )( ) = -c c c, , , 0,x y z
1

2

1

2
and ( )( ) = -c c c, , , 0,x y z

1

2

1

2
. The other class can be seen by noticing that

   = =G G1
max 2

2 1
a,max and so it can also be obtained from the case (a) for two states that achieve this

value: ( )( ) =c c c, , , 0,x y z
1

2

1

2
and ( )( ) = - -c c c, , , 0,x y z

1

2

1

2
.

• ( )g Î 0, 1 . Herewe only have the class =a 12 and = =b c 0y , that is the states: ( )( ) = -c c c, , , 0,x y z
1

2

1

2

and ( )( ) = -c c c, , , 0,x y z
1

2

1

2
.

• g = 1. Now
( )

  =
+ +

G
a c

1
b 2 2 1

2

y
2 2

, and so this expression subject to the Bloch sphere normalisation is

maximised by the pure states satisfying + =a c 1y
2 2 and b=0. These are all pure states with = -c cz x and

=  -c c1 2y x
2 .We can use angular parametrisation of those coefficients, inwhich case we canwrite this

entire family of states as ( ) ( ( ) ( ) ( ))q q q=  -c c c, , sin , cos 2 , sinx y z for all [ ]q Î - p p,
4 4

. Geometrically,

these states correspond to all pure states on the Bloch sphere that lie in the plane perpendicular to the
Hadamard rotation axis andHadamard transformation rotates thembyπ rad to their orthogonal
complement.

From equation (B12)we see that the lowest value of pguess
max occurs for g = 0 and it is ( )= +p 1guess

max 1

2

1

2
. As the

basis register state is becomingmore pure by letting γ grow, the pguess
max grows, until =p 1guess

max for g = 1.We can

also rephrase the guessing probability in terms of the purity of the basis register:

[ ] ( )r
g

g
g

g
g g
g g

g
= =

+
+

=
+⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥Tr

1

4
Tr

1
1

1
1

1

4
Tr

1 2

2 1

1

2
. B13R

2
2

2

2

Hence:

( ) ( [ ] ) ( )g r= = +p d, 2
1

2
1 Tr . B14Rguess

max 2

AppendixC.Guessing probability for the d-dimensional game

Wehave already seen that in two dimensions utilising entanglement allows for guessingwith probability equal to
1. In higher dimensions however, we show that this is not possible. This fact is expressed in theorem2 in the
main text.We restate and prove this theorembelow.

Theorem2. For d-dimensional games with any >d 2 it is not possible to achieve perfect guessing, i.e.,

( ) ( )g g> < "p d, 2 1, . C1
guess
max

12
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Proof.Weconstruct a proof by contradiction. Let us assume that there exists >d 2 and [ ]g Î 0, 1 , such that
( )g =p d, 1guess

max . Since the states ˜ ( ∣ )r g fñd, ,R
x are two-dimensional, it is only possible to perfectly distinguish at

most 2 such states (if they are orthogonal). Hence, thatmeans that to achieve ( )g =p d, 1guess
max it is required that

at least -d 2 output states rR
x occurwith probability zero.Hence, r̃ ¹ 0R

x for atmost two values of x. Let us
denote those two values of { }Î ¼ -x d0, 1, , 1 for which it is possible that r̃ ¹ 0R

x by x0 and x1.We assume
that those values are distinct so that ¹x x0 1. Specifically, let us assume that r̃ ¹ 0R

x0 , while r̃R
x1 may ormay not

be equal to zero. Then let us define { }⧹{ } = ¼ -d x x0, 1, , 1 ,0 1 . Thereforewe require that r̃ = 0R
x for all

Îx . Thuswe obtain the following two requirements:

(1) ∣fá ñ =x 0 for all Îx ,

(2) ∣ ∣fá ñ =x F 0 for all Îx .

The requirement (1) implies that the physical input state of Bobmust be of the form:

∣ ∣ ∣ ( )f a añ = ñ + ñx x , C20 0 1 1

with

∣ ∣ ∣ ∣ ( )a a+ = 1. C30
2

1
2

In this framework, the scenario inwhich only r̃ ¹ 0R
x0 would require a = 01 . Now, note that:

∣ ∣ ( )† åwñ = ñ
=

-
-F j

d
k

1
, C4

k

d
jk

0

1

where ( )w = pexp
d

2 i and so:

∣ ∣ ( ) ( )† * *f a w a wá ñ = +- -F x
d

1
. C5xx xx

0 1
0 1

Then (2) implies that:

( )( )* * a a w+ = " Î- x0, . C6x x x
0 1

0 1

Equation (C6) togetherwith equation (C3) require that a0 and a1 are of the form:

( )a = q1

2
e , C70

i 0

( )a = q1

2
e . C81

i 1

The above requirement shows that a1 cannot be zero, which in turnmeans that the scenario inwhich only
r̃ ¹ 0R

x0 is not possible. Plugging the above forms ofαʼs into equation (C6) and using the fact thatω is the dth
root of unity, we obtain the following requirement:

( ) ( ) ( )q q p p pº + + - " Î
⎡
⎣⎢

⎤
⎦⎥

x

d
x x x2 mod 2 , . C90 1 1 0

Note that for d=3, this expression can be easily satisfied since in this case ∣ ∣ = 1, so e.g.

( )q q p p= + + -⎡⎣ ⎤⎦x x2 x

d0 1 1 0 , where  Îx satisfies equation (C9). Hence the case d=3 needs to be

analysed separately. For >d 3 this equation can be satisfied if and only if:

( )-
Î

x x

d
, C101 0

where  denotes the set of integers. However, { }Î -x x d, 0, 10 1 and ¹x x0 1. Therefore this equation cannot
be satisfied.Hence, for >d 3, it is not possible to have ( )g =p d, 1guess . Now, let us consider the case d=3.
Equation (C2) and equations (C7)–(C9) imply that

∣ (∣ ∣ ) ( )( )f wñ = ñ - ñ-x x
1

2
, C11x x x

1 0
1 0

wherewefix the global phase by setting q = 01 . Since x x x, ,0 1must be all different, there are 6 possible states
∣fñcorresponding to the above expression. Let ∣ (∣ ∣ )( )y wñ = ñ - ñ-l kkl

x l k1

2
. Then note that for every value

of x , the state ∣ ∣f yñ = ñkl with = =x k x l,0 1 and the state ∣ ∣f yñ = ñlk with = =x l x k,0 1 up to the global
phase correspond to exactly the same state, since:

∣ (∣ ∣ ) ( ∣ ∣ ) ∣ ( )( ) ( ) ( ) ( )   y w w w w yñ = ñ - ñ = - - ñ + ñ = - ñ- - - -l k l k
1

2

1

2
. C12kl

x l k x l k x k l x l k
lk

Hence, we need only to consider 3 separate cases:

13
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• For  = = =x x x0, 1, 20 1 , that is when r̃ = 0R
0 , we have:

∣ (∣ ∣ ) ( )fñ = ñ - ñ
1

2
2 1 . C13

Then:

∣ (∣ ∣ ) ∣ ( )f fñ = ñ - ñ = ñF i
1

2
2 1 i . C14

Thismeans that if we define amatrix

( ) ( )r g
g

g
=

-⎛
⎝⎜

⎞
⎠⎟

1

2

1 i
i 1

, C15c

then ˜ ˜ ∣ ∣ ∣ ( ) ˜ ∣ ∣ ∣ ( )r r f r g r f r g= = á ñ = á ñ0, 1 , 2R R c R c
0 1 2 2 2 . Hence, ˜ ˜ ( )r r r g= =R R c

1 2 1

2
and sowe see that r̃R

1 and

r̃R
2 correspond to the same state ( )r gc occurringwith probability 0.5. Thismeans that guessing probability in

this case is 0.5 for all [ ]g Î 0, 1 .

• For  = = =x x x1, 2, 00 1 with r̃ = 0R
1 the input state is:

∣ (∣ ∣ ) (∣ ∣ ) ( )f w wñ = ñ - ñ = ñ - ñ-1

2
0 2

1

2
0 2 . C162

Then:

∣ ( )(∣ ∣ ) ( )f w wñ = - ñ - ñF
1

6
1 0 2 . C172

Hence,

˜
( )

( )
( )

*
r

g w

g w
=

-

-

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1

4

1 1

1 1
, C18R

0

1

3

1

3

˜ ( )r = 0, C19R
1

˜
( )

( )
( )

* *
r

g w w

g w w
=

-

-

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1

4

1 1

1 1
. C20R

2

1

3

1

3

One can now show that [ ˜ ˜ ]r r ¹Tr 0R R
0 2 for all [ ]g Î 0, 1 . Hence those states are not orthogonal and perfect

guessing is not possible.

• For  = = =x x x2, 0, 10 1 , with r̃ = 0R
1 the input state is:

∣ (∣ ∣ ) ( )f wñ = ñ - ñ
1

2
1 0 . C212

Then:

∣ (( )∣ ∣ ) ( )f wñ = - ñ + ñF
1

6
1 0 3 i 1 . C222

Hence,

˜
( )

( )
( )

*
r

g w

g w
=

-

-

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1

4

1 1

1 1
, C23R

0

1

3

1

3

˜ ( ) ( )r r g=
1

2
, C24R c

1

˜ ( )r = 0. C25R
2

Again [ ˜ ˜ ]r r ¹Tr 0R R
0 1 for all [ ]g Î 0, 1 . Hence also in this case perfect guessing is not possible.

We have shown that perfect guessing in d=3 case is not possible either. Therefore we conclude that for all
>d 2 and for all [ ] ( )g gÎ <p d0, 1 , , 1guess

max .
,

The case g = 0 is a special case and can be solved analytically for all d 2.

14
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Proposition 1. For g = 0 themaximal guessing probability is:

( ) ( )g = = +
⎛
⎝⎜

⎞
⎠⎟p d

d
0,

1

2
1

1
, C26

guess
max

and under assumption of Bob having no classical memory, it is achieved if and only if Bob’s input state rB belongs to
the following family of pure states:

∣ (∣ ∣ ) ( )†f wñ = ñ + ñc j F l , C27jl
jl

where ( ) { }w = Î ¼ -p j l dexp , , 0, 1, , 1
d

2 i and =
+

c d

d2 2
.

Proof. If onemeasures in the standard basis, the guessing probability for afixed input state rB is:

( ) [∣ ∣ ] ( )r r= ñáp d l l, max Tr . C28B
l

Bguess
standard

If onemeasures in the Fourier basis:

( ) [∣ ∣ ] [ ∣ ∣ ] ( )† †r r r= ñá = ñáp d l l F F F l l F, max Tr max Tr . C29B
l

B
l

Bguess
Fourier

Since eachmeasurement occurswith probability 50% and in the classical game the registerR only tells Bob
whichmeasurement basis was used, the guessing probability optimised over all input states of Bob is:

( ) ( ( ) ( )) [(∣ ∣ ∣ ∣ ) ]

( )

†g r r r= = + = ñá + ñá
r r

p d p d p d j j F l l F0,
1

2
max , ,

1

2
max max Tr

C30

B B
j l

Bguess
max

guess
standard

guess
Fourier

,B B

∣ ∣ ∣ ∣ ( )† = ñá + ñá ¥j j F l l F
1

2
max , C31

j l,

where · ¥ denotes the infinity norm. Thematrix whose infinity normweneed tofind is a rank-2matrix. Let

 = ¥p Mguess
1

2
and ∣ ∣ ∣ ∣a a b b= ñá + ñáM be a rank-2matrix. The largest eigenvalue of such amatrix is

∣ ∣ ∣  l a b= = + á ñ¥M 1max . In our case: ∣ ∣añ = ñj and ∣ ∣†bñ = ñF l . Thismeans that  = +¥M 1
d

1 and

so:

( ) ( )g = = +
⎛
⎝⎜

⎞
⎠⎟p d

d
0,

1

2
1

1
. C32

guess
max

The eigenstate corresponding to this eigenvalue lmax is:

∣ (∣ ∣ ) ( )†f wñ = ñ + ñc j F l . C33jl
jl

Hence only the states of this formwill give us themaximumguessing probability. ,

Wewill now show that for a subclass of the states of this formBobwill be guessing always either j or l, for all
[ ]g Î 0, 1 and all d 2, since those 2 outcomes havemuch higher probabilities of occurrence ( ∣ )f ñp d,j jl and

( ∣ )f ñp d,l jl than all other outcomes (i.e. wewill show that for input state ∣ (∣ ∣ )†f wñ = ñ + ñc j F ljl
jl such that

¹j l the optimal strategy aims at distinguishing only the two states ˜ ( ∣ )r g f ñd, ,R
j

jl and ˜ ( ∣ )r g f ñd, ,R
l

jl ).

Lemma3. For all d 2, for all [ ]g Î 0, 1 and for all states ∣ (∣ ∣ )†f wñ = ñ + ñc j F ljl
jl , such that

{ }Î ¼ -j l d, 0, 1, , 1 and ¹j l, the optimal guessing probability can be achieved by Bob if hismeasurement on
the state of register R is a POVMwith only two occurring outcomes, that is thematrix elements of this POVMare:

¹M 0j , ¹ =M M0, 0l k , for all Îk , where { }⧹{ } = ¼ -d j l0, 1, , 1 , .

Proof.The case d=2 is trivial, since then there are only two output states.
Now considering the general case, let ( ∣ )l g f ñd, , jlmin denote the guessing probability corresponding to this

restricted POVM.The ‘min’ subscript indicates that this guessing probability is a lower bound on
( ∣ )g f ñp d, , jlguess , the guessing probability optimised over all POVMs. That is:

( ∣ ) ( ∣ )l g f g fñ ñd p d, , , ,jl jlmin guess .We then have:

( ∣ ) [ ˜ ( ∣ )] [ ˜ ( ∣ )] ( )l g f r g f r g fñ = ñ + ñd M d M d, , max Tr , , Tr , , , C34jl
M M

j R
j

jl l R
l

jlmin
,j l

Effectively this is again the problemof distinguishing 2 states solved byHelstrom [16], the only difference is that
this time ( ∣ ) ( ∣ ) f fñ + ñp d p d, , 1j jl l jl . Hence

15
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( ∣ ) [ ( ∣ ) ( ∣ ) ( ∣ )] ( ) l g f g f f fñ = ñ + ñ + ñd G d p d p d, ,
1

2
, , , , , C35jl jl j jl l jlmin 1

where ( ∣ ) ˜ ( ∣ ) ˜ ( ∣ )g f r g f r g fñ = ñ - ñG d d d, , , , , ,jl R
j

jl R
l

jl . Nowwewill show that this bound is tight, i.e. wewill

show that the above ( ∣ )l g f ñd, , jlmin is in fact also an upper bound on ( ∣ )g f ñp d, , jlguess . For this purpose let us
consider the dual programme [29] inwhichwe consider allmatrices

( ∣ ) { { }

( ∣ ) ˜ ( ∣ )} ( )

†  



g f

g f r g f

ñ Î = Î =  " Î ¼ -

ñ ñ

´Q d Q Q Q k d

Q d d

, , , where : 0, 1, , 1 ,

, , , , . C36

jl

jl R
k

jl

2 2

Then for each ÎQ we define ( ∣ ) [ ( ∣ )]l g f g fñ = ñd Q d, , Tr , ,Q
jl jlmax . From this it follows that

( ∣ ) ( ∣ )g f l g fñ ñp d d, , , ,jl
Q

jlguess max for all ÎQ [29] and so ( ∣ )l g f ñd, ,Q
jlmax is an upper bound on

( ∣ )g f ñp d, , jlguess . For simplicity, wewill nowomit writing explicitly the dependence on g d, and ∣fñ. Consider a
hermitianmatrix:

( ˜ ˜ ∣ ∣) ( )r r¢ = + +Q G
1

2
. C37R

j
R
l

Then:

[ ] ( ) ( )  l¢ = + + =Q p p GTr
1

2
. C38j l 1 min

Now, if ¢Q satisfies ˜ r¢ "Q k,R
k , then ¢ ÎQ and so [ ] l¢ = ¢QTr Q

max. And since then [ ] l l¢ = = ¢QTr Q
min max,

thismeans that [ ]¢ =Q pTr guess. Hence, wewill nowprove that [ ] g" Îd 3, 0, 1 wehave ¢ ÎQ .

Consider

˜ ( ˜ ˜ ∣ ∣) ( ∣ ∣) ( )r r r¢ - = - + + = - +Q G G G
1

2

1

2
. C39R

j
R
j

R
l

Note that ∣ ∣ G G and so ˜ r¢ -Q 0R
j . Hence ˜ r¢Q R

j . Analogously

˜ ( ˜ ˜ ∣ ∣) ( ∣ ∣) ( )r r r¢ - = - + = +Q G G G
1

2

1

2
. C40R

l
R
j

R
l

Clearly: ∣ ∣  -G G and so ˜ r¢ -Q 0R
l . Hence ˜ r¢Q R

l .

Nowweneed to prove that ˜  r¢ " ÎQ k,R
k and for all [ ] g Î d0, 1 , 3. In order to do that, we need to

explicitly calculate all the output states of the registerR. Those states are:

˜ ( ∣ ) ( )r g f
g w

g w
ñ =

-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

A AB

AB B
, ,

1

2
, C41R

j
jl

j

j

2

2

2

2

˜ ( ∣ ) ( )r g f
g w

g w
ñ =

-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

B AB

AB A
, ,

1

2
, C42R

l
jl

l

l

2

2

2

2

˜ ( ∣ ) ( )r g f
gw

gw
ñ =

- -

+ -

⎛
⎝⎜

⎞
⎠⎟d

B
, ,

2

1

1
, C43R

k
jl

jl jk kl

jk kl jl

2

where ( ) = + = ÎA c B k1 , ,
d

c

d

1 . Then ˜ ( ˜ ˜ ˜ ∣ ∣)r r r r¢ - = + - +Q G2R
k

R
j

R
l

R
k1

2
. Consider the operator:

˜ ˜ ˜
( )

( )
( )r r r

g w w w

g w w w
= + - =

- + -

+ - -

- - - -

+ -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟D

A B B A A B

B A A B A B
2

1

2

2

2
. C44R

j
R
l

R
k

j l jl jk kl

j l jk kl jl

2 2

2 2

2 2

2 2

Wewill now show that for all Îk we have D 0. Note that for 2×2matrices, D 0 if and only if
[ ] DTr 0 and ( ) DDet 0. Firstly, we see that [ ]  = - "D A B dTr 0, 32 2 . Secondly, the determinant of

D is:

( ) ( ) ( )

( ) ( ) ( )

g
p

p p

= - - + +
-

-
- - +

-
- - +

⎡
⎣
⎢⎢

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎤
⎦
⎥⎥

D A B B A B A
j l

d

AB
j jk kl jl

d
AB

l jk kl jl

d

Det
1

4
2 4 2 cos

2

4 cos
2

4 cos
2

. C45

2 2 2 2 2 2 2 2
2 2

2 2

Nowwewant to show that ( ) DDet 0 for all { } [ ] gÎ ¼ - Î Îj l d k d, 0, 1, , 1 , , 0, 1 , 3. From the
above expressionwe see that ( )DDet ismonotonic in [ ]g Î 0, 1 . Clearly for g = 0,

( ) ( ) = -D A BDet 01

4
2 2 2 . For g = 1, we have:

16
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( ) ( )

( ) ( ) ( )

p

p p

= - - -
-

+
- - +

+
- - +

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

D A B A B A B
j l

d

AB
j jk kl jl

d
AB

l jk kl jl

d

Det
1

4
3 4 2 cos

2

4 cos
2

4 cos
2

. C46

4 4 2 2 2 2
2 2

3
2

3
2

Note that ( )= +A B d1 . Thuswe see that:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[( ) ( ) ( ) ( ) ( )]

( ) ( )



p

p p

= + - - + - +
-

+ +
- - +

+ +
- - +

+ - - + - + - + - +

= + - -

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

D
B

d d d
j l

d

d
j jk kl jl

d
d

l jk kl jl

d

B
d d d d d

B
d d d d

Det
4

1 3 4 1 2 1 cos
2

4 1 cos
2

4 1 cos
2

4
1 3 4 1 2 1 4 1 4 1

4
4 16 16 . C47

4
4 2 2

2 2

2 2

4
4 2 2

4
2

Let

( ) ( ) ( )= + - -y d d d d d4 16 16 , C482

then ( ) ( )( )D y dDet B d

4

4

. Clearly ( )  "B d d0, 3 and ( )  "y d d0, 4. Hence ( )  "D dDet 0, 4.
For d=3we use the exact expression from the first part of equation (C47) andwefind that for all the cases
¹j l, " Îk , ( ) DDet 0. Hence ( )  "D dDet 0, 3. Since both ( ) DDet 0 and [ ] DTr 0, D 0

and so ˜ { } r¢ " Î ¼ -Q k d, 0, 1, , 1R
k and for all [ ] g Î d0, 1 , 3. Therefore ¢ ÎQ and

[ ] ( ∣ ) ( ∣ ) ( ∣ ) ( )l g f l g f g f¢ = ñ = ñ = ñQ d d p dTr , , , , , , . C49Q
jl jl jlmax min guess

,

Now, knowing that the strategy of distinguishing only the twomost probable outcomes for the input state
∣ (∣ ∣ )†f wñ = ñ + ñc j F ljl

jl , such that ¹j l is actually an optimal strategy for those states, we can calculate the

guessing probability for these states for all d 2 and for all [ ]g Î 0, 1 :

( ∣ ) ( )

( )
( ) ( ) ( ) ( )

 g f

g
p

ñ = + +

=
+

+ + + + + + -
-

⎛
⎝
⎜⎜

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠
⎟⎟

p d p p G

d d
d d d d d

j l

d

, ,
1

2

1

4
2 2 2 2 1 1 cos

2
. C50

jl j lguess 1

2 2 2
2 2

Clearly for g = 0 the above expression reduces to equation (C32). That is
( ∣ ) ( )g f g= ñ = =p d p d0, , 0,jlguess guess

max , since the states for whichwe have evaluated ( )gp d,guess above are the

optimal states for g = 0. Note that ( )g= =A p d0,2
guess
max and so it is easy to see that for g = 0 the optimal

measurement is:

( ) ( ) ( )= = = " ÎM M M k1 0
0 0

, 0 0
0 1

, 0, . C51j l k

Wecan also see that for the gamewith d=2, the two cases = =j l0, 1and = =j l1, 0 correspond to the two
optimal states for all [ ]g Î 0, 1 . Hence, for these cases the above equation reduces to equation (B12).

Lemma4.There exist states for which ( ∣ ) ( ∣ ) ( )g f g f gñ > ñ > =p d p d p d, , , , 0, ,guess 1 guess 2 guess
max

for g g> > " d0, 21 2 .

Proof.Consider all input states of the form ∣ (∣ ∣ )†f wñ = ñ + ñc j F ljl
jl such that Ï-j l

d

2 2

and " d 2. Then

firstly, ¹j l and so the guessing probability corresponding to those states is given by equation (C50) and
secondly the coefficient in front of g2 is positive. Hence in these cases ( ∣ )g f ñp d, , jlguess ismonotonically

increasing in [ ] g Î " d0, 1 , 2. Hence, " d 2, for all input states ∣ (∣ ∣ )†f wñ = ñ + ñc j F ljl
jl such that

Ï-j l

d

2 2

wehave ( ∣ ) ( ∣ ) ( )g f g f gñ > ñ > =p d p d p d, , , , 0, ,jl jlguess 1 guess 2 guess
max for g g> > 01 2 .

,

Theorem 3 follows directly from the above lemmaby noting that ( ) ( ∣ )g g fñp d p d, , ,guess
max

guess , for all

[ ] g Î d0, 1 , 2 and for all states ∣fñ.
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One can also see that for the input states ∣ (∣ ∣ )†f wñ = ñ + ñc j F ljl
jl with ¹j l butwith Î-j l

d

2 2

,

equation (C50) reduces to ( )( ∣ ) ( )g f gñ = + = =p d p d, , 1 0,jl dguess
1

2

1
guess
max . That is for those states

( ∣ )g f ñp d, , jlguess stays constant in γ for all d.

AppendixD. Coherence and quantum correlations

To give a deeper insight into the relation between the guessing probability and the coherence γ, we also look at
the correlations between the registersB,R andP (the initial purification ofR), at times t1, t2 and t3 infigure 2 (in
themain article). Specifically, we focus on the two-dimensional gamewith optimal input states.We then
quantify the arising correlations usingmin-entropy and the results are depicted in figureC1. It needs to be noted
that independently of the dimension of our game, Bob’s requirements for perfect guessing are perfect classical
correlations betweenR andX, the classical register denoting themeasurement outcome after Alice has
performed hermeasurement on the systemB at time t3 infigure 2.However, classical correlations are basis
dependent and effectively themeasurement of Alice involves twomutually unbiased bases. Hence it is
impossible to have perfect guessingwith just classically correlating the two systems before themeasurement.
From the perspective of the quantum circuit in figure 2, those perfect classical correlations that arise after the
conditional Fourier transformwill never be perfectly alignedwith themeasurement basis of Alice (standard
basis). As a result, even if the system is classically perfectly correlated before themeasurement, the correlations
are no longermaximal after themeasurement onB. For two-dimensional game, this can be seen infigureC1
where for ( ∣ )g = =H B R0, 0min , but ( ∣ ) >H X R 0min . The advantage for Bob coming from the quantum
coherence in registerR and the resulting quantum correlations is that formaximal entanglement (which is
possible if d= 2), independently of the basis inwhich the systemB has beenmeasured, the outcomes of that
measurement aremaximally correlated with the state of the registerR. Hence, if the two systems become
maximally entangled ( ( ∣ ) = -H B R 1min for g = 1), then the post-measurement state becomes classically
maximally correlated ( ( ∣ ) =H X R 0min ) enabling perfect guessing.

FigureC1.Conditionalmin-entropies as a function of γ for the two-dimensional game (d = 2)with Bob’s input state
∣ (∣ ∣ )f ñ = ñ + -ñc 001 or ∣ (∣ ∣ )f ñ = ñ + +ñc 110 . The blue solid line corresponds to the ( ∣ )H B Rmin at time t2 infigure 2. The red
dashed line shows ( ∣ )H X Rmin at time t3 after Alice’smeasurement, where the state is averaged over all the outcomes, as Bob does not
have access to themeasurement result. The yellow dotted line corresponds to ( ∣ )H P Rmin at time t1 and hence shows the initial
quantum correlations betweenR and its purificationP. The correlations between those systems at time t2 are illustrated by the purple
dash-dotted flat line ( ∣ ) =H P R 0min . By comparing the blue solid and red dashed lines, one can see that for g = 1 the increase of the
conditional entropy between ( ∣ )H B Rmin and ( ∣ )H X Rmin due to themeasurement onB is the greatest possible, that is, it is equal to 1.
The reason is that themeasurement is themost destructive in this case, as it destroys all the quantum correlations of amaximally
entangled state. On the other end of the spectrum, if g = 0, there are no quantum correlations betweenB andR present and so the
measurement has a relatively small influence on the system. It only affects the classical correlations, which are not alignedwith the
standard basis inwhich themeasurement performed byAlice takes place (the finalmeasurement in the circuit in figure 2). Hence, in
this case the increase of conditional entropy is small. Comparing the yellow dotted and blue solid lines we see that decreasing the
amount of entanglement between P andR results in the increase in the amount of entanglement betweenB andR that can be generated
using the controlled Fourier transform. Finally, from theflat purple dash-dotted linewe see that independently of the coherence ofR
and its initial correlations withP, the correlations between those two systems at time t2 can be only classical. All the above entropies are
derived in appendix E.
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Appendix E. Conditionalmin-entropies for the two-dimensional game

The controlled Fourier transform in the circuit infigure 2 (in themain article) results in (quantum) correlations
between the two systemsB andR. These correlations are exploited by Bob in order to guess themeasurement
outcome on the state rB. However, thismeasurement has a destructive effect on these correlations.Herewe
quantify this destructive effect of themeasurement usingmin-entropy. The conditionalmin-entropywill be
calculated using the definition presented in [20]. Firstly let us define a correlationmeasure:

( ∣ ) (( )( ) ∣ ∣ ) ( )


r= Ä YñáYq B R d Fmax , , E1R B RB RBcorr
2

where F isfidelity defined using the trace norm as ( ) ∣∣ ∣∣r s r s=F , 1 (when one of the states is pure, that is
when ∣ ∣s = YñáY , the fidelity reduces to ( ) ∣ ∣r s r= áY YñF , ), d is the dimension of subsystemB,  is a
local operation described by a trace-preserving completely positivemap and ∣Yñ is amaximally entangled state
(note that ( ∣ )q B Rcorr is independent of whichmaximally entangled statewe use, since all such states are the same
up to a unitary rotation on one of the qudits; this rotation can always be compensated on rRB by the
corresponding rotation on systemR as part of the local operation  ). Then one can calculate the conditional
min-entropy of a quantum–quantum (qq) state as ( ∣ ) ( ( ∣ ))= -H B R q B Rlogmin corr . Note that for classical–
quantum (cq) states, ( ∣ )q X Rcorr becomes the guessing probability ( ∣ )p X Rguess (here X denotes the classical
subsystem) [20].

We are interested in the relation between themin-entropy ( ∣ )H B Rmin of a qq-state (themin-entropy of the
input state rB before Alice’smeasurement, given access toR) and themin-entropy ( ∣ )H X Rmin of the cq-state
after themeasurement has been performed (themin-entropy of the classical outcomeX after Alice’s
measurement, given access to rR). For that purpose wewill investigate the tightness of the inequality derived in
[4]:

( ∣ ) ( ∣ ) ( ) ( ) +H X R H B R dlog , E2min min

where d is the dimension of the outcome space. This inequality tells us that for two-dimensional states, the
increase of the conditionalmin-entropy due to themeasurement cannot exceed 1.

For d=2wewill now calculate both of those entropies explicitly startingwith ( ∣ )H B Rmin . In our calculation
let us pick one of the two states which give us themaximumguessing probability for all values of γ, namely ∣f ñ10

which in the Bloch sphere representation can be expressed as ( )( ) = -c c c, , , 0,x y z
1

2

1

2
[one can analogously

show that the other state ∣f ñ01 or equivalently ( )( ) = -c c c, , , 0,x y z
1

2

1

2
will give exactly the same

( ∣ )H B Rmin ]. For this input state, the overall state ( ∣ )r g f¢ = ñd, 2,RB before themeasurement at time t2 in
figure 2 is:

( ∣ ) ∣ ∣ ( ) ∣ ∣ ( )

∣ ∣ ( ) ∣ ∣ ( ) ( )





r g f s s g s s

s s s s

¢ = ñ = ñá Ä + - + ñá Ä + -

+ ñá Ä + - + ñá Ä + -

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

d H H

H H

, 2,
1

4
0 0

1

2
0 1

1

2

1 0
1

2
1 1

1

2
. E3

RB R x z R B x z B

R B B x z R z x

Wecan nowdiagonalise this state so thatwe obtain:

( ∣ ) ∣ ∣ ∣ ∣ ( )r g f
g

y y
g

y y¢ = ñ =
+

ñá +
-

ñád, 2,
1

2

1

2
, E4RB 1 1 2 2

where the eigenstates written in their Schmidt bases are:

∣ (∣ ∣ ∣ ∣ ) ( )y ñ = ¢ñ ñ + ¢ñ ñ
1

2
0 1 1 0 , E5R B R B1

∣ (∣ ∣ ∣ ∣ ) ( )y ñ = ñ ñ + ñ ñ
1

2
0 1 1 0 . E6R B R B2

The Schmidt bases: {∣ ∣ }¢ñ ¢ñ0 , 1 and {∣ ∣ }ñ ñ0 , 1 are given by:

∣ ∣ ∣ ( )¢ñ =
-

ñ -
+

ñ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟0

1

2

1

2 2
0

1

2 2
1 , E7

∣ ∣ ∣ ( )¢ñ =
+

ñ +
-

ñ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟1

1

2

1

2 2
0

1

2 2
1 , E8
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∣ ∣ ∣ ( )ñ =
-

ñ +
+

ñ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟0

1

2

1

2 2
0

1

2 2
1 , E9

∣ ∣ ∣ ( )ñ =
+

ñ -
-

ñ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟1

1

2

1

2 2
0

1

2 2
1 . E10

The states ∣y ñ1 and ∣y ñ2 aremutually orthogonalmaximally entangled states. To calculate ( ∣ )H B Rmin weuse the
formulation of themin-entropy in terms of the semi-definite programmes, as expressed in [20]. The primal, as
stated before, is ( ∣ ) ( ( ∣ ))= -H B R q B Rlogmin corr where ( ∣ )q B Rcorr is given in equation (E1). The dual problem is:

( ∣ ) ( ) ( )

 

s= -
s

s rÄ

H B R log min Tr . E11Rmin
0R

R B RB

For the primal programme, let us consider a local transformation  acting on subsystemRwhich performs a
rotation such that the state will nowbe diagonal in the basis that includes ∣YñRB, withmaximal probability in this
mixture corresponding to the state ∣YñRB. This feasible solution gives:

(( )( ) ∣ ∣ ) ( )


r
g

Ä ¢ YñáY
+

Fmax ,
1

2
. E12B RB RB

Hence:

( ∣ ) ( ) g+q B R 1 , E13corr

and so:

( ∣ ) ( ∣ ) ( ) ( ) g= - - +H B R q B Rlog log 1 . E14min corr

Similarly, for the dual programme, let us consider amatrix ( ) s = g+ 0R R
1

2
. Then ( ) s Ä = g+

´R B
1

2 4 4.

Clearly  s rÄ ¢R B RB, so that we obtain:

( ∣ ) [ ] ( ) ( ) s g- = - +H B R logTr log 1 . E15Rmin

Combining the results from the primal and dual programmes allows us to conclude that
( ∣ ) ( )g= - +H B R log 1min for all [ ]g Î 0, 1 .
Themin-entropy after themeasurement is related to the guessing probability as
( ∣ ) ( ∣ )= -H X R p X Rlogmin guess and so it is:

( ∣ ) ( )
g g

= -
+

+ = -
+

+
⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H X R log

1

2

2 2

2
1 1 log

2 2

2
1 . E16min

2 2

Hence:

( ∣ ) ( ∣ )
( )

( )
g
g

- = -
+ +

+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H X R H B R 1 log

2 2 2

2 1
. E17min min

2

We then see that ( ∣ ) ( ∣ )-H X R H B Rmin min monotonically increases with [ ]g Î 0, 1 until it reaches the value of
one for g = 1. Hence the inequality (E2) is tight for g = 1which corresponds to the greatest possible increase of
the conditionalmin-entropy during themeasurement performed on a qubit (seefigureC1).

We also compute themin-entropy ( ∣ )H P Rmin to get some insight into the correlations between basis register
R and its purificationP as a function of γ. For that purpose, let us redefine thewaywe label the states of registers
R andPwith respect to the labelling and notation used in equations (5) to (9). Specifically, let ∣ ∣a bñ ñ, be now the
two states of the entire register P (joint states of all the environmental subsystems Ei that are inP) corresponding
to the states ∣ ∣ñ ñ0 , 1 of the registerR respectively. The real parameter [ ]g Î 0, 1 , that quantifies the amount of
information thatPholds aboutR, satisfies now:

∣ ( )a b gá ñ = , E18

so that the joint state of registersR andP can bewritten as:

∣ ( ) (∣ ∣ ∣ ∣ ) ( )x g a bñ = ñ ñ + ñ ñ
1

2
0 1 . E19RP R P R P

Note that the state ∣ ( )x g ñRP defined in equation (E19) is pure. Then
( ∣ ) ( [ ]) ( [ ])r r= - = -H P R log Tr log TrR Pmin

2 2 . Note that [ ] [ ]r r=Tr TrR P is the sumof the Schmidt
coefficients of the state ∣ ( )x g ñRP . The eigenvalues of ( )r gR defined in equation (6) (with real and positive γ) are
l = g+

1
1

2
and l = g-

2
1

2
. Hence:
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( ∣ ) ( ) ( )g g
g= -

+
+

-
= - + -

⎛
⎝⎜

⎞
⎠⎟H P R log

1

2

1

2
log 1 1 . E20min

2
2

Similarly we calculate ( ∣ )H P Rmin after the conditional Fourier transform infigure 2 has been applied, to
quantify the effect of this operation on the correlations betweenR andP. Firstly we need to calculate rRP at time
t2. That is, again following the circuit infigure 2 but now including the purificationP, the initial state at time t1 is
∣ ( ∣ ) ∣ ( ) ∣g f x g fF ñ ñ = ñ Ä ñd, , RPB RP B. Then the state at time t2 is ∣ ( ∣ ) ∣ ( ∣ )g f g fF¢ ñ ñ = F ñ ñd U d, , , ,RPB RPB,
whereU is given by:

∣ ∣ ∣ ∣ ( )  = ñá Ä Ä + ñá Ä ÄU F0 0 1 1 . E21R P B R P B

Hence:

∣ ( ∣ ) (∣ ∣ ∣ ∣ ∣ ∣ ) ( )g f a f b fF¢ ñ ñ = ñ ñ ñ + ñ ñ ñd F, ,
1

2
0 1 . E22RPB R P B R P B B

Wecannow trace outB.

( ∣ ) (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )

†r g f a a f f a b

f f b a b b

¢ ñ = ñá Ä ñá + á ñ ñá Ä ñá

+ á ñ ñá Ä ñá + ñá Ä ñá

d F

F

, ,
1

2
0 0 0 1

1 0 1 1 . E23

RP R P R P

R P R P

Now let us consider the two-dimensional game againwith ∣fñB being one of the two states that achieve
( )g =p d, 2guess

max for all [ ]g Î 0, 1 (these are the states ∣ ∣f fñ = ñ10 and ∣ ∣f fñ = ñ01 ). Then ∣ ∣f fá ñ =F 0, so the

state onR andP at t2 is:

( ∣ ) (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )r g f a a b b= ñ = ñá Ä ñá + ñá Ä ñád, 2,
1

2
0 0 1 1 . E24RP R P R P

To calculate ( ∣ )H P Rmin we again use the formulation ofmin-entropy in terms of the semi-definite programmes

[20]. For the dual programme in equation (E11), note that rRP has eigenvalues{ }, , 0, 01

2

1

2
. Hence s =R 2

R

clearly satisfies the constraints, as then  s Ä = ´
R P 2

4 4 and so s 0R and  s rÄR P RP . The corresponding
solution is ( ∣ ) H P R 0min . Similarly, in equation (E1), let us consider  to be a quantum channel acting onR
withKrauss operators { }Mi , where ∣ ∣a= ñáM 00 and ∣ ∣b= ñáM 10 . Then:

( )( ) (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )r r a a a a b b b b¢ = Ä = ñá Ä ñá + ñá Ä ñá
1

2
. E25RP P RP R P R P

Since ∣a b gá ñ = , we have ∣a b gá ñ = -f^ e 1i 2 for some phasef, where ∣a aá ñ =^ 0. Now, let ∣YñRP be a

maximally entangled state of the form ∣ (∣ ∣ ∣ ∣ )a a a aYñ = ñ ñ + ñ ñf ^ ^eRP R P R P
1

2
2i . Therefore:

( ∣ ) ( ∣ ∣ )

( ∣ ∣ ∣ ∣ )(∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ )(∣ ∣ ∣ ∣ )

( ∣ ∣ ∣ ∣ ∣ ∣ ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) )

( ( ) ( ))

( )

r

a a a a a a a a

b b b b a a a a

a b a b a b b a b a a b

g g g g

= ¢ YñáY

= á á + á á ñá Ä ñá

+ ñá Ä ñá ñ ñ + ñ ñ

= + á ñ + á ñ + á ñ á ñ + á ñ á ñ

= + + - + -

=

f

f

f f

- ^ ^

^ ^

^ ^ - ^

q P R F2 ,

1

2
e

e

1

2
1 e e

1

2
1 1 2 1

1. E26

RP RP

R P R P R P

R P R P R P

corr
2

2i

2i

4 4 2i 2 2 2i 2 2

4 2 2 2 2

Hence the corresponding solution is ( ∣ ) H P R 0min . Therefore combining the results from the primal and dual
programmeswe conclude that ( ∣ ) =H P R 0min for all [ ]g Î 0, 1 .
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