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ABSTRACT

The design of an electrostatic electron optical system with five electrodes and two objective functions is optimized using multiobjective
genetic algorithms (MOGAs) optimization. The two objective functions considered are minimum probe size of the primary electron beam
in a fixed image plane and maximum secondary electron detection efficiency at an in-lens detector plane. The time-consuming step is the
calculation of the system potential. There are two methods to do this. The first is using COMSOL (finite element method) and the second is
using the second-order electrode method (SOEM). The former makes the optimization process very slow but accurate, and the latter makes
it fast but less accurate. A fully automated optimization strategy is presented, where a SOEM-based MOGA provides input systems for a
COMSOL-based MOGA. This boosts the optimization process and reduces the optimization times by at least ∼10 times, from several days
to a few hours. A typical optimized system has a probe size of 11.9 nm and a secondary electron detection efficiency of 80%. This new
method can be implemented in electrostatic lens design with one or more objective functions and multiple free variables as a very efficient,
fully automated optimization technique.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/6.0001274

I. INTRODUCTION

Designing electrostatic electron optical systems manually can
become quite challenging when the number of electrodes increases.
A large number of parameters are involved, such as the electrode
thicknesses, the spacings between the electrodes, the aperture sizes
of the electrodes, and the electrode voltages. These can all be varied
to optimize the performance of the optical system, while simultane-
ously taking typical constraints into account, such as the maximum
allowable field between electrodes to prevent discharges. It was
demonstrated1 that the design of such systems with a single objec-
tive function, i.e., a single requirement that needs to be fulfilled for

optimized performance, can be automated using optimization tech-
niques based on genetic algorithms.2 A six-electrode electrostatic
lens system was optimized to focus a primary electron (PE) beam
to the smallest possible spot in a fixed image plane. The objective
function in this case was the spot size, consisting of contributions
from the spherical aberration and the chromatic aberration of the
lens. To determine the lens properties and the objective function
requires calculation of the lens field. This can be done most accu-
rately using a finite element method, such as that offered by the
commercial simulation package COMSOL. However, calculating
the objective function using COMSOL is relatively slow (∼1 min
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for each system evaluation). This makes the optimization extremely
time consuming. A faster but less accurate method is to calculate
the axial potential of the lens using the second-order electrode
method (SOEM)3–6 (∼1 s for each system evaluation). In evolution-
ary algorithms (EA) such as genetic algorithm (GA), the objective
function usually needs to be called numerous times in the optimi-
zation process, as many as hundreds or thousands of times. Using
COMSOL then makes the optimization extremely time consuming.

A promising technique to reduce the computation time in
such problems is the use of surrogate models,7 also known as surro-
gates. These are computationally inexpensive approximation
models, employed to assist in the evaluation of computationally
expensive functions to reduce the computational time of the
problem. Studies on surrogate-assisted evolutionary algorithms
such as GA began a decade ago. In the subsequent years, this
method has been implemented in many different applications to
optimize single and multiobjective optimization problems and
found to be very efficient.8–10 The surrogates (called the “low fidel-
ity model”) can be implemented through different strategies com-
bined with the accurate function calculation (known as the “high
fidelity model”) to assist the optimization process.11

In the previous study,1 a surrogate-assisted GA was used by
first running a GA optimization using field calculation by SOEM
(low fidelity), resulting in a number of approximately good systems
that were then inserted into a subsequent GA optimization using
field calculation by COMSOL (high fidelity). With this approach,
an optimized design was obtained in a reasonable time.

In this work, a similar optical system is considered but now with
two objective functions. Challenging and labor-intensive examples of
such electron optical designs can be found here,12,13 but the example
to be used in this work is a five-electrode lens that focuses a PE beam
in a fixed sample plane and simultaneously projects the secondary
electrons (SEs) emitted from the sample back through the lens onto a
detector. This situation is typically encountered in electrostatic scan-
ning electron microscopes with in-lens detection. To optimize this
system requires a multiobjective optimization.

A recent work14 has been published on the design of an ion
optical device with many possible free parameters, involving multi-
objective functions (up to two). There, an adjoint variable method
is implemented. In the optimization based on the adjoint method,
the computational time would stay nearly constant with the incre-
ment of the free parameters, in contrast to the optimization using
the evolutionary algorithms where it would increase dramatically.
This gives an advantage over the evolutionary optimization techni-
que for electron/ion design problems, where many free parameters
are involved. However, the optimization based on the adjoint
method is suitable for a few objective functions, while evolutionary
optimization techniques such as GA are capable of optimizing mul-
tiple objective functions. Another difference is that the adjoint-
based optimization is a local optimization technique (which can be
used for global optimization problems by sampling different initial
points), whereas the evolutionary algorithms are considered as
global optimization techniques due to their metaheuristic charac-
teristics that can automatically search more spaces through the
objective function landscape and prohibit trapping in local optima.

In the design of electrostatic lens systems, such as in our case-
study, the objective function landscape (even in the case of a single

objective function) appears to have many local minima.15 In addi-
tion, multiple objective functions are usually aimed to be opti-
mized, while the number of free parameters is not huge (in the
order of tens). In such circumstances, EA/GA appears to be a
better fit to the problem. Hence, a multiobjective genetic algorithm
(MOGA)16 is proposed to be used here. A surrogate model, similar
to that in the previous work,1 is then applied in the problem to
assist MOGA.

It is by no means obvious that the same two-step optimization
strategy, combining SOEM and COMSOL, as was successfully used
in the single objective function case, can be applied here too. The
different energy and angular distributions of the PE and SE may
cause the latter to follow trajectories considerably further away
from the optical axis than the former. This means that the potential
as approximated by the use of SOEM may not be sufficiently accu-
rate to trace the SE toward the in-lens detector. Although a more
accurate potential can be obtained using COMSOL, this will make
the optimization really slow (one to two orders of magnitude
slower, compared to optimization using SOEM), especially consid-
ering that a MOGA optimization scheme with two nonlinear objec-
tive functions needs thousands of runs.15

The objective of this work is to investigate whether the combi-
nation of an initial optimization using the less accurate SOEM and
a subsequent optimization using COMSOL can also optimize
systems with two objective functions in a reasonable time.

II. LENS SYSTEM GEOMETRY AND OPTIMIZATION
PARAMETERS

A schematic drawing of the electrostatic electron probe-
forming objective lens used in this study is presented in Fig. 1. The
lens, consisting of five planar electrodes, in combination with the
sample positioned in a fixed image plane, is used to focus the PE
beam, coming from the left, onto the sample plane. This geometry
resembles an electrostatic scanning electron microscope design pre-
sented elsewhere,17–19 and some of the dimensions were taken from
there.

The SEs emitted from the sample by exposure to the PE beam
are accelerated into the lens and directed toward the detector. The
detector is a disk-shaped electrode (radius of 2.5 mm) with a
central hole (radius of 0.5 mm) around the optical axis. The origin
of the coordinate along the optical axis is taken at the surface of
the first electrode, i.e., the surface closest to and facing the detector.
The detector plane is positioned at −23 mm and the sample plane
is at +17 mm.

During the optimization process, the parameters that define
the geometry of the lens, such as the thickness of the electrodes
(Ti), the aperture radius of the electrodes (Ri), and the gap between
electrodes (Gi) are allowed to vary within certain boundaries. The
allowed intervals are 1 mm < Ti (i = 1,…, 5) < 3 mm, 0.1 mm < Ri
(i = 1,…, 5) < 2 mm, and 1 mm <Gi (i = 1,…, 4) < 3 mm. The
voltage of the first electrode V1 is allowed to vary from 6 to 8 kV,
whereas the other voltages Vi (i = 2,…, 5) can range from 700 to
10 kV. There are 19 free variables in total. The detector is kept at
the same voltage as the first electrode V1. The voltage at the image
plane is fixed to 600 V. Two constraints are set: a fixed image plane
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position (X-crossover = 17 mm) and a voltage breakdown condition
(electric field < 15 kV/mm).

III. OBJECTIVE FUNCTIONS

The first objective function is the probe size, and its calcula-
tion is described in detail in Ref. 1. In brief, the probe size contains
contributions from two axial aberrations only (spherical and chro-
matic aberration) and is given by20

D2
s ¼ (0:18Cs α

3 )
2 þ 0:6Cc α

ΔU
U

� �2

, (1)

where Cs and Cc are the spherical and chromatic aberration coeffi-
cients in the image plane, respectively; α is the half opening angle
at the probe (here taken to be 10 mrad); U is the landing energy at
the sample; and ΔU is the energy spread in the PE beam (here
taken as 1 eV). In Eq. (1), the contributions from the geometric
source image and diffraction are neglected. This is because, for very
small probe currents, the contribution from the source image is
negligible compared to those from the axial aberrations and the
contribution from diffraction does not change during optimization,
since the landing energy and the half opening angle of the PE
beam at the probe are fixed. The spherical and chromatic aberra-
tion coefficients can be calculated from aberration integrals, which
contain the axial potential, its derivatives, and a principle ray ra(z),
starting in the object on the optical axis with a unit angle (45°).21

Furthermore, the magnification has to be taken into account, which
is obtained by tracing a second principle ray rb(z) from the object
plane, at unit height and zero angle, to the image plane. The posi-
tion of the image plane is found where ra(z) crosses the optical
axis.

The second objective function is the detector collection effi-
ciency of the SEs emitted from the sample. This requires tracing SE
from the sample plane at z = +17 mm to the detector plane at
z =−23 mm. The starting angles of the SE emerging from the
sample are chosen from a uniform distribution of polar angles θ
(the emission angle with respect to the sample surface normal)
between 0.01 and 1.5 rad. The azimuthal angle is kept constant

because of the rotational symmetry of the lens. However, in reality,
the angular distribution of the SE yield is proportional to cos θ22,23

and the SEs are emitted within a solid angle dΩ = 2π sin θ dθ.
Therefore, the detector signal is weighed by a factor of
sin θ cos θ∼ sin 2θ. For simplicity, the energy of the emitted SE is
taken from a uniform distribution between 1 and 10 eV.

IV. RAY-TRACING: SOEM VERSUS COMSOL

The ray tracing and the determination of the lens properties
require calculation of the lens field. The SOEM approach1,3 makes
use of the fact that the solution to the Laplace equation can be
expressed in terms of the axial potential and its derivatives with
respect to z. By ignoring terms higher than second order and using
a cubic spline approximation to the axial potential, the latter can be
obtained by solving a set of linear equations. The results are accu-
rate within the paraxial approximation and prone to deviations
further from the optical axis.1,6 COMSOL is an accurate method to
calculate the potential in the space of the lens system. However, as
this method meshes the entire lens space to calculate the potential
using the finite element method, it is associated with long compu-
tation times.1 Both approaches will be used to calculate the objec-
tive functions of the example system.

The ray tracing is done using a MATLAB code. For the PE,
which follows small angle trajectories, the equation of motion in
the paraxial approximation is used, as in Ref. 1. However, for the
SE, which follows larger angle trajectories, a more accurate real ray
tracing is performed. The equations of motion are as follows:24

Er q
m

t2

2
þ v0rtþ r0 ¼ r, (2)

Ez q
m

t2

2
þ v0ztþ z0 ¼ z: (3)

Here, Er and Ez are the radial and axial components of the
field, respectively. The equations are solved numerically by taking
very small time-steps of Δt, starting from (r0, z0), with initial veloc-
ity of v0r and v0z (calculated based on the initial energy of the SE).

FIG. 1. Cross-sectional schematic of a rotationally symmetrical five-electrode lens system: The primary and secondary electrons pass through the same lens. Ti, Ri, and
Vi correspond to the thickness, radius, and voltage at each electrode i; Gi indicates the gap between two sequential electrodes. There are 19 free variables in total.
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In this section, the effect is studied, on both objective func-
tions, of calculating the potential by SOEM, respectively, by
COMSOL. Its effect on the probe size objective function can be
judged from the two principle rays ra(z) [i.e., the ray starting in the

object on the optical axis with unit angle (45°)] and rb(z) (i.e., the
ray starting from the object plane at unit height and zero angle).
Figure 2 shows, for a typical system within the range mentioned in
Sec. II, both rays traced through the potential as calculated by

FIG. 2. Ray-radius along the optical axis z resulting from the potential calculation by SOEM (pink dashed line) and COMSOL (blue solid line) for (a) the principle ray ra(z),
i.e., the ray starting in the object on the optical axis with unit angle (45°), and (b) the principle ray rb(z), i.e., the ray starting from the object plane at unit height and zero
angle.

FIG. 3. (a) Trajectories of SE, emitted at various angles from the sample at z = 17 mm to the detector at z = −23 mm, obtained using potential calculation by SOEM
(dashed lines) and COMSOL (solid lines). Note: From top to bottom, alpha is arranged starting from 0.01 rad to 0.5 rad. (b) The same trajectories as in (a) on a larger
vertical scale, including also the lens geometry. Note: The voltages distribution on the elctrodes, from right to left, is as follows: 6000 V, 1094 V, 4370 V, 4700 V, 6600 V.
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SOEM, respectively, COMSOL. It is seen that the principle rays cal-
culated by SOEM has a slight deviation but reasonably good
overlap, with respect to the one calculated by COMSOL.

It is to be expected that the method of calculating the potential
has a greater effect on the second objective function. For SE, start-
ing at the sample plane (z = 17 mm) with angles ranging from 0.01
to 0.5 rad, and with an energy of 1 eV, the trajectories are calculated
through fields calculated by SOEM and COMSOL to the detector
at z =−23 mm. The results are shown in Fig. 3, where in Fig. 3(a)
the SOEM-calculated trajectories are shown as dashed lines and the
COMSOL-calculated trajectories as solid lines. Figure 3(b) shows
the same rays on a larger vertical scale including the lens geometry.
Although the SOEM rays clearly deviate from the COMSOL rays,

they are not dramatically far off. Considering that the required
computation time for SOEM-rays is around 1 s and for COMSOL
rays around 60–70 s, it may be worthwhile in the optimization of
lens systems to initially use SOEM for the potential calculation,
thereby creating some approximately good systems, and feed those
to a more accurate COMSOL-based multiobjective function genetic
algorithm (MOGA) optimization. This is the subject of Sec. V.

V. OPTIMIZATION USING MOGA

The GA, categorized as one of the evolutionary algorithms,
mimics natural evolution (inspired by Darwin’s theory). It starts
with a randomly generated initial population that includes a set of

FIG. 4. SE detection efficiency vs probe size for good systems obtained by MOGA optimization based on potential calculation by SOEM. The optimizations tend toward
smaller probes and larger detection efficiencies. Two different runs are shown in green (a) and purple (b). The pareto fronts are shown as dark blue (in gray scale, dark
stars) and cyan (in gray scale, light stars) points in (a) and (b), respectively. The points L and K are explained in the text. (c) The data from (a) and (b) overlapped, includ-
ing both pareto fronts, illustrating how different runs may lead to different optimization results.

FIG. 5. SE detection efficiency vs probe size for good systems obtained by MOGA optimization based on potential calculation by COMSOL. The optimization tends
toward smaller probes and larger detection efficiencies. Two different runs are shown in gray (a) and dark blue (b). The pareto fronts are shown as black (in gray scale,
dark stars) and orange points (in gray scale, light stars) in (a) and (b), respectively. (c) The data from (a) and (b) overlapped, including both pareto fronts, illustrating how
different runs may lead to different optimization results. The points O, N, and M are explained in the text.
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systems, denoted by P1(x1,… , xn). In natural evolution, “xi” repre-
sents the chromosomes of different members. In electron lens
system optimization, “xi” represents the electron lens systems.
Hence, P1 includes a set of initially randomly generated electron
lens systems, defined based on the lens system variables. In nature,
across time, the initial population is gradually improved toward
members that are better matched with their environmental condi-
tions. In GA, analogously, the initial population evolves toward a
new set of systems [Pi+1(x1,… , xn)] which better satisfy the condi-
tions of the problem in each so-called “generation.” The new popu-
lation is mainly created by the operators “selection,” “crossover,”
and “mutation.” Conditions that are determined to be optimized
are formulated by a so-called objective function.

The multiobjective GA (MOGA)16 differs from a classical GA
in how the objective function value is assigned and ranked to each

member in the population. The initial population is created ran-
domly, similar to that for the GA. The next generations are derived
using the nondominated ranking.25 Each member gets a nondomi-
nated rank corresponding to its relative objective function. The
members of the population are then evaluated, ranked, sorted, and
selected by the MOGA based on the nondominated classification.
A set of pareto fronts25 (the nondominated solutions for which
none of the objective functions can be improved in value without
degrading the values of other objective functions) are found and
presented to the user at the end of the optimization process. The
user has then the choice to select the system that best suits their
problem among them. The remaining features of the algorithm,
such as “crossover” and “mutation,” are the same as those in a clas-
sical GA.

The proposed algorithms here are run on a PC with an Intel
(R) Xeon (R) W-2123 CPU @3.60 GHz and 32 GB of RAM.

A. MOGA using potential calculation with SOEM

It will first be analyzed how MOGA optimization of the
example lens system performs when SOEM is used for the potential
calculation (hereafter called MOGA + SOEM). The parameters used
for the MOGA in this case study are population size = 100,
maximum generations = 1000, and crossover fraction = 0.5. The
optimization starts with an initial population of 100 systems ran-
domly created by MOGA. Multiple runs are performed from which
two example runs are presented in Figs. 4(a) and 4(b). The figures
show for a typical run the SE detection efficiency versus the probe
size. In a relatively short time of 20 h, MOGA evaluated 100 000
systems from which 30 000–40 000 systems passed the constraints.
Hereafter, these systems are referred to as good systems.

TABLE I. Optical parameters of three examples of nondominated optimized
systems [taken from the pareto-front in Fig. 5(c)] found by MOGA + COMSOL.

Example systems from the
pareto-front found by
MOGA + COMSOL System M System N System O

Xcrossover (mm) 17.0 ± 0.1 17.0 ± 0.1 17.0 ± 0.1
Detection efficiency (DESE) (nm) 12.3 13.0 17.5
Computational time on average
to find such system (%)

48 52 57

Computational time on average
to find such system (min)

∼4000 ∼2000 ∼900

FIG. 6. Schematic of the flowchart of MOGA + SOEM + COMSOL.
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In Figs. 4(a) and 4(b), which do not include all systems but
only the good systems, a trend towards decreasing probe size and
increasing detection efficiency is seen. The pareto front25 points for
the two runs are illustrated as the dark blue and cyan points. By
MOGA optimization of the voltages and the geometry of the lens,
the initial probe size of 60 nm is reduced to only 9 nm with a detec-
tion efficiency ranging from 0% to 49%. The system with a probe
size of 18 nm and a detection efficiency of 49% is indicated by “L”
in Fig. 4(a), the system with 9 nm probe size and 14% detection
efficiency by “K” in Fig. 4(b). It takes on average ∼200 min to
reach the pareto front systems in this optimization.

Figure 4(c) shows Figs. 4(a) and 4(b) in one graph. It is clearly
seen that for different runs the pareto fronts vary considerably. This
reveals the complexity of the (highly nonlinear) objective functions
and the existence of multiple local minima. The large number of free
parameters in the design problem can easily cause the optimization
to reach a different local optimum (pareto front) in different runs.

B. MOGA using potential calculation with COMSOL

Next, a MOGA optimization is performed where for the calcu-
lation of the objective functions the necessary lens potential is cal-
culated using COMSOL. Hereafter, we will call this method
MOGA + COMSOL. All systems in the initial population are
created randomly by MOGA itself. Since the computation time for
the objective function calculation by COMSOL is dramatically
longer, the population size is taken here to be 50 instead of 100,
and the maximum generations as 200 instead of 1000. The cross-
over fraction is kept the same as before, i.e., 0.5.

In total, 10 000 systems have been evaluated and the entire
optimization took about 7000 min (∼5 days). Of these 10 000
systems, 3000–4000 systems passed the constraints and are thus
labeled as good systems. Figures 5(a) and 5(b) show the detection
efficiency versus probe size for the good systems of two separate
runs. The pareto front points of these two runs are shown as the

black and orange points. Figure 5(c) shows the overlap of the plots
in Figs. 5(a) and 5(b).

Table I summarizes the optical parameters for three different
systems in the pareto-front of these MOGA+COMSOL optimizations.
As can be seen from Table I, it takes at least ∼900min of optimization
time to reach the pareto-front system with a probe size of 17.5 nm
with an SE detection efficiency DESE = 57% [system O in Fig. 5(c)] or
∼2000min to reach a system with spot size Dspot = 13.0 nm and
DESE = 52 [system N in Fig. 5(c)]. The smallest spot size reached in
this optimization was Dspot = 12.3 nm with DESE = 48% nm [system M
in Fig. 5(c)], which took ∼4000 min. It can be concluded that the
computational time of MOGA + COMSOL to reach a satisfactory
result is extremely long. In the next subsection, the use of good-
systems from MOGA + SOEM as an input for MOGA + COMSOL is
considered as a means to reduce the optimization time.

C. MOGA using potential calculation with COMSOL
and MOGA + SOEM-optimized input systems

In an attempt to reduce the computational times involved in
MOGA + COMSOL optimization, the initial input systems with

FIG. 7. SE detection efficiency vs probe size for good systems obtained by MOGA optimization based on potential calculation by COMSOL but with feeding in 20 initial
systems obtained from MOGA + SOEM optimization. Two different runs are shown in cyan (a) and purple (b). The pareto fronts are shown as red (in gray scale, dark
stars) and green (in gray scale, light stars) points in (a) and (b), respectively. (c) The data from (a) and (b) overlapped, including both pareto fronts. The points P, Q, and R
are explained in the text.

TABLE II. Optical parameters of three examples of nondominated optimized
systems [taken from the pareto front in Fig. 7(c)] found by
MOGA + SOEM + COMSOL.

Examples of systems from
the pareto front found
by MOGA + SOEM+ COMSOL System P System Q System R

Xcrossover (mm) 17.0 ± 0.1 17.0 ± 0.1 17.0 ± 0.1
Probe size (Dspot) (nm) 8.6 12.2 17.5
Detection efficiency (DESE) (%) 73 81 85
Computational time on average
to find such system (min)

∼2500 ∼300 ∼100
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preoptimized geometries and voltages obtained by MOGA + SOEM
were fed into MOGA + COMSOL. Hereafter, this will be called
MOGA + SOEM+ COMSOL. 10 000 systems with the same optimi-
zation parameters as used in MOGA + COMSOL (population

size = 50, maximum generations = 200, and crossover fraction = 0.5)
were evaluated. 20 systems are taken from pareto front systems
found by MOGA + SOEM and fed into the initial population,
together with 30 systems created randomly by MOGA. The MOGA

TABLE III. System improvement by MOGA + SOEM + COMSOL optimization, while trying to find optimum values for the two objective functions and satisfying the constraints.
System A1, constraint not satisfied; System A2, constraint satisfied, very low SE detection efficiency (DESE), and relatively high spot size (Dspot); System A3, constraint satis-
fied, very small Dspot, and relatively low DESE. System A4: constraint satisfied, very high DESE, and reasonably small Dspot. The color scale in the middle column indicates the
electrode potential values in V. The units along the axes of the graphs are mms.

Lens system with PE passing through Lens system with SE passing through

System A1
One of the first systems created
- Primary beam is out of focus
- Xcrossover = 14.8 mm

System A2
A middle-evolved system
- Primary beam is on-focus
- Large probe size
- Small det. efficiency
- Xcrossover = 16.97 mm
- Probe size = 35.2 nm
- Det. efficiency = 39%

System A3
An evolved nondominant system
- Primary beam is on-focus
- Very small probe size
- Reasonably high det. efficiency
- Xcrossover = 16.99 mm
- Probe size = 8.66 nm
- Det. efficiency = 73%

System A4
An evolved nondominant system
- Primary beam is on-focus
- Reasonably small probe size
- Very large det. efficiency
- Xcrossover = 16.99 mm
- Probe size = 11.92 nm
- Det. efficiency = 80%
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starts with these 50 initial systems while calculating the objective
functions based on potential calculation by COMSOL. This is sche-
matically shown as a flow chart in Fig. 6.

The optimization results for two runs are plotted as SE detection
efficiency versus probe size in Figs. 7(a) and 7(b). The pareto front
systems are indicated as well by the red and green stars in Figs. 7(a)
and 7(b), respectively. The results from both runs are overlapped in
Fig. 7(c). Table II presents the optical parameters of three nondomi-
nated optimized systems taken as representatives from the pareto
front systems. It is seen that after only ∼100min, the optimization
found an optimized system having a probe size of 17.5 nm and a very
high detection efficiency of 85% [system R in Fig. 7(c)], or a system
with a probe size of 12.2 nm and a detection efficiency of 81%
[system Q in Fig. 7(c)], found after ∼300min. After ∼2500min, this
optimization reached a system with the very small spot size of 8.6 nm
and detection efficiency of 73% [system P in Fig. 7(c)].

It is noted that the time consumed in MOGA + SOEM to gen-
erate the initial data (∼200 min) should be added to the computa-
tional time of this optimization.

VI. MOGA + SOEM +COMSOL VERSUS MOGA + COMSOL

Comparing the data in Tables II and I, the
MOGA + SOEM +COMSOL optimization achieved much better
systems in a considerably shorter time than the
MOGA + COMSOL optimization. For instance, reaching a system
with a spot size of 17.5 nm only takes 100 min in the former case
and 900 min in the latter, even with a dramatically lower SE detec-
tion efficiency. It should be noted that the minimum spot size of
8.6 nm with a detection efficiency of 85%, reached in the time
frame of ∼300–2500 min, could not be reached at all by the
MOGA + COMSOL optimization, even after the evaluation of
10 000 system (∼7000 min).

In Fig. 8, the results from Figs. 5(c) and 7(c) are compared in
one graph, i.e., a comparison between optimized systems obtained
by MOGA + COMSOL and MOGA + SOEM +COMSOL, respec-
tively, including the pareto front systems. It is noted that the runs
in the latter case show much more overlap than what was seen in
the former case. Furthermore, the systems optimized by
MOGA + SOEM +COMSOL clearly outperform the ones opti-
mized by MOGA + COMSOL. Hence, it is concluded that, despite
the deviating field calculation by SOEM, it is still very effective to
use this technique in the optimization, to find preliminary, approx-
imately good-systems, to be fed into another optimization, which is
performed based on the accurate field calculation by COMSOL,
and to boost the optimization.

VII. EXAMPLES OF SYSTEMS OPTIMIZED BY MOGA +
SOEM+COMSOL

The evolution of some lens systems during the optimization
by MOGA + SOEM +COMSOL is summarized in Table III. A
clear change is observed in the geometries and voltages of the
systems while the optimization is progressing until it finally reaches
a set of optimized systems. It should be noted that those SE hitting
the electrodes do not contribute to the detection efficiency. The
PEs are started at z =−23 mm, with angles ranging between 0.1
and 0.8 rad, and traced by paraxial ray-tracing. The horizontal axis

TABLE IV. Comparison of the optical parameters of system A4 from Table III, as
obtained by MOGA + SOEM + COMSOL and EOD.

MOGA+ SOEM +COMSOL EOD

System
A4

Xcrossover = 16.99 mm
Probe size = 11.91 nm

Detection efficiency = 80%

Xcrossover = 16.99 mm
Probe size = 11.90 nm

Detection efficiency = 81%

FIG. 8. Comparison of the MOGA + COMSOL results of Fig. 5(c) (2 runs in
gray and dark blue symbols; the pareto front points are shown in black and
orange) and MOGA + SOEM + COMSOL results of Fig. 7(c) (2 runs in cyan
and purple symbols; the pareto front points are shown in red and green). Note:
The information of the figure is best visible in color scale.

FIG. 9. Optimized system found by MOGA + SOEM + COMSOL (system A4, in
Table III), simulated using EOD. PE trajectories are shown in red (dark central,
in gray scale). Only SE trajectories with initial energy of 1 and 10 eV are shown,
in blue and green, respectively.
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runs from −10 to +17 mm for a better visualization. SE trajectories
are produced by real ray-tracing. In the figures of Table III, these
are drawn for visualization purposes only.

To validate the final optimization results, an optimized system
found by MOGA + SOEM +COMSOL (system A4 in Table III) is
simulated using the EOD software package from SPOC.26 Figure 9
shows the EOD simulation result for the geometry and the trajecto-
ries of both PE and SE in this system. The optical parameters of
system A4, as obtained from MOGA + SOEM +COMSOL and
EOD, are compared in Table IV. The presented results show that
the optimization result agrees very well with the EOD simulation.

VIII. CONCLUSION

The design of a pure electrostatic lens system with five elec-
trodes and two objective functions was optimized using a
surrogate-assisted multiobjective genetic algorithm (MOGA)
approach. The system is required to focus a PE beam into a fixed
image plane with minimum probe size and attract SE emitted from
the image plane back into the lens on to an SE detector with the
highest possible detection efficiency. The main challenge of such
optimization is the long computation time necessary for an accu-
rate COMSOL-based field calculation. The much faster, but
less-accurate, field calculation technique SOEM combined with
MOGA does not provide the best optimized systems, but reason-
ably good ones that can be used as input for a COMSOL-based
MOGA optimization. This strategy has been demonstrated to lead
to optimized systems in a reasonably short time of a few hours
compared to many days when using COMSOL-based MOGA only.
The optimization process is fully automated and may help electron
optics designers to quicker find solutions for complex electrostatic
systems.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.
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