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Application of neural networks for the reliability design of
a tunnel in karst rock mass

Meho Sasa Kovacevi¢, Mario Baci¢, and Kenneth Gavin

Abstract: This paper offers a solution to overcome time-consuming numerical analysis for the evaluation of the impact of
tunnel construction in a complex karst environment by implementing Monte Carlo Simulation (MCS) using a neural net-
work (NN) tool. The rock mass is described using three parameters: Geological Strength Index, the uniaxial compression
strength of the intact rock, and the Hoek-Brown parameter for the intact rock m;. By using their probabilistic distribution
as an input, a developed neural network NetTUNN produces probabilistic distributions of tunnel crown displacement, rock
bolt axial load, and shotcrete uniaxial compression stress. A full MCS is then applied on these NetTUNN outputs to deter-
mine the reliability index and probability of failure for the relevant limit states. To demonstrate the potential of NN in tun-
nel design, a case study of Tunnel Peéine in Croatia is used, where the NetTUNN-assisted MCS assessment served as a
benchmark to evaluate approximate reliability assessment techniques. It was shown that the developed NN can be used as
an accurate surrogate model for determination of probabilistic distributions of tunnel design parameters. Further, it was
shown that approximate reliability assessment techniques generally overestimate the reliability index and underestimate
the probability of failure when compared to the NetTUNN-assisted MCS.

Key words: tunnel design, neural network, reliability methods, limit states, karst.

Résumé : Dans cet article, on propose une solution permettant de surmonter les longues analyses numériques pour 1’évalu-
ation de I'impact de la construction de tunnels dans un environnement karstique complexe en appliquant la simulation de
Monte Carlo (MCS) au moyen d’un outil de réseau neuronal (NN). La description de la masse rocheuse est réalisée a ’aide de
trois parametres, 'indice de résistance géologique, la résistance a la compression uniaxiale de la roche intacte et le para-
metre Hoek-Brown pour la roche intacte m;. Grace a leur distribution probabiliste, un réseau neuronal développé, Net-
TUNN, produit des distributions probabilistes du déplacement de la couronne du tunnel, de la charge axiale des boulons de
la roche ainsi que de la contrainte de compression uniaxiale du béton projeté. Ensuite, on applique une MCS compléte sur
ces sorties de NetTUNN pour calculer I’indice de fiabilité et la probabilité de défaillance pour les états limites concernés.
Pour démontrer le potentiel de la NN dans la conception des tunnels, on utilise une étude de cas de tunnel Pecine en Cro-
atie, dans laquelle I’évaluation MCS assistée par NetTUNN a permis d’évaluer les techniques d’évaluation de la fiabilité
approximative. On a démontré que la NN développée peut étre utilisée comme un modele de substitution précis pour la
détermination des distributions probabilistes des parametres de conception du tunnel. On a également démontré que les
techniques d’évaluation de la fiabilité approximative surestiment généralement I'indice de fiabilité et sous-estiment la
probabilité de défaillance lorsqu’elles sont comparées au MCS assisté par le NetTUNN. [Traduit par la Rédaction]

Mots-clés : conception des tunnels, réseau neuronal, méthodes fiables, états limites, karstique.

Introduction the load and the resistance terms, thus propagating uncertain-
ties in the analysis. The use of sophisticated numerical analyses
techniques usually relies on the best or conservative methods for
estimating the material properties, depending on the limit state
being considered. Hadjigeorgiou and Harrison (2011) noted that

Given the complex response of rock masses and scale of tunnel
construction relative to the volume of soil and rock that is tested
during an extensive ground investigation, tunnel construction is

by its nature an uncertain activity and quantification of risk is of looki inh ¢ iabili i It i tai
upmost importance (Ceri¢ et al. 2011). The need for risk assess- overlooking inherent variability will result in an uncertain

ment is even more pronounced in karst rock mass, which is ~ design in rock engineering. Therefore, the application of proba-
highly susceptible to dissolution under the influence of water,  Dilistic (or reliability) based methods is ideally suited to the
the so-called karstification process. Karst phenomena, including  design of tunnels in a rock mass. Although the application of prob-
caverns, voids, discontinuities, etc., significantly contribute to  abilistic approaches to engineering problems in rock is considered
the tunnel design and construction complexity, as shown in Fig. 1. in the relevant design code Eurocode EN 1997-1 (CEN 2004), Baci¢

One of the challenges of estimating the factor of safety during (2019) noted that this is done in a rather vague way due to insuffi-
tunneling operations is that the rock mass contributes to both cient coverage of rock engineering as a discipline within the code,
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Fig. 1. Example of a tunnel construction in complex karst
environment. [Colour online.]

and because of the code’s recommendations for semi-probabilis-
tic safety verification. At the same time, practical tunnel engi-
neers appear reluctant to adopt reliability-based methods, which
are perceived as too complex for practical use, with the prevail-
ing misconception that these methods require considerably more
effort in comparison to traditional design methods. However, the rock
engineering community has been more progressive in the
implementation of different reliability-based methods for the
design of tunnels (see Oreste 2005; Mollon et al. 2009; Li and
Low 2010; Li and Low 2011; Fortsakis et al. 2011; Li et al. 2012,
2013, 2017, 2018; Langford and Diederichs 2013; Zhao et al. 2014;
Eshraghi and Zare 2015; Johanson et al. 2016; Song et al. 2016; Wang
et al. 2016; Bjureland et al. 2017 and others).

Generally, reliability assessment methods can be classified into
two categories: simulation-based and approximate methods.
Even though they are more accurate, the simulation-based meth-
ods such as Monte Carlo Simulation (MCS) require a large num-
ber of numerically complex evaluations. These methods are
usually implemented in relatively simple calculations, e.g., anal-
ysis of slope stability utilizing the limit equilibrium method or
analysis of tunnel supports utilizing the closed-form solution. In
finite element and finite difference analyses that include com-
plex constitutive models, deterministic parameters are usually
employed. Given the importance, Idris et al. (2011a) implemented
MCS in a finite difference method (FDM) analysis to account for
the variability of the rock mass material properties on the behav-
iour of a rock slope. In such analyses, the computational effort
can be reduced if variance reduction schemes (Schoenmakers
et al. 2002) are used. However, despite the processing powers of
modern-day computers, simulation times remain long (Goh and
Kulhawy 2005), precluding their use in general practice. To over-
come this limitation for complex geotechnical numerical mod-
els, the utilization of the approximation methods — such as the
First Order Second Moment (FOSM) method, Second Order Sec-
ond Moment (SOSM) method, Point Estimate (PEM) method, and
Hasofer-Lind (HL) method — is often adopted. Whilst faster,
approximation methods are less accurate than full simulation
and are therefore unlikely to find the true minimum of the reli-
ability index. In this paper, a solution in the form of a custom-
made neural network (NN) is presented to reduce computation
time for MCS analyses. A trained, tested, and validated NN serves
as an MCS auxiliary tool. NN utilizes a probabilistic distribution
of Geological Strength Index (GSI), the uniaxial compression
strength of the intact rock (UCS), and the Hoek-Brown parameter

Can. Geotech. J. Vol. 58, 2021

for the intact rock (m;) as an input. From this input, a developed
NN produces a probabilistic distribution of tunnel design param-
eters, including displacement of a tunnel crown, rock bolt axial
load, and shotcrete uniaxial compression stress. A full MCS can
then be applied on these output distribution curves to determine
the reliability index and probability of failure for the serviceabil-
ity and ultimate limit states of the tunnel. The MCS, due to its
lack of approximations, is used as an ideal benchmark for com-
parison with the approximation reliability methods, as sug-
gested by Langford and Diederichs (2011).

The uncertain nature of rock mass parameters

Rock mass strength and stiffness parameters

An elastic - perfectly plastic model that follows the Hoek-
Brown failure criterion (Hoek et al. 2002) is usually employed to
describe the strength characteristics of the heavily fractured
rock mass. The model strength parameters (my, s, and a, as
defined in Fig. 2) describe the nonlinear nature of the rock mass
and are determined by established empirical correlations with
GSI, UCS (sometimes referred to as o), and m;, which depends on
the rock type. This empirical failure criterion is expressed as a
nonlinear relationship between rock mass strength and princi-
pal stresses (see Fig. 2), where ¢ is the maximum effective princi-
pal stress, o is the minimum effective principal stress, and D is
the disturbance factor that quantifies the effect of excavations
on the rock mass.

An important parameter affecting tunnel behaviour is the rock
mass deformation modulus E,,. Hoek and Diederichs (2006) com-
piled a large database of E,, values and proposed an empirical
equation that accounts for the intact rock modulus E;, D, and GSI.
However, Kovacevi¢ et al. (2011) presented intensive measure-
ments from projects undertaken in karstic rock that show signifi-
cantly higher measured rock mass deformation values than
suggested by moduli correlated with rock mass classifications.
Based on these observations, Juri¢-Kacunic et al. (2011) developed
anew approach for determination of the karst carbonate rock de-
formation modulus, given by eq. 1. The equation shows that the
parameters affecting deformation modulus of karst are the GSI,
the dispersion velocity of longitudinal waves (V), and the rock
mass deformation index (IDy,).

(l) Em = IDm(GSIZ)(Vg)

where the unit for E., is GPa, for GSI is %, and for Vj, is km/s. The
ID,,, for carbonate rocks is equal to the rock mass quality index
(IQ;) determined by allocating rock mass into one of the proposed
models and weathering zones, whereas the GSI is adapted to the
geological engineering properties of Croatian karst (Pollak 2007).

Evaluation of rock mass parameter distribution

In a discussion on appropriateness of reliability design in rock
engineering, Harrison (2019) focused on the statistical evaluation
of rock mass parameters, considering that they provide a principal
source of the structural resistance. Two approaches to determine
rock mass properties are analysed in his study and it is concluded
that the analytic approach, based on an assessment of the rock
mass characteristics to obtain a rock mass rating value, is not suit-
able for determining rock mass properties for reliability-based
design. This is due to epistemic uncertainty of these assessments,
rather than allowing characterization of aleatory variability as
required by reliability-based design. In contrast, the synthetic
approach could be considered as appropriate for reliability-based
design, owing to the fact that rock mass properties are repre-
sented as a combination of component factors associated with
both intact rock and discontinuities, and these factors are avail-
able in a quantitative form. However, a challenge remains with
respect to obtaining a sufficiently large database for the synthetic
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Fig. 2. Hoek-Brown failure criterion (modified from Hoek et al. 2002). [Colour online.]
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approach. If transformation models are used to obtain as large a
database as possible to overcome the perennial problem of lim-
ited data for analysis of rock parameter variability, research con-
ducted by Ching et al. (2018) could be considered. In that study,
184 previous studies were utilized to form a database of transfor-
mation models for several rock mass parameters, which was
then adopted to calibrate the bias and variability of existing
transformation models. Also, a challenge linked with limited
data may be dealt with through application of Bayesian data anal-
ysis, as given by Bozorgzadeh and Harrison (2019). Harrison
(2019) stated that the results for the strength and stiffness of
intact rock demonstrate aleatory variability, where Bozorgzadeh
and Harrison (2019) stressed that this variability has little similar-
ity within and between rock types, so that reference values are
unsuitable and variability needs to be determined case-by-case,
as was done within this study. Some aspects of variability, such as
variability of polyaxial rock strength, anisotropy of strength, and
the elastic compliance matrix, need further research. Further,
both geometrical and mechanical properties of discontinuities
are known to be aleatory. However, state-of-the-art investigation
techniques allow large quantities of discontinuity geometry data
to be obtained, which would eventually aid their variability anal-
ysis in reliability-based design.

Whilst rock mass strength and stiffness characteristics are influ-
enced by GSI, UCS, and m; parameters, the tunnel response is also
influenced by the geometry, overburden height, excavation tech-
nique, and characteristics of the support system amongst other fac-
tors. However, Fortsakis et al. (2011) noted that variability of the
geotechnical properties of the rock mass surrounding the tunnel
have the largest impact in controlling the uncertainty of tunnel lin-
ing loads. This variability of rock mass properties along a tunnel,
arising from the deposition and weathering processes, strongly
affects the relevant failure mechanisms (see Phoon and Kulhawy
1999; Song et al. 2011; Cai 2011). In most cases, normal or lognor-
mal distributions are suitable to describe the rock mass parame-
ters; however, it is important to confirm this assumption and
adopt an alternative distribution to ensure sufficient accuracy.

GSI is determined by the field observations of blocks and the
surface condition of discontinuities. Fortsakis et al. (2011) presented

the possibility of determining coefficient of variance (COV) values
of GSIs, based on Marinos and Hoek (2000) and Marinos et al. (2005)
estimation diagrams of GSI isolines density in the GSI charts. The
scatter is assumed to be =5 for GSI values lower than 30, =7 for GSI
between 30 and 40, and =10 for GSI values higher than 40. In the
case where GSI distribution is assumed uniform, Fortsakis et al.
(2011) noted that the scatter defined the upper and lower limits,
while in the case where the normal distribution was assumed it
defined the 90% confidence interval, leading to the calculation of
the standard deviation. The quantitative description of GSI is possi-
ble only if sufficient GSI data are available. For example, Idris et al.
(2011b) used the GSI chart to estimate about 1000 GSI values from
field observations at the same location. However, given the qualita-
tive nature of the GSI assessment, quantitative description of the dis-
tribution is often not possible, and statistical tools can be applied.
One of these tools is the three-sigma rule (Dai and Wang 1992),
which identifies that 99.73% of all values of a normally distributed
GSI will fall within three standard deviations of the mean. Using this
rule, the mean value as the best estimate of the random variable —
and the COV, as a representation of uncertainty — is defined for GSL

The distributions of UCS and m; can be determined from meas-
urements, when a sufficient amount of laboratory or field-testing
data are available. To describe a distribution, a prevailing — however,
often argued (e.g., Kar and Ramalingam 2013) — suggestion of a
minimum sample size of 30 data points can be used. Hoek (1998)
and Sari (2009) suggested a COV value of 30% for UCS values
described with a normal distribution, noting that log-normal dis-
tributions are often used to avoid possible negative sampling val-
ues because of the relatively large COV. The material constant (m;)
depends on many factors, such as the type of rock and its mineral
composition, grain size. It is determined either by triaxial testing
in the laboratory or from published tables based on rock mass
structure (Hoek et al. 2002). For different types of rock mass, Hoek
and Diederichs (2006) assumed that the scatter of 17 = 4 corre-
sponds to a 90% confidence interval. However, in the event that a
sufficient sample size is not available for UCS and m;, the men-
tioned three-sigma rule can be adopted.

An example of the rock mass parameter variability is given in
Fig. 3, for the case study tunnel presented in the paper. During

<. Published by NRC Research Press
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the on-site excavation of an analysed tunnel section, a GSI value
of 29 was determined. This value represents a mean value, while
the GSI distribution was determined through application of the
three-sigma rule. The UCS distribution was determined on the basis
of a total of 56 triaxial, uniaxial, and point load tests (PLTs), while
the m; distribution was determined on the basis of a total 36 triaxial
tests.

The UCS and m; data from Fig. 3 are shown in form of histo-
gram, where both experimental tests have passed the normal dis-
tribution hypothesis, using the chi-square goodness-of-fit test.
Considering their dominant influence on tunnel behaviour, the
GSI, UCS, and m; are treated within this study as random uncorre-
lated variables. Other variables such as disturbance factor D, as
well as longitudinal velocity parameter from eq. 1, easily deter-
mined by the means of geophysical methods, are considered as
deterministic within this study.

Reliability index and probability of unsatisfactory
performance

In this study, reliability methods consider the impact of uncer-
tainties associated with the input parameters GSI, UCS, and m; on
predictions of three quantities: (i) displacement of the tunnel
crown related to the serviceability limit state (SLS), (ii) support
rock bolt loads related to the ultimate limit state (ULS), and
(ifi) uniaxial compression stresses in the shotcrete lining related
to the ULS. Therefore, limit state (performance) functions, g(X),
can be expressed as the difference between capacity C and load-
ing B, where the terms “loading” and “capacity” must be taken in
their broadest sense, as they do not point only to “forces” and
“stresses,” but also to the displacement of a tunnel crown:

< 0 safestate
(2) g(X) =C—B{ =0 limitstate
> 0 failure state

where X is the vector of different random variables (x;) in the
problem

(3)  gX) =g, %2, .. %)

The basic random variables (x;, X, .. ., X,;) represent the uncer-
tain parameters of rock mass, in this case GSI, UCS, and m;, so
that eq. 3 has the form

(4)  g(X) = g(GSI,UCS,m;)

It should be noted that a limit state surface, g(X) = 0, is the
boundary between the safe state and the state in which the SLS
and ULS are exceeded.

Probability density functions for typical capacity and load are
shown in Fig. 4a. Assuming normal distributions of the capacity
(C) and loading (B), the reliability index can be defined as the dis-
tance by which the failure function mean E[g(X)] exceeds zero in
units of standard deviation o[g(X)] (Xue and Gavin 2007) (Fig. 4b).
Therefore, the reliability index can be expressed as

__ E(-B)

G) B =™~ Vo0 s 2B

_E[gX)] _

The probability of exceeding SLS or ULS, Pr in Fig. 4b, can be
defined as the probability that the loading will equal or exceed
capacity and is expressed by the equation

(6)  Pr=P[g(X) <0]

Can. Geotech. J. Vol. 58, 2021

Fig. 3. (a) GSI, (b) UCS, and (c) m; distribution for an analysed
section of a case study tunnel. [Colour online.]
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Considering eq. 2, the performance function (or limit state sur-
face), for the serviceability limit state, i.e., tunnel crown displace-
ment, is given by

(7)  g(X) = Yaispsis — Yaispan(GSL UCS, m;)
where Yg;sp s1s is the limiting displacement value while Ygisp nn
(GSI, UCS, m;) is a normal distribution of displacements obtained
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Fig. 4. Probability densities for (a) typical capacity and load and (b) probability density for g(X).

probability density functions

f(X)

E [g(X)]

_ElsX]
o[gX)]

B

by the NN. The value Ygjsp, nn Tepresents the maximum displace-
ment values across the cross section and is usually the displace-
ment of the tunnel crown.

The ULS performance functions for the axial load in a rock bolt
(CA) and uniaxial compression stress within the shotcrete (SM)
are given by

(8) g(X) = CAmaxuis — CAmax NN (GSL UCS, m;)
and
(9) g(X) = SMmaX‘ULS - SMmax‘NN(GSI,UCS, mi)

where CAax urs and SMyax urs denote the axial capacity of a rock
bolt and uniaxial compression stress capacity of shotcrete with
regards to the ultimate limit state, respectively. The value CA,ax NN
is a normal distribution of maximum axial load within the rock
bolt with the highest load in a given cross section determined by
the NN. SMpaxnn (GSI, UCS, m;) is a normal distribution of maxi-
mum values of shotcrete uniaxial compression stress within the
cross section, obtained by the means of NN and determined as
given by Oraee et al. (2011)

N, Muaxh
(10)  SMpaxnn(GSL UCS, m;) = Tu%

where Nj.x (kN) is the maximum axial load within shotcrete;
Mmax (kN-m) is the maximum bending moment within shotcrete;
while A (m?), h (m), and I (m*) are cross-sectional area, distance
between axial force and neutral line, and moment of inertia of
shotcrete, respectively. A detailed analysis of the shotcrete stress
capacity procedures can be found in Hoek et al. (2008).

Within this study, a MATLAB (MathWorks 2019) code was written
to obtain reliability indexes and probabilities of failures for both
MCS and approximation techniques. MCS is an enumeration-based
procedure used for estimation of the uncertainty of a system’s out-
put with consideration of uncertainty of the model input (Shreider
1964). The MCS requires the calculations of hundreds and thou-
sands of performance function (g{X]) values and, within this
study, these values have been selected from the NN output data-
base. Therefore, by utilizing a NN as an auxiliary tool, time-con-
suming numerical calculations of performance function values
are avoided. Afterwards, MCS is used to serve as a benchmark
for evaluating the accuracy of the approximate methods: First
Order Second Moment Method (FOSM; Cornell 1971), First Order
Reliability Method (FORM; Hasofer and Lind 1974), and Rose-
nblueth Point Estimate Method (PEM; Rosenblueth 1975).

An architecture of the NetTUNN neural network

To overcome the time-consuming aspect of conducting a large
number of numerical analyses for MCS, an artificial NN tool is

gX)=C—-B

employed among the large range of possible surrogate models.
NN is used to establish the correlation between the rock mass pa-
rameters and tunnel design parameters. Li et al. (2016) gave an
extensive literature overview of the response surface methods as
surrogate modelling tools for soil slope reliability analyses,
including Kriging-based response surface, quadratic polynomial,
Support Vector Machine (SVM)-based response surface, and NN-
based response surface. One of the most popular surrogate mod-
els among these is the Kriging model, mainly because of'its recog-
nized ability to provide high-quality predictions. As such, it has
been used in the geotechnical domain (Brito et al. 1997) and has
been incorporated in many software offering custom-built surro-
gate models for fundamental aspects of uncertainty quantifica-
tion, such as the open-access platform UQLab (2020). Despite
being popular and providing relatively high accuracy, some geo-
technical studies showed that ordinary Kriging did not work
well in estimating rock mass quality along tunnel alignments in
complex geological settings, with a large difference between the
estimated and actual values (Kaewkongkaew et al. 2015).

Long after the development of a Kriging method, a back-
propagation NN algorithm was presented as an alternative in
determining the limit state surface. NN represents an advanced
machine learning technique that simulates processes of the
human brain and nerve system. Interconnected artificial NN ele-
ments share information leading to development of awareness of
the relationship between different parameters (Reale et al. 2018).
The application of NN is particularly useful if these relationships
are intuitively difficult to understand and describe, as is often
the case with rock mass parameters. When used to map an
input-output function, NN represents a special form of response
surface in which the response function is a superposition of a
class of smooth, sigmoidal-type squashing functions. Since its de-
velopment, NN has been used in many applications including ge-
ological (Leu and Adi 2011) and geotechnical domain (Shahin
et al. 2001; Goh and Kulhawy 2005; Miranda et al. 2007). Goh and
Kulhawy (2005) stated that the NN approach is particularly useful
for modelling the nonlinear limit state surface. This is especially
the case with the evaluation of the serviceability limit state sur-
face of geotechnical structures as the serviceability limit state is
usually not known explicitly (Goh and Kulhawy 2003). Much
research was conducted on the comparison of Kriging and NN, to
determine which surrogate model performs better in establishing
complex correlation between parameters. Many of these suggest
that the NN models are superior to the geostatistical Kriging
model and exhibit higher accuracy, e.g., in geodesy (Akcin and
Celik 2013); groundwater contamination (Chowdhury et al. 2010);
ionosphere mapping, especially when data set is spare (Jiang et al.
2015); geotechnical site characterization (Samui and Sitharam
2010) or mapping of rock depth below soft deposits (Sitharam et al.
2008). For the tunneling applications, Shi et al. (2019) stated that
the NN surrogate model can accurately estimate the geological
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conditions prior to excavation when compared with the methods
based on soft computing methods, while Santos et al. (2015) con-
cluded that model errors obtained with the different estimation
methods (linear regression, geostatistical Kriging, and NN algo-
rithms) are very similar. As the utilization of NN generated using
evolutionary algorithms can be considered as an advanced surro-
gate model, compared to the traditionally used statistical and ex-
perimental methods, many researchers utilized its benefits in rock
tunneling and underground rock engineering (Lee and Sterling
1992; Moon et al. 1995; Benardos and Kaliampakos 2004; Yoo and
Kim 2007; Mahdevari and Torabi 2012; Zhang and Goh 2015;
Hasegawa et al. 2019).

The adaptability and learning capabilities of NN require a suffi-
cient amount of training data, where the amount is even larger
when complex nonlinear systems are analysed. In the NN regres-
sion analysis, used for the purpose of this study, the NN is used to
approximate static nonlinear function f{x) through implementa-
tion of the so-called multi-layer Layer Perceptron (MLP) architec-
ture consisting of an input layer, a hidden layer(s), and an output
layer. While the number of input and output layers is based on
the specific problem analysed, the number of hidden layers must
be optimized. If the number of hidden layers and neurons is too
small, it will result in a too general NN without the possibility of
learning input-output relationships. In contrast, if the number
of hidden layers and neurons is too large, it can lead to NN over-
training. An extensive literature overview of methods to deter-
mine the optimal number of hidden layers and hidden nodes,
influencing the NN performance, is given by Sheela and Deepa
(2013). Additionally, Trenn (2008) and Doukim et al. (2010) pre-
sented some NN optimization techniques for MLP architecture,
while Majdi and Beiki (2010) conducted a study involving compar-
ison of different types of NN architectures with different num-
bers of layers and nodes, for rock mass application.

After the number of hidden layers and neurons is determined,
each input neuron connects with each hidden neuron, with each
interconnection receiving a weighting. These weightings, devel-
oped and optimized within the hidden layer, determine how the
NN predicts and adapts. Several characteristic phases in the de-
velopment of an optimal NN can be distinguished and these
include training, validation, and testing phase (Hammerstrom
1993). Based on the input-output sets given by the user, it is rec-
ommended that 70% of data are used for the training process to
minimise the error function by changing the individual neural
weightings to attain the optimum neural weightings. During the
training phase, inputs and outputs are supplied to the NN, which
allows learning of the sensitivity of each individual parameter.
This phase continues until the NN can correctly model the sys-
tem response or until all available training data have been uti-
lised (Reale et al. 2018). Once the NN is trained, the validation
phase follows and it includes simulation of output data with
input data, where 15% of total data are used in process. The valida-
tion dataset, completely independent from the dat set used for
NN training, provides an unbiased evaluation of a model fit on
the training dataset while tuning the model’s parameters. If the
NN can correctly predict the outputs of this data, then it can be
said that it models the system accurately. Finally, the test phase
uses the remaining 15% of data, not used in the training or valida-
tion phase, to provide an unbiased evaluation of a final model fit
on the training dataset. During this phase, only the inputs were
supplied to the model and at the end of this phase, the NN system
recalibrates itself based on the testing results so that system
inputs are more accurately mapped onto system outputs.

To learn complex relationships between rock mass input val-
ues and tunnel design output values, a NN named NetTUNN was
trained, tested, and validated within this study. The input set con-
tains n values of selected rock mass parameters: [UCS;, UCS,, ...,
UCS,); [GSL, GSI, ..., GSLy]; [mj, My, ..., my]. As the output, n?
sets determined through n® deterministic numerical analysis are
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defined in the form [y, CAy, SMy; [y, CA,, SMyJ; [y3, CA2, SM3]. Af-
ter the calibration of NetTUNN, this NN could understand the
nonlinear relationships between input and output sets. Along
with three input nodes and three output nodes, the optimized
network consists of four hidden layers, with utilization of total
34 distinct weightings. A sigmoid activation function for hidden
neurons and a linear activation function for output neurons are
used. A scheme of a developed NN is given in Fig. 5.

As NN outputs, this study evaluates the most loaded rock bolt
and the most loaded shotcrete section, as well the point with the
largest displacement, as in usual design practice these are treated
as the critical parameters from the limit state point of view. To
obtain a maximum displacement and internal forces values from
numerical simulations, an algorithm is developed to search both
the maximum values of the mentioned design parameters and
their position along the cross section to ease the search proce-
dure and to avoid potential overlooking of critical elements or
sections. It was shown in all of the conducted numerical analyses
that the position of the cross-sectional point with maximum dis-
placement (SLS) differs from the position of the most loaded rock
bolt and the position of the most loaded shotcrete section (both
being ULS). Further, even within the ULS the position of the most
loaded rock bolt and the position of the most loaded shotcrete
section differed in all analysed numerical simulations, usually
being on opposite sides of the cross section. Therefore, if only
maximum values of these three design parameters are analysed,
it could be stated that the correlations between NetTUNN out-
puts are statistically insignificant both between SLS outputs
(crown displacement) and ULS outputs (rock bolt loads and shot-
crete compression stresses), as well as between two ULSs (rock
bolt loads and shotcrete compression stresses). Once the NN
learned relationships between rock mass parameters and tunnel
design parameters, it was ready to apply these relationships on
normally distributed values of rock mass input parameters. The
NN outputs, comprising fully defined distributed curves of tun-
nel displacements, rock bolt axial force, and shotcrete uniaxial
compression stress, can be further subjected to MCS for the
determination of the reliability index and probability of failure.

Case study example: Tunnel Pecine

The efficiency of NetTUNN at obtaining representative distribu-
tions of design parameters for reliability analysis is validated
using a case study of the construction of a road tunnel. Tunnel
Pecine is located in a karstic rock mass formed of cretaceous
deposits, breccias, dolomites, and limestones, of relatively good
permeability. Because of their high susceptibility to the karstifi-
cation process, karst phenomena including caverns, voids, etc.,
have been an additional challenge during tunnel construction.
The surrounding rock mass is generally partially fractured, with
the degree of fracturing being more pronounced near the fault
zones. As a part of the D404 state road, the tunnel provides access
to the city of Rijeka and its major port area. The tunnel, having
an overall length of 1258.5 m with 60% of the tunnel constructed
as a three-lane and 40% constructed as a four-lane highway, was
constructed between 2005 and 2008. The tunnel section analysed
in this paper is characterized by the relatively constant overbur-
den depth and similar geological conditions. The primary sup-
port system consists of 20 cm thick shotcrete installed in several
layers and 6 m long self-drilled steel rock bolts, with 23 rock bolts
installed along the cross section. The tunnel section analysed is
in close proximity to a railway tunnel constructed over 100 years
ago (see Fig. 6), and therefore significant instrumentation was
provided to confirm the design assumptions and prevent damage
to the rail tunnel. A detailed description of the tunnel and exca-
vation works is given by KuZelicki and RuZi¢ (2008).
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Fig. 5. Scheme of a NetTUNN neural network.
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Fig. 6. Tunnel Pecine entrance and a scheme of one of the monitoring profiles. (All dimensions in metres.) [Colour online.]

Rock mass input distributions

During the design of a tunnel support system, a combination
of numerical, empirical, and observation methods was used,
where the design numerical models relied on average values of
GSI, UCS, and m; for each characteristic tunnel section. However,
this study uses the probabilistic distribution of rock mass param-
eters, as given in Fig. 3, where the UCS and m; distributions are
determined on the basis of laboratory testing, while the GSI dis-
tribution is determined on the basis of the three-sigma rule. The
disturbance factor (D) in this study is defined as the deterministic
input value of 0.1, considering the excavation technology of
combining blasting (in high-quality rock mass sections) and me-
chanical excavation (in poor-quality rock mass sections). These
technologies resulted in minimal disturbance to the surrounding
rock mass. This assumption of D = 0.1 was verified on-site after
excavation of the analysed section. Selection of the deterministic
value of the disturbance factor is often encountered in the litera-
ture covering the uncertainties in tunneling projects (see Fortsakis
et al. 2011; Idris et al. 2011a; Cai 2011; Lu et al. 2018). Further, imple-
mentation of the karst-adapted rock mass stiffness model, as given
by eq.1, included distributed GSI values (Fig. 3), a unique determin-
istic value 0.4 for ID,,, and deterministic values of longitudinal
wave velocities (V) obtained by the means of the seismic refrac-
tion method. For carbonate karst rocks, ID,, is equal to the rock
mass quality index (IQ;) determined by allocating rock mass into
one of the models and weathering zones proposed by Pollak (2007)
and it covers both stiffness reduction due to karstification of rock
masses as well as the disturbance resulting from the excavation
technology. Onodera (1963) proposed to estimate IQ, as the ratio of

tunnel Peéine monitoring pipes
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velocities of longitudinal seismic waves in rock mass and velocities
oflongitudinal seismic waves measured in laboratory on the intact
rock (IQs = V[V, o). Therefore, acquired in situ velocities on the
analysed section, as well as laboratory results of velocities of intact
samples, yielded a mentioned deterministic value of ID,,. Consid-
ering the increase of the rock mass stiffness due to the V}, increase,
as given by Juri¢-Kacunic et al. (2011), a FISH programming lan-
guage code representing the nonlinear increase of rock mass
stiffness was implemented within the two-dimensional finite dif-
ference software FLAC (Itasca 2019). For calculation simplicity,
the properties of the in situ stress as well as properties of the sup-
port system elements, including rock bolts and shotcrete, are
regarded as deterministic.

NetTUNN neural network application

As a first step in applying the NN, 125 (5°) deterministic numeri-
cal analyses were carried in FLAC using the following sets of
input parameters:

GSI =[15; 25; 35; 45; 55]
UCS (MPa) =[30; 50; 70; 90; 110]
m;=1[3;5;7;9; 11]

The first numerical phase included calculation of the initial
stress state, the second phase involved excavation of the first
part of the cross section of the tunnel with installation of 13 rock
bolts and shotcrete, while the third phase involved the excavation
of the second part of the cross section, with installation of 10 rock
bolts and shotcrete. The numerical model is shown in Fig. 7. A
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Fig. 7. Vertical displacement contours (in metres) for numerical model with mean input values. [Colour online.]
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sensitivity analysis was performed to check for boundary effects
and a FLAC model 100 m wide and 40 m high was found to satisfy
the requirements. After conducting 125 deterministic numerical
analyses, a set of outputs was determined in the form [Y;; CAy; SMy],
[Y2; CAz; SMy], . . ., [Y125; CAqas; SMyas].

The 125 input-output datasets were used for training, testing,
and validating the NetTUNN NN by utilizing the MATLAB soft-
ware (MathWorks 2019). While what the minimum number of
data points required for NN training, testing and validation is of-
ten discussed, the utilized number of input-output sets (125) can
be considered as appropriate for this particular case where the
numerical modelling input-output sets were used for the NN de-
velopment. The values of the numerical model outputs are domi-
nantly conditioned by the numerical constitutive model, used to
represent the rock mass behaviour. This allows minimal scatter-
ing of data, as the constitutive model is a “smooth” function with
unambiguous description of the stress-strain behaviour (for a
certain imposed stress value, a certain strain-displacement occurs).
Therefore, the supply of larger numerical input-output datasets
for NN development would not significantly increase the accuracy
of NN in predicting outputs from predefined inputs. The difference
would be if the experimental or observational datasets were used
for NN development where the significant data scattering is pres-
ent and where larger number of input-output pairs would be nec-
essary for NN to find a meaningful relationship. However, even in
the case when the NN is developed on small datasets, some techni-
ques are available to increase the accuracy of NN (see Ingrassia and
Morlini 2005; Feng et al. 2019). The regression coefficients were
determined for tunnel displacement (maximum displacement of
a tunnel crown), rock bolt axial load, and shotcrete stress. The
regression coefficient values for training, testing, and validation
datasets, as well for overall data, are shown in Fig. 8 for the stresses
induced in shotcrete. The R* values for the target-output evalua-
tions are 0.96 for training data, 0.92 for validation data, 0.94 for
testing data, and 0.95 for overall data. The target-output data for
rock bolt axial load and tunnel displacement result in even higher
values of R? leading to the conclusion that NetTUNN performs
very well in establishing the complex, nonlinear, relationships
between rock mass parameters (UCS, GSI, and m;) and tunnel design
parameters (Y, CA, SM).

Further, the normal distribution of rock mass parameters (GSI,
UCS, m;), shown in Fig. 3, was used as an input for the developed

v

NetTUNN to determine the distributed (Y, CA, SM) output, as
shown in Fig. 9.

The distribution of tunnel crown displacement Ygisp nn» PTE-
dicted by the model, is shown in Fig. 9a. The data have a mean
value of 2.71 cm and standard deviation of 0.56 cm. Figure 9b
shows several CA; ny (i =1, 2, 3, 4, 5) curves representing the dis-
tributions of axial load in the rock bolts, together with the distri-
bution of capacity considered for the ULS condition. The curve
CA; NN is a distribution of maximum load in the most highly
loaded rock bolt along the analysed cross section. It is evident
from Fig. 9b that a significant number of the predicted values
exceed the ULS load. It is worth noting that this condition would
lead to rock bolt failure, rather than failure of the tunnel itself.
In the event of an individual rock bolt failing, plastic failure of a
zone of rock around the bolt and tunnel displacement will occur
(Carranza-Torres 2009) followed by load redistribution. To model
this phenomenon, the curves of distribution of the second, third,
fourth, and fifth most loaded rock bolts were determined. In
these analyses, CA, nn represents the distribution of a maximum
load within second most loaded rock bolt where the first most
loaded rock bolt is considered as failed, which was achieved by
simply eliminating it in numerical analyses. Similarly, CAz nn
represents the distribution of a maximum load within third most
loaded rock bolt where the first and second most loaded rock
bolts are considered as failed, and so on. The axial load mean val-
ues of curves CA; ny to CAs nn reduced from 198 to 113 kN with a
significant drop occurring (below the ULS distribution) when the
second rock bolt failed. The sensitivity analysis shows that failure
of the five most loaded rock bolts had limited impact on the overall
tunnel displacement and stresses in the shotcrete lining. The distri-
bution of the maximum predicted value of uniaxial compression
stress within the shotcrete, SMy,ax NN, 1S shown in Fig. 9c. The posi-
tion of SMp,ax N Il @ given cross section varies depending on the
rock mass parameter’s value and is determined as given in eq. 10.
The data have a mean value of 18.5 MPa with standard deviation of
1.3 MPa. The interaction of axial force and bending moment is con-
sidered in this study, due to fact that all analyses yielded signifi-
cantly higher shotcrete uniaxial compression stress values when
compared to shear force - bending moment interaction.

Comparison with in situ monitoring and testing results
An intensive monitoring program was implemented in Tunnel
Pecine with data collected periodically during construction and
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Fig. 8. (a) Training, (b) validation, (c) testing, and (d) overall datasets with correlation of NetTUNN-predicted shotcrete stress and the

numerically obtained values. [Colour online.]
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continuing to the present day. The data collected include mea-
surement of deformations and displacements using standard sur-
vey points as well as inclinometers and deformeters installed
from ground level to the depth of the tunnel for a number of
cross sections (see Fig. 6). Data recorded by a deformeter placed
above the centreline of the tunnel show the development in dis-
placement during the construction process (see Fig.10).

The monitored crown displacements measured, after the pri-
mary support system was installed, show a high match with the
mean value of the Yyjs, nn distribution shown in Fig. 9a, with the
monitored value being only 4% lower than the NetTUNN deter-
mined value.

In addition to the monitoring programme, an extensive quality-
control testing programme was conducted. This included the pull-
out tests for determination of installed rock bolt capacity, as well
as laboratory testing of the shotcrete UCS on samples taken from
installed shotcrete. The monitored crown displacement measured,
after the primary support system was installed, was ~26 mm,
close to the mean value of displacement predicted with the
model: 27 mm (see Fig. 9a). The pull-out tests were conducted
with respect to the ISRM standard (ISRM 1974), where a total of
19 rock bolts were tested. The failure mode in all of these tests
was yielding of the central steel bar of a rock bolt, rather than
geotechnical failure of the rock. This is not surprising considering
the very large values of pull-out capacity given through a combina-
tion of rock bolt length and the high unit shear strength between
the grout and surrounding rock mass. In total, 77 samples of
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shotcrete were taken and tested in the laboratory using a hydraulic
press apparatus. For the purpose of analysing the uniaxial com-
pression stress data, and considering the C25/30 shotcrete class,
the in situ strength requirements included a 0.85 reduction factor
to allow for the effects of in situ coring, as recommended by
EFNARC (1996).

Reliability analysis using MCS and approximate techniques

Reliability analyses were conducted on the NetTUNN output
distribution curves shown in Fig. 9, using both MCS and the
approximate techniques to enable comparison between the
methods.

Some definition of the SLS is required to define the “capacity.”
In this study, an allowable value for the tunnel crown displace-
ment of 4 cm was chosen to represent convergence equal to 2.5%
of tunnel width. The performance function thus becomes

g(X) =4.0— YdisprN(GSLUCS,mi)

This was solved by the means of MATLAB software (MathWorks
2019), with the MCS analysis giving a reliability index, 8, value of
2.23, meaning that the probability (ps) of the tunnel displacement
exceeding 4.0 cm is 1.3%. A sensitivity analysis was performed to
consider the impact of the maximum tunnel displacements on
the results. Values of allowable displacement of between 3 and
6 cm were considered see (Table 1). The probability of exceeding
the 3.0 cm displacement value is 31.1%, with a very low 3 value of
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Fig. 9. (a) Displacement, (b) rock bolt axial force, and (c) shotcrete
uniaxial compression stress distribution obtained from the
NetTUNN. [Colour online.]
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0.49. The probability of displacement exceeding the 6.0 cm limit
has a significantly higher 8 value of 5.67 and a psof 7 x 10~ ”. The
B and prvalues were also evaluated using the approximate tech-
niques (see Table 1), where it is shown that the MCS, evaluated on
the full NetTUNN distribution, gives lower values of 8 and ps.
Considering the minimum value of reliability index given by the
Eurocode EN 1990 (CEN 2002), where the SLS B for a 50 year refer-
ence period is recommended as 1.5, the obtained values of dis-
placement can be considered as acceptable if the admissible
value is 4.0 cm or higher. Of course, if it is assumed that the
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Fig. 10. Vertical displacement obtained during construction from
the deformeter measurements. [Colour online.]
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design life of the tunnel is more than 100 years, the recom-
mended values of 8 would be even lower.

Given that the pull-out tests revealed yielding of the steel bars
as being the critical failure mode for the installed rock bolts, a
ULS capacity distribution curve (Fig. 9b) was developed based on
the specification given by manufacturer of the steel section. The
distribution curve has a mean value of 236 kN with a relatively
low standard deviation of 6 kN. The performance function
according to eq. 8 is

g(X) = CAdistr, ULS — CAi_NN,max(GSL UCSv mi)

The MCS analysis shows that the probability that one rock bolt
at the tunnel profile will exceed the ULS is 20.5%, with a low B
value of 0.82. Similar values were obtained when considering two
rock bolts (pr = 18.2%, B = 0.91), because the rock bolts were
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Table 1. B and p¢for different reliability assessment methods (MCS, FORM, PEM, FOSM) applied on a case study tunnel.
MCS FORM PEM FOSM
Limit state Criteria B pr(%) B (%) B pr(%) B (%)
SLS displacement “Y”  Displacement exceeding admissible % El 3 049 311 0.53 299 0.54 295 0.75 22.8
values § < 4 222 130 229 109 245 071 273 0.32
CE 5 395 4x10° 4.03 3x10° 430 9x10* 461 2x107*
ZE 6 567 7x107 581 3x107 617 3x10° 654 3x107°
ULS rock bolt Rock bolt load exceeding rock bolt o0 1 082 205 085 19.7 095 170 132 93
capacity “CAmax” capacity ;5 2 091 182 0.93 175 097 16.6 122 112
§ g 3 380 7x10° 392 4x10° 415 2x10° 449 4x107*
= EE 4 458 3x107 462 2x107 468 1x107 478 9x107
Swg 5 525 8x10° 531 6x10° 537 4x10° 548 2x10°
Sg &
Z 8O
ULS shotcrete Shotcrete stress exceeding shotcrete capacity 3.88 5x10° 372 9x10° 371 001 312 0.09

capacity “SMmax”

positioned on opposite sides of the tunnel cross section. How-
ever, the probability that the loads within a third rock bolt will
exceed the ULS is significantly lower with a value of 0.0072% with
a correspondingly high value of 8 = 3.8. The probability of failure
of the fourth or fifth rock bolt is very low, as seen in Table 1. From
this, it can be concluded that overall failure of the tunnel due to
rock bolt failure is of low probability. 8 and ps were also eval-
uated using the approximate techniques and, similar to the SLS
analysis, it is demonstrated that the MCS results in lower values
of both B and pg. With respect to the recommended values of reli-
ability index for ULS, as given in the Eurocode EN 1990 (CEN
2002), the minimum g value for a 50 year reference period is 3.8.
All of the considered reliability analysis methods yield larger 3
values than the recommended one, if failure of three of more
rock bolts is considered.

The distribution of the uniaxial compression stress capacity of
the shotcrete was determined based on the laboratory tests
results, and the ULS curve is shown in Fig. 9c. It has a mean value
of 24.1 MPa with a standard deviation of 0.7 MPa. The perform-
ance function was determined by the means of eq. 9 as

2(X) = SMistr,uts — SMNN, max (GSI, UCS, m;)

The MCS analysis resulted in a 8 = 3.88 value, meaning there is
0.0052% probability that the most loaded part of shotcrete will
exceed the shotcrete uniaxial compression stress capacity, higher
than the values recommended by the Eurocode for a 50 year ref-
erence period. However, unlike the SLS and rock bolt ULS analy-
sis, when compared to the approximate techniques, here MCS
yields the lowest values. The reliability indexes are 3.72 (FORM),
3.71 (PEM), and 3.12 (FOSM), meaning a 0.009% (FORM), 0.01%
(PEM), and 0.09% (FOSM) probability that the shotcrete uniaxial
compression stress capacity will be exceeded.

Conclusions

The complex geological character of the rock mass surround-
ing a tunnel suggests that reliability-based methods are more
suitable for tunnel design than deterministic methods. This is
especially the case for a karstic rock mass due to its susceptibility
to rapid local deterioration. In a number of papers, rock mass
parameters — such as GSI, UCS, and m; — are considered as
uncertain inputs for the tunnel design process. The parameters
are used for numerical stress-strain analysis of tunnel - rock
mass interaction, but when it comes to application of reliability
techniques, these numerical models usually rely on approximate
reliability assessment techniques. The reason for this is that
simulation-based methods, such as MCS, require a large number
of numerically complex evaluations of the tunnel behaviour,
which is usually not feasible in practice despite the high

processing powers of modern-day computers. At the same time,
MCS is often regarded as the “more accurate and reliable”
method when compared to approximation techniques. To over-
come the time-consuming aspect of MCS, this paper offers a solu-
tion in the form of a custom-made NN called NetTUNN, trained to
learn complex nonlinear relationships between rock mass pa-
rameters and tunnel design parameters.

It was found that NetTUNN can be used as a tool for defining
design parameters for tunneling in karstic rock masses, signifi-
cantly reducing the time necessary for probabilistic determina-
tion of tunnel design parameters. For a defined rock mass
parameter distribution, NetTUNN gives a complete distribution
of the tunnel displacement, rock bolt forces, and stresses in the
tunnel lining. The efficiency of NetTUNN is demonstrated on
a case study of the construction of the Pecine road tunnel in
Croatia. It was shown that approximate reliability assessment
techniques generally overestimate the reliability index and
underestimate probability of failure when compared to the
NetTUNN-assisted MCS. The probability of exceeding the SLS
admissible value is generally higher for MCS than for approxima-
tion techniques, and the same is the case for the probability of
exceeding ULS for rock bolt elements. However, when consider-
ing the probability of exceeding the uniaxial compression stress
capacity in the shotcrete, the approximation techniques underes-
timate the MCS values. Further, additional validation of NetTUNN
is given through comparison of predicted tunnel displacement
with the displacement values obtained through tunnel monitor-
ing during construction being within 4% of the mean value pre-
dicted using the model. This clearly demonstrates the benefits of
using NN as a tool in reliability design of a rock mass tunnel.

Acknowledgement

The authors gratefully acknowledge the support from the H2020
Programme for SAFE-10-T project (Safety of Transport Infrastructure
on the TEN-T Network), funded under H2020-MG-2016-2017 - Mobility
for Growth call, grant agreement No. 723254.

References

Akcin, H., and Celik, C.T. 2013. Performance of artificial neural networks on
Kriging method in modeling local geoid. Boletim de Ciéncias Geodésicas,
19(1): 84-97. doi:10.1590/S1982-21702013000100006.

Baci¢, M. 2019 Current and future aspects of Eurocode 7 application in
rock engineering. In Proceedings of the ISRM Specialised Conference
“Geotechnical challenges in karst”, Omi$, Croatia, 11-13 April 2019. Cro-
atian Geotechnical Society, Zagreb, pp. 127-132.

Benardos, A., and Kaliampakos, D. 2004. Modelling TBM performance with
artificial neural networks. Tunnelling and Underground Space Technol-
ogy, 19(6): 597-605. doi:10.1016/j.tust.2004.02.128.

Bjureland, W., Spross, J., Johansson, F., Priastings, A., and Larsson, S. 2017.
Reliability aspects of rock tunnel design with the observational method.

<. Published by NRC Research Press


http://dx.doi.org/10.1590/S1982-21702013000100006
http://dx.doi.org/10.1016/j.tust.2004.02.128

Can. Geotech. J. Downloaded from cdnsciencepub.com by TU Delft on 04/06/21
For personal use only.

466

International Journal of Rock Mechanics and Mining Sciences, 98: 102—
110. doi:10.1016/j.ijrmms.2017.07.004.

Bozorgzadeh, N., and Harrison, J.P. 2019. Reliability-based design in rock en-
gineering: Application of Bayesian regression methods to rock strength
data. Journal of Rock Mechanics and Geotechnical Engineering, 11(3):
612-627. d0i:10.1016/j.jrmge.2019.02.002.

Brito, M.G., Durdo, F., Pereira, H.G., and Rogado, ].Q. 1997. Classification of
heterogeneous industrial rocks: Three different approaches. In Proceed-
ings of IAMG’97-3rd Annual Conference of International Association for
Mathematical Geology, Barcelona, Spain, 22-27 September 1997. Interna-
tional Center for Numerical Methods in Engineering, Barcelona, pp. 875-
879.

Cai, M. 2011. Rock mass characterization and rock property variability con-
siderations for tunnel and cavern design. Rock Mechanics and Rock Engi-
neering, 44(4): 379-399. doi:10.1007/s00603-011-0138-5.

Carranza-Torres, C. 2009. Analytical and numerical study of the mechanics
of rockbolt reinforcement around tunnels in rock masses. Rock Mechanics
and Rock Engineering, 42(2): 175-228. doi:10.1007/s00603-009-0178-2.

CEN. 2002. Eurocode - Basis of structural design. European standard EN 1990.
CEN, Brussels.

CEN. 2004. Eurocode 7: Geotechnical design - 1. part: General Rules. Euro-
pean standard EN 1997-1. CEN, Brussels.

Ceri¢, A., Marci¢, D., and Ivandi¢, K. 2011. A risk-assessment methodology in
tunneling. Technical Gazette, 18(4): 529-536.

Ching, J., Li, K.-H., Phoon, K.-K., and Weng, M.C. 2018. Generic transforma-
tion models for some intact rock properties. Canadian Geotechnical Journal,
55(12): 1702-1741. doi:10.1139/cgj-2017-0537.

Chowdhury, M., Alouani, A., and Hossain, H. 2010. Comparison of ordinary
Kriging and artificial neural network for spatial mapping of arsenic con-
tamination of groundwater. Stochastic Environmental Research and Risk
Assessment, 24(1): 1-7. d0i:10.1007/s00477-008-0296-5.

Cornell, A. C. 1971. First Order uncertainty analysis of soils deformation
and stability. In Proceedings of the First Conference on Applications of
Statistics and Probability to Soil and Structural Engineering, Hong Kong,
13-16 September 1971. pp. 130-144.

Dai, S.-H., and Wang, M. 1992. Reliability analysis in engineering applica-
tions. Van Nostrand Reinhold, New York, USA.

Doukim, C. A, Dargham, J. A., and Chekima, A. 2010. Finding the number
of hidden neurons for an MLP neural network using coarse to fine search
technique. In Proceedings of the 10th International Conference on Infor-
mation Sciences, Signal Processing and their Applications (ISSPA ’10),
Kuala Lumpur, Malaysia, 10-13 May 2010. Institute of Electrical and Elec-
tronics Engineers, New York, pp. 606-609. doi:10.1109/ISSPA.2010.5605430.

EFNARC. 1996. European specification for sprayed concrete. The Report of
Sprayed Concrete Technical Committee, EFNARC Association House,
Farnham, UK.

Eshraghi, A., and Zare, S. 2015. Face stability evaluation of a TBM-driven tun-
nel in heterogeneous soil using a probabilistic approach. International Journal
of Geomechanics, 15(6): 04014095. doi:10.1061/(ASCE)GM.1943-5622.0000452.

Feng, S., Zhou, H., and Dong, H. 2019. Using deep neural network with small
dataset to predict material defects. Materials & Design, 162: 300-310.
doi:10.1016/j.matdes.2018.11.060.

Fortsakis, P., Litsas, D., Kavvadas, M., and Trezos, K. 2011. Reliability analysis
of tunnel final lining. In Proceedings of the 3rd International Symposium
on Geotechnical Safety and Risk (ISGSR), Munich, Germany, 2-3 June
2011. Bundesanstalt fiir Wasserbau, Karlsruhe, Germany, pp. 409-417.

Goh, A.T.C., and Kulhawy, F.H. 2003. Neural network approach to model the
limit state surface for reliability analysis. Canadian Geotechnical Journal,
40(6): 1235-1244. doi:10.1139/t03-056.

Goh, AT.C., and Kulhawy, F.H. 2005. Reliability assessment of serviceability
performance of braced retaining walls using a neural network approach.
International Journal for Numerical and Analytical Methods in Geome-
chanics, 29(6): 627-642. doi:10.1002/nag.432.

Hadjigeorgiou, J., and Harrison, J.P. 2011. Uncertainty and sources of error
in rock engineering. In Proceedings of the 12th ISRM International Congress
on Rock Mechanics, Beijing, China, 18-21 CRC Press, Boca Raton, Flor-
ida, pp. 2063-2067.

Hammerstrom, D. 1993. Neural networks at work. IEEE Spectrum, 30(6): 26—
32. doi:10.1109/6.214579.

Harrison, J.P. 2019. Challenges in determining rock mass properties for reli-
ability-based design. In Proceedings of the 7th International Symposium
on Geotechnical Safety and Risk, Taipei, Taiwan, 11-13 December 2019.
Research Publishing, pp. 35-44.

Hasegawa, N., Hasegawa, S., Kitaoka, T., and Ohtsu, H. 2019. Applicability of
neural network in rock classification of mountain tunnel. Materials
Transactions, 60(5): 758-764. doi:10.2320/matertrans.Z-M2019809.

Hasofer, A.M., and Lind, N.C. 1974. Exact and invariant second moment code
format. Journal of the Engineering Mechanics Division, 100(1): 111-121.
Hoek, E. 1998. Reliability of the Hoek-Brown estimates of rock mass proper-
ties and their impact on design. International Journal of Rock Mechanics

and Mining Sciences, 35(1): 63-68. d0i:10.1016/S0148-9062(97)00314-8.

Hoek, E., and Diederichs, M.S. 2006. Empirical estimation of rock mass mod-
ulus. International Journal of Rock Mechanics & Mining Sciences, 43(2):
203-215. doi:10.1016/j.ijrmms.2005.06.005.

Can. Geotech. J. Vol. 58, 2021

Hoek, E., Carranza-Torres, C., and Corkum, B. 2002. Hoek-Brown failure cri-
terion. In Proceedings of 5th North American Rock Mechanics Sympo-
sium and 17th Tunnelling Association of Canada: NARMS-TAC, Toronto,
Canada, 17-10 July 2002. University of Toronto Press, Toronto, pp. 267-
273.

Hoek, E., Carranza-Torres, C., Diederichs, M., and Corkum, B. 2008. Integra-
tion of geotechnical and structural design in tunneling, the 2008 Kersten
Lecture. In Proceedings of the 56th Annual Geotechnical Engineering
Conference, Minneapolis, USA, 29 February 2008. Available from www.
geoengineer.org/publications [accessed 20 September 2019|.

Idris, M.A., Saiang, D., and Nordlund, E. 2011a. Probabilistic analysis of open
stope stability using numerical modelling. International Journal of Mining
and Mineral Engineering, 3(3): 194-219. doi:10.1504/[JMME.2011.043849.

Idris, M.A., Saiang, D., and Nordlund, E. 2011b. Numerical analyses of the
effects of rock mass property variability on open stope stability. In Pro-
ceedings of 45th U.S. Rock Mechanics/Geomechanics Symposium, San
Francisco, California 26-29 June 2011. American Rock Mechanics Associa-
tion, Alexandria, Virginia, Paper ID: ARMA-11-297.

Ingrassia, S., and Morlini, I. 2005. Neural network modeling for small data-
sets. Technometrics, 47(3): 297-311. doi:10.1198/004017005000000058.

ISRM, 1974. Pull-out test for rock bolts. Commission on Standardization of
Laboratory and Field Test, International Society for Rock Mechanics,
Lisbon, Portugal.

Itasca 2019. Fast Lagrangian Analysis of Continua (FLAC). Itasca Consulting
Group, Inc. Minneapolis, USA.

Jiang, C., Zhou, C, Liu, J., Lan, T., Yang, G., Zhao, Z., et al. 2015. Comparison
of the Kriging and neural network methods for modelling foF2 maps
over North China region. Advances in Space Research, 56(1): 38—46. doi:101016/j.
asr.2015.03.042.

Johanson, F., Bjureland, W., and Spross, J. 2016. Application of reliability-
based design methods to underground excavations in rock. BeFo Rock
Engineering Research Foundation. Report, 155. Stockholm, Sweden.

Juri¢-Kacuni¢, D., Arapov, 1., and Kovacevi¢, M.S. 2011. New approach to the
determination of stiffness of carbonate rocks in Croatian karst. Gradevinar,
63(2): 177-185.

Kaewkongkaew, K., Phien-Wej, N., and Kham-Ai, D. 2015. Prediction of rock
mass along tunnels by geostatistics. KSCE Journal of Civil Engineering,
19(1): 81-90. doi:10.1007/s12205-014-0505-3.

Kar, S.S., and Ramalingam, A. 2013. Is 30 the magic number? Issues in sam-
ple size estimation. National Journal of Community Medicine, 4(1): 175-
179.

Kovacevi¢, M.S., Juri¢-Kac¢uni¢, D., and Simovi¢, R. 2011. Determination of
strain modulus for carbonate rocks in Croatian karst. Gradevinar, 63(1):
35-41.

Kuzelicki, R., and Ruzi¢, D. 2008. Tunnel Pecine. Gradevinar, 60(6): 529-542.

Langford, J.C., and Diederichs, M.S. 2011. Application of reliability methods
in geological engineering design. In Conference proceedings of 2011 Pan-
Am CGS Geotechnical Conference, Toronto, Canada, 2-6 October 2011. Ca-
nadian Geotechnical Society, Toronto, Paper ID: 708.

Langford, J.C., and Diederichs, M.S. 2013. Reliability based approach to tun-
nel lining design using a modified point estimate method. International
Journal of Rock Mechanics and Mining Sciences, 60: 263-276. doi:10.1016/
j-ijrmms.2012.12.034.

Lee, C., and Sterling, R. 1992. Identifying probable failure modes for under-
ground openings using a neural network. International Journal of Rock
Mechanics and Mining Sciences and Geomechanics Abstracts, 29(1): 49—
67. d0i:10.1016/0148-9062(92)91044-6.

Leu, S.-S., and Adi, T.J.W. 2011. Probabilistic prediction of tunnel geology
using a Hybrid Neural-HMM. Engineering Applications of Artificial Intel-
ligence, 24(4): 658-665. doi:10.1016/j.engappai.2011.02.010.

Li, H.Z., and Low, B.K. 2010. Reliability analysis of circular tunnel under hydro-
static stress field. Computers and Geotechnics, 37(1-2): 50-58. doi:10.1016/j.
compgeo.2009.07.005.

Li, D.-Q., Zheng, D., Cao, Z.-]., Tang, X.-S., and Phoon, K.-K. 2016. Response
surface methods for slope reliability analysis. Review and comparison.
Engineering Geology, 203: 3-14. doi:10.1016/j.enggeo.2015.09.003.

Li, Q., and Low, B.K. 2011. Probabilistic analysis of underground rock exca-
vations using response surface method and SORM. Computers and Geo-
technics, 38(8): 1008-1021. doi:10.1016/j.compge0.2011.07.003.

Li, Q., Chan, C.L., and Low, B.K. 2012. Probabilistic evaluation of ground-
support interaction for deep rock excavation using artificial neural network and
uniform design. Tunnelling and Underground Space Technology, 32: 1-18.
doi:10.1016/j.tust.2012.04.014.

Li, Q., Chan, C.L, and Low, B.K. 2013. System reliability assessment for a
rock tunnel with multiple failure modes. Rock Mechanics and Rock Engi-
neering, 46(4): 821-833. doi:10.1007/s00603-012-0285-3.

Ld, Q., Xiao, Z.-P, Ji, J., Zheng, J., and Shang, Y.-Q. 2017. Moving least squares
method for reliability assessment of rock tunnel excavation considering
ground-support interaction. Computers and Geotechnics, 84: 88-100. doi:10.
1016/j.compge0.2016.11.019.

Li, Q., Xiao, Z., Zheng, J., and Shang, Y. 2018. Probabilistic assessment of
tunnel convergence considering spatial variability in rock mass proper-
ties using interpolated autocorrelation and response surface method.
Geoscience Frontiers, 9(6): 1619-1629. doi:10.1016/j.gsf.2017.08.007.

<. Published by NRC Research Press


http://dx.doi.org/10.1016/j.ijrmms.2017.07.004
http://dx.doi.org/10.1016/j.jrmge.2019.02.002
http://dx.doi.org/10.1007/s00603-011-0138-5
http://dx.doi.org/10.1007/s00603-009-0178-2
http://dx.doi.org/10.1139/cgj-2017-0537
http://dx.doi.org/10.1007/s00477-008-0296-5
http://dx.doi.org/10.1109/ISSPA.2010.5605430
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000452
http://dx.doi.org/10.1016/j.matdes.2018.11.060
http://dx.doi.org/10.1139/t03-056
http://dx.doi.org/10.1002/nag.432
http://dx.doi.org/10.1109/6.214579
http://dx.doi.org/10.2320/matertrans.Z-M2019809
http://dx.doi.org/10.1016/S0148-9062(97)00314-8
http://dx.doi.org/10.1016/j.ijrmms.2005.06.005
http://www.geoengineer.org/publications
http://www.geoengineer.org/publications
http://dx.doi.org/10.1504/IJMME.2011.043849
http://dx.doi.org/10.1198/004017005000000058
http://dx.doi.org/10.1016/j.asr.2015.03.042
http://dx.doi.org/10.1016/j.asr.2015.03.042
http://dx.doi.org/10.1007/s12205-014-0505-3
http://dx.doi.org/10.1016/j.ijrmms.2012.12.034
http://dx.doi.org/10.1016/j.ijrmms.2012.12.034
http://dx.doi.org/10.1016/0148-9062(92)91044-6
http://dx.doi.org/10.1016/j.engappai.2011.02.010
http://dx.doi.org/10.1016/j.compgeo.2009.07.005
http://dx.doi.org/10.1016/j.compgeo.2009.07.005
http://dx.doi.org/10.1016/j.enggeo.2015.09.003
http://dx.doi.org/10.1016/j.compgeo.2011.07.003
http://dx.doi.org/10.1016/j.tust.2012.04.014
http://dx.doi.org/10.1007/s00603-012-0285-3
http://dx.doi.org/10.1016/j.compgeo.2016.11.019
http://dx.doi.org/10.1016/j.compgeo.2016.11.019
http://dx.doi.org/10.1016/j.gsf.2017.08.007

Can. Geotech. J. Downloaded from cdnsciencepub.com by TU Delft on 04/06/21
For personal use only.

Kovacevi¢ et al.

Mahdevari, S., and Torabi, S.R. 2012. Prediction of tunnel convergence using
artificial neural networks. Tunnelling and Underground Space Technol-
ogy, 28(1): 218-228. d0i:10.1016/j.tust.2011.11.002.

Majdi, A., and Beiki, M. 2010. Evolving neural network using a genetic algo-
rithm for predicting the deformation modulus of rock masses. Interna-
tional Journal of Rock Mechanics and Mining Sciences, 47(2): 246-253.
d0i:10.1016/j.ijrmms.2009.09.011.

Marinos, P., and Hoek, E. 2000. GSI: a geologically friendly tool for rock mass
strength estimation. In Proceedings of GeoEng2000: An International Confer-
ence on Geotechnical and Geological Engineering, Melbourne, Australia,
19-24 November 2000. Technomic Publishing, Lancaster, Pennsylvania,
pp. 1422-1446.

Marinos, V., Marinos, P., and Hoek, E. 2005. The geological strength index:
applications and limitations. Bulletin of Engineering Geology and the
Environment, 64(1): 55-65. doi:10.1007/s10064-004-0270-5.

MathWorks 2019. MATLAB. MathWorks, Natick, Massachusetts, USA.

Miranda, T., Correia, G., and Sousa, L.R. 2007. Use of Al techniques and updat-
ing in geomechanical characterisation. In Proceedings of the 11th Congress
of the International Society for Rock Mechanics, Lisbon, Portugal, 9-13 July
2007. Taylor & Francis, London. Available from www.sieeum.eng.uminho.pt/
publicacoes [accessed 28 September 2019].

Mollon, G., Dias, D., and Soubra, A.H. 2009. Probabilistic analysis of circular
tunnels in homogeneous soil using response surface methodology. Jour-
nal of Geotechnical and Geoenvironmental Engineering, 135(9): 1314—
1325. doi:10.1061/(ASCE)GT.1943-5606.0000060.

Moon, HK., Na, S.M., and Lee, C.W. 1995. Artificial neural-network inte-
grated with expert-system for preliminary design of tunnels and slopes.
In Proceedings of the 8th International Congress on Rock Mechanics, Tokyo,
Japan, 25-30 September 1995. Balkema, Rotterdam, pp. 901-905.

Onodera, T.F. 1963. Dynamic investigation of foundation rocks in situ. In
Proceedings of the 5th US Symposium on Rock Mechanics, Minnesota,
USA, May 1962. Pergamon Press, New York, pp. 517-533.

Oraee, B., Tavassoli, M., and Oraee, K. 2011. Designing shotcrete as primary
support in tunnels. In Proceedings of 30th International Conference on
Ground Control in Mining, Morgantown, USA, 26-28 July 2011. West Vir-
ginia University, USA, pp. 320-325.

Oreste, P. 2005. A probabilistic design approach for tunnel supports. Com-
puters and Geotechnics, 32(7): 520-534. doi:10.1016/j.compgeo.2005.09.003.
Phoon, K.K., and Kulhawy, F.H. 1999. Characterization of geotechnical vari-
ability. Canadian Geotechnical Journal, 36(4): 612-624. doi:10.1139/t99-

038.

Pollak, D. 2007. Influence of carbonate rock masses on their engineering-
geological properties. Doctoral thesis, Faculty of Mining, Geology and
Petroleum Engineering, University of Zagreb. [In Croatian.]

Reale, C., Gavin, K., Libri¢, L., and Juri¢-Kacuni¢, D. 2018. Automatic classifi-
cation of fine-grained soils using CPT measurements and Artificial Neural
Networks. Advanced Engineering Informatics, 36: 207-215. doi:10.1016j.
2ei.2018.04.003.

Rosenblueth, E. 1975. Point estimate for probability moments. Proceedings
of the National Academy of Science USA, 72(10): 3812-3814. d0i:10.1073/
pnas.72.10.3812. PMID:16578731.

Samui, P., and Sitharam, T.G. 2010. Site characterization model using artifi-
cial neural network and Kriging. International Journal of Geomechanics,
10(5): 171-180. doi:10.1061/(ASCE)1532-3641(2010)10:5(171).

Santos, V., Da Silva, A.P.F.,, and Brito, M.G. 2015. Prediction of RMR ahead
excavation front in D&B tunnelling. In Proceedings of the IAGE XII

467

Congress, Torino, Italy, 15-19 September 2014. Springer International
Publishing: Cham, Switzerland, pp. 415-419. d0i:10.1007/978-3-319-09060-
3_72.

Sari, M. 2009. The stochastic assessment of strength and deformability char-
acteristics for a pyroclastic rock mass. International Journal of Rock
Mechanics and Mining Sciences, 46(3): 613-626. doi:10.1016/j.ijrmms.
2008.07.007.

Schoenmakers, J.G.M., Heemink, A.W., Ponnambalam, K., and Kloeden, P.E.
2002. Variance reduction for Monte Carlo simulation of stochastic environ-
mental models. Applied Mathematical Modelling, 26(8): 785-795. doi:10.1016/
S0307-904X(01)00091-9.

Shreider, Y.A. 1964. Method of statistical testing (Monte Carlo method).
Elsevier Publishing Company, Amsterdam.

Shahin, M.A., Jaksa, M.B., and Maier, H.R. 2001. Artificial neural network
applications in geotechnical engineering. Australian Geomechanics, 36(1):
49-62.

Sheela, K.G., and Deepa, S.N. 2013. Review on methods to fix number of hid-
den neurons in neural networks. Mathematical Problems in Engineering,
2013: 425740. doi:10.1155/2013/425740.

Shi, M., Sun, W,, Zhang, T., Liu, Y., Wang, S., and Song, X. 2019. Geology pre-
diction based on operation data of TBM: comparison between deep neural
network and soft computing methods. In Proceeding of the 1st International
Conference on Industrial Artificial Intelligence (IAI), Shenyang, China,
2327 July 2019. Institute of Electrical and Electronics Engineers, New York.
Available from www.ieeexplore.ieee.org [accessed 10 September 2019].

Sitharam, T.G., Samui, P., and Anbazhagan, A. 2008. Spatial variability of
rock depth in bangalore using geostatistical, neural network and support
vector machine models. Geotechnical and Geological Engineering, 26(5):
503-517. d0i:10.1007/s10706-008-9185-4.

Song, K.I., Cho, G.C., and Lee, S.W. 2011. Effects of spatially variable weath-
ered rock properties on tunnel behavior. Probabilistic Engineering
Mechanics, 26(3): 413-426. doi:10.1016/j.probengmech.2010.11.010.

Song, L., Li, H.-Z., Chan, C.L., and Low, B.K. 2016. Reliability analysis of
underground excavation in elastic-strain-softening rock mass. Tunnelling
and Underground Space Technology, 60: 66-79. doi:10.1016/j.tust.2016.06.015.

Trenn, S. 2008. Multilayer perceptrons: approximation order and necessary
number of hidden units. IEEE Transactions on Neural networks, 19(5):
836-844. doi:10.1109/TNN.2007.912306. PMID:18467212.

UQLab. 2020. UQLab: The framework for uncertainty quantification. Avail-
able from www.uqlab.com [accessed 21 January 2020].

Wang, Q., Fang, H., and Shen, L. 2016. Reliability analysis of tunnels using a
metamodeling technique based on augmented radial basis functions.
Tunnelling and Underground Space Technology, 56: 45-53. d0i:10.1016/j.
tust.2016.02.007.

Xue, J., and Gavin, K. 2007. Simultaneous determination of critical slip sur-
face and reliability index for slopes. Journal of Geotechnical and Geoen-
vironmental Engineering, 133(7): 878-886. do0i:10.1061/(ASCE)1090-0241
(2007)133:7(878).

Yoo, C., and Kim, J.-M. 2007. Tunneling performance prediction using an
integrated GIS and neural network. Computers and Geotechnics, 34(1):
19-30. doi:10.1016/j.compge0.2006.08.007.

Zhang, W.G., and Goh, AT.C. 2015. Regression models for estimating ulti-
mate and serviceability limit states of underground rock caverns. Engi-
neering geology, 188: 68-76. doi:10.1016/j.enggeo.2015.01.021.

Zhao, H., Ru, Z., Chang, X., Yin, S., and Li, S. 2014. Reliability analysis of tun-
nel using least square support vector machine. Tunnel and Underground
Space Technology, 41: 14-23. doi:10.1016/j.tust.2013.11.004.

<. Published by NRC Research Press


http://dx.doi.org/10.1016/j.tust.2011.11.002
http://dx.doi.org/10.1016/j.ijrmms.2009.09.011
http://dx.doi.org/10.1007/s10064-004-0270-5
http://www.sieeum.eng.uminho.pt/publicacoes
http://www.sieeum.eng.uminho.pt/publicacoes
http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000060
http://dx.doi.org/10.1016/j.compgeo.2005.09.003
http://dx.doi.org/10.1139/t99-038
http://dx.doi.org/10.1139/t99-038
http://dx.doi.org/10.1016/j.aei.2018.04.003
http://dx.doi.org/10.1016/j.aei.2018.04.003
http://dx.doi.org/10.1073/pnas.72.10.3812
http://dx.doi.org/10.1073/pnas.72.10.3812
http://www.ncbi.nlm.nih.gov/pubmed/16578731
http://dx.doi.org/10.1061/(ASCE)1532-3641(2010)10:5(171)
http://dx.doi.org/10.1007/978-3-319-09060-3_72
http://dx.doi.org/10.1007/978-3-319-09060-3_72
http://dx.doi.org/10.1016/j.ijrmms.2008.07.007
http://dx.doi.org/10.1016/j.ijrmms.2008.07.007
http://dx.doi.org/10.1016/S0307-904X(01)00091-9
http://dx.doi.org/10.1016/S0307-904X(01)00091-9
http://dx.doi.org/10.1155/2013/425740
http://www.ieeexplore.ieee.org 
http://dx.doi.org/10.1007/s10706-008-9185-4
http://dx.doi.org/10.1016/j.probengmech.2010.11.010
http://dx.doi.org/10.1016/j.tust.2016.06.015
http://dx.doi.org/10.1109/TNN.2007.912306
http://www.ncbi.nlm.nih.gov/pubmed/18467212
http://www.uqlab.com
http://dx.doi.org/10.1016/j.tust.2016.02.007
http://dx.doi.org/10.1016/j.tust.2016.02.007
http://dx.doi.org/10.1061/(ASCE)1090-0241(2007)133:7(878)
http://dx.doi.org/10.1061/(ASCE)1090-0241(2007)133:7(878)
http://dx.doi.org/10.1016/j.compgeo.2006.08.007
http://dx.doi.org/10.1016/j.enggeo.2015.01.021
http://dx.doi.org/10.1016/j.tust.2013.11.004

	Article
	Introduction
	The uncertain nature of rock mass parameters
	Rock mass strength and stiffness parameters
	Evaluation of rock mass parameter distribution

	Reliability index and probability of unsatisfactory performance
	An architecture of the NetTUNN neural network
	Case study example: Tunnel Pećine
	Rock mass input distributions
	NetTUNN neural network application
	Comparison with in situ monitoring and testing results
	Reliability analysis using MCS and approximate techniques

	Conclusions
	References



<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo true
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 150
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /LeaveColorUnchanged
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (sRGB IEC61966-2.1)
	/MonoImageMinResolutionPolicy /OK
	/ImageMemory 1048576
	/LockDistillerParams true
	/AllowPSXObjects true
	/DownsampleMonoImages true
	/PassThroughJPEGImages true
	/ColorSettingsFile (None)
	/AutoRotatePages /PageByPage
	/Optimize true
	/MonoImageDepth -1
	/ParseDSCComments true
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 99
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 1200
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness true
	/CompressPages true
	/GrayImageMinResolution 150
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/AutoFilterGrayImages true
	/EncodeColorImages true
	/AlwaysEmbed [
	]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/CompatibilityLevel 1.3
	/MonoImageResolution 600
	/NeverEmbed [
		/Arial-Black
		/Arial-BlackItalic
		/Arial-BoldItalicMT
		/Arial-BoldMT
		/Arial-ItalicMT
		/ArialMT
		/ArialNarrow
		/ArialNarrow-Bold
		/ArialNarrow-BoldItalic
		/ArialNarrow-Italic
		/ArialUnicodeMS
		/CenturyGothic
		/CenturyGothic-Bold
		/CenturyGothic-BoldItalic
		/CenturyGothic-Italic
		/CourierNewPS-BoldItalicMT
		/CourierNewPS-BoldMT
		/CourierNewPS-ItalicMT
		/CourierNewPSMT
		/Georgia
		/Georgia-Bold
		/Georgia-BoldItalic
		/Georgia-Italic
		/Impact
		/LucidaConsole
		/Tahoma
		/Tahoma-Bold
		/TimesNewRomanMT-ExtraBold
		/TimesNewRomanPS-BoldItalicMT
		/TimesNewRomanPS-BoldMT
		/TimesNewRomanPS-ItalicMT
		/TimesNewRomanPSMT
		/Trebuchet-BoldItalic
		/TrebuchetMS
		/TrebuchetMS-Bold
		/TrebuchetMS-Italic
		/Verdana
		/Verdana-Bold
		/Verdana-BoldItalic
		/Verdana-Italic
	]
	/CannotEmbedFontPolicy /Warning
	/AutoPositionEPSFiles true
	/PreserveOPIComments false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile ()
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/EmbedJobOptions true
	/MonoImageDownsampleType /Average
	/DetectBlends true
	/EncodeGrayImages true
	/ColorImageDownsampleType /Average
	/EmitDSCWarnings false
	/AutoFilterColorImages true
	/DownsampleGrayImages true
	/GrayImageDict <<
		/HSamples [
			1.0
			1.0
			1.0
			1.0
		]
		/QFactor 0.15
		/VSamples [
			1.0
			1.0
			1.0
			1.0
		]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/HSamples [
			1.0
			1.0
			1.0
			1.0
		]
		/QFactor 0.15
		/VSamples [
			1.0
			1.0
			1.0
			1.0
		]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName ()
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Gray Gamma 2.2)
	/ColorImageMinDownsampleDepth 1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ColorImageDepth -1
	/DetectCurves 0.1
	/PDFXTrapped /False
	/ColorImageFilter /DCTEncode
	/TransferFunctionInfo /Preserve
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/ColorACSImageDict <<
		/HSamples [
			1.0
			1.0
			1.0
			1.0
		]
		/QFactor 0.15
		/VSamples [
			1.0
			1.0
			1.0
			1.0
		]
	>>
	/DSCReportingLevel 0
	/PDFXOutputConditionIdentifier ()
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/PreserveCopyPage true
	/UsePrologue false
	/StartPage 1
	/MonoImageDownsampleThreshold 1.0
	/GrayImageDownsampleThreshold 1.0
	/CheckCompliance [
		/None
	]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 0
	/PreserveOverprintSettings false
	/UCRandBGInfo /Remove
	/ColorImageDownsampleThreshold 1.0
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Average
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
		/PTB <>
		/FRA <>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
		/NOR <>
		/DEU <>
		/SVE <>
		/DAN <>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
		/JPN <>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/SUO <>
		/ESP <>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
	>>
	/CropMonoImages true
	/DefaultRenderingIntent /RelativeColorimeteric
	/PreserveHalftoneInfo false
	/ColorImageDict <<
		/HSamples [
			1.0
			1.0
			1.0
			1.0
		]
		/QFactor 0.15
		/VSamples [
			1.0
			1.0
			1.0
			1.0
		]
	>>
	/CropGrayImages true
	/PDFXOutputCondition ()
	/SubsetFonts true
	/EncodeMonoImages true
	/CropColorImages true
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
	]
	/HWResolution [
		600
		600
	]
>>
setpagedevice


