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flow
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aDepartment of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, 2628BL,
Netherlands

bJ. M. Burgerscentre for Fluid Mechanics
cLaboratory for Aero and Hydrodynamics, Delft University of Technology

Abstract

We study the flow in a layer of conductive liquid under the influence of surface tension, gravity, and Lorentz
forces due to imposed potential differences and transverse magnetic fields, as a function of the Hartmann
number, the Bond number, the Reynolds number, the capillary number and the height-to-width ratio A.
For aspect ratios A ≪ 1 and Reynolds numbers Re ≤ A, lubrication theory is applied to determine the
steady state shape of the liquid surface to lowest order. Assuming low Hartmann (Ha ≤ O(1)), capillary
(Ca ≤ O(A4)), Bond (Bo ≤ O(A2)) numbers and contact angles close to 90◦, the flow details below the
surface and the free surface elevation for the complete domain are determined analytically using the method
of matched asymptotic expansions. The amplitude of the free surface deformation scales linearly with the
capillary number and decreases with increasing Bond number, while the shape of the free surface depends
on the Bond number and the contact angle condition. The strength of the flow scales linearly with the
magnetic field gradient and applied potential difference and vanishes for high aspect ratio layers (A → 0).
The analytical model results are confirmed by numerical simulations using a finite volume moving mesh
interface tracking method, where the Lorentz force is calculated from the equation for the electric potential.
It is shown that the analytical result for the free surface elevation is accurate within 0.4% from the numerical
results for Ha2 ≤ 1, Ca ≤ A4, Bo ≤ A2, Re ≤ A and A ≤ 0.1 and within 2% for A = 0.5. For A = 0.1, the
solution remains accurate within 1% of the numerical solution when either Ha2 is increased to 400, Ca to
200A4 or Bo to 100A2.

Keywords: magnetohydrodynamics, free surface, analytical solutions, numerical solutions, lubrication
theory, matched asymptotic expansions

1. Introduction

Magnetohydrodynamic (MHD) free surface flow of a conductive liquid in a spatially non-uniform magnetic
field is relevant to various applications in e.g. metallurgy [1, 2, 3, 4] and crystal growth processes, such as
Czochralski and Bridgman growth [2, 5, 6]

Wall-bounded single phase MHD flow of a conducting liquid in a magnetic field has been the subject
of many theoretical studies, e.g. pipe [7] and duct [8] flow in a uniform magnetic field, convection in a
non-uniform magnetic field [9], buoyancy driven Darcy flow in a uniform magnetic field [10, 11, 12], and
lubrication flow with injected currents [13]. Free surface MHD flow has been studied both theoretically and
experimentally, e.g. driven by an imposed magnetic field [14], by injected currents [15, 16], or due to buoyancy
[17].

In the present paper we will study the one-way coupled magnetohydrodynamic (MHD) free surface flow
of a conductive fluid in a shallow, two-dimensional cavity subject to a differentially applied electric potential
in a spatially non-uniform magnetic field. The Lorentz force will be the only driving force for the flow, while
gravity and surface tension act as the restoring forces for the free surface deformation. We will use the
analytical methods of lubrication theory and matched asymptotic expansions to determine the free surface
elevation and flow inside the cavity. This combination of methods has been used previously to study flows in
shallow cavities, for example in buoyancy driven single phase flow [18], and later for free surface flow driven
by a Marangoni force [19]. It has also been used for single phase MHD flow [20] and free surface MHD
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Figure 1: Schematic representation of the liquid layer, with a potential difference ∆ϕ across the domain and an insulated bottom.
The dash-dotted line is the undisturbed interface and the solid line h(x) is the equilibrium surface position after application of
a magnetic field in the direction perpendicular to the xy-plane, where the relative field strength is indicated in the top.

flow in a uniform magnetic field [21]. The combination of a free surface and a non-uniform magnetic field
distinguishes our work from previous studies.

Our analytical solutions will subsequently be compared with numerical results from a finite volume based
free surface, one-way coupled Navier-Stokes MHD flow solver. The free surface is modelled using a moving
mesh interface tracking (MMIT) method and the electric potential in the one-way coupled MHD problem is
calculated from a Poisson equation.

The goal of this paper is to (i) find asymptotic analytical solutions for the flow in a conductive layer
of fluid influenced by Lorentz, gravity and surface tension forces, (ii) validate a free surface MHD flow
solver in OpenFoam [22] against the obtained asymptotic analytical solutions and (iii) use the validated
numerical solver to explore the parameter space, in terms of Hartmann number, capillary number, Bond
number, Reynolds number and aspect ratio, for which the analytical solution is accurate. With the obtained
knowledge about its accuracy and limitations, the presented asymptotic analytical solutions may subsequently
serve as a benchmark for the validation of other numerical solvers for combined free surface and MHD flows.

This paper is outlined as follows. The mathematical framework is presented in section 2, this includes
the derivation of the flow in the core and the free surface elevation. In section 3, the turning flow near the
side walls is derived analytically. Section 4 demonstrates the applicability of the mathematical model for
increasing magnetic field strengths. Section 5 introduces the numerical method used in this paper and section
6 shows the verification of the mathematical solutions by means of the numerical model.

2. Mathematical model

We consider a two-dimensional, finite-size liquid layer of width l and initial height d, as depicted in figure
1. The liquid has an electrical conductivity σ, density ρ and kinematic viscosity ν. The fluid above the liquid
layer is assumed to have negligible electrical conductivity, density and viscosity. The surface tension between
the two phases is denoted by γ and the downward directed gravitational force by g.

The left wall of the system is kept at a fixed electrical potential − 1
2∆ϕ, the right wall at 1

2∆ϕ and the
bottom wall is electrically insulated. A magnetic field b′/b0 = −(αz′/l)x̂− (1 + αx′/l)ẑ is imposed, which in
the plane of interest, the z = 0 plane, gives a linearly increasing magnetic field b′ = −b0 (1 + αx′/l) ẑ. The
Lorentz force associated with this magnetic field has a zero z-component in the z = 0 plane.

In equilibrium, a net current flows from the right to the left wall. This imposed current, which is closed
externally, will later be shown to be an order of magnitude stronger than the induced current, and, which due
to its interaction with the magnetic field, leads to a Lorentz force f ′ = j′ × b′. This causes a net downward
force on the conducting liquid, which is stronger at the right side than at the left side. This will initiate a
circulating flow inside the fluid that via pressure build-up deforms the interface. Viscous, gravitational and
surface tension forces act to oppose the Lorentz force.

2.1. Conservation equations
The problem will be studied from the conservation equations for mass, momentum and current, which,

for an incompressible, non-Newtonian fluid, read

∇′ · u′ = 0, (1)
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∂u′

∂t′
+ (u′ · ∇′)u′ = −1

ρ
∇′p′ + ν∇′2u′ +

1
ρ
j′ × b′ + g′, (2)

∇′ · j′ = 0. (3)

In this set of equations, u′ is defined as the velocity u′ = u′x̂ + v′ŷ and g′ is defined as the gravitational
force g′ = −gŷ. The flow is not influencing the magnetic field, as the magnetic Reynolds number Rem =
σµu∗l ≪ 1, with µ the magnetic permeability and u∗ the characteristic velocity scale. Under these conditions,
the current j′ can be deduced from the Maxwell equations via the electric potential ϕ and is defined as
j′ = σ (−∇′ϕ′ + u′ × b′) [23].

2.2. Boundary conditions
The boundary conditions at the left, right and bottom wall follow from figure 1 and are

u′ = v′ = 0 ϕ′ = −1
2∆ϕ on x′ = − 1

2 l,
u′ = v′ = 0 ϕ′ = 1

2∆ϕ on x′ = 1
2 l,

u′ = v′ = 0 ϕ′
y′ = 0 on y′ = 0.

 (4)

The subscripts denote derivatives with respect to the coordinate in the subscript.
For the interface conditions at y′ = h′(x′) four conditions can be distinguished
(i) The kinematic condition describes the movement of the interface with the fluid. For steady state this

means that the flow has to be parallel to the interface, thus [19]

u′h′
x′ = v′ (5)

(ii) The tangential stress is continuous across the interface on both sides of the interface should balance.
Since the surface tension γ is constant and the viscosity above the free surface is negligible, the tangential
stress component at the interface is zero [19]

S′
ijn

′
jt

′
i = 0, (6)

where S′
ij is the stress tensor S′

ij = −p′δij + µ
(
u′

i, j + u′
j , i

)
, n′ the surface unit normal vector and t′ the

vector tangential to the surface.
(iii) The normal component is balanced by surface tension [19]:

S′
ijn

′
jn

′
i = γK, (7)

with K the curvature of the surface, determined by K = ∇ · n′ = h′
x′x′/(1 + h′

x′)3/2. (iv) The interface can
be regarded as an insulated boundary, which means that

j′in
′
i (8)

where n̂ is the unit surface normal vector.

2.3. Other constraints
Some additional constraints can be identified [19]. As the system is in a steady state, there will be no net

flow passing any plane, such that ∫ h′(x′)

0

u′(x′, y′)dy′ = 0. (9)

Furthermore, the mass of the layer of liquid is conserved, thus∫ 1
2 l

− 1
2 l

h′(x′)dx′ = ld. (10)

Finally the contact point behaviour at the three-phase point has to be described. For a contact angle θ, this
reads

h′
x′

(
±1

2
l

)
= ∓ tan

(
θ − π

2

)
. (11)
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2.4. Lubrication theory
To solve this problem, we follow the approach by Cormack et al. [24] and Sen and Davis [19]. The

analytical solutions to the model equations are obtained by using the lubrication theory strategy, which is
valid for fluid layers with a small aspect ratio (i.e. A = d/l → 0). By use of matched asymptotic expansions,
we will first derive a solution for the deformed interface location under the influence of a non-uniform Lorentz
force, where surface tension and gravity act as a restoring force. Secondly, we will derive the flow structure
of the turning flow in the side wall region.

We will solve this problem in dimensionless, lubrication type variables,

x′ = lx, y′ = dy, h′ = dh, u′ = u∗u,

v′ = Au∗v, p′ =
µu∗l

d2
p, b′ = b0b, ϕ′ = (∆ϕ)ϕ. (12)

Here the non-primed variables are the lubrication type variables. x and y are the horizontal and vertical
coordinates respectively, h is the free surface elevation, u and v are the horizontal and vertical velocity
components, b is the perpendicular component of the magnetic field and ϕ the electric potential. b0 is the
magnetic field strength in the centre of the cavity (x = 0) and the characteristic velocity u∗ is defined as

u∗ =
σ∆ϕb0αd

ρν
A, (13)

which follows from the balance between viscous and Lorentz forces.
The system is in a steady, two-dimensional motion. In lubrication variables and using A = d/l, the

conservation equations reduce to:

ux + vy = 0, (14)

ReA2 (uux + vuy) = −Apx + A3uxx + Auyy − 1
α

(
ϕy + Ha2Aub

)
b, (15)

ReA3 (uvx + vvy) = −py + A4vxx + A2vyy + A
1
α

(
ϕx − Ha2Avb

)
b − A

Bo

Ca
, (16)

A2ϕxx + ϕyy = Ha2
[
A3(vb)x − A(ub)y

]
. (17)

In this context, the Reynolds number, Re, the Hartmann number, Ha, the Bond number, Bo and the
capillary number Ca, are defined as

Re =
u∗d

ν
, Ha2 =

σb2
0d

2α

ρν
, Bo =

ρgd2

γ
, Ca =

ρνu∗

γ
. (18)

In order to eliminate the pressure from the conservation equations, we introduce the stream function ψ,
which obeys the continuity equation (equation 14)

u = ψy, v = −ψx, (19)

such that a single equation, similar to the one reported by Sen and Davis [19], in ψ remains instead of
equations for the horizontal and vertical momentum (equations 15 and 16):

ReA2
[
ψyψxyy − ψxψyyy − A2 (ψxψxxy − ψyψxxx)

]
= Aψyyyy + 2A3ψxxyy + A5ψxxxx

− 1
α

[
ϕyyb + A2 (ϕxxb + ϕxbx) + Ha2A

(
ψyyb2 + A2ψxxb2 + 2A2ψxbbx

)]
, (20)

and for the charge conservation equation

A2ϕxx + ϕyy = −Ha2
(
A3ψxxb + A3ψxbx + Aψyyb

)
. (21)
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The wall boundary conditions in lubrication variables reduce to:

ψx = ψy = 0 ϕ = − 1
2 on x = −1

2 ,
ψx = ψy = 0 ϕ = 1

2 on x = 1
2 ,

ψx = ψy = 0 ϕy = 0 on y = 0.

 (22)

The interface conditions can be rewritten in terms of the lubrication variables
(i) The kinematic condition,

ψyhx = −ψx (23)

(ii) Continuity of the tangential stress component follows from rewriting equation 6 to

2h′
x′(v′y′ − u′

x′) + (1 − h
′2
x′)(v′

x′ + u′
y′) = 0, (24)

which then reduces to
−4A2hxψxy + (1 − A2h2

x)(ψyy − A2ψxx) = 0. (25)

(iii) Continuity of the normal stress component follow from rewriting equation 7

γ
h′

x′x′√
1 + h

′2
x′

=
[
(−p′ + 2µu′

x′)h
′2
x′ + (−p′ + 2µv′y′) − 2µ(u′

y′ + v′
x′)h′

x′

]
, (26)

and then reduces to

Ca−1A3hxx(1 + A2h2
x)−3/2 = −p + 2A2(1 + A2h2

x)−1
[
−ψxy − hxψyy + A2hx(ψxx + hxψxy)

]
. (27)

The modified pressure pm is introduced to eliminate the hydrostatic pressure from the Navier-Stokes
equation 16, such that

pm = p + A
Bo

Ca
(y − 1), (28)

where −ABo/Ca is a reference pressure. Boundary condition 27, results in

A3hxx(1 + A2h2
x)−3/2 = −Capm + ABo(h − 1)

+ 2A2(1 + A2h2
x)−1

[
−ψxy − hxψyy + A2hx(ψxx + hxψxy)

]
. (29)

(iv) The electrical insultation condition

A2ϕxhx − ϕy = (Au + A3hxv)b. (30)

For the additional constraints in lubrication variables we find for the steady flow condition, mass conser-
vation and the contact angle requirement, respectively∫ h(x)

0

u(x, y)dy = 0, (31)∫ 1
2

− 1
2

h(x)dx = 1, (32)

hx

(
±1

2

)
= ∓A−1 tan

(
θ − π

2

)
. (33)

2.5. Solution strategy
The system of equations is now reduced to two equations with unknowns ψ and ϕ. The solution strategy

will be based on the method of matched asymptotic expansions [25], where we encounter boundary layers in
the side wall regions near x = ± 1

2 , where the flow turns. We will be looking for a solution where the flow is
in the x-direction only in the lowest order far from the side walls near x = 0. To obtain the expression that
is valid in the region far away from the wall, the stream function will be expanded as

ψ =
∞∑

n=0

Anψn(x, y), (34)
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where a similar expansion can be used for the pressure p, the electric potential ϕ and the interface deformation
h(x) =

∑∞
n=0 Anhn(x), where h0 = 1 is the undisturbed interface.

For the dimensionless parameters we will use the following asymptotic limits

Re = ReA, Ha2 = Ha2, (35)

where Re and Ha2 are of order O(1), and thus Re = O(A) and Ha2 = O(1). It should be noted that the
obtained results will be equally valid for Re < O(A) and the presented analytic derivation will be applicable
for Ha2 < O(1) as well.

To obtain the equation for the lowest order stream function ψ0, the assumptions in equations 34 and 35
are used together with equations 17 and 20. This gives

ψ0yyyy =
1
α

(
ϕ1yyb + Ha2ψ0yyb2

)
, ϕ1yy + Ha2ψ0yyb = 0. (36)

It should be noted that the lowest order equation for the stream function contains higher order terms, which
can be eliminated by means of the higher order equations of the electric potential, thus:

ψ0yyyy = 0, ϕ0yy = 0. (37)

The boundary conditions

ψ0 = ψ0y = ϕ0y = 0 on y = 0,
ψ0 = ψ0yy = ϕ0y = 0
h1xx = −Capm0 + Boh1 on y = 1 + Ah1,

 (38)

are obtained from no-slip and electrically insulating conditions (equation 22), steady state condition (equation
31) and by substituting the asymptotic expansions for the free surface, where the following asymptotic limit
is used (with Ca = O(1), Bo = O(1)):

Ca = CaA4, Bo = BoA2 (39)

thus Ca = O(A4) and Bo = O(A2). However, the derivation is also valid for Ca ≤ A4. Bo can appear
in the equations to any order, as it is competing with surface tension as the restoring force. Using these
assumptions, the surface tension and gravity force will turn out to first act at the same order of magnitude of
the asymptotic expansions. For smaller Bond numbers, surface tension dominates the restoring force, while
for larger Bond number gravity will dominate as a restoring force.

For ψ0 we will get ψ0 = 0, while for the solution of the lowest order electric potential, it can be seen that
the solution ϕ0 = x satisfies the Poisson equation for the electric potential as well as the boundary conditions
at the outer walls, the bottom wall and the free surface. It follows that p0 = 0 and thus h1 = 0. Also, at this
lowest order of magnitude, the current is solely composed of the injected current, which is therefore at least
an order of magnitude larger than the induced currents.

This result has implications for the limiting case A = 0. In the case of an infinitely wide or very thin layer,
the zeroth order solution will be the only term remaining, as all terms of O(A) and higher vanish. Thus,
in this case, the electromagnetic forces will not cause flow in the domain. In this paper we study bounded
domains with 0 < A ≪ 1, such that higher order terms should be included. Progressing to the first order
solution, we obtain

ψ1yyyy =
1
α

(
ϕ2yyb + Ha2ψ1yyb2 + ϕ0xxb + ϕ0xbx

)
, (40)

ϕ0xx + ϕ2yy = −Ha2ψ1yyb, (41)

which, with known b and ϕ0, simplifies to

ψ1yyyy =
1
α

ϕ0xbx = −1. (42)

Subject to the boundary conditions at the bottom wall and top free surface (equations 22-23)
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ψ1 = ψ1y = 0 on y = 0,
ψ1 = ψ1yy = 0 on y = 1 + Ah1 + A2h2,

}
(43)

this gives

ψ1(x, y) = − 1
48

y2
(
2y2 − 5y + 3

)
. (44)

Reintroducing the pressure by means of equations 15 and 16 allows to solve for the pressure, which reads

pm1 = −1 + αx

α

(
y − 5

8

)
+ pref , (45)

where pref is the reference pressure.
The boundary condition at y = 1 + Ah1(x) + A2h2(x), based on the modified pressure pm1 reads, where

pref is eliminated in favor of a different integration constant,

h2xxx = −Capm1x + Boh2x, (46)

h2xxx =
3
8
Ca + Boh2x. (47)

This third order differential equation in h2, gives the general solution

h2(x) =
1√
Bo

(
λ1e

√
Box + λ2e

−
√

Box

)
− 3Ca

8Bo
x + λ3, (48)

with λ1, λ2 and λ3 constants that will follow from the matching condition with the boundary layer flow
and the other constraints.

3. Side wall flow

It follows from equation 44, following the approach by Sen and Davis [19], that the flow in the central part
of the domain is strictly horizontal (v = 0). This core flow solution breaks down near the vertical side walls,
where the liquid has to change direction. To study this boundary layer behaviour, the stretching coordinate
ξ is introduced as

ξ =
x + 1

2

Aκ
, (49)

which is the boundary layer coordinate for the left hand wall at x = −1
2 . Realising that for derivatives in

general fx = fξA
−κ it follows from equation 20 that there is a significant degeneration for κ = 1, such that

ξ = A−1(x + 1
2 ) and for derivatives fx = fξA

−1.
We will denote the variables in terms of the stretched coordinates for the left side wall by a tilde (˜). The

magnetic field b = −(1 + αx) is then expressed as b̃ = (−1 + 1
2α)−Aαξ = b̃0 + Ab̃1 and the equation for the

stream function ψ (equation 20) as

ReA2
(
ψ̃yψ̃ξyy − ψ̃ξψ̃yyy − ψ̃ξψ̃ξξy + ψ̃yψ̃ξξξ

)
= A∇4ψ̃ − 1

α

[
b̃∇2ϕ̃ + b̃ξϕ̃ξ + Ha2A

(
b̃2∇2ψ̃ + 2ψ̃ξ b̃ b̃ξ

)]
, (50)

where the ∇ operator is defined in terms of the stretched coordinate ξ and y, giving the Laplacian operator
∇2f = fξξ + fyy and the biharmonic operator ∇4f = fξξξξ + 2fξξyy + fyyyy.

The conservation of current evolves, as a result of stretching, into

∇2ϕ̃ = −Ha2A
(
b̃∇2ψ̃ + b̃ξψ̃ξ

)
. (51)

Expanding the side wall stream function ψ̃ similar to the core flow ψ

ψ̃ =
∞∑

n=0

Anψ̃n(x, y), (52)
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leads to an equation for the leading order stream function in the left wall boundary layer ψ̃0

∇4ψ̃0 =
1
α

[
b̃0∇2ϕ̃1 + b̃1∇2ϕ̃0 + b̃1ξϕ̃0ξ + b̃0ξϕ̃1ξ + Ha2

(
b̃2
0∇2ψ̃0 + 2b̃0b̃0ξψ̃0ξ

)]
. (53)

Simultaneously we obtain from the charge conservation equation

∇2ϕ̃0 = 0, (54)

∇2ϕ̃1 = −Ha2
(
b̃0∇2ψ̃0 + b̃0ξψ̃0ξ

)
, (55)

which, together with b̃0ξ = 0, reduces equation 53 to

∇4ψ̃0 = 0. (56)

Using boundary conditions 22 and 23 and matching with ψ0, this has the solution ψ̃0 = 0, which agrees with
the observation for the core flow. When the contact angle boundary condition is limited to

tan(θ − 1
2π) = mA2, (57)

the boundary condition for the free surface gives h̃1ξξ = 0 and h̃1ξ(0) = 0. Thus, for the free surface
deformation it is obtained that h̃1 = 0.

It is observed that ϕ = x relates to ϕ̃0 = −1
2 and ϕ̃1 = ξ, which is satisfying the above problem. Using

ψ̃0 = 0, the first order stream function ψ̃1 obeys

∇4ψ̃1 =
1
α

[
b̃0∇2ϕ̃2 + b̃1∇2ϕ̃1 + b̃1ξϕ̃1ξ + b̃0ξϕ̃2ξ

+ Ha2
(
2b̃0b̃1∇2ψ̃0 + b̃2

0∇2ψ̃1

)]
. (58)

Reducing this with relation ∇2ϕ̃2 = −Ha2
(
b̃1∇2ψ̃0 + b̃0∇2ψ̃1

)
from charge conservation results in

∇4ψ̃1 =
1
α

b̃1ξϕ̃1ξ = −1, (59)

which ultimately describes the change of flow direction in the boundary layer flow near the left wall.
For the outer flow, the walls at the side and bottom are no-slip, meaning ψ̃1 = ψ̃1y = 0 at the bottom

and ψ̃1 = ψ̃1ξ = 0 at the left wall. For the free surface ψ̃1 = 0 (from equation 31), ψ̃1ξ = 0 (from equation
23) and ψ̃1yy − ψ̃1ξξ = 0 (from equations 25, 27 and 30), effectively reducing at this order to ψ̃1 = ψ̃1yy = 0.
The solution for ξ → ∞ should match with the core flow solution (equation 44).

The derivation for the right wall flow can be obtained following the exact same arguments, but with the
stretching coordinate ζ = A−1( 1

2 −x), and leads to the same results as the left wall. This will not be repeated
here.

A final boundary condition for the top surface is obtained from equation 27

h̃2ξξ = 0, (60)

Combining this with the contact angle boundary condition 33, h̃2ξ = m (and similarly for the right wall) and
the volume conserving property (equation 32), this leads to a closed expression for the free surface elevation
that is valid over the full width of the liquid layer:

h2(x) =
1√
Bo

3Ca

8Bo

sinh
(√

Box
)

cosh
(

1
2

√
Bo

) − m
cosh

(√
Box

)
sinh

(
1
2

√
Bo

)
 − 3Ca

8Bo
x +

2m

Bo
, (61)
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From equation 44 we see that the dimensionless flow strength does not scale with dimensionless parameters,
while the free surface elevation depends on Ca and Bo as well. This has as an interesting consequence that,
for example, the velocities in the liquid layer can be increased at fixed free surface elevation, or vice versa.

In the absence of gravity, e.g. Bo = 0, equation 47 would simplify to h2xxx = 3/8Ca, with solution

h2(x) =
1
16

Ca

(
x3 − 3

4
x

)
− m

(
x2 − 1

12

)
, (62)

which is consistent with equation 61, in the limit for Bo → 0. For decreasing influence of surface tension,
in other words, for increasing Ca, the linear term in equation 61 will become dominant. However, the limit
Ca → ∞ does not exist, as close enough to the side walls, surface tension is always significant.

Reducing equation 62, for a 90◦ contact, e.g., m = 0, to units carrying a dimension, gives

∆h′ = A2dh2 =
Cadα

16A2

(
x′3

l3
− 3

4
x′

l

)
=

σ∆ϕb0dlα

γ

(
x′3

l3
− 3

4
x′

l

)
, (63)

The horizontal velocity profile in dimensioned variables, follows from the stream function for the core flow
(equation 44):

u′(y′) = − 1
48

Au∗
(

8
y′3

d3
− 15

y′2

d2
+ 6

y′

d

)
. (64)

For a typical liquid steel (ρ = 104kg/m3, ν = 10−6m2/s, σ = 106S/m, γ = 2N/m) filled cavity (d = 1mm,
l = 10mm) and moderate electromagnetic forcing (b0 = 0.01T , ∆ϕ = 10µV , α = 2), this leads to a
characteristic velocity (equation 13) u∗ = 1mm/s and deformation ∆h′ = 1µm, with Re = 20, Ha2 = 0.02,
Ca = 0.1 and Bo = 5.

3.1. Turning flow in the side wall region
For the solution in the side wall region to the biharmonic equation 59, Sen and Davis [19] resort to a

numerical approximation with a finite-difference approach, by discretizing the biharmonic operator with a
13-point stencil. Cormack et al. [24] show that the solution can be written in the form of an infinite sum of
Papkowich-Fadle eigenfunctions. This approach, as also outlined by Benthem [26], can not be applied here,
since the matching condition for ξ → ∞ is not symmetric in y. We will therefore apply a related approach,
which also allows for non-symmetric matching conditions.

By means of the transformation
χ(ξ, y) = ψ̃1 − ψ1(y), (65)

we can reduce the biharmonic equation to
∇4χ = 0. (66)

The boundary and matching conditions are summarized as

χ = χy = 0 on y = 0,
χ = χyy = 0 on y = 1,

χ(0, y) =
1
24

y4 − 5
48

y3 +
1
16

y2, χξ = 0 on ξ = 0,

χ = χξ = 0 for ξ → ∞.

 (67)

The function χ(0, y) will be expanded as a Fourier sine series (or half-range expansion, as χ(0, 0) = 0)
according to

χ(0, y) =
∞∑

n=1

bn sin(nπy) bn = 2
∫ 1

0

χ(0, y) sin(nπy)dy. (68)

At ξ = 0, the second and third derivative are unknown, but essential in the further analytical derivation.
These functions will also be expressed in terms of a Fourier sine series, with unknown coefficients cn and dn.

∂2χ

∂ξ2
(0, y) =

∞∑
n=1

cn sin(nπy)
∂3χ

∂ξ3
(0, y) =

∞∑
n=1

dn sin(nπy), (69)
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Figure 2: The velocity vector plot (left) in the left side wall region is depicted, which is derived from the side wall stream function
(equation 72) for P = 2048. The flow is turning clockwise, while the velocity at the left and bottom boundary is zero and the
top boundary is a free surface. The streamline plot (right) is determined for P = 8192 shows isocontours of the stream function
in the region of the lower left corner of the domain, demonstrating the existence of a counter-rotating eddy in the corner.

The Laplace transform of equation 65, with f denoting the Laplace transform of χ, will reduce to a fourth
order ordinary differential equation

∂4f

∂y4
+ 2p2 ∂2f

∂y2
+ p4f =

∞∑
n=1

βn(p) sin(nπy) βn(p) =

(
p3 − 2pn2π2

)
bn + pcn + dn

(p2 − n2π2)2
, (70)

Solving the differential equations subject to the given boundary conditions results in

f(p, y) =
∑

n

βn(p) (71)[
sin(nπy) +

nπ

p − cos p sin p

(
− sin(py) + sin2 p sin(py)y + sin p cos p cos(py)y

)]
The inverse Laplace transform can be obtained by a complex contour integration and by application of
Jordan’s lemma and the Cauchy residue theorem. The coefficients cn and dn are calculated up to n = P by
requiring the residues of 2P poles pk of f(p, y) (2p − sin 2p = 0) with Re(pk) > 0 to vanish, such that

χ(ξ, y) =
2P∑
k=1

P∑
n=1

nπβn(−pk)F (−pk, y)e−pkξ, (72)

with

F (pk, y) =
− sin(pky) + sin2 pk sin(pky)y + sin pk cos pk cos(pky)y

2 sin2 pk

. (73)

The back transformation from χ to ψ̃1 now follows from equation 65.
The solution up to P = 8192 is obtained by first finding the poles in the first quadrant numerically,

following the method outlined by Meylan and Gross [27] and the knowledge that the poles in the complex
plane can be found on the curve x2 = cosh2 y − y2 coth2 y for p = x + iy. Then, the coefficients cn and dn

are determined by Gauss-Jordan elimination of the full matrix of size 2P × 2P . Figure 2 shows the currently
obtained velocity field for P = 2048 and streamlines in the region close to the corner for P = 8192. A counter-
rotating eddy was found close to the corner, as was predicted by Moffatt [28]. Such a counter-rotating eddy
was not found in the corner near the free surface.

Figure 3 shows the velocity magnitude along the line ξ = y, where a different number of poles are included
to calculate the stream function. It shows the convergence of the velocity magnitude with an increasing
number of poles. It can be seen that increasing the amount of poles above 4 does not change the velocity
profile beyond a distance of 0.1 from the corner, while P = 1024 and P = 8192 are enough for an accurate
velocity profile beyond a distance of 0.01 and 0.002 respectively.
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Figure 3: The velocity magnitude along the line ξ = y in figure 2, which shows the effect of increasing the amount of poles (see
equation 72) on the velocity magnitude for P = 4, P = 1024, P = 8192 and P = 16384.

The minimum in this velocity profile is related to the centre of the eddy. Increasing the number of poles
reveals a secondary minimum, which is an indication for the second eddy of the infinite series of eddies in
the corner, as predicted by Moffatt [28].

4. Increased magnetic interaction

In the derivation of the free surface elevation (equation 61), it was found that for the Hartmann number
Ha = O(1), only O(A) flow is present. Suppose the square of the Hartmann number increases by an order
in A, thus Ha2 = Ha2A−1. higher Hartmann number, it can be shown that, again, ψ0 = 0 and the core flow
ψ1, can be solved by

ψ1yyyy = −1, ψ1 = − 1
48

y2
(
2y2 − 5y + 3

)
, (74)

which would result in the general solution for h2 as given by equation 48.
For the side wall solution, again ψ̃0 = 0 is found, however, at higher order

∇4ψ̃1 =
1
α

(
ϕ1ξ b̃1ξ + Ha2ψ̃1ξ b̃0b̃1ξ

)
= −1 −

(
1
2
α − 1

)
Ha2ψ̃1ξ. (75)

which means that the analytical side wall solution from section 3.1 is no longer valid for Ha2 = O(A−1).
For Ha2 = O(A−2), the primary flow in the core region will no longer be one-dimensional, as the equation

for the core flow would read

ψ0yyyy =
1
α

Ha2ψ0xbbx = Ha2 (1 + αx) ψ0x. (76)

5. Numerical method

The presented analytic solution is, due to the underlying assumptions, strictly speaking valid only for
small, but non-zero A and with Ha of at most O(1) , Ca of at most O(A4), Re of at most O(A) and Bo of at
most O(A2). In this section we will explore numerically the accuracy of the analytic expression as a function
of the parameters A, Ha, Ca, Bo and Re by comparing the analytical results to the numerical simulations.

For the numerical simulation we use a finite volume based moving mesh interface tracking method, adapted
from interTrackFoam of OpenFOAM distribution 1.6-extend.

5.1. Moving mesh interface tracking method
The moving mesh interface tracking method is based on aligning a boundary of the numerical mesh

with the free surface. This results in a sharp interface by definition and allows for the implementation of
exact boundary conditions at the interface. The approach as proposed by Muzaferija and Perić [29] and the
implementation by Ž. Tuković and Jasak [22] was used.
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Figure 4: The vertical velocity component along the line y = 0.5 for A = 0.1, Re = A, Ha2 = 1, Bo = A2, Ca = A4 for mesh
resolutions of 200 × 20, 300 × 30 and 400 × 40.

The moving mesh interface tracking method introduces in addition to continuity and momentum equations
the so called space conservation law, i.e.

d

dt′

∫
V ′

dV ′ −
∫

S′
n̂ · vs

′dS′ = 0, (77)

where vs
′ is the velocity of the surface. This velocity of the surface of an arbitrary control volume V ′ has to

be accounted for in the integrated mass and momentum conservation equations [29, 22]
The boundary conditions from section 2.2 do also apply for the numerical simulations, e.g. no mass

should cross the boundary and the stresses at opposite sides of the interface should match. Non-zero mass
fluxes through the free surface are corrected by moving the boundary. This correction is used as a boundary
condition in the Laplace equation for moving the interior points in the domain by an amount d′:

∇′Γ · ∇′d′ = 0 (78)

where Γ is a diffusion parameter that in general is a function of the distance to the free surface. In this work,
the diffusion parameter will be constant.

5.2. Details of numerical simulation
The simulations were performed on an initially square cell grid containing (20/A)×20 cells in the horizontal

and vertical direction respectively, representing the bottom layer only. The convective term is discretized
with a second order central differencing scheme, the time derivative with a second order implicit method and
the least squares method was used for gradient calculation. For A = 0.1, Ha2 = 1, Ca = A4, Re = A and
Bo = A2 and θ = 90◦ we show in figure 4 the velocity along the line y = 0.5 on the standard 200 × 20 mesh
and 300 × 30 and 400 × 40 meshes, demonstrating the sufficient mesh resolution to capture the main flow
structure, with the exception of the recirculations in the bottom corners. Velocities in these recirculations
are orders of magnitude smaller than those of the main flow, and an infinity of ever decreasing recirculations
is present, making the numerical capture of all recirculation flow details neither relevant nor feasible.

The numerical values for the material properties of the top phase are defined to be σ2/σ = 0, ρ2/ρ = 0
and ν2/ν = 0, and are necessary for the boundary conditions, for example the pressure in the gas phase
is assumed to be constant. The zero conductivity constraint for the top phase was implemented via the
boundary condition for the electric potential at the interface, i.e. the normal gradient dϕ/dn = ∇ · (u × b).
The contact angle boundary condition θ = 90◦, thus m = 0, was imposed on the side wall boundaries.

6. Numerical results

The analytical model was derived for Re ≤ O(A), Ca ≤ O(A4), Ha2 ≤ O(1), Bo ≤ O(A2) and A → 0.
It predicts the surface elevation (equation 61), core flow (equation 44) and pressure (equation 45). For
A = 0.1,Re = A, Ha = 1, Bo = A2, Ca = A4, θ = 90◦ and α = 1, figure 5 compares the free surface elevation
of the result from the numerical simulation with the analytical model for the first order deformation. It
can be seen that the numerically determined free surface elevation is in good agreement with the analytical
solution.
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Figure 6: Modified pressure pm (left) and horizontal velocity u (right) for the line x = 0 for A = 0.1, Re = A, Ha2 = 1,
Bo = A2, Ca = A4 and θ = 90◦. The numerical simulation (⃝) and the first order analytic approximation (solid line) are
shown.

For the same conditions, figure 6 shows the pressure ( from equation 45, with p(0, 1) = 0) and horizontal
velocity (from equation 44 and 19) for the vertical line x = 0. Again a good agreement is obtained between
numerical simulations and analytic results.

In figure 7, again for the same conditions, both velocity components along the line y = 0.5 in the region
close to the wall are depicted. The analytic solution is obtained from equation 72, with P = 1024. For both
velocity components, it is seen that the velocity profiles obtained from the numerical simulation accurately
match the analytical results.

6.1. Three-dimensionality of flow
In this section we will numerically show that the analytical derivation in a two-dimensional plane of the

three-dimensional problem is valid. In the z = 0-plane, the Lorentz force has a zero component in the z-
direction, therefore the three-dimensionality of the magnetic field does not influence the equations for u and v
in that plane (equations 15 and 16). By introducing walls to bound the domain in the z direction, additional
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Figure 7: The horizontal (left) and vertical (right) velocity component along the line y = 0.5 for A = 0.1, Re = A, Ha2 = 1,
Bo = A2, Ca = A4 and θ = 90◦. The numerical simulation (⃝) and the first order analytic approximation of equation 72 using
P = 1024 for y = 0.5 (solid line) are shown.
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viscous shear from these walls can be expected. Figure 8 compares the velocity components for increasing
size w of the domain in the z-direction. This size was consecutively increased from w = d, to w = d/A and
to w = d/A2. For w = d, the velocities in the xy-plane are significantly smaller than analytically derived,
whereas the shape of these velocity profiles has not changed. This is caused by the viscous shear from the
walls that bound the domain in the z-direction. When the extend of the domain in the z direction increases,
Figure 8 shows that the velocity profiles converge to the velocity profile from the two-dimensional numerical
simulation and the analytical solution, without generating a significant velocity component in the spanwise
direction. Therefore, the presented analytical solution is valid for the formulated three-dimensional problem.

6.2. Increased deformation
In this section we will obtain numerical results for the surface elevation under higher Hartmann number,

capillary number, Bond number, Reynolds number and aspect ratio, in order to determine to what degree
the analytic solution of equation 61 holds.

Figure 9 shows the free surface elevation for a set of cases in which, starting from A = 0.1, θ = 90◦,
Re = A, Ha2 = 1, Ca = A4, Bo = A2, either of the parameters Ha, Ca, Bo or A is increased to large values
for which the analytic solution is not expected to hold.

From figure 9(a) it can be seen, that, even though the derivation for the free surface elevation is valid for
Ha2 ≤ O(1), the analytical solution using Ha2 = 1000 still closely agrees with the numerical solution.

For capillary number increasing up to Ca = 1000A4, the numerical solution slowly diverges from the
analytical expression, as can be seen from figure 9(b), where both numerical and analytical free surface
elevations are scaled with the capillary number. Although from a comparison between the boundary condition
used with the present assumptions on Ca (equation 38) and the full boundary condition, (equation 27), it
appears that for increasing values of Ca, the boundary condition gets increasingly complex. Figure 9(c) shows
that for increasing Bo numbers, the free surface elevation quickly decreases, as does the surface curvature in
the core, in line with equation 61. The analytical model fits the numerical data surprisingly well. Finally,
figure 9(d) shows that for an aspect ratio as large as A = 0.5, the analytically determined free surface
elevation is still matching the numerical result very well.

A quantitative analysis of the accuracy of the analytical model for increasing Ha2, Ca. Bo, Re and
A is shown in figure 10, which shows the normalized root mean square distances between the analytically
calculated elevation (equation 61) and the numerically calculated elevation, normalized by

∫
h2dx. This

distance is a measure for the deviation of the analytical result from the numerical simulation.
For A ≤ 0.1, Ha2 ≤ 1, Ca ≤ A4, Bo ≤ A2 and Re ≤ A, the error in the analytical solution of the free

surface elevation, compared to the numerical solution, is less than 0.4%. Keeping all the other parameters
fixed, this error increases to ∼ 1%, when either Ha2 is increased to ∼ 400, Ca to ∼ 200A4 or Bo to ∼ 100A2,
whereas the error stays well below 1% when Re is increased to 103A. For Ha2 ≤ 1, Ca ≤ A4, Bo ≤ A2,
Re ≤ A, the error remains less than 1% for A = 0.2 and less than 2% for A = 0.5.
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Figure 9: The surface elevation h2 from the MMIT simulations (symbols), horizontally rescaled to [−0.5, 0.5], where from
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7. Discussion and conclusion

In this paper we have studied the flow and free surface elevation of a layer of conductive liquid with
height-to-width ratio A ≪ 1, that is subject to a potential difference horizontally across the domain and a
traverse x-dependent magnetic field. It was shown that the surface tension and gravity forces in combination
with the unevenly distributed Lorentz forces on the fluid induce a steady state flow, which scales linearly with
conductivity, magnetic field gradient and applied potential difference and which vanishes for infinitely long
layers (A → 0), whereas the free surface deformation depends on the capillary number, the Bond number
and the contact angle condition.

Increasing pressure within the layer will cause the interface to deform. The profile of this interface was
derived analytically for Hartmann numbers up to O(1), capillary numbers up to O(A4), Bond numbers up to
O(A2) and Reynolds numbers up to O(A), while A ≪ 1. It was proven that to lowest order approximation,
the surface elevation profile is a function of the capillary number, the Bond number and the contact angle
condition. The magnitude of the free surface displacement scales linearly with the capillary number and
decreases with increasing Bond number. The shape of the free surface is determined by both the Bond
number and the contact angle boundary condition.

Furthermore, the biharmonic equation for the stream function in the side wall region was solved analyti-
cally, showing the turning of the flow and the presence of small eddies in the corner regions.

The first order approximation of the analytic solution was confirmed with a finite volume computational
model for free surface flow simulation using a moving mesh interface tracking technique in combination with
a one-way coupled MHD solver via the equation for the electric potential. The analytically derived elevation
and subsurface flow properties match the numerical simulation well.

Using numerical simulations, it is observed, that for larger values of the Hartmann number, capillary
number, Bond number, Reynolds number and aspect ratio, where the underlying assumptions of the analytic
solution are no longer satisfied, the analytical solution and numerical results match reasonably well, within
1%, for A = 0.1 and either Ha2 up to 400, Ca up to 200A4 or Bo up to 100A2 and is accurate within 2% for
A = 0.5.

The analytical solution presented in the present paper is derived up to O(A). This means that the lowest
order neglected terms are of order O(A2). For small enough aspect ratio (A = 0.1) these terms quickly
reduce to values smaller than 1%. Indeed, the difference with the numerically found solution is only 0.4% for
A = 0.1. We therefore conclude that the contribution of the neglected higher order terms in the analytical
solution, for an aspect ratio of 0.1, is smaller than 1%.
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