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Mean Field Behavior of Collaborative
Multiagent Foragers

Daniel Jarne Ornia , Student Member, IEEE, Pedro J. Zufiria , Member, IEEE,
and Manuel Mazo Jr , Senior Member, IEEE

Abstract—Collaborative multiagent robotic systems, where
agents coordinate by modifying a shared environment often result
in undesired dynamical couplings that complicate the analysis and
experiments when solving a specific problem or task. Simulta-
neously, biologically inspired robotics rely on simplifying agents
and increasing their number to obtain more efficient solutions to
such problems, drawing similarities with natural processes. In this
work, we focus on the problem of a biologically inspired multiagent
system solving collaborative foraging. We show how mean field
techniques can be used to re-formulate such a stochastic multiagent
problem into a deterministic autonomous system. This de-couples
agent dynamics, enabling the computation of limit behaviors and
the analysis of optimality guarantees. Furthermore, we analyse
how having finite number of agents affects the performance when
compared to the mean field limit and we discuss the implications
of such limit approximations in this multiagent system, which have
impact on more general collaborative stochastic problems.

Index Terms—Agent-based systems, learning and adaptive
systems, mean field models, swarms.

I. INTRODUCTION

SMALLER processors and faster communications are push-
ing toward larger multiagent systems with simple agents for

solving large complex problems in a decentralized fashion. Be
it large groups of autonomous cars driving in an urban setting
or groups of nanoagents used in biomedical applications, there
is a drive to increase the amount of collaborative agents in such
settings, for either necessity (as in the case of vehicle traffic) or
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efficiency (in problems where more agents translate in better
solutions). In the past two decades there has been growing
interest in biologically inspired methods for solving decentral-
ized coordination problems for large groups of simple agents.
Inspiration is often drawn from the behavior of ants, birds, bees,
or fish, for example [1]–[4]. These biological systems seem to
have developed inherent robustness toward problems such as
individual agent errors, malfunction, or communication disrup-
tions. Furthermore, some of them have evolved to be extremely
resource-efficient, that being in time, energy, or information
transmission.

We focus our attention in this article on a particular subclass
of bio-inspired multiagent stochastic coordination problems:
Foraging. Foraging is the problem of locating an unknown
target, e.g., a source of food, in an unknown environment, and
exploiting the shortest path to such target from a given initial
location, e.g., a nest, with the goal of depleting the food source
as fast as possible. For an extensive set of stochastic multiagent
methods the foraging problem has served as both a benchmark
but also a study subject on itself, given the combined nature
of exploration plus optimization that the problem presents [5].
Naturally, many of the biological systems capable of solving
foraging problems present some (degree of) decentralized be-
havior. Ants, for example, communicate with each other only
by depositing pheromones on the environment, and achieve
global coordination by combining the individual contributions
of all members of the swarm without the need of centralized in-
structions. The mechanism of communicating indirectly through
enviromental marking is known as stigmergy.

Ants and bees make use of stigmergy methods to coordinate
with other members of the swarm [6], [7] to solve specific tasks,
for example, foraging for food [8], [9]. This kind of cooperative
behavior has been modeled for social insects such as ants [10]–
[12], but also bees [13], [14] in more general frameworks (see
as well the work of Resnick [15] for an extensive analysis and
application of such behaviors).

Ant-inspired heuristics have been widely used to solve forag-
ing problems in a distributed fashion, sparking a whole branch
of stochastic optimization algorithms: Ant colony optimiza-
tion [16], [17]. Ant-inspired swarm coordination has also been
applied to foraging problems in distributed robotic systems.
Authors in [18] propose a stochastic ant-inspired approach to
distribute swarm agents among different target regions. In [19],
the authors present some early experiments on how robots
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can lay and follow pheromones to explore a space and collect
targets, and [20]–[24] have presented similar robotic systems,
either by using a digital pheromone field [22]–[24], using real
chemicals [21], or fluorescent floors [20] (see also [25]–[27]
among others). Despite the many models proposed in entomol-
ogy, and the implementations on robotic systems, little is known
about the convergence guarantees of such systems. The main
goal of this article is to investigate the convergence properties of
a simple version of a stigmergy-based solution to the foraging
problem.

Drawing a parallelism between the pheromones of ant swarms
and Q-values [28] one can formulate the dynamics of a
stigmergy-based system as a problem that resembles traditional
reinforcement learning (RL) approaches. Agents explore an
environment with a set of actions to choose from, and reward
(deposit pheromones) their current state (spatial location) de-
pending on the set goal. In the works of Monekosso [29],
a first approach was taken to mix traditional Q-learning and
pheromone-based interaction in foraging swarms. In [30], a
variation of such utility function learning approach is presented,
where the swarm uses two kinds of pheromones to distinguish
between the food search and the nest search.

Nevertheless, complications arise when trying to apply
Q−learning related strategies to study the convergence of utility-
based foraging swarms. In these stigmergy-based foraging prob-
lems, solutions to the iterative utility values are coupled to the
agent trajectories. This prevents us from using these sort of
stochastic dynamic programming techniques to study the trajec-
tories of the agents in such learning stigmergy-based swarms.
To address this problem, one can rely on the work of [31] and
[32] about convergence of stochastic sequences of probability
transition matrices.

Looking into stochastic systems of interacting agents, in [33]
the authors propose decentralized stochastic controllers to allo-
cate tasks in an interacting multirobot system given a desired
target distribution. To get rid of the stochasticity, one can look
at the limiting behavior of such systems when the number of
interacting agents is taken to infinity, in what are known as
mean field models. Mean field models have been extensively
used in fluid mechanics and particle physics, and more recently
in game theory and control [34], [35]. In recent years mean
field formulations of large multiagent systems or swarms have
gained increased popularity [36]–[38] (see also an extensive
survey in [39]) as these models abstract away the stochasticity in
systems, where the number of interacting agents becomes very
large.

The main goals of this work are twofold as follows:
1) First, to approximate a multiagent stochastic system for a

foraging problem as a mean-field nonstochastic process.
Additionally, to provide intuition on the role of the differ-
ent parameters in a large multiagent stigmergy swarm.

2) Second, to derive convergence guarantees that can be
attributed to the mean field model of a stigmergy swarm,
and provide insight on the resulting shape of the sta-
tionary solutions, both for the agent trajectories and the
pheromone field.

II. PRELIMINARIES

A. Notation

A set whose elements depend on a parameter is indi-
cated as S(·). Sequences are represented as {A(t)} ≡ At ≡
{A(0), A(1), . . ., A(t)}, and the union of two different se-
quences is computed setwise: A1 ∪A2 := {i : i ∈ A1 ∨ i ∈
A2}. We consider only discrete time systems, i.e., t ∈ N0.
Unless stated otherwise, upper case letters are used for matrices
(B ∈ Rn×n) and (bold) lower case letters for (vectors) scalars
(b ∈ Rn, b ∈ R). We use superscripts to distinguish between
related vectors, and subscripts to indicate entries in a vector.
That is, a1k is the k-th entry of the vector a1. For two vectors
a,b ∈ Rn, we say a ≥ (≤)b iff ai ≥ (≤)bi ∀i. We use | · |
for the cardinality of a set, and ‖ · ‖k for the k-th norm of a
vector or the k-th induced norm of a matrix. We define the
set of all probability vectors of size n as Pn := {v ∈ [0, 1]n :∑n

i=1 vi = 1}. Vectors 1n, 0n are the one and zero vectors of
size n, respectively. The function sgn(·) is the sign operator,
with sgn(0) = 0.

We say a function f : R+ → R+ is in the class of functions
K if f is continuous, monotonically increasing, and f(0) = 0.
We say a function f : R+ → R+ is in class K∞ if f(·) ∈ K and
lima→∞ f(a) = ∞.

A function assigning to each instant of time a value on each
edge of a graph can be written as a matrix, and the subscript
indicates both edges and entries in the image of the function.
That is, let |V| be the number of vertices in a graph, and f :
N → R|V|×|V|. Then, fij(k) is the i, jth entry in the image f(k).

When talking about stochastic processes, we use Ω as the
set of outcomes in a probability space, F as the measurable
algebra (set) of events, and P as a probability function P : F →
[0, 1]. We use E[·] and Var[·] for the expected value and the
variance of a random variable. We say a result holds almost
surely (a.s.) when it holds with probability 1. When two (or
more) random variables follow the same probability distribution
and are independent from each other we use independent and
identically distributed (i.i.d.).

B. Weighted Graphs

In this article, we discretize geometrical (bidimensional)
spaces using connected planar graphs.

Definition 1: We define a vertex weighted graph with time
varying weights G := (V, E ,w(t)) as a tuple including a vertex
set V , edge set E , and weights w : N0 → R|V|

≥0, where each
value wi(t) is the weight assigned to vertex i ∈ V at time t.
Furthermore, the graph is connected if for every pair i �= j ∈ V
there exists a set of edges {(iu1), (u1u2), . . . , (unj)} ⊆ E that
connects i and j.

We refer to an edge connecting i to j as (ij) ≡ e ∈ E . Ad-
ditionally, the graph is undirected if (ij) ∈ E ⇐⇒ (ji) ∈ E .
The adjacency matrix A ∈ R|V|×|V| and (out)weight matrix W :
N → R|V|×|V| are

Aij :=

{
1 ∀(ij) ∈ E ,
0 else.

, Wij(t) :=

{
wj(t) ∀(ij) ∈ E ,
0 else.
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Note that the transition weight for transition i → j is always
the outgoing weight wj(t). For simplicity in expressions, we
use the functions D : Rn×n → Rn×n and V : Rn×n → Rn×n

such that Dii(B) =
∑

j Bij , Dij(B) = 0 ∀i �= j, V (B) =
diag(maxk Bik). That is, D(B) is a diagonal matrix of the
row sums of B, and V (B) is a diagonal matrix containing the
maximum value of every row of B in the diagonal terms.

Definition 2: [40] A path pij = V′ ⊆ V in G is any ordered
subset of vertices satisfying

V′ = {i, k, l, . . ., z, j} : (ik), (kl), . . ., (zj) ∈ E

where no vertex appears twice. An i-cycle is then a path pii
starting and ending in the same vertex i ∈ V . We refer to {pkij}
as the set of all paths connecting i, j.

We make use of the minimum distance between two ver-
tices δ : V2 → N+

0 , δ(i, j) := mink{|pkij |}, defined only for
connected pairs, and the set of minimum length paths between
two vertices

πij := {p∗ij ∈ {pkij} : |p∗ij | = δ(i, j)}.

The diameter of the graph is δ∗ := max{δ(i, j)} ∀i, j ∈ V.
At last, it is useful to define the set of vertices in all minimum
length paths as ∪p∗ij := {v ∈ p∗ij : p

∗
ij ∈ πij}.

C. Stochastic Processes and Limit Theorems

The following definitions and theorems related to stochastic
processes and random variables are used throughout this work.

Definition 3 (Almost sure convergence [41]): Let (Ω,F , P )
be a probability space equipped with a σ-algebra of measurable
subsets ofΩ, withω ∈ Ω being any outcome. We say a sequence
of random variables h0, h1, . . ., ht converges a.s. to a random
variable h∗ as t → ∞ iff

Pr [{ω : ht(ω) → h∗(ω) as t → ∞}] = 1.

Theorem 1 (Strong Law of Large Numbers [42]): Let
(Ω,F , p) be a probability space equipped with a σ-algebra of
measurable subsets ofΩ. Let hn be a sequence ofn i.i.d. random
variables defined over the probability space, with expectation
E[hi]. Let sn = h1 + h2 + · · ·+ hn. Then,

lim
n→∞

sn
n

= E[hi] a.s.

We present here a simplified version of the Perron–Frobenius
theorem that we use through this work.

Theorem 2 (Perron–Frobenius theorem [43]): LetP ∈ Rn×n
≥0

be a nonnegative column stochastic irreducible matrix. Then
1) λ1(P ) = 1, all other eigenvalues are smaller in norm; and
2) the eigenvector Pv = v defines a dimension 1 subspace

with some basis vector having strictly positive entries.
At last, the following Theorem is a simplified version of

results extracted from [31] and [32].
Theorem 3 (Swarm distribution convergence [31], [32]):

Let P (t) be a column stochastic time-dependent probability
transition matrix with at least one odd length cycle at t = 0,
that follows stochastic dynamics. Let for some scalar ε > 0 and

∀ t ≥ 0, Pij(0) > 0 ⇒ Pij(t) ≥ ε. Then, the limit product

lim
t→∞

t∏
tk=0

P (tk) = ζ1T a.s.

where ζ is a probability vector, and does so exponentially fast
with a rate no slower than α = (1− ε1+2δ∗)

1
1+2δ∗ .

III. FORAGING SWARM MODEL

We state in this section the statement of a foraging problem
over a graph, and present the dynamics of a proposed finite
multiagent system trying to solve the foraging problem.

A. Foraging Problem

Consider a swarm of n agents moving over an undirected
weighted graph G trying to solve a foraging problem: The graph
has a source vertex S ∈ V , where the agents are initialized, and
a target vertex T ∈ V they are supposed to find, converging
to trajectories following the shortest path between T and S .
Foraging concerns, in general, both finding the shortest path
between two points and depleting a food source as fast as
possible. Given the discretized form of the problem, we consider
in this work the foraging problem to be solved if agents reach
a state of steadily following the shortest path between S and
T , back and forth, since, for real agents that move at constant
speed and are able to carry a limited amount of food per trip,
this would be the desired scenario for maximal depletion of the
food source.

The swarm does not have accurate individual position infor-
mation (GPS-like data). They can only receive measurements
of a weight field from the vertices immediately next to them.
Additionally, assume the agents are not able to communicate
with any other member of the swarm. The agents are only able
to send information to the vertex they are located at, and to
receive information only from the neighboring vertices.

B. Agent Dynamics

We are interested in solving the foraging problem using only
indirect communication through the environment (the graph). It
is convenient now to introduce the assumptions that are used
throughout this work.

Assumption 1: Any undirected graph G is strongly connected
and has at least one odd length cycle.

Assumption 2: We assume there is only one S ∈ V and T ∈
V , and the distance between them is larger than one.

Remark 1: Since we use graphs to discretize physical space,
we can consider graphs to be triangular grids, and Assumption
1 is always satisfied.

Now, let G be a vertex weighted undirected graph as in
Definition 1. Let A ∈ {0, 1}|V|×|V| be its adjacency matrix. We
define A := {1, 2, . . ., n} as a set of agents walking from vertex
to vertex. The position of agent a at time t is (t) = v, v ∈ V ,
and we group them as x(t) := {xa(t) : a ∈ A}. We define the
vector of proportion of agents q̂(t, n) : N0 × N → P |V| such
that q̂i(t, n) =

1
n |{a ∈ A : xa(t) = i}| ∀i ∈ V .
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The position of the agents evolves depending on some prob-
ability transition matrix P (·). That is, for i, j ∈ V

Pr{xa(t+ 1) = j |xa(t) = i} = Pji(·), xa(0) = S ∀ a ∈ A.
(1)

In stigmergy algorithms, the transition probabilities are usu-
ally defined as the normalized weights around a vertex. In
our case, drawing inspiration from experimental examples in
literature, we model the probabilities of transitioning between
vertices with an ε-greedy approach. Define the gradient matrix
as follows.

Definition 4: Let mi := | argmaxk Wik(t)|. The gradient
matrix P∇(w(t)) is a stochastic matrix such that

P∇
ji (w(t)) =

{
1
mi

if Wij = maxk{Wik(t)}
0 else.

(2)

Definition 5: Let w(t) be the corresponding time dependent
weight matrix of a connected graph G. Let A be the adjacency
matrix of the graph. For a minimum probability ε > 0 we define
the ε-greedy matrix as

P G(t, ε) := ε(D(A)−1A)T + (1− ε)P∇(w(t)).

Then, the foraging agent dynamics are as follows.
Definition 6: The distribution of agents ŷ(t) ∈ P |V| is the

probability of a given agent a being on vertex i ∈ V at time t.
This probability evolves as a random walk

ŷi(t+ 1) = Pr{xa(t+ 1) = i} =
(
P G(t, ε)ŷ(t)

)
i

∀a ∈ A
(3)

with ŷS(0) = 1∀a.
The probability matrix P G needs to be column stochastic

to satisfy (3). Therefore, when we consider transitions i → j,
the corresponding probability is P G

ji(t, ε) to avoid using the
transposed matrix. From (3) we define the indicator vectors

ζa
i (t) =

{
1 if xa(t) = i,
0 else,

q̂(t, n) =
1

n

n∑
a=1

ζa(t). (4)

Since P G(t, ε) is the same for all agents, all ζa(t) share the
same probability distribution for all t ≥ 0 if ζa(0) = ŷ(0) ∀a.
Then, q̂(t, n) is a sum of identically distributed random variables
with probability distribution ŷ(t).

Remark 2: Equation (3) can be read as “The probability of
having an agent in some vertex i at time t+ 1 is equal to the
probability of being in a neighborhood of i at time t times
the probability of moving to i.” However, this raises some
complications. In our case,P G(t, ε) is a stochastic sequence with
respect to t and P G(t, ε) = f(Qt(n)). Therefore, the transition
probabilities depend on the entire event history. A way of dealing
with this challenge is proposed in Section IV.

C. Weight Dynamics

The agents also modify the weights in the graph, similar to
ants laying pheromones on the ground. Let R(·) be the amount
of weight added to each vertex (to be properly defined below),
such that Ri(·) is the weight added per agent to vertex i at time
t. Then, the weights in G evolve as

wi(t+ 1) = (1− ρ)wi(t) + ρq̂i(t, n)Ri(·)

where ρ ∈ (0, 1) is a chosen discount factor. The weights are
initialized such that w(0) = 1w0 with w0 ≥ 0.

Remark 3: Keeping in mind that these systems are defined
over a continuous space in reality, and to avoid overaccumulation
of communication (or marking) events in one single vertex, it is
useful to consider a saturated form of reinforcement, where we
write (6) as

wi(t+ 1) = (1− ρ)wi(t) + ρRi(·) sgn (q̂i(t, n)) .

Effectively, this saturates the agent vector such that at every
vertex there can be only one “reinforcement” event at a given
time. From a real implementation point of view, this is logical
since the reinforcement needs to be processed as some form of
aggregated signal by an interacting environment or infrastruc-
ture, and otherwise such environment would need to process
arbitrarily large amount of signals in finite time. Additionally,
unbounded accumulation of weights may be undesirable. From
this point on, we will retain this formulation.

In order for the swarm to solve the foraging problem, we draw
similarities with reinforcement learning approaches to design
our reward function R. Let r ∈ R≥0 be some positive constant,
and the vector γ ∈ R|V|

≥0 take values

γv(r) =

{
r if v = T ,S
0 else.

Then let λ ∈ (0, 1), and letΓ(r) := diag(γ(r)). Then, we can
write the reward function in diagonal matrix form as

R(t, r, λ) := (I + Γ(r) + λV (w(t))) (5)

and the weight dynamics are simply

w(t+ 1) = (1− ρ)w(t) + ρR(t, r, λ) sgn (q̂(t, n)) . (6)

The intuition about this is as follows. The reward diagonal
matrix has three explicit terms in each component. First, a
constant reward 1 to all vertices to replicate the behavior of
ants: Ants add pheromones to every position they are located at,
with at least a minimum amount (1 in our case), reflecting that
vertex has been visited before. Second, the term Γ(r), where
the agents reward with an additional amount r the specific
goals of our problem: Finding T and returning to S . This is
also inspired in entomology; ants may mark the ground with
different intensities if they have found food [44], [45]. At last,
the third term is a diffusivity term (pheromones diffuse through
the air to their immediate surroundings), and this term makes ants
reinforce more or less based on neighboring weights. Addition-
ally, diffusivity is a commonly used strategy in value function
learning problems. When using Q-values, diffusivity represents
the maximum utility to be obtained at the next (or previous) step.

With (3), (4), and (6) the stochastic dynamics of the agents
and weights are fully defined. We can now present how to use
such a model to obtain a foraging swarm.

D. Foraging Swarm

For the swarm to produce emerging behavior solving the
foraging problem, some additional conditions must be added
into the agent behavior and weight update rules. As proposed
in several examples in the literature [12], [25], [30], one way
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Fig. 1. Doubled interconnected graph resulting from constructing P (t, ε).

to achieve this is to make use of two different pheromones
(or weights w1(t), w2(t)). In such a situation, agents looking
for T follow w1(t) (move according to P G1

(t, ε) ≡ P 1(t, ε))
and modify w2(t), while agents looking for S follow w2(t)
(move according to P G2

(t, ε) ≡ P 2(t, ε)) and modify w1(t).
This implies a certain “memory” condition in the agent behav-
ior that may look non-Markovian: The agents follow a set of
pheromones and reward another depending on their trajectory.
But in fact, we can modify the system by duplicating the graph
size so it remains “memoryless.” The effects of this can be seen in
Fig. 1. In blue we have the weights w1(t) and in red the weights
w2(t). The green edges represent the new directed edges added
to the graph as a result of the interconnection of the two original
subgraphs. The intuition behind this “duplication” of the graph
is to translate into the size of the state space the fact that there are
two simultaneous goals in the foraging problem (finding S and
findingT ). We can retain the memoryless condition of the swarm
by duplicating the size of the state space and interconnecting
subgraphs. For details on how to construct this interconnected
graph, see Appendix A1.

System 1: Given two (original) undirected graphs G1 =
G2 = G, we define a foraging swarm as the tuple φ :=
(G,S, T , q̂(t, n), n, ε, λ) with S ∈ V, T ∈ V, q̂ : N0 × N0 →
P |V|, n ∈ N0, ε ∈ R≥0, λ ∈ (0, 1) such that

q̂(t, n) :=

(
q̂1(t, n)
q̂2(t, n)

)
, ŷ(t) :=

(
ŷ1(t)
ŷ2(t)

)

w(t) :=

(
w1(t)
w2(t)

)
, W (t) :=

(
W 1(t) 0)

0 W 2(t)

)

P (t, ε) :=

(
(I − T )P 2(t, ε) SP 1(t, ε)

TP 2(t, ε) (I − S)P 1(t, ε)

)

initialized asw(0) = 02×|V|, ŷS(0) = 1, q̂(n, 0) = y(0), which
follows the dynamics:

ŷ(t+ 1) = P (t, ε)ŷ(t)

w(t+ 1) = (1− ρ)w(t) + ρR(t, r, λ) sgn (q̂(t, n))

R(t, r, λ) := (I + Γ(r) + λV (W (t))) . (7)

Remark 4: The resulting connected graph in System 1 has
some edges removed with respect to the original graph G. It
effectively disconnects T1 and S2 from the rest of the graph.

Nevertheless, the density of agents initialized in these vertices
is 0, and since this is a virtual duplication of the graph, we
can simply consider G ∈ φ to have edges E = {(ij) ∈ E1 ∪ E2 :
i, j �= T1 ∪ S2} and vertices V = {i ∈ V1 ∪ V2 : i �= T1 ∪ S2}.
This does not affect the dynamics, and results again in a strongly
connected graph. We will refer to T2 ≡ T and S1 ≡ S as the
resulting target and starting vertices in φ.

Observe the weight dynamics in (7) present coupled terms
between the weights and the agents position, which is a random
variable. For this reason, it becomes extremely challenging to
analyze the solutions to which the system converges in such finite
agent form. One way to solve this is to study what happens when
we consider very large number of agents.

With the presented framework of stochastic foraging swarm,
we can specify the first problem to solve in further sections.

Problem 1: Let φ be a foraging swarm communicating based
on a double pheromone stigmergy method. Construct a non-
stochastic mean field model of the system as n → ∞.

IV. MEAN FIELD SWARM

In mean field models for swarm robotics, the number of agents
is assumed to be large enough (n → ∞) so that random variables
can effectively be replaced by a mean valued deterministic
variable. We show here how to do this in the foraging swarm
presented in System 1. Recall that the state of our system is
fully defined by the σ−algebra generated by the proportion of
agents in each vertex,

Ft = σ(q̂(0, n), . . . q̂(t, n)).

Let us define the sequence Qt(n) := {q̂(0, n), . . ., q̂(t, n)}.
In this case, an event Qt(n) ∈ Ft is a sequence of agent pro-
portion vectors until time t resulting in the generator sequence
of random variables q̂(0, n), . . . q̂(t, n). Now, observe that the
conditional expected value of ζa(t) is

E[ζa(t+ 1) = 1|Ft] = P (t, ε)ζa(t). (8)

Recall that ζa(0) = ŷ(0) ∀a, and, note that, while all ζa(t)
follow the same probability distribution for all t ≥ 0 they are not
independent from each other. The evolution of the probability
distribution of every ζa follows a product of probability matrices
that resembles the dynamics of a Markov process. From (3)

Pr[{ζa
i (t) = 1}] = ŷi(t) =

(
t∏

tk=0

P (tk, ε)ŷ(0)

)
i

.

But in this case, P (tk, ε) = f(Qk). That is, the sequence of
probability transition matrices is a function of the agent positions
for all previous times. This means that, in general, for two
different events Qm

t (n),Ql
t(n) ∈ Ft

Pr[{ζa
i (t+ 1) = 1|Qm

t (n)}] �= Pr[{ζa
i (t+ 1) = 1|Ql

t(n)}].
Furthermore, observe that the dependence is on the entire

sequence until time t. Therefore, in general, the probability
of finding agents in each vertex will depend as well on the
position of other agents (making their indicator random vectors
dependent). Despite this complexity, we can show convergence
of the agent proportion vector to its distribution when n → ∞.
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Theorem 4: Let φ be a foraging swarm. Let y(t) :=
limn→∞ ŷ(t), and Yt := {y(0),y(1), . . .,y(t)}. Then,

Q∞
t := lim

n→∞
Qt(n) = Yt a.s. ∀t ≥ 0.

Proof (Theorem 4):We show this by induction. Let us look
first at t = 0. For a fixed set of initial conditions q̂(0, n), w(0),
observe that q̂(0, n) = ŷ(0), and we have ∀a ∈ A

Pr[{ζa
i (1) = 1 | q̂(0, n),w(0)}] = ŷi(1) = (P (0, ε)q̂(0, n))i .

Observe that in this case, the initial conditions are fixed,
therefore, we can consider the total probability

Pr[{ζa
i (1) = 1}] = (P (0, ε)q̂(0, n))i = (P (0, ε)ŷ(0))i . (9)

Observe that (9) does not depend on a. Therefore, all agents
have the same marginal probability distribution for t = 1. Ad-
ditionally, the transition probabilities at t = 0 have not been
affected by agent trajectories, therefore, for the first time step
ζa
i (1) are i.i.d. ∀a. We can then specify the joint distribution

of having k agents in vertex i at time t = 1: This is the joint
probability of events resulting in k agents moving to i, and n−
k agents moving elsewhere. Recall q̂(1, n) = 1

n

∑n
a=1 ζ

a(1).
Since ζa

i are indicator variables

E[ζa(1)] = P (0, ε)ŷ(0) = ŷ(1).

Let us now consider the case, where n → ∞, and define
y(1) := limn→∞ ŷ(1). Since at t = 0 the initial conditions are
fixed and all agents are initialized in the same vertex, it also holds
that ŷ(0) = y(0). Additionally, P (0, ε) is not affected by the
limit n → ∞, and ŷ(1) = P (0, ε)ŷ(0) = P (0, ε)y(0) = y(1).
Therefore, by Theorem 1 we have

lim
n→∞

q̂(1, n) = E[ζa(1)] = y(1) a.s. (10)

That is, with probability 1, the agent proportion converges
to the marginal probability distribution as n → ∞ for t = 1.
From (10) it holds that any event Q1 ∈ F1 (i.e., any possible
combination of agent positions until time t = 1) satisfies Q1 ∈
F1 ⇒ Q1 = {y(0),y(1)} a.s. That is, Pr{Q1 ∈ F1 : q(1) =
y(1)} = 1 (the union of events has measure 1). Then, the update
of P (1, ε) depends on w(1), and in the limit limn→∞ w(1) =
f(limn→∞ q̂(1, n),w(0)) = f(y(0),w(0)). Now for t = 2

E[ζa(2)] = E[E[ζa(2)| F1]] = E[P (1, ε)E[ζa(1)| F1]] =

= P (1, ε)E[ζa(1)] = P (1, ε)y(1) = y(2).
(11)

Therefore, with probability 1, the marginal probability dis-
tributions ζa(2) are determined by y(1) (since they depend on
Q1, and this occurs a.s.). Therefore, the variables are i.i.d. in the
limit n → ∞, and by the law of large numbers

lim
n→∞

q̂(2, n) = E[ζa(2)] = y(2) a.s.

By induction, it holds that there is only one possible
sequence of outcomes Qt = {y(0),y(1), . . .,y(t)}, where
Pr{limn→∞ Qt(n) = Qt} = 1 ∀t ≥ 0. Therefore, E[ζa(t+
1)] = P (t, ε)y(t) = y(t+ 1), thus

lim
n→∞

q̂(t, n) = y(t) a.s. ∀t ≥ 0.

�
By making use of Theorem 4, one can take the mean field limit

and approximate the behavior of q̂(t, n) with y(t) as n → ∞.
Additionally, the indicator variables ζa(t) become i.i.d. When
n → ∞, there is only one possible sequence Qt occurring with
probability one. In other words, Pr[{Qt ∈ Ft : Qt = Yt}] = 1,
so Qt = Yt happens for a set of outcomes of measure 1, and
the evolution of the agent density becomes deterministic. This
means that the sequence of matricesP (t, ε) is also deterministic,
and independent of every single ζa(t). Therefore, the probability
distributiony(t) of all ζa(t) becomes independent from individ-
ual agent trajectories. This translates into the indicator vectors
being i.i.d. with respect to each other.

Remark 5: Observe the difference between ŷ(t) (probability
distribution of agent positions for a finite number n) and y(t)
(probability distribution of agent positions when n → ∞). In all
cases, ŷ(0) = y(0), but they can be different from each other for
t > 0 since they evolve according to P (t, ε), which implicitly
depends on n.

We can now define our mean field swarm system.
System 2: Let G1 = G2 = G be two identical connected

weighted graphs. A mean field foraging swarm system is de-
fined as the tuple Φ := (G,S, T ,y(t), ε, λ) with S ∈ V, T ∈
V,y : N0 → P |V|, ε ∈ R≥0, λ ∈ (0, 1). The state variables are
initialized as w(0) = 0|V|, yS(0) = 1, and

y(t+ 1) = P (t, ε)y(t)

w(t+ 1) = (1− ρ)w(t) + ρR(t, r, λ) sgn (y(t)) (12)

These concepts lead us to the second goal of this work.
Problem 2: Let Φ be a mean field foraging swarm. Do

the mean field dynamics converge to a (suboptimal) fixed
point? Additionally, what can we say (experimentally) about
the deviation from the mean field case when choosing a finite
number n?

V. CONVERGENCE GUARANTEES

We study next the convergence properties of the mean field
foraging swarm Φ of System 2.

Proposition 1: Let Φ be a mean field foraging swarm system.
Let Assumption 1 hold. Let 1 ≥ ε > 0. Then, the agent density
y(t) converges exponentially to a stationary density y(∞) ∈
P |V|, unique for given initial conditions y(0) and w(0), that
satisfies yi(∞) > 0 ∀i ∈ V .

Proof: See Appendix A2. �
Additionally, we can show the following result. Recall δ∗ is

the diameter of the underlying graph.
Lemma 1: LetΦ be a mean field foraging swarm system. With

tδ = 2δ∗, it holds that sgn(y(t)) = 1 ∀t > tδ.
Proof: See Appendix A2. �
Since there is a minimum probability of accessing any vertex

in the graph (and the graph has odd cycles), eventually there
is a nonzero amount of agents in every vertex, regardless of
the foraging dynamics. Going back again to the relation finite-
infinite agents, this is equivalent to saying that agents have a
nonzero probability of accessing every vertex of the graph for
all times greater than tδ.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2022 at 10:03:10 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ORNIA et al.: MEAN FIELD BEHAVIOR OF COLLABORATIVE MULTIAGENT FORAGERS 7

Remark 6: In fact, 2δ∗ is an upper bound for the required time
tδ . It represents the case, where G is one edge away from being
bipartite, and to reach some even vertex in odd time it takes δ∗

time steps to reach the (only) odd length cycle plus δ∗ time steps
to reach the target vertex. In practice, tδ ∈ [δ∗, 2δ∗].

With these preliminary results, we can present the main con-
tribution of this section.

Proposition 2: There is a unique weight vector w(∞) and
corresponding matrix W (∞) satisfying w(∞) := (I + Γ(r) +
λV (W (∞)))1 for a fixed reward matrix Γ(r) and λ ∈ [0, 1).

Proof: Let B ∈ {0, 1}|V|×|V| be the selector matrix satisfying
Bw(∞) = V (W (∞))1. Since B is a row stochastic matrix by
Theorem 2 it has all its eigenvalues in the unit disc, and (I − λB)
has all its eigenvalues in a disc of radius λ centred at 1. Therefore,
its inverse is properly defined and w(∞) = (I − λB)−1(I +
Γ(r)) has a unique solution if λ ∈ [0, 1). �

Theorem 5: The weight dynamics in Φ have a fixed point
w(∞), and

lim
t→∞

w(t) = w(∞) := (I + Γ(r) + λV (W (∞)))1.

Proof (Theorem 5): Recall the weight dynamics

w(t+ 1) = (1− ρ)w(t)+

+ρ (I + Γ(r) + λV (W (t))) sgn(y(t)). (13)

Let w(∞) = (I + Γ(r) + λV (W (∞)))1, z(t) := w(t)−
w(∞). Subtract w(∞) at each side of (13)

z(t+ 1) = (1− ρ)z(t) + ρ (R(t, r, λ) sgn(y(t))−w(∞)) .
(14)

Define ey(t) := sgn(y(t))− 1 to obtain

(I + Γ(r) + λV (W (t))) sgn(y(t))−w(∞) =

= (I + Γ(r) + λV (W (t)))ey(t)+

+ λ (V (W (t))− V (W (∞)))1.

Taking the ∞-norm at each side of (14)

‖z(t+ 1)‖∞ = ‖(1− ρ)z(t) + ρ(R(t, r, λ)ey(t)+

+ λ (V (W (t))− V (W (∞)))1)‖∞ ≤
≤ (1− ρ) ‖z(t)‖∞ + ρ ‖R(t, r, λ)‖∞ ‖ey(t)‖∞ +

+ρλ ‖V (W (t))− V (W (∞))‖∞ ‖1‖∞ .
(15)

Recall the induced ∞-norm of a matrix is its maximum
absolute row sum. Then

‖V (W (t))− V (W (∞))‖∞ ‖1‖∞ =

= max
i

|max
j

wij(t)−max
j

wij(∞)| ≤

≤ max
i

|max
j

|wij(t)−wij(∞)|| = max
i

|zi(t)| = ‖z(t)‖∞.

(16)

Now from Lemma 1, ‖ey(t)‖∞ = 0 ∀t > 2δ∗, therefore,
substituting (16) in (15):

‖zi(t+ 1)‖∞ ≤ (1− ρ)‖z(t)‖∞ + ρλ‖z(t)‖∞ =

= (1− ρ(1− λ))‖z(t)‖∞ ≤ (1− ρ(1− λ))2‖z(t− 1)‖∞ ≤

≤ (1− ρ(1− λ))t−2δ∗‖z(2δ∗)‖∞ ⇒ lim
t→∞

‖zi(t)‖∞ = 0.

(17)
Finally, limt→∞ ‖z(t)‖∞ = 0 ⇒ limt→∞ w(t) = w(∞),

and the proof is complete. �
Corollary 1: The probability transition matrix converges to

a unique matrix limt→∞ P (t, ε) = P (∞, ε), and the stationary
distribution of agents limt→∞ y(t) = y(∞) is the eigenvector
corresponding to the eigenvalue 1. That is

P (∞, ε) := lim
t→∞

P (t, ε), y(∞) = P (∞, ε)y(∞). (18)

Proof: See Appendix A2. �

A. On the Optimality of Solutions

Let us examine now what do the agent distributions look like
in a mean field swarm system Φ. To this end, we define first, a
few useful concepts to characterize the state variables.

Definition 7: Let w be the weight vector in a system Φ. We
define a maximum (weight) gradient set of paths π∇

ij(w) as the
set of all unique paths between vertices i, j satisfying

p∇ij ∈ π∇
ij(w) ⇐⇒ p∇ij := {i, i2, i3, . . ., ik, j}

i2 = argmaxv(Wiv(t)), i3 = argmaxv(Wi2v(t)), . . .,

j = argmaxv(Wikv(t)).

In other words, let the weight vector bew(t). Then, π∇
ij(w(t))

is the set of all paths obtained from following the maximum
neighboring weights at each step when going from i to j. Note
that, for any two i, j ∈ V , it can be that π∇

ij(w(t)) = ∅ if picking
the maximum weight neighbor at every step does never connect
i with j.

Definition 8: We define the set of optimal weight vectors
W∗ ⊂ R|V|

≥0 for a mean field foraging system Φ as

W∗ := {w∗ : π∇
ij(w

∗) ≡ πST ∧ π∇
ij(w

∗) ≡ πTS}.
That is, for every weight vector w∗ ∈ W∗, the set of paths

resulting from starting at S (T ) and following the maximum
gradient vertices lead to T (S), and is equal to πST (πTS).

This interpretation of an optimal set of weights is entirely
pragmatic. We call a weight distribution optimal, if, when start-
ing atS and following the maximum weight vertex at every step,
we end up atT and we obtain a minimum length path between the
two (and vice-versa from T to S). Additionally, observe that the
optimal weight setW∗ is defined for the doubled graph in Fig. 1.
Nevertheless, given the symmetry of the graph (the subgraphs
satisfyG1 = G2), any optimal weight vectorw∗ ∈ W∗ generates
optimal paths on the original (unweighed) graph too, but it does
so separately for paths S → T and for paths T → S . Intuitively,
constructing a weight vectorw∗ means the swarm has solved the
foraging problem by building a weight function whose gradient
always leads toward an optimal path.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2022 at 10:03:10 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON ROBOTICS

Proposition 3: LetΦ be a mean field stigmergy swarm. Then,
limt→∞ w(t) = w(∞) ∈ W∗.

Proof: See Appendix A2. �
From Definition 5, abusing the notation for the variable ε we

can decompose P (∞, ε) in two matrices such that

P (∞, ε) = (1− ε)P (∞, 0) + εP (∞, 1) (19)

whereP (∞, 0) is the transition matrix corresponding to moving
according to the gradient of the weights w(∞). Observe as well
that P (∞, 1) depends only on the adjacency matrix A, which
guarantees the decomposition (19) to be unique. We define then
the following sets.

Definition 9: We define N out
v = {j ∈ V : Pjv(∞, 0) > 0},

andN in
v = {j ∈ V : Pvj(∞, 0) > 0} as the out and in neighbor

vertices connected to v by following P (∞, 0).
Observe that in Definition 4 we use m to count the number

of (out) neighbors that have maximum weight around a vertex,
and, therefore, mv ≡ |N out

v |. Now let k = δ(S, T ), and recall
p∗ST ∈ πST is any path in the set of optimal paths. Let y ∈ P |V|

be a probability vector taking values

yi :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2k if i = S, T
1

2k

∑
p∈πSi

∏
u∈p\i

1
|N out

u | if i ∈ ∪p∗ST \ S, T
1

2k

∑
p∈πTi

∏
u∈p\i

1
|N out

u | if i ∈ ∪p∗TS \ S, T
0 else.

The term 1
|N out

u | can be interpreted as the probability of mov-
ing out of u toward a specific neighbor, therefore the product
Pr{p} :=

∏
u∈p\i

1
|N out

u | can be interpreted as the probability of
following a path p until vertex i, starting atS, T . Then, we obtain
the following result.

Proposition 4: Let Φ be a mean field stigmergy swarm. Let
the system converge as t → ∞ for a fixed 1 > ε > 0 and let
P (∞, 0) defined in (19). Then, P (∞, 0)y = y.

Proof: See Appendix A2. �
Proposition 4 indicates that the vectory is the first eigenvector

of the “gradient” matrix P (∞, 0). That is, as the weights con-
verge, when the agents move by selecting the maximum weight
vertex around them, the only stationary distribution is the one
that spreads all agents equally across the optimal paths between
S and T .

Theorem 6: Let Φ be a mean field stigmergy swarm. Let β :
[0,∞) → [0,∞) be β ∈ K∞. Then, it holds that

‖y(∞)− y‖1 ≤ β(ε).

That is, the stationary agent distribution of Φ gets arbitrarily
close to the optimal distribution as ε → 0.

Proof (Theorem 6): Recall P (∞, ε) = (1− ε)P (∞, 0) +
εP (∞, 1). Additionally, from Corollary 1 and Proposition 4

P (∞, ε)y(∞) = y(∞), P (∞, 0)y = y.

Now let L := (I − P (∞, 0)), ΔP := P (∞, 1)− P (∞, 0).
Then, we can expand

y(∞)− y = P (∞, ε)y(∞)− P (∞, 0)y =

= (1− ε)P (∞, 0)y(∞) + εP (∞, 1)y(∞)− P (∞, 0)y =

= P (∞, 0)(y(∞)− y) + εΔPy(∞) ⇒
⇒ L(y(∞)− y) = εΔPy(∞).

(20)
The null space ofL is given byLv = 0 ⇐⇒ P (∞, 0)v = v,

and by Theorem 2 we know v is unique, therefore, rank(L) =
|V| − 1. But to solve the system of equations L(y(∞)−
y) = εΔPy(∞), L needs to be invertible. For this we can
add the following additional equation: We know it must
hold that 1T (y(∞)− y) = 0, and this equation is linearly
independent from all rows in L if and only if �μ ∈ R|V|

that satisfies Lμ = 1. Let us show that there does not ex-
ist such a μ by contradiction. Assume ∃μ : Lμ = 1. Re-
call πST , πTS are the sets of optimal paths between S, T
and T ,S , with p∗ST ∈ πST . Then, ∀i1 ∈ N out

S , LSS = Li1i1 =
1, and Li1S = − 1

|N out
S | . Adding the rows of L ∀i1⎛

⎝ ∑
i1∈N out

S

Li1

⎞
⎠

j

=

⎧⎨
⎩

1 if j ∈ N out
S

−1 if j = S
0 else.

(21)

Now let ∪i1N
out
i1

:= {k : k ∈ N out
i1

∀ i1 ∈ N out
S } be the set of

all vertices at distance 2 from S when following optimal paths,
and i2 ∈ ∪i1N

out
i1

. Adding the rows of L ∀i2⎛
⎝ ∑

i2∈∪i1
N out

i1

Li2

⎞
⎠

j

=

⎧⎨
⎩

1 if j ∈ ∪i1N
out
i1

−1 if j ∈ N out
S

0 else.
(22)

Now it is clear that adding (21) and (22)⎛
⎝ ∑

i∈N out
S

Li1 +
∑

i2∈∪i1
N out

i1

Li2

⎞
⎠

j

=

⎧⎨
⎩

1 if j ∈ ∪i1N
out
i1

−1 if j = S
0 else.

(23)

Extending the sum until vertex T , we add rows ∀i ∈ ∪p∗ST⎛
⎝ ∑

i∈∪p∗
ST \S

Li

⎞
⎠

j

=

⎧⎨
⎩

1 if j = T
−1 if k = S
0 else.

(24)

Analogously, considering the reverse paths πTS one obtains⎛
⎝ ∑

i∈∪p∗
TS\T

Li

⎞
⎠

j

=

⎧⎨
⎩

1 if j = S
−1 if j = T
0 else.

(25)

Define θ := | ∪ p∗ST | = | ∪ p∗TS | as the number of vertices in
all optimal paths, and from (24) and (25) one obtains∑

i∈∪p∗
ST \S

Liμ = θ − 1,
∑

j∈∪p∗
TS\T

Ljμ = θ − 1 ⇒ −θ = θ

which is a contradiction. Then, �μ : Lμ = 1, and there is a row
in L, ΔP such that replacing it (assuming it is the last row,
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TABLE I
SIMULATION PARAMETERS

without loss of generality) we obtain

L̃ :=

⎛
⎝L1

. . .
1T

⎞
⎠ , Δ̃Py(∞) :=

⎛
⎝ΔP1y(∞)

. . .
0T

⎞
⎠

where rank(L̃) = |V|. Now, observe

L̃(y(∞)− y) = εΔ̃Py(∞) ⇒ y(∞)− y = εL̃−1Δ̃Py(∞).

At last, since ‖L̃−1‖1 is bounded and does not depend on ε
and ‖Δ̃Py(∞)‖1 ≤ 2, ∃c ∈ R≥0 and β(ε) ∈ K∞ such that

‖y(∞)− y‖1 ≤ ε‖L̃−1Δ̃Py(∞)‖1 ≤ εc =: β(ε). (26)

�
We can now reflect on the similarities between a Q-learning

(or other value function iteration) strategy for finding optimal
policies on a markov decision process (MDP) and our weight-
based foraging problem, as discussed in the introduction . There
is a parallelism between the Q values associated to state-action
pairs and the weight values (pheromones) associated to vertices
on our graph: In both cases they represent the “utility” of a state.
However, in our case, by taking the mean field limit we can
study the limit distribution of agents interacting with this utility
field, as well as the utility values themselves. Additionally, in the
mean field limit we can derive deterministic guarantees about
both the distribution of agents around the graph (i.e., the distance
‖y(∞)− y‖1) and the trajectories of the agents given by the
matrix P (∞, ε).

VI. EXPERIMENTS

Some experiments are here presented to verify the results
presented in Section V. All experiments were performed over
a 20× 20 triangular lattice graph, which has mini g

out
i = 2,

maxi g
out
i = 6, and δ∗ = 31. The parameters used are presented

in Table I. It is worth mentioning that the amount of “parameter
tuning” applied is minimal. The guarantees from Section V
ensure the mean field process converges to (a neighborhood of) a
set of vertices along the shortest path, and we choose parameters
to obtain representative results when having a finite amount of
agents in the graph. We picked λ ≈ 1 to have high diffusion,
r = 5 to be significantly higher than the unitary reinforcement
in R(t, r, λ), ε = 0.5 to have an average exploration rate and
ρ = 0.005 since this yields an evaporation of (1− ρ)4δ

∗ ≈ 1/2.

A. Mean Field Process

In Figs. 2 and 3 we present the results for two different
scenarios of simulations for a mean field system Φ as follows.

1) One without obstacles, where the shortest path is a perfect
line between nest (red triangle) and food source (upside
red triangle).

Fig. 2. Mean field results without obstables.

Fig. 3. Mean field results with obstacles.

2) One with a sample (nonconvex) obstacle, where the short-
est path (or collection of paths) has to go around it on the
right side.

At every vertex we plot the value w1
i (t)−w2

i (t), with the
color bar representing the values of the last plot. In this way
we can see the vertices that have a higher overall weight corre-
sponding to each goal. The number of agents is then proportional
to the size of the red markers on the vertices. The behavior of
the system is specially interesting in the case of the obstacles in
Fig. 3. In the first few time-steps there is a random exploration
taking place, and very early (around t = 40) the agent density
starts accumulating in the diagonal line outward from the nest,
indicating that the shortest path is starting to be exploited. Soon
after (around t = 120) the shortest connecting path can already
be observed, but the agent distribution presents oscillations.
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Fig. 4. Mean field trajectories compared to y.

Fig. 5. Discrete agent swarm with n = 600.

After enough time-steps the oscillations dampen (since the graph
has enough odd length cycles) and the distribution converges to
y(∞). It is important to remark the convergence speed of the
mean field dynamics; G has 452 vertices, and the agent density
has converged to the shortest path in about 300 time-steps.

In Fig. 4, we present the temporal trajectories for the mean
field system compared to the optimal vector y, for different
values of ε. Plots for different ρ and λ values are not included
since these parameters did not have an impact on the mean field
results. To better isolate the effect of every parameter in the
system, the influence of ε is only studied on the mean field
system, and later a fixed value of ε is applied to the rest of the
experiments.

B. Finite Agents Versus Mean Field

We compare now the results obtained from a mean field
approximation system to the ones obtained when using a finite
number of agents. Figs. 5 and 6 show a similar scenario from

Fig. 6. Discrete agent swarm with n = 600 and obstacles.

the mean field case, but in this case for a finite number of agents.
As it can be seen, both cases take longer to achieve convergence
to the shortest path. Additionally the agents concentrate over
wider regions, and some are “trapped” in irrelevant parts of the
graph. Other examples in literature [30] solve this by resetting
the agent position if they have not found the goal vertices over
a too long period of time.

We now study the impact of having a reduced number of
agents compared to the optimal solutions obtained in the mean
field case. Let us for this define an error random variable

ν(t, n) := q̂(t, n)− y(∞)

and, finite sample expectation and variance as

Ê[ν(t, n)] :=
1

K

K∑
k=1

ν(t, n)

V̂ar[ν(t, n)] :=
1

K

K∑
k=1

(ν(t, n)− Ê[ν(t, n)])2.

Figs. 7 and 8 show the results over K = 5000 runs. As
expected from Theorem 4, both the mean and the variance
approach zero for large times as n increases. Interestingly, they
both exhibit a peak value after a few time-steps into the runs.
This is likely due to the fact that when agents find T the weights
change quite fast since reward is added to G2 suddenly, and the
stochastic system runs may be prone to differ more from each
other.

C. Interpretation of Variance Results

Figs. 7 and 8 show the norms of the finite sample (error)
expectation and the finite sample variance. As expected, for large
numbers of agents the plots go to zero relatively quickly. How-
ever, it is interesting to note that the variance and expectation of
error increase with n until n ≈ 600. A possible justification for
this is that there is a threshold under which more agents cause
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Fig. 7. Sample expectation of ν(t, n) for different n.

Fig. 8. Sample variance of ν(t, n) for different n.

TABLE II
SIMULATION RESULTS

more disorder, but not necessarily better solutions. Looking at
the variance values at t = 5000˜s, the first curve for n = 50
settles around 0.6 · 10−2, and the following curves for n = 200,
n = 400go up until around10−2. This indicates that the variance
increases for a range of n values, until a certain threshold, where
it decreases until approaching 0 for n > 1000.

Table II displays the end results of different combination of
parameters over 5000 runs, for t = 5000 and fixed ε = 0.5,
λ = 0.99. In general, lower ρ values and larger agent numbers

seem to cause smaller variances and smaller ν(t, n) values.
However, for large swarms (n = 800) decreasing the evapo-
ration results in an increase in variance. This effect seems to
be caused by the fact that for large enough swarms, higher
evaporation actually pulls agents toward the optimal solutions
faster, therefore, decreasing the variance (or diversity) in tra-
jectories. Interestingly, the impact of r in ν(t, n) seems to be
small for the tested cases. Further study of this issue is left for
future work, since it may have implications on other multiagent
stochastic systems, where stochastic processes exhibit couplings
that vanish for large number of agents.

VII. CONCLUSION

In this article we have shown throughout this work how a
multiagent collaborative system solving a foraging problem can
be approximated by a mean field formulation of the problem
when n → ∞. In Section V, we developed formal results on the
convergence and optimality of such mean field foraging system.
We were able to draw a set of conclusions from these results,
combined with the experiments in Section VI.

First, the mean field foraging system converged to a unique
stationary solution, and did so exponentially fast, under the
proposed conditions. In fact, the distance between the mean field
agent distribution y(∞) and the optimal distribution y seemed
to only depend on the exploration rate ε (see Fig. 4, Theorem
6). That is, the evaporation (or learning) rate ρ and the discount
factor λ did not have an effect in the stationary solutions, nor
in the convergence speed of the mean field system. This can be
explained by the fact that ρ and λ act as scaling parameters that
do not change the shape of the weight gradients, thus not having
an impact on the matrices P (t, ε). Note as well from the results
in Fig. 4 that the distance between y(t) and y showed some
linearity with ε as obtained in the bounds of Theorem 6. This
indicates that, for collaborative multiagent systems in stochastic
settings, learning rates and discount factors cease to have an
impact when considering large numbers of agents. Therefore,
the study of mean field limits on such a multiagent system allows
us to decouple the influence of some parameters, that may only
come into play when considering small agent numbers.

Second, lower exploration rates seemed to cause a much
slower spread of agents along the optimal path, resulting in a
slowly damped “wavelike” behavior, as it could also be seen in
the simulation examples in the supplementary multimedia file.
These waves were caused by the initial conditions of agents,
since all agents started at S on the first subgraph, but they
were more quickly damped (agents spreading out faster) for
higher values of ε. This may have an impact when considering
finite agent numbers; if we observe fast oscillations for a set of
parameters asn → ∞, there may be reasons to believe that these
can result in nonconvergent behavior for finite agents.

We should also remark the interpretation of the mean field
limit. By considering y(∞) := limt→∞(limn→∞ q̂(t, n)) we
were computing the (limit) behavior in time of an infinitely
large system of agents. Our results did not guarantee, however,
that the alternate limit limn→∞(limt→∞ q̂(t, n)) existed as well.
The problem of studying this second limit corresponds to the
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limitations of a mean field approximation, and the study of
stochastic trajectories of the finite agent system. Such study
would shine some more light on how agents affect the limit
distributions in these systems. It is worth mentioning that the
impact of mean field solutions on discrete time MDPs was in
itself a whole subject of study (see [46]–[48]), and the interest
on such mean field solutions applied to reinforcement learning
problems seems to be growing fast in the last years. Knowing
more about the relation between the distributions of finite agent
systems and their mean field limits will give us tools to design
multiagent systems with guarantees concerning the number of
agents needed to solve a specific problem.

APPENDIX A

A: Graph Doubling Procedure

Consider two identical graphs G1, G2 at t = 0. Let q̂1
i (t)

be the agent proportion in vertex i ∈ G1 with probability dis-
tribution ŷ1(t), and q̂2

i (t) be the agent proportion in G2 such
that ŷ2(0) = 0. Since the agents follow opposite weight fields
(agents in graph 1 follow weights of graph 2, and vice versa),
let us write the following matrices by considering the union of
both systems, G1 ∪ G2:

w(t) :=

(
w1(t)
w2(t)

)
, P∪(t, ε) :=

(
P 2(t, ε) 0

0 P 1(t, ε)

)

and ŷ(t) := (
ŷ1(t)
ŷ2(t)

). Note the reordering of the blocks in

P∪(t, ε), reflecting the fact that the agents follow opposite
weights. The weight dynamics as written in (6) are then

w1
i (t+ 1) = (1− ρ)w1

i (t) + ρq̂1
i (t, n)Ri(t, r, λ)

w2
i (t+ 1) = (1− ρ)w2

i (t) + ρq̂2
i (t, n)Ri(t, r, λ) (27)

with w(0) = w01. Agents enter graph G2 when they find the
vertex T 1, and go back to graph G1 when they find vertex
S2, resulting in two interconnected systems having each an
inflow (u1(t),u2(t) ∈ P |V|) and outflow (v1(t),v2(t) ∈ P |V|)
of agents exiting and entering the graphs. The dynamics for the
agent distribution can be written as

ŷ1(t+ 1) = P 2(t, ε)ŷ1(t) + u1(t) + v1(t)

ŷ2(t+ 1) = P 1(t, ε)ŷ2(t) + u2(t) + v2(t). (28)

Define now the selector matrices S ∈ R|V |×|V | and T ∈
R|V |×|V | as diagonal matrices with Sii, Tjj = 1 for i = S, j =
T , zero otherwise. If u1(t) is the distribution of agents entering
graph G1 from graph G2 at time t and v1(t) is the density of
agents leaving G1, both graphs are interconnected and closed to
external inputs, and then

u1(t) ≡ −v2(t) = SP 1(t, ε)ŷ2(t)

v1(t) ≡ −u2(t) = TP 2(t, ε)ŷ1(t). (29)

Therefore, substituting (29) in (28), the agent probability
distribution dynamics are given by

ŷ(t+ 1) =

(
(I − T )P 2(t, ε) SP 1(t, ε)

TP 2(t, ε) (I − S)P 1(t, ε)

)
ŷ(t) =

=: P (t, ε)ŷ(t).
(30)

Furthermore, observe that the matrix P (t, ε) in (30) is also
column stochastic. Effectively, we have interconnected the two
graphs by the vertices S and T , and made the agents move
according to the opposite pheromones.

B: Proofs

Proof (Proposition 1): Given the bounded probability matrix
P (t, ε), for any edge (ij) ∈ E , we have Pji(t, ε) ≥ ε. Further-
more, since by Assumption 1 there is at least one odd length
cycle, the graph is aperiodic and we can directly invoke results
from [31] on convergence of stigmergy swarm probability dis-
tributions. In particular, from Theorem 3

∃y(∞) : lim
t→∞

(
t∏

tk=0

P (tk, ε)

)
y(0) = y(∞).

Since all positive terms in matricesP (t, ε) are lower bounded,
the product matrix P∞(ε) := limt→∞

∏t
tk=0 P (tk, ε) is irre-

ducible, and from Theorem 2 the eigenvector y(∞) is unique
and has strictly positive entries. Additionally, from Theorem 3
we know that the convergence is exponential, with a rate bounded
by α = (1− ε

1+(g∗−1)ε
1+2δ∗)

1
1+2δ∗ . �

Proof (Lemma 1): First, since all P (t, ε) have the positive
entries lower bounded by ε and the graph is connected, they are
all irreducible and we can infer(

t0+2δ∗∏
tk=t0

P (tk, ε)

)
ji

=

= (P (t0 + 2δ∗, ε). . .P (t0, ε))ji ≥ ε2δ
∗ ∀i, j ∈ V. (31)

In other words, any vertex is reachable from any other ver-
tex for times larger than 2δ∗. Now, making use of (31), and
lT1 , l

T
2 , . . ., l

T
|V| being the rows

t0+2δ∗∏
tk=t0

P (tk, ε) =

⎛
⎝ lT1

. . .
lT|V|

⎞
⎠⇒

⇒
t0+2δ∗∏
tk=t0

P (tk, ε)y(t0) =

⎛
⎝ lT1 y(t0)

. . .
lT|V|y(t0)

⎞
⎠ ≥ ε2δ

∗
1.

Therefore, for t0 = 0 and t > 2δ∗ we have y(t) =∏t
tk=0 P (tk, ε)y(0) ≥ εt1. Last, from Proposition 1,

limt→∞ y(t) = y(∞) > 0, therefore,

t > 2δ∗ ⇒ y(t) > 0 ⇐⇒ sgn(y(t)) = 1.

�
Proof (Corollary 1): From Theorem 3 we know that the limit

limt→∞ y(t+ 1) = limt→∞ y(t) = y(∞) exists. Additionally,
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from Theorem 5 we know that the limit limt→∞ P (ε, t) =
P (ε,∞) also exists. Therefore, using the limit product rule

lim
t→∞

y(t+ 1) = lim
t→∞

P (t, ε)y(t) = P (∞, ε)y(∞) = y(∞).

�
Proof (Proposition 3): From Theorem 5, the fixed point is

w(∞) = (I + Γ(r) + λV (W (∞)))1, and recall from Propo-
sition 2 that it is unique. Additionally, γS,T (r) = r and is 0 for
all other vertices, and it can be shown by contradiction (not added
here for brevity) that argmaxi(wi(∞)) = S, T . Now, to prove
the proposition we assume the following structure for w(∞),
and later show it is indeed a solution (and therefore the only
one, since it is unique). Let us assume for w(∞)

v, u ∈ V1 : δ(S, v) > δ(S, u) ⇒ wv(∞) < wu(∞) (32)

and the same holds for the converse v, u ∈ V2 with the distance
to T . That is, if v is one step further away from S than u, then
it has a smaller weight value. Now recall

wi(∞) = (1 + γi(r) + λmax
j∈V

wij(∞)) (33)

and γi(r) = 0 ∀ i �= S, T . Then, ∀j ∈ V : δ(S, j) = 1

wj(∞) = (1 + λmax
k∈V

wjk(∞)) = (1 + λwS(∞))

wS(∞) = (1 + r + λmax
k∈V

wik(∞)) = (1 + r + λwj(∞)).

(34)
Solving (34) for both weights we obtain

wS(∞) =
1 + r + λ

1− λ2
, wj(∞) =

1 + λ(1 + r)

1− λ2
. (35)

Therefore, r > 0 ⇒ wS(∞) > wj(∞) ∀j : δ(i, j) = 1.
Then, for any k ∈ V1, k �= S ,

wk(∞) = 1 + λmax
l∈V

wkl(∞) = 1 + λ + λ2 max
m∈V

wlm(∞)

= . . . =

δ(S,k)∑
a=1

λa−1 + λδ(S,k)wi(∞) =

=

δ(S,k)∑
a=1

λa−1 +
λδ(S,k) (1 + r + λ)

1− λ2
=

1 + λ + λδ(S,k)r

1− λ2

(36)
and the same holds for any k ∈ V2 with the distance δ(T , k).
Observe (36) yields an explicit solution to the fixed point w(∞)
that satisfies the assumption in (32). From Proposition 2, this
is the only solution, thus (32) indeed holds for the fixed point
and graphs considered. Finally, by construction (36) guarantees
that picking the neighboring maximum weight w(∞) from any
v ∈ V leads to S (or T ) through the minimum distance path, i.e.,
w(∞) ∈ W∗. �

Proof (Proposition 4): From Definition 5, if y is the eigen-
vector of P (∞, 0) corresponding to the eigenvalue 1

P (∞, 0)y = y ⇔

⇔
{

(I − T )P∇(w2(∞))y1 + SP∇(w1(∞))y2 = y1

TP∇(w2(∞)))y1 + (I − S)P∇(w1(∞))y2 = y2.
(37)

Recall Remark 4. Since we are considering the full doubled
graph with |V| = 2|V1| = 2|V2| (that is, with allT1,S1, T2,S2 ∈
V), there are two vertices in the graph that are effectively dis-
connected from the rest, namely T1 and S2. Therefore, yT1(t) =
yS2

(t) = 0 ∀ t. Similarly

T1,S2 /∈ (∪p∗ST ) ∪ (∪p∗TS) ⇒ yT1 = yS2
= 0. (38)

Let us focus on the first equality in (37). Recall y1
S = y2

T =
1

2˜k andy1
T = y2

S = 0. Let us now verify thatP∇(w1(∞))y2 =
y2 for all vertices v �= S, T . Recall from Definition 4 that
P∇
ji (w

1(∞)) = 1
|N out

i | ∀ j ∈ N out
i . Then, for any v �= S, T

(
P∇(w1(∞))y2

)
v
=
∑

j∈Nin
v

y2
j

|N out
j | . (39)

Substituting now y2
j = 1

2˜k

∑
p∈πTj

∏
u∈p\j

1
|N out

u | in (39)

∑
j∈Nin

v

y2
j

|N out
j | =

∑
j∈Nin

v

1

2˜k

⎛
⎝ ∑

p∈πTj

∏
u∈p\j

1

|N out
u |

⎞
⎠ 1

|N out
j | =

=
1

2˜k

∑
j∈Nin

v

∑
p∈πTj

∏
u∈p

1

|N out
u | .

(40)
Since all j ∈ N in

v lead to v, (40) is simply

1

2˜k

∑
j∈Nin

v

∑
p∈πTj

∏
u∈p

1

|N out
u | =

1

2˜k

∑
p∈πTv

∏
u∈p\v

1

|N out
u | = y2

v

(41)
and (P∇(w1(∞))y2)v = y2

v. Similarly

(
P∇(w2(∞))y1

)
v
= y1

v ∀v �= S, T (42)

and y1
T = 0. Now observe

(
SP∇(w1(∞))y2

)
i
=

{(
P∇(w1(∞))y2

)
i

if i = S
0 else.

(43)

From Proposition 3, we know that w1
S(∞) =

maxj wj(∞) ⇒ P∇
Si(w

1(∞)) = 1 ∀ (iS) ∈ E . Since all
paths p ∈ πTS start and end at the same vertices and have the
same length, recall 1

|N out
u | can be interpreted as the probability of

moving out of u, therefore, the product Pr{p} :=
∏

u∈p\S
1

|N out
u |

is the probability of following the entire path p, and it holds that

∑
p∈πTS

∏
u∈p\S

1

|N out
u | =

∑
p∈πTS

Pr{p} = 1. (44)
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Therefore, by making use of (44), we can compute (43)

(
SP∇(w1(∞))y2

)
S =

∑
j∈Nin

S

y2
j

|N out
j | =

=
∑

j∈Nin
S

1

2˜k

⎛
⎝ ∑

p∈πTj

∏
u∈p\j

1

|N out
u |

⎞
⎠ 1

|N out
j | =

=
1

2˜k

∑
j∈Nin

S

∑
p∈πTj

∏
u∈p

1

|N out
u | =

=
1

2˜k

∑
p∈πTS

∏
u∈p\S

1

|N out
u | =

1

2˜k
= y1

S . (45)

At last, combining (42) and (45) we have

(I − T )P∇(w2(∞))y1 + SP∇(w1(∞))y2 = y1 (46)

and analogously one can show that the same holds for the second
equation in (37). Therefore, P (∞, 0)y = y. �
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