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1 Introduction

Solar energy is the sustainable and renewable energy source with the most promising future
prospects to meet global energy demand (Kabir et al., 2018). Attaching solar panels to build-
ing roofs is one such way to generate solar energy and is already being applied extensively in
practice. Whether individual building roofs are suitable for solar panels depends on various
factors, such as the type of the roof (Song et al., 2018), the orientation of the roof surface and
whether the roof is obstructed by another object, for instance a building or a tree (Pinde and
Rich, 2002). So, correctly oriented building roofs are ideal locations for solar panels because
the generated energy can directly be applied to the household and as roofs are elevated, they
have a higher chance of avoiding shadows cast on the panels than locations on ground-level.
Building facades can also be suitable locations for solar panels. Although they generate less
solar energy than roofs, the area to attach solar panels onto is larger, yielding sufficient solar
energy (Jaugsch and Löwner, 2016).

To determine the solar potential of buildings a solar irradiance model is needed. Modules
of well-known GIS packages such as Solar Radiation Tools (former Solar Analyst) in ArcGIS
(ArcGIS, 2016) and r.sun in GRASS GIS (Hofierka and Suri, 2007) offer solid and fast solar ir-
radiance modelling tools for raster data like digital elevation models (DEMs). However, raster
data does not model the 3D urban environment accurate enough. This is specifically notice-
able for vertical surfaces such as facades, as DEMs model the environment in at most 2.5D
(Redweik et al., 2012). Another downside is that raster data is captured with a certain spatial
resolution, causing loss of information with low resolutions. The higher the resolution, the
longer the process takes.

To capture the 3D urban environment with more spatial detail, buildings can be stored as
vector data in 3D meshes. As a benefit, vector data needs less computer memory than raster
data. Moreover, vector data is more versatile than raster data and it is built up of geomet-
ric primitives like polygons and lines making vector data suitable to accurately represent 3D
building meshes. However, techniques that take only 3D vector data as input for solar irra-
diation modelling are not widely implemented or available yet. The ones that are described
or implemented are generally not fast enough for large scale data sets (Hofierka and Zlocha,
2012; Liang et al., 2015; Wieland et al., 2015). This is mostly due to the necessary and compute-
intensive shadow casting step.

Nowadays, more and more 3D city models are openly available. An example of this is the
massive 3D model of all the buildings in The Netherlands. It is openly available as the data
set 3D BAG (3D Geoinformation Research Group, TU Delft, 2021), where BAG stands for ’Ba-
sisregistratie Adressen en Gebouwen’, meaning Register of Buildings and Addresses. This
data set contains a representation of all the buildings as vector data in a level of detail (LoD)
of at most 2.2, which includes vertical walls and sloped roof surfaces.

The goal of this thesis is to implement a fast solar irradiation model, but with realistic out-
comes, for large 3D city models by taking the 3D BAG data set as a use case. As the 3D BAG
is a large vector data set, determining whether a building is put in shadow by neighbouring
objects is a compute-intensive process. To overcome these time-related challenges, efficient
approaches within the field of ray tracing to perform shadow casting are needed and simplifi-
cations in the solar irradiation model need to be made.
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2 Related work

Computing solar irradiation can be done for a complete geographic area, regardless of the
contents of this area. An example is a mountainous landscape, where for each cell in the raster
data set (typically a DEM) the solar irradiation is computed. For this thesis I am not interested
in doing computations for all contents in an area, but only for specific parts of the data set,
namely the building roofs and walls in urban data sets.

When presenting the existing methods for computing the solar irradiation of a building, one
can distinguish the methods on its input data type, namely raster and vector data. These
data types both need a different approach when computing solar irradiation. Table 1 gives an
overview of some of the existing tools and methods for solar irradiation modelling addressed
for this thesis. For each tool or method it states the publication year, the type of input data for
the solar irradiation method, a key feature and the citation. Freitas et al. (2015) also performed
a state-of-the-art review of available solar radiation models.

2.1 Raster data

One of the first solar irradiation models was SolarFlux (Hetrick et al., 1993). This method used
simple formulas and was unfortunately not suitable for large area raster maps.

A first approach in implementing solar irradiation models with faster speeds, higher accuracy
and open source availability was done by Pinde and Rich (2002). They created the tool called
Solar Analyst, which is still implemented, although improved, within the ArcGIS software
package. Their method takes the topography, elevation and surface orientation of a DEM into
account. Obstructions by surrounding topographic features, like hills and trees are also con-
sidered, by using a hemispherical viewshed algorithm. The resulting insolation maps include
both direct and diffuse radiation. Their resolution back then was 30 meter, which is quite low
for building roofs while sufficient for large geographic areas. This work is a good starting
point for solar irradiation studies and is therefore cited a lot by other authors as well.

A more recent methodology utilising the Solar Analyst tool as described by Kodysh et al.
(2013) also makes use of a hemispherical viewshed. It is raster-based and has a resolution of
less than 1 meter, which is necessary to capture all features of a roof. A similar tool as the Solar
Analyst was implemented for GRASS GIS, called r.sun (Hofierka and Ri, 2002; Hofierka and
Suri, 2007). It is also raster-based and widely used nowadays with reliable accuracy.

The way these tools work to compute the solar irradiation for specific buildings is to combine
the raster data set with a 2D vector data set of the building footprints. The building footprints
are then used as a mask laid over the pixels in the raster data set. Only these pixels are taken
into consideration when computing solar irradiation values for the building roofs. As one can
imagine, the higher the resolution of the raster grid, the better the geometry of the building
roofs can be represented.

The work by Song et al. (2018) focuses more on the various shapes of the rooftops. It states
that the solar potential differs per rooftop type and it selects the most suitable roof types to use
for solar irradiation computations based on some filters. Stendardo et al. (2020) incorporate
the GPU to speed up the shadow casting algorithm.
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Tool/Method Year Type Key feature(s) References
SolarFlux 1993 Raster One of the first tools Hetrick et al. (1993)
Solar Analyst 2000 Raster Widely used, reliable Pinde and Rich (2002)
GRASS GIS r.sun 2002 Raster Widely used, reliable Hofierka and Ri (2002);

Hofierka and Suri (2007)
Solar Potential on
multiple building
rooftops

2013 Raster Uses Solar Analyst. Com-
bines high-resolution DEM
with upward-looking hemi-
spherical viewshed

Kodysh et al. (2013)

Solar Potential
Remote Sensed
Rooftops

2018 Raster Takes variable rooftops into
account

Song et al. (2018)

GPU-Enabled
Shadow Casting
(Geneva)

2020 Raster Computationally efficient for
high resolution, but shadow
casting for rasters

Stendardo et al. (2020)

v.sun 2012 Vector to
voxel

Vector-voxel approach, lacks
benchmarking

Hofierka and Zlocha
(2012)

SORAM 2013 Vector Focused on diffuse radiation Erdélyi et al. (2014)
Solar3DCity 2015 Vector About error propagation,

takes CityGML as input but
does not consider shadows

Biljecki et al. (2015)

Solar radiation
on CityGML
building data

2015 Vector Takes CityGML as input,
does consider shadows.
Uses point sampling on the
surfaces

Wieland et al. (2015)

SURFSUN3D 2015 Vector to
raster

Rasterises 3D triangular
meshes, but not fast enough
for higher LoD

Liang et al. (2014, 2015)

Sparse Voxel Oc-
tree (SVO)

2017 Vector to
voxel

Extension of SURFSUN3D,
sparsely voxelises the 3D tri-
angular meshes in an octree

Liang and Gong (2017)

Skyline-based
method

2019 Vector Computes SVF and SCF. Also
uses the GPU to speed up

Calcabrini et al. (2019)

3D shadow cast
vector-based
model

2020 Vector Accurate; different projection
techniques used based on the
tilt of the surfaces

Viana-Fons et al. (2020)

Vertical 3D walls 2016 Raster to
3D points

Uses observer point columns
to efficiently ray cast 3D ver-
tical walls

Jaugsch and Löwner
(2016)

Solar3D 2020 OAP3D Very accurate, it uses the
cube mapping technique on
3D photographs of buildings

Liang et al. (2020)

Table 1: Overview of various solar radiation modelling tools or methods

2.2 Vector data

Vector data is more accurate than raster data as it is built up of geometric primitives such as
polygons and lines, representing the 3D environment with more spatial detail. This makes
modelling of for instance vertical facades easier. Moreover, vector data is more efficient to
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store in computer memory than raster data. However, raster data is simpler and faster to use
as the resolution can be determined beforehand. Therefore, the challenge is to find a way to
process the vector data computationally efficient to incorporate the higher spatial detail into
the resulting solar potential of the individual 3D buildings.

An early approach in using 3D vector data in complex urban environments as input for solar
irradiation computations is described by Hofierka and Zlocha (2012). The module v.sun is cre-
ated, which is based on the existing module r.sun to compute solar irradiation values. It takes
a vector-voxel approach to segment the vector objects into smaller polygons. Then, for each
voxel the proposed algorithm is applied: calculating the normal vector, solar ray directions
for various time and the shadows cast by neighbouring buildings. However, the performance
of the method is not assessed and it is not implemented in the GRASS GIS package as was
proposed to be.

A tool taking 3D city models stored in CityGML files as input for solar irradiation computa-
tions is Solar3DCity (Biljecki et al., 2015). The tool extracts the roof surfaces for each building
and computes their inclination, area and orientation. Afterwards, it estimates the yearly solar
irradiation for each surface by using the solpy library (Charles, 2015) and writes the enriched
3D city model back to the CityGML file. A notable shortcoming of this tool is that it lacks
an implementation for shadows cast by neighbouring buildings. This is omitted because of
computational reasons.

The study described by (Wieland et al., 2015) also takes 3D city models stored in CityGML for-
mat as input for solar irradiation computations. The improvement is that it does incorporate
the determination of shadows. Their workflow is as follows. For each roof and wall surface
of a building they establish a point grid. Then for each point they cast a line towards the
direction of the sun for specific points in time. By using an intersection tool in PostGIS they
check whether this line intersects with surrounding buildings to determine whether the cor-
responding point is in shadow or not. Afterwards, the solar irradiance (beam and diffuse) is
computed for each surface point. Lastly, the values are integrated over time and area to arrive
at monthly values per building. This is a simple and effective way to compute the shadows
cast by surrounding building. However, it is quite inefficient because of the high computation
costs. This can be explained by the inefficient way the buildings are processed; just brute force.

The work by Liang and Gong (2017) also takes a 3D vector-voxel approach to compute solar
irradiation like Hofierka and Zlocha (2012), but this time in combination with a sparse voxel
octree (SVO) to store the geometries. The strong point of using an SVO as storage model is
that the computation time of shadow casting does not slow down for more complex geome-
tries. Its time complexity stays the same with increasing LoD. Its predecessor is about just
rasterising the 3D meshes in 2D (Liang et al., 2014), which does slow down shadow casting
with increasing LoD. However, storing a 3D city model into an SVO (Liang and Gong, 2017)
is memory inefficient, making it unusable for large 3D city models. Therefore, a better stor-
age model than the SVO is needed as indexing structure to speed up obstruction detection for
shadow casting.

The work described by Calcabrini et al. (2019) uses the indicators sky view factor (SVF) and
sun coverage factor (SCF) to represent the skyline profile for a building in a 3D city model. The
method is implemented for direct, diffuse and reflected solar irradiation making the model
quite complex, but accurate. It also makes use of the GPU to speed up computations for large
areas.
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Viana-Fons et al. (2020) describe an efficient 3D shadow cast vector-based model. They create
a 3D city model out of LiDAR data and building footprints. Then they apply their shadow
model to the surfaces of a building, distinguishing whether a surface is vertical or not. This is
necessary as projection techniques are used for different surfaces to obtain a correct shadow
profile. Their resulting values have low errors compared to real data, yielding a high accuracy.

2.3 Other types

The tool Solar3D is mainly focused on using a cube mapping technique to accurately recreate
3D scenes based on oblique airborne photogrammetry-based 3D-city models (OAP3D) (Liang
et al., 2020). For this, real life photographs of the scene are needed, which is unfeasible for
large data sets. For this to work, the tool also relies on DEMs, DSMs and feature layers as
input data. The tool yields a high accuracy.

To enlarge solar energy generation, solar panels can also be installed on the facades of build-
ings. Jaugsch and Löwner (2016) implemented a method that takes 2D maps with additional
height information as input. 3D block models are extruded from this input. They introduced
the concept of observer point columns which determines whether a whole vertical part of the
facade is illuminated or not. To speed up shadow computations they take the maximum shade
length determined by the tallest building. As the building blocks are extruded from 2D data
resulting in 3D mesh data, this method is considered as a hybrid approach between raster,
points and vector to model the solar potential.

2.4 Simplifications and acceleration structures

Further methods to speed up computation times are simplifications in the solar irradiation
models and to apply acceleration structures. A possible simplification is the usage of the char-
acteristic declination of the sun (Brito et al., 2021). This is the declination for the day on which
the daily solar irradiation on a horizontal surface is identical to its monthly average value.
This value, instead of daily values, can be used to reduce computing demand by a factor of
30. But, accuracy errors are introduced ranging from +5% to +12% depending on the latitude.
The higher the latitude, the higher the errors. This should be kept in mind when applying this
simplification to the solar irradiation model.

Another way to achieve better computation times is the usage of acceleration structures, in-
dexing the buildings in the 3D city model. This is beneficial when performing shadow casting
as obstructing neighbouring buildings can be efficiently found based on the index. The SVO
as used by Liang and Gong (2017) is an example of such an acceleration structure. However,
the SVO and voxelisation in itself raises some limitations and deficiencies as it is memory
inefficient to voxelise a massive 3D city model. The memory usage increases proportionally
with the size of the 3D city model. Another downside is that data management is challenging,
because the 3D city model loses its spatial relations and semantics after the voxelisation.

Therefore, another acceleration structure is necessary for massive 3D city models. The bound-
ing volume hierarchy (BVH) is a tree structure to spatially organise data by wrapping the
geometries into bounding boxes (Wald et al., 2007). Spatial relations and semantics of the
geometries are not lost and it is also an efficient way to detect intersections of neighbouring
objects when doing ray tracing. The time complexity of BVH is O(log(n)). This is achieved by
the fact that geometries stored in children nodes do not have to be checked for intersections
when the bounding box of the parent node is not intersected by the ray. Moreover, the BVH is
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already used in many ray tracing algorithms.

The two acceleration structures described can be distinguished by their purpose in two classes:
space subdivision methods and object subdivision methods. SVO is a space subdivision
method while BVH is an object subdivision method. Space subdivision methods subdivide
the 3D space into smaller regions by using planes, where the geometry might belong to multi-
ple regions. Object subdivision methods subdivide the geometry into smaller objects, resulting
in tight volumes wrapped around the object (Pharr et al., 2004 - 2021). The two method classes
are both successful at speeding up the ray intersection method, hence SVO and BVH are both
suitable for shadow casting.

But, BVH seems better for large 3D city models as the spatial relations and semantics of the
geometries stay intact. Also, no literature describes the usage of BVH for shadow casting in
solar irradiation models yet. Therefore, this is worth researching.

3 Research questions

The main objective of this thesis is to compute the solar potential of buildings in large 3D city
models, such as 3D BAG, computationally efficient while still having realistic outcomes. The
3D BAG data set covers all buildings in The Netherlands as vector data. The accompanying
main question is:

How can the solar potential of vector buildings in large 3D city models, such as the 3D BAG data set
be computed computationally efficient?

Sub-questions to help answering the main question:

• How can BVH be used as indexing structure to speed up shadow casting computations on the 3D
BAG vector data set?

• What simplifications in the solar irradiation model can be applied while still having realistic solar
potential outcomes?

• How can the solar irradiation model be implemented in Python by using open source libraries
and open data?

3.1 Scope

During this thesis the aim is to fully implement one methodology that computes the solar po-
tential for all the buildings in the 3D BAG data set. The main focus will first be to compute the
solar potential for roof surfaces only. When testing for neighbouring objects that are possibly
casting shadows on the respective roof surfaces, the possible obstructing objects taken into
consideration will only be the buildings in the 3D BAG data set. If the process goes smoothly,
extending solar potential calculations to vertical wall surfaces and taking other objects such as
trees into consideration when testing for obstructions can be integrated. Furthermore, at first,
the solar potential will be determined by taking into account only direct radiation, neglecting
the effect of diffuse and reflective radiation.
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4 Use case

This section describes the use case to which the methodology will be tested. The data set 3D
BAG is chosen as use case (3D Geoinformation Research Group, TU Delft, 2021). This open
data set covers all the buildings in the Netherlands as 3D building meshes. It covers the whole
country at multiple levels of detail (at most LoD 2.2). An example of some buildings, with the
faculty of Architecture and the Built Environment of the TU Delft as central point, is shown
in figure 1. The data set is fully automatically generated by combining two open data sets,
namely the building data from BAG and the elevation data from AHN.

Figure 1: Sample of 3D BAG with LoD 2.2 (taken from the 3D BAG viewer)

The buildings within 3D BAG are individually stored as a 3D mesh at LoD 1.2, LoD 1.3 and
LoD 2.2. LoD 2.2 can include sloped building roofs whereas LoD 1.2 and LoD 1.3 only store the
buildings as block models with flat roofs. The geometric primitives of the 3D building meshes
are triangles and its vertices. For each building a list of attributes is attached. To insure valid
geometries, the meshes are run through the program ’val3dity’. In the case a mesh is invalid
the error code is included as an attribute. The model also stores semantic surfaces; ground
surface, wall surface and roof surface.

Because the data set consist of more than 10 million buildings, the data is subdivided into tiles
covering smaller geographic areas, as shown in figure 2. The amount of buildings in a tile
are determined by a quad tree data structure. Furthermore, the data set is available in several
formats: CityJSON, GeoPackage, Wavefront OBJ, PostgreSQL, WMS and WFS.

As 3D BAG is a large data set covering vector data, it is very suitable to take as use case for my
thesis. The fact that the the data set is available in LoD 2.2 and the buildings have semantic
surfaces, ensures that sloped roofs are represented correctly, and roof and wall surfaces can
easily be distinguished from other surfaces. Moreover, it is advantageous that the data set is
available in CityJSON and PostgreSQL. CityJSON is a compact and easy-to-use encoding of
the CityGML data model very suitable to use when programming (Ledoux et al., 2019). When
dealing with larger parts of the data set it may be beneficial to store it in a database by using
PostgreSQL.
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Figure 2: 3D BAG tiles as quad tree

5 Methodology

In short, the methodology can be described as follows. First, building geometries in parts
of the 3D BAG data set, stored in CityJSON files, will be loaded in memory. Then, a BVH,
wrapped around the building geometries, is formed. Afterwards, each building will be pro-
cessed in parallel on the CPU where each triangular roof (and wall) surface will be sampled
into a grid of points. For each point on the surface, the shadowing is determined by inter-
section detection in the GPU and the beam solar irradiation is computed accordingly. The
resulting values are integrated over time and space. Lastly, the 3D city model is written back
to CityJSON, enriched with the solar irradiation value as attribute per geometry. This whole
workflow will be implemented in Python and is shown in figure 3.

5.1 Detailed methodology

The proposed methodology will be discussed and justified in more detail below. Its struc-
ture can be roughly divided into three parts; preparing input data, processing the building
geometries and exporting output data for visualisation.

5.1.1 Preparing input data

The first part of the methodology is to prepare the input data for further processing. The first
step is to load the buildings in the 3D BAG data set into memory. The data set is divided in tiles
of different geographic extent, so not all data has to be loaded at the same time. At first, the
data will be downloaded as CityJSON and parsed. Later on, the data might be downloaded
as a PostgreSQL database for more efficient data storage and management if the input grows
too large. Once the data is loaded, the building geometries are hierarchically wrapped in axis-
aligned bounding boxes (aabb) as bounding volumes to form a BVH tree structure by using the
library aabbtree in Python (Hart, 2021). The BVH is chosen as acceleration structure to speed
up ray-geometry intersection tests for shadow casting (Wald et al., 2007; Karras, 2012). The
BVH will be constructed in a top-down fashion with a degree of 2, yielding a binary tree which
is most common practice. This has as downside that the root-to-leaf traversal time takes longer
than with non-binary trees, but less time is spend at each tree node to check for bounding box
overlaps as the bounding boxes are smaller. An example of a BVH representation of a scene
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Figure 3: Workflow for solar irradiation modelling on 3D BAG

with triangles is shown in figure 4.

Figure 4: 2D BVH representation of a scene. The orange nodes represent the bounding vol-
umes and the green leaf nodes represent the geometries (Karras, 2012)
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5.1.2 Processing building geometries

The second part of the methodology is to process all loaded building geometries to compute
their solar irradiation values. Due to the fact that the solar irradiation values of one building
do not influence the solar irradiation value of other buildings, each building can be processed
in parallel in the CPU to speed up computation times. There are a couple of steps to go through
to compute the solar irradiation values, based on the work by Wieland et al. (2015).

First, for all the triangle surfaces, of which the building mesh is built up, the normal vector is
computed. Also, each triangle is sampled into a grid of points, with each point having their
own xyz-coordinate. Sampling is necessary to account for variable solar irradiation values
on a triangle, especially on larger triangles. Some parts of the triangle may be blocked by a
shadow from a neighbouring object, while other parts are not. An example of sampled sur-
faces with varying solar irradiation values is shown in figure 5.

Figure 5: Point sampled building surfaces (Wieland et al., 2015)

Second, for each point, it is determined whether it is illuminated or not, based on the shadows
cast by neighbouring buildings. To save processing time, the neighbouring buildings to take
into consideration are filtered on their height and distance. Only buildings that are higher than
the current building and at a distance smaller than a specified value (say, 300 meter) are taken
into consideration. Then, rays originating at each point on the surface are cast in the direction
of the sun at a specified time. Due to the fact that building geometries are stored in a BVH, a
substantial part of the buildings can be skipped. Only bounding volumes and eventually the
geometries inside the bounding volumes that intersect with the ray need to be further checked
for intersection. For the intersection check, a fast ray-box intersection method is implemented,
like the one described by Williams et al. (2005). As the GPU is fast in processing geometries
(Stendardo et al., 2020), the ray casting and intersection check is performed in the GPU, by
using a NVIDIA’s CUDA for Python (NVIDIA).

Third, for the points on the triangle surface that are illuminated, the beam solar irradiation is
computed by using the solarpy library in Python (aqreed, 2019). The library has a function
called ’irradiance on plane’ that takes as input the normal vector of the plane (point on the
triangle in this case), the height of the point, a time and the latitude. Its output is the solar
irradiance for this point on the triangle in W/m2. To save computation time, the timestamp
to use as input will be the time of the characteristic declination of the sun (Brito et al., 2021).
This means that only one value for each month is computed instead of daily values, achieving
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a performance increase by approximately a factor 30. Now, each point will have its solar
irradiation value computed.

5.1.3 Output and visualisation

In the last part of the methodology, the solar irradiation values need to be saved per geometry
and integrated over time and space to get kWh/m2/year as unit of measurement. There are
three options to eventually store this value and to export it to CityJSON. Below, these are
mentioned, with their pros and cons:

1. Per point. This is an accurate representation of the computed values per location. The
downside is that it is inefficient to store, because of the many values per triangle and
building. Also, a way need to be found to store this both time and space efficiently
within a CityJSON file. For this choice, no aggregation over space is needed.

2. Per triangle. This is a less accurate representation than per point, but simpler to store in
a CityJSON file. For this choice, the values for all the points on the triangle need to be
aggregated.

3. Per building. This is the least accurate way to represent the computed values, as it is
not known which part of the building surfaces has the highest solar potential. It is a
too simplified representation, but very easy to extend with an extra attribute. For this
choice, the values for all the triangles in the building need to be aggregated.

To extend an object in a CityJSON file with a new attribute, this is easy to do at triangle and
building level (Ledoux, 2021a).

To visualise the resulting solar potential values for all the buildings in the enriched CityJSON,
a colour scheme will be used to distinguish between high and low solar potential. An obvious
colour scheme to choose would be from green to red, where green represent low solar potential
and red represents high solar potential. The degree of accuracy depends on the chosen option
to store the resulting values. A way to add colour information as appearance to a geometry,
would be to use textures or materials in CityJSON. Creating a colour scheme for the geometries
within QGIS, would also be an option for a small part of the enriched data set.

5.2 Experiment Design

To test the usability of the implemented methodology, a use case is chosen. The ideal use
case would be the whole of The Netherlands as covered in the 3D BAG vector data set, but it
is probably more feasible to start with a smaller part because of expected high computation
times. Therefore, I have chosen to take a couple of tiles in the province of Zuid-Holland. This
region covers densely populated urban areas like The Hague and Rotterdam but also more
rural areas in between the urban areas. A challenging pre-processing step necessary to make
the use case data suitable for the methodology is stitching the tiles together to be able to take
buildings that are stored on other tiles, but within the shadow casting radius, accessible.

But first the methodology will be implemented for one building only. The second step is to
take one building with neighbouring buildings to perform shadow casting. The third step is
to run the implementation for all the buildings in a whole tile. The last step is to run it for
multiple tiles within Zuid-Holland. The ultimate goal would indeed be to run it on all the
tiles in the 3D BAG data set.
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As already mentioned before, only the solar potential of roof surfaces will first be computed
and as neighbouring objects, only buildings are taken into consideration for shadow casting.
If the process goes smoothly, the solar potential will also be computed for vertical surfaces and
trees can be taken into consideration for shadow casting. The latter requires the integration of
the AHN point cloud to identify trees.

5.3 Quality Assessment

After the implementation of the methodology, quality assessment needs to be carried out to
check whether the results are reliable and fast enough. The two methods to assess the quality:

1. Ground-truth comparison;

2. Comparing reasonable time complexity and accuracy with other methods;

3. Software benchmarking for different data input sizes and BVH configurations.

For the ground-truth comparison, values from solar radiation measurement stations can be
used (EU Science Hub, 2005-2015). These values are in raster format and available for hori-
zontal and inclined surfaces. It covers the area from 60◦N to 20◦S and from 180◦W to 22◦30’ E.
The size of each grid cell is 0.04◦, which is quite large. The solar radiation values of the grid
cells will be compared with the values of the corresponding buildings. If this data turns out
to be unusable, due to the resolution mismatch, this method will be skipped.

Another way to assess quality is to compare the time complexity and accuracy of the resulting
solar potential values of the implemented methodology with the widely used solar irradiation
modelling tools in GRASS GIS; r.sun and in ArcGIS; Solar Radiation Tools. For an area in the
3D BAG data set, both the proposed methodology and the algorithms in GRASS GIS and Ar-
cGIS will be carried out. As these two latter methods are raster-based, the building footprints
of the 3D BAG data are used to mask the raster data. Different resolutions will be chosen to
test for accuracy and time complexity.

The third method to assess quality is software benchmarking. The implemented methodology
will be run multiple times for varying input size. This will determine the time complexity of
the methodology for increasing input size. Another parameter to tweak to compare processing
times is the degree of the BVH tree. A higher degree will result in shallower trees, increasing
the possibility for overlapping bounding volumes. In worst case, this might reduce the time
complexity of the ray casting process.

6 Preliminary results

In order to get familiar with the 3D BAG data set in CityJSON format, one tile within Delft has
been parsed in Python. A building with two sloped roof parts in opposite direction, as shown
in figure 6 has been chosen to use as experiment to test some Python libraries.

The solarpy library (aqreed, 2019) has been used to compute solar irradiation values in W/m2

for all roof surface triangles of this building. This is done with a temporal resolution of 15
minutes, just for one day. The input parameters are the normal vector of the roof triangle,
which is computed from the vertex coordinates of the triangles, the height of the building and
the latitude. The resulting solar irradiation values per time interval can be plotted for the tri-
angles with their normal vectors in the legend. The plot is shown in figure 7. The area under
the graph is integrated to get the total solar irradiation of the two roof parts in kWh/m2/day.
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Figure 6: Chosen building to test Python libraries (taken from the 3D BAG viewer)

It yields reliable values.

Figure 7: Beam irradiance graph for roof surfaces of chosen building

Furthermore, the resulting roof surfaces have been exported to an .obj file and visualised in
MeshLab. Next to that, the ray tracing library pyRT (Christen, 2020) has been used to ray trace
and render the building roofs from a fixed camera position to get a feeling for ray tracing.

7 Tools and data

7.1 Tools

To implement the proposed methodology Python will serve as the main programming lan-
guage. I will use Python because I feel most confident in programming in this language and
because it is used a lot for data science. Furthermore, because of its simplicity, scalability and
availability of many libraries. The following open source Python libraries will be used:

• NumPy for mathematical computations (Oliphant, 2021);

• cjio for handling the input/output of CityJSON files (Ledoux, 2021b);
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• solarpy for computing solar irradiation values (aqreed, 2019);

• aabbtree for creating a BVH tree as acceleration structure (Hart, 2021).

For graphical computations like ray tracing on the GPU, NVIDIA’s CUDA Toolkit for Python
(NVIDIA) will be used to speed up computation times. Ninja (Nin) will be used to easily
visualise 3D city models in CityJSON format. Other visualisation tools like Meshlab and QGIS
will also be used.

7.2 Data

The used data will play are large role in the implementation of the methodology. The open
data set 3D BAG is considered as a use case and is described in more detail in section 4.

8 Schedule

This section outlines the schedule to be followed during this thesis. The Gantt chart in figure 8
shows the schedule schematically including the tasks and milestones from previous semester
and for the remaining months until the final P5 presentation.

Figure 8: Gantt chart of the thesis’ planning

During the whole thesis weekly meetings with my two supervisors will be held to update on
the progress and to ask for assistance.
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