Visualisation of the airflow pattern of exhaled droplets in a classroom

Yat Long Liu MSc Thesis – Defence 17th December 2021

Thesis committee

Prof. dr. ir. P.M. Bluyssen Dr. ir. M.A. Ortiz Sanchez Dr. C. (Clara) García-Sánchez Dr. ir. H.R. Schipper

Outline

- 1. Introduction
- 2. Literature review
- 3. Methodology
- 4. Results and discussions
- 5. Conclusions and recommendations

1. Introduction

What is it? Why is it relevant? What is the goal? What is the research question?

Stokes' law \rightarrow how long it takes for a small spherical particle to fall

Settling velocity and time

Settling velocity and time

Why is it relevant?

Air quality at school (n=7340)

30% = natural ventilation

What is the goal?

Visualise the airflow pattern of exhaled droplets

Sitting behind the desk in a classroom

Effect of the different ventilation systems

Portable system

What is the research question?

Main research question:

'How is the airflow pattern of 'exhaled' droplets affected in a classroom under different ventilation regimes?'

2. Literature review

Ventilation Temperature Relative humidity Visualisation techniques

The role of ventilation

Applying ventilation = removes 'old air' (polluted)

Low ventilation rate = more accumulation of respiratory droplets

Air distribution = how the droplets disperse (ceiling grilles, windows)

Limits the transmission of respiratory infections

Yang and Marr (2011)

Breathing velocity (droplet = $500 \ \mu m$)

Coughing velocity (droplet = $500 \ \mu m$)

Effect of the temperature on the droplets

Increasing the temperature \rightarrow droplets evaporates much faster

Higher than 24°C \rightarrow decreases virus' lifespan

Virus viability stable at colder environments

Relative humidity

Relative humidity

Effect of the relative humidity on the droplets

Gómez et al. (2014)

Effect of the relative humidity on the droplets

Gómez et al. (2014)

Relative humidity

Keep RH between 40–70% → comfortable level

Dangerous when RH <30% \rightarrow crystallisation

Humans are more susceptible when RH <20% \rightarrow 'dry air' (mucous membrane)

Visualisation techniques

Visualisation techniques

Visualisation techniques – Manikins

Smoke

Fluorescent

Visualisation techniques – Manikins

Smoke

Fluorescent

Visualisation techniques – Manikins

Bubble

Bluyssen, Ortiz, and Zhang (2021)

Tracer gas

3. Methodology

Location Assembling procedure Final setup Ventilation regimes Analysing the results

Where did the experiments take place?

Experience room

Study the effects of different combinations of environmental conditions

How to assemble the portable fog generator?

Testing the setup

Visualisation with laser

Increasing the visibility with more lasers

Final setup of the portable fog generator system

The final test setup for the experiment

Which ventilation regimes were applied?

No ventilation 0.027 m/s

Natural ventilation 0.031 m/s

Duration

Substraction method

0 50 85 165 210 255

1920x1080 pixels; 8-bit; 2MB

1920x1080 pixels; 8-bit; 2MB

Droplet size and time (when it will evaporate):

$$\frac{dD}{dt} = \frac{4M_L D_\infty P_a (1 + 0.276Re^{1/2}Sc^{1/3})}{RT_\infty} \ln\left[\frac{1 - p_{sat}(T_w)/P_t}{1 - RH \cdot p_{sat}(T_\infty)/P_t}\right]$$

Comparison with analytical model

Newton's second law (the distance):

$$m_d \frac{du}{dt} = F_{drag} + F_{pressure} + F_{gravity}$$

Wang et al. (2020)

4. Results and discussions

Distance Duration Percentage of droplets Comparison with analytical model

Distance

Door was open by mistake, pushed the droplets much further?

Duration

Ċ

Duration

The duration until the droplets are not visible anymore

Distance

The door was opened (by mistake)

Direction of the airflow can increase the dispersion

Distance

Layout of the windows and door

Duration

Duration

Droplets are longer visible with the human eye

Unable to see droplets $<60 \ \mu m$

Collection of droplets

Percentage of droplets

Percentage of droplets

Mixing ventilation: constant airflow from the ceiling

Natural + mixing ventilation: droplets disperse significantly faster than other after exhalation

Comparison with analytical model

Droplet size and time (when it will evaporate):

$$\frac{dD}{dt} = \frac{4M_L D_{\infty} P_a (1 + 0.276Re^{1/2}Sc^{1/3})}{RT_{\infty}} \ln\left[\frac{1 - p_{sat}(T_w)/P_t}{1 - RH \cdot p_{sat}(T_{\infty})/P_t}\right]$$

Comparison with analytical model

Newton's second law (the distance): $m_d \frac{du}{dt} = F_{drag} + F_{pressure} + F_{gravity}$

Comparison with analytical model

Comparison with analytical model

Limitations

Layout of the room

Inaccuracy with the setup

Manually operated

Unable to identify the droplet size

5. Conclusions and recommendations

Answering the research questions Further recommendatons

Main research question

'How is the airflow pattern of 'exhaled' droplets affected in a classroom under different ventilation regimes?'

Which instruments are needed to assemble a portable system mimicking the human breath?

How can one record and analyse the visualisation of the exhaled droplets?

High-speed camera

Laser

How do different ventilation regimes affect the airflow pattern?

Ventilation regime	Mean air velocity [m/s]	Distance [m]	Duration [s]
No	0.027	1.3	12.7
Natural	0.031	1.8	12.2
Mixing	0.032	0.9	9.5
Natural + mixing	0.058	0.5	5.4

How do different ventilation regimes affect the airflow pattern?

Ventilation regime	Mean air velocity [m/s]	Distance [m]	Duration [s]
No	0.027	1.3	12.7
Natural	0.031	1.8	12.2
Mixing	0.032	0.9	9.5
Natural + mixing	0.058	0.5	5.4

No: lowest air velocity \rightarrow higher concentration of droplets

6

How do different ventilation regimes affect the airflow pattern?

Ventilation regime	Mean air velocity [m/s]	Distance [m]	Duration [s]
No	0.027	1.3	12.7
Natural	0.031	1.8	12.2
Mixing	0.032	0.9	9.5
Natural + mixing	0.058	0.5	5.4

No: lowest air velocity \rightarrow higher concentration of droplets

Natural: inconsistent airflow, opening the door ightarrow droplets to travel much further

6-

How do different ventilation regimes affect the airflow pattern?

Ventilation regime	Mean air velocity [m/s]	Distance [m]	Duration [s]
No	0.027	1.3	12.7
Natural	0.031	1.8	12.2
Mixing	0.032	0.9	9.5
Natural + mixing	0.058	0.5	5.4

No: lowest air velocity \rightarrow higher concentration of droplets

Natural: inconsistent airflow, opening the door ightarrow droplets to travel much further

Mixing: the ceiling grilles supply constant air circulation \rightarrow droplets scatters in all direction

D

How do different ventilation regimes affect the airflow pattern?

Ventilation regime	Mean air velocity [m/s]	Distance [m]	Duration [s]
No	0.027	1.3	12.7
Natural	0.031	1.8	12.2
Mixing	0.032	0.9	9.5
Natural + mixing	0.058	0.5	5.4

No: lowest air velocity \rightarrow higher concentration of droplets

Natural: inconsistent airflow, opening the door \rightarrow droplets to travel much further

Mixing: the ceiling grilles supply constant air circulation ightarrow droplets scatters in all direction

Natural+mixing: highest air velocity \rightarrow droplets disperse significantly faster after exhalation

What is the most efficient method to reduce the spread of aerosols in classrooms through ventilation?

If only natural ventilation can be applied \rightarrow better than nothing

Natural + mixing ventilation \rightarrow outdoor cooled down/heated up

Mixing ventilation is recommended ightarrow can control the climate

What is the added value of this portable system in airborne transmission control at educational buildings?

Visuals

Portable

Materials are accessible

Further recommendations (Research)

Local effects

Air distribution

Apply computational fluid dynamics (CFD)

Other ventilation regimes (and combinations)

Shankara (2020)

Further recommendations (System)

Automate the process \rightarrow consistent

Increase complexity \rightarrow thermal manikin, 3D-printed manikin with cavity

Understand the capabilities of camera (e.g. what droplet -size it can record)

Particle Image Velocimetry (PIV) to track the trajectories of the droplets

Thank you!

Yat Long Liu MSc Thesis – Defence 17th December 2021

