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Chapter 3
The Impact of Collaborative Scheduling
and Routing for Interconnected Logistics:
A European Case Study

Sh. Sharif Azadeh, Y. Maknoon, J. H. Chen, and M. Bierlaire

Abstract Interconnected logistics system can play an important role towards hav-
ing a more sustainable green freight transport. Recently, after introducing the
concept of Physical Internet (PI), researchers have started to explore the opportuni-
ties and challenges that a collaborative and interconnected network could create in
different aspects of the supply chain. In this research, we study the last mile delivery
as well as vehicle dispatching problems under the assumptions of collaborative
supply chain networks while assuming that modularized boxes are applied inside
the network from the provider to the final customer. Our research aims at proposing a
more efficient resource planning with the minimal number of empty vehicle move-
ments running on roads that ultimately leads to decrease carbon dioxide emission.
The assumptions have been tested and verified using real data coming from a major
retail company in Europe.
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1 Introduction

In 2011, the European Commission published a white paper in which it formulated
the long-term ambition to reduce greenhouse gas emissions from transport by at least
60% by 2050 compared to 1990. The emissions increased by 26% compared with
1990 levels. This increase comes despite past improvements in the efficiency of
transport and is broadly in line with increases in the level of economic activity as
measured by gross domestic product (GDP) as well as increases in demand for
transport. Road transport accounts for 72% of total greenhouse gas emissions of the
sector. Further increasing the efficiency of the logistic system in road transport will
play a key role in limiting the increase of road transport emissions.

Nevertheless, total transport demand is predicted to continue growing during the
2020–2030 period in line with 2010–2020 patterns (1.5% for freight transport (tonne
km)) and at lower rates between 2030 and 2050 (0.8% for freight transport).

Integrated measures addressing both production and consumption would there-
fore be needed in the long run in order to reduce the greenhouse gas emissions from
transport by 60% by 2050 (European Environmental Agency 2018).

In order to make a better use out of logistics resources and to exploit synergies
between different distribution service providers, the concept of Physical Internet
(PI) and interconnected networks were introduced (Montreuil 2010). PI proposes to
use a new framework of interconnected logistics especially designed for resource
sharing, real-time identification, and routing through open facilities to use transport
infrastructure more efficiently and reduce environmental impact.

Within this framework, all products are encapsulated in smart, modularized,
ecofriendly and standard boxes loaded and then handled, stored, and transported
through shared facilities and across open networks.

There are two significant characteristics of the Physical Internet: encapsulation
and collaboration.

Encapsulation: The Physical Internet does not manipulate physical goods directly.
Instead, it manipulates exclusively containers that are explicitly designed for the
Physical Internet and that encapsulate physical goods within them (Montreuil
2011). These dedicated containers for the Physical Internet have modular dimen-
sions and standardized interfaces for handling and communication.

Collaboration: The Physical Internet provides universal and standardized interfaces
and protocols to reduce the frictions in supply chain horizontal collaboration. For
any logistics services providers, as long as they accept the operational protocols
to handle, move, store, transport, and use the Physical Internet containers, they
become the members, beneficiaries, and collaborators in the Physical Internet
despite their potential competitive relationships in businesses.

The main contributions of our research are to address two major problems in
supply chain management under PI assumption when modularized boxes are used as
containers for different products: (1) last mile delivery integrated with bin packing
problem and (2) vehicle dispatching problem.
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1.1 Sustainable Last Mile Delivery

Even though passenger mobility has received considerable attention in the literature
and in practice in the recent years (Gentile and Noekel 2016; Alonso-Mora et al.
2017), other contributions to new research and technology are found for the model-
ing of last mile delivery within urban areas. Applications can be found in different
industries to tackle the issues around last mile delivery in urban areas. To name a
few, we can mention DPD (https://www.dpd.com/), Green Link (http://green-link.
co.uk) or self-service parcel stations from DHL Packstation, LaPoste Pickup
Station, etc.

The most commonly used vehicles for deliveries in the last mile delivery (includ-
ing the request made via online shopping) are vans or trucks. The increase in
e-commerce and related deliveries in cities is contributing to the increase in van
traffic resulting in more pollution. For example, in the UK, these vehicles are
responsible for 15% of total kilometers traveled on roads in 2015 compared to
10% in 1993 (Bates et al. 2018). In addition, these vehicles have contributed in
13.3 million tonnes of CO2 equivalent to emissions in 2014 (Zanni and Bristow
2010). In this research, we focus on two aspects of the urban logistics systems in
order to reduce the number of necessary vehicles and kilometers traveled by them in
the network. In addition, we aim at shed light on how the available space inside the
vehicles can be used more efficiently to avoid circulating empty vehicles on roads.
Both topics are defined within the framework of Physical Internet.

1.2 Last Mile Delivery and Bin Packing Problem

The last mile delivery problem has been recognized as one of the most expensive,
least efficient and one of the main responsible to polluting inside the supply chain
networks. In urban areas, traffic infrastructure is used for the purpose of delivering
goods that results in traffic jams (Ehmke 2012). Not having a good planning system
for the last mile delivery causes heavier traffic that affects service quality and the
final cost (Eglese 2006). The body of literature is quite rich when it comes to the last
mile delivery. Here, we briefly mention the most relevant papers to our work.

In Gendreau et al. (2006), the authors propose a Tabu search in order to solve the
vehicle routing problem with capacity and route length restrictions. The Tabu search
consists of examining successive neighbors of a solution and selects the best. The
authors use a generalized insertion procedure that repeatedly removes a vertex
(which represents a customer) from its current route and reinsert it into another
route. This is the neighborhood of a solution. In order to avoid cycling, solutions that
were recently examined are forbidden and inserted in a constantly updated Tabu list.

In Bortfeldt (2012), the author presents a hybrid algorithm for the three-
dimensional loading capacitated vehicle routing problem. It includes a Tabu search
algorithm for the routing part and a tree search algorithm for packing boxes into
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vehicles. The Tabu search starts with a randomly generated solution. Then, for each
route found by the Tabu search, the tree search algorithm tries to generate a packing
plan where all boxes are placed correctly. Each node of the tree has three elements: a
partial solution of placements, a set of free boxes that must be placed, and a list of
potential placements. The algorithm tries to add placements for each free box until
all are placed, or a time limit has been reached, or one box has no possible
placement.

In Massen et al. (2012), for a similar problem, it uses an ant colony algorithm
combined with a column generation algorithm which is used to solve large linear
programming programs. Column generation generates only the variables which can
potentially improve the objective function.

Only very small instances for the bin packing problem have been solved to
optimality. Some exact methods were proposed by Martello et al. (2000). For bigger
instances, only heuristic methods have been developed. In Hifi et al. (2010), the
authors consider the assignment of items to identical bins. The packings have to be
feasible, and their aim is to minimize the number of bins needed. n items character-
ized by a width wi, a height hi, and a depth di (i ¼ 1,2,. . .. . .,n) are put in identical
bins with width W, height H, and depth D. By using integer linear programming,
they are able to find solutions for the bin packing. The constraints that must be
satisfied are expressed as inequalities.

In Levine and Ducatelle (2004), an ant colony optimization is presented, in order
to solve bin packing and cutting stocks problems. It is inspired by the capability of
ants to find the shortest path between their nest and a food location by using
pheromone trails.

The authors in Fanslau and Bortfeldt (2010) present a tree search algorithm to
solve the 3D container loading problem for weakly or strongly heterogeneous items
(i.e., same or different dimensions). They fill a container by adding blocks which are
arrangements of one or more oriented boxes (items). The blocks are placed in
residual spaces. In order to find the best block for a residual space, a tree search
is used.

Our research is closest to the works of Gendreau et al. (2006) and Massen et al.
(2012); however, our research in this chapter focuses on the impact of horizontal
collaboration for the last mile delivery in the context of Physical Internet. This leads
to better usage of capacities and reducing the operational cost as well as the number
of vehicles required to deliver products.

1.3 The Vehicle Dispatching Problem

Physical Internet hubs are the places where modularized containers are sorted,
assembled, and packed into vehicles. According to the concept of the Physical
Internet, the short-range transportation is encouraged, which means that if possible,
all the transportation activities are ideal to be limited between a Physical Internet hub
and one of its neighboring hubs. The rational of such a recommendation is to
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maximize the overall social benefit of truck drivers so that they are able to come back
home after their daily jobs. In this section, we will introduce an optimization
problem called the vehicle dispatching problem inside the PI context. Here, in
transportation demands between any two linked hubs (in terms of how many trailers
of modularized boxes to ship) and the current locations of all the available vehicles
designated for the network (assuming all vehicles are homogeneous with the trans-
portation capacity equal to 1 trailer), the decision-makers need to design a vehicle
dispatching plan for each vehicle such that all the transportation demands are
satisfied and the entire vehicle traveling cost is minimized. For example, in
Fig. 3.1, there are four PI hubs, i.e., A, B, C, and D. The traveling distance between
any two connected hubs is 1 and the transportation demands are listed in the figure.
For instance, there is one trailer to be transported from hubs A to B and two trailers to
be transported from hubs B to D. Initially, there are two vehicles positioned at hubs
A and C, respectively.

Figures 3.2 and 3.3 depict two different dispatching plans for the vehicle
dispatching problem shown in Fig. 3.1. In the solution shown in Fig. 3.2, vehicle
1 initially resided in Physical Internet hub A takes the path A) B) A) D! B)
D! C) B) C with traveling cost 7 while the other vehicle initially positioned at
hub C takes the path C ) D ! B ) D ! A ) C ) A with traveling cost equal to
6. Note that the arcs in the walks symbolized as ) indicate that a vehicle is fully

A B

CD

1 1
1

1 1

1
2

1

1

Fig. 3.1 An example to
illustrate the concept of the
vehicle dispatching problem

Fig. 3.2 A feasible solution to the example in Fig. 3.1
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loaded. Oppositely, the arcs with symbol! represent the empty moves of a vehicle.
Therefore, it can be observed that in the solution shown in Fig. 3.2, all the transpor-
tation demands can be fulfilled and the total traveling cost for such a dispatching plan
is equal to 14 with 4 empty vehicle movements. Figure 3.3 shows a better
dispatching solution for the same problem. In this solution, vehicle 1 takes the
path A ) B ) A ) C ) B ) D ! B ) C ) A ) D, and vehicle 2 takes the
path C)D! B)D. Apparently, the total traveling cost for this solution is 12, and
the number of empty vehicle movements has been reduced to 2 instead of 4 compared
to the solution shown in Fig. 3.2. Actually, the solution shown in Fig. 3.3 is an
optimal one for the vehicle dispatching problem in Fig. 3.1. The purpose of the
proposed vehicle dispatching problem for the Physical Internet is very meaningful
since it aims to seek the best resource dispatching plan with the minimal number of
empty vehicle movements and thus ultimately the least carbon dioxide emission.

The remainder of this chapter is as follows: in Sect. 2, we introduce the integrated
last mile delivery and 3D bin packing problem followed by the numerical results of
the model presented in Sect. 3. In Sect. 4, the vehicle dispatching problem and its
associated computational results are depicted. We conclude the chapter in Sect. 5 by
also shortly discussing about potential future research avenues.

2 Last Mile and Bin Packing Problem

The last mile problem in the Physical Internet aims to deal with the final deliveries of
the orders (encapsulated in modularized boxes) from hubs to its served customers.
As illustrated in Fig. 3.4, there are five customers (A, B, C, D, and E) in the region
that is served by a Physical Internet hub. Each customer has a list of modularized
boxes (three types in this example, colored by red, green, and yellow, respectively)
that should be delivered by a truck originally located at the hub. Taking customer E
as example, 1 red box, 1 green box, and 2 yellow boxes are ordered, and these boxes

 

Fig. 3.3 An optimal solution to the example in Fig. 3.1
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should be delivered in batch. Thus, the major decisions for the operator of the PI hub
are as follows:

1. How many vehicles should be used to fulfill the delivery task?
2. For each vehicle, which customers should be served?
3. For each vehicle, after assigning the served customers, which visiting sequence

should be adopted by the driver in order to minimize the total traveling distance?

In this vehicle routing problem (VRP), each vehicle has a weight and volume
capacity for its trailer. However, compared to the traditional capacitated VRP, here,
the dimensions of the modularized boxes should also be taken into account when
checking the feasibility of a routing plan for a vehicle. Figure 3.5 shows the necessity
of the consideration in two-dimensional space. For example, let the internal size of a
trailer be rectangle ABCD, and the hatched area is the occupied space by other
modularized boxes. Box FKGH is the next container to be packed into the trailer
which has the volume exactly equal to the current available space (i.e., the rectangle
FECD). Although the overall sum of volume does not exceed the trailer’s capacity,
the box FKGH could not be packed into the trailer even when we allow the rotation
of the box.

Secondly, the visiting sequence of clients for a vehicle poses the constraints on
the packing sequence of the corresponding modularized boxes ordered by the
customers. Such a consideration is referred to be as the rule of “Last-In, First-
Out.” For example, as shown in Fig. 3.4, there is one vehicle whose visiting

Fig. 3.4 The last mile delivery problem
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sequence is π! B! E! π. Therefore, the modularized boxes ordered by customer
B should be packed in a way that when the vehicle arrives at B, all the boxes cannot
be hindered by other boxes to the downstream customers when discharging. We
refer the proposed problem for the Physical Internet as the vehicle routing problem
coupling with 3D bin packing.

2.1 Problem Description

In this subsection, we provide the detailed problem description of the problem by
introducing the input information as well as the general objective and constraints.

Input Parameters

• The geographical information of all the customers for the last mile delivery
• The modularized boxes ordered by all the customers (i.e., numbers, dimensions,

and weights)

Fig. 3.5 The necessity to
consider the dimensions of
the modularized boxes in
packing
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• The weight/volume capacities of the vehicles (assume that all the vehicles are
homogeneous in this study)

3 Objective

The main objective of the proposed problem is to find out the best routing strategy
such that the total traveling distance of all the vehicles are minimized (while
reducing the total number of vehicles used for the delivery).

Constraints

1. The weight/volume capacity for all the vehicles cannot be exceeded.
2. All the modularized boxes assigned to one vehicle should be able to be

completely packed into the assigned vehicle.
3. The rule of “Last-In, First-Out” should be respected.
4. All the customers can only be visited once. That is, all the ordered modularized

boxes should be arrived at the location of the customers in a batch mode.

In the following section, we explain the algorithms used to solve the above
problem.

3.1 Resolution Approach

Both the VRP and the 3D bin packing problems are NP-hard (Pinedo, 2012). In our
case, their combination is also NP-hard since both of its subproblems are NP-hard.
Consequently, heuristic methods are required to solve the problem. In Gendreau
et al. (2006) and Massen et al. (2012), the authors used metaheuristic methods such
as Tabu search and ant colony optimization to reach near optimal solutions. Such
metaheuristics use randomness to explore better solutions. However, one of the
accompanying counter effects of such approaches is that different runs of the same
algorithm may result in different final solutions. Since, as mentioned before, the
main purpose of this last mile problem is to analyze the potential of the horizontal
collaboration, to prevent the generation of inconsistent results affected by random-
ness, the solving algorithms for the proposed last mile problem are deterministic
rule-based heuristics.

The master problem of the proposed last mile problem is dedicated to vehicle
routing, and three-dimensional bin packing problem plays the role of a side con-
straint. Our proposed algorithm introduces an insertion heuristic to solve the VRP as
master problem. As commented by Campbell and Savelsbergh (2004), insertion
heuristics have proven to be popular methods for solving a variety of vehicle routing
problems due to their computational efficiency and the ability to be easily extended
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to handle complicated constraints (e.g., the three-dimensional bin packing in this
study).

Algorithmic framework to solve the last mile problem
N = set of unassigned customers;
R = set of routes, always contains the empty route, initially contains only the empty 
route; while N , ∅ do c∗= ∞; for j ∈ N do

for r ∈ R do
for (i − 1, i) ∈ r do

if BinPackingFeasible(r, i, j) and Cost(i, j) < c∗ then
r∗= r; i∗= 
i;
j∗= j;

c∗= Cost(i, j);
end if

end for 
end for

end for
Insert (i*,j*);
N = N \ j* ;
Update(r∗); 

end while

*

In the framework above, BinPackingFeasible(r,i, j) is a function to check
whether the insertion of customer j between (i � 1) and i in the route r is feasible
for three-dimensional bin packing such as the non-overlapping of modularized boxes
and the Last-In, First-Out requirement. We proposed two methods to evaluate the
value of the function BinPackingFeasible(r,i, j). The first one is based on the
technique of constraint programming. Compared to traditional mathematical opti-
mization, usually in constraint programming, the optimal solutions are not very
important since the major task is to seek feasible solutions which satisfy all the
constraints. However, in the three-dimensional bin packing problem, since we must
obey the laws of gravity and cannot allow “floating boxes,” we try to minimize the
sum of yis instead.
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Constraint programming to evaluate BinPackingFeasible(r, i, j)
Parameters:
n = number of modularized boxes to be delivered for a given 
route; wi = width of modularized box i; hi = height of modularized 
box i; di = depth of modularized box i;
pi = visiting order of modularized box i’s customer in the visiting sequence;
W = width of a vehicle;
H = height of a vehicle; D 
= depth of a vehicle;

Decision variables:
xi : coordinate along the x-axis of the left-bottom-back corner of i; 
yi : coordinate along the y-axis of the left-bottom-back corner of i; 
zi : coordinate along the z-axis of the left-bottom-back corner of i; 
lij : 1 if box i is at the left of box j, 0, otherwise; bij : 1 if box i is in 

the back of box j, 0, otherwise; uij : 1 if box i is under box j, 0,
otherwise;

: 1 if box I is under box j, 0, otherwise;

Algorithm:
for 1 ≤ i, j ≤ n do

Add the following non-overlapping 
constraints; xi − xj +W · lij ≤ W − wi; yi − yj + H · 
uij ≤ H − hi; zi − zj + D · dij ≤ D − di; if pi < pj and i < 
j then

Add the Last-In-First-Out constraints; 
lij + lji + uij + uji + bji = 1; end if

end for
for 1 ≤ i ≤ n do

Add the following bound constraints;
W − wi ≥ xi ≥ 0;
H − hi ≥ yi ≥ 0;
D − di ≥ zi ≥ 0;

end for

*

The second approach is a Bottom-Left-First heuristic algorithm to deal with bin
packing.
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Bottom-Left-First like Heuristic to evaluate BinPackingFeasible(r, i, j)

Arrange the n modularized boxes based on the increasing order of 
pi; I = {0, 0, 0}, Lz = Lx = 0; for i = 1 to n do

flag = false;
for (x, y, z) ∈ I do

if box i can be put at (x, y, z) and x + hi ≤ Lx, z + di ≤ Lz then flag = true, 
break;

end if
end for if flag =false 
then

if Lx = 0 or Lx = H then
if box i can be put at (0, 0, Lz) then

x = 0,y = 0,z = Lz,flag =true,Lz = Lz + di,Lx = hi; else
if Lz < D then

Lz = D,Lx = H,i = i − 1;
end if

end if 
else

for (x, y, z) ∈ I : x = Lx, y = 0 do
if box i can be put at (x, y, z) and z + di ≤ Lz then

flag =true,Lx = Lx + hi,break;
end if

end for if flag =false 
then

Lx = H, i = i − 1;
end if

end if 
else

put box i at position (x, y, z), I = I \ {(x, y, z)};
I = I ∪ {(x + hi, y, z), (x, y + wi, z), (x, y, z + di)}; end if

end for

*

It is worth noting that in the above Bottom-Left-First heuristic, when the attempt
to position box i at point (x,y,z) causes a failure, it is possible that we allow the
rotation of the box and try to put the rotated box at (x,y,z) again. Such an extra
consideration would increase the chance of BinPackingFeasible(r,i, j) being true but
would result in a longer computational time as well.
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3.2 Numerical Results

As highlighted in the previous section, the main objective of our integrated last mile
3D bin packing problem is to minimize the operational cost while efficiently using
the vehicles’ capacity and consequently minimizing the number of empty vehicles
circulating in the network. To fulfill such a purpose, in the case study, we created two
scenarios for comparison. In the first scenario, two logistics service companies serve
their individual last mile networks by their own fleet of trucks, while in the second
scenario, these two companies pool the truck resource and collaborate to make the
last mile delivery with the consolidated customer demand. In this case study, we
considered three kinds of modularized boxes (Landschützer et al. 2015). Table 3.1
summarizes the modularized box dimensions used for the case study.

We have created 6 sets of testing instances with the number of customers for the
last mile delivery ranging from 10 to 60 (incremental step is 10). In each set,
10 instances are constructed (therefore, there are 60 instances in total). For example,
the data in Table 3.2 represent an instance from the set with customer number equal
to 10. There are ten arrays separated by square braces (i.e., []), and in each array, the
first two elements are the x-y coordinates of a customer’s location, and the last three
elements of the array represent the total numbers of different types of modularized
boxes that the customer demands. For instance, [11,34,16,2,1] stands for that the
customer is located at point (x ¼ 11,y ¼ 34) and the customer requests 16 boxes of
type 1 modularized box, 2 type 2, and 1 type 3.

To create an instance for both scenarios, first of all, we randomly generate the
locations of a Physical Internet hub and customers who are served by the hub. Then,
for each logistics company, the total numbers of boxes for each box type demanded
by each customer are also randomly picked up from given ranges. Once the demands
for the two logistics companies are generated, for the second scenario, we simply
added the corresponding demands and treated the sum as the demands for the
horizontal collaboration case. For example, the box demands for the first and second
companies are (European Environmental Agency 2018; Montreuil 2010; Campbell
and Savelsbergh 2004) and [6,6,0], respectively. Hence, in the second scenario, the
box demand for the same customer is [22,8,1].

Table 3.1 Modularized box
choices

Box number Length (m) Width (m) Height (m)

1 0.3 0.2 0.2

2 0.3 0.4 0.3

3 0.6 0.4 0.4

Table 3.2 Instance file
example

[11,34,16,2,1], [43,�3,6,6,0],

[�41,47,21,1,1], [34,�41,14,3,1],

[�17,9,16,0,0], [�26,�44,18,6,1],

[19,�21,15,4,0], [�17,46,17,1,1],

[�3,33,14,4,0], [5,31,16,5,1]
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First of all, we examine the performances of both approaches to evaluate
BinPackingFeasible(r,i, j). After some trials, it turns out that even for relatively
small-scale problems, the constraint programming method spent a few dozen of
minutes to get the solutions. In contrast, the Bottom-Left-First heuristic is quite fast.
Hence, we only use the Bottom-Left-First heuristic to evaluate BinPackingFeasible
(r,i, j). Tables 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8 summarize the computational results for
the 60 instances. In each table, A_cost and B_cost are the total traveling costs for
logistics companies A and B, respectively. A_nVeh and B_nVeh are the numbers of
the vehicles that companies A and B need to deploy. A+B_cost is the sum of A_cost
and B_cost and A+B_nVeh¼A_nVeh+B_nVeh, while AB_cost is the total traveling
cost, and AB_nVeh is the total number of vehicles used in the case that logistics
companies A and B conduct horizontal collaboration. From this numerical experi-
ment, it can be observed that in terms of total traveling cost, horizontal collaboration
is much effective than individual scheduling. On average, compared to the case of
individual scheduling, the cost saving rate of horizontal collaboration is 32.3%,
which is calculated by the following formula.

Table 3.3 Case study results, for ten customers

Instance A cost A nVeh B cost B nVeh A+B cost A+B nVeh AB cost AB nVeh

10_1 458 3 445 2 903 5 563 5

10_2 425 2 339 2 764 4 475 4

10_3 338 2 266 2 604 4 433 4

10_4 352 2 345 2 697 4 427 3

10_5 426 2 441 2 867 4 542 4

10_6 437 2 412 2 849 4 621 5

10_7 299 2 356 3 655 5 521 5

10_8 411 2 555 2 966 4 617 4

10_9 380 2 352 2 732 4 545 4

10_10 526 2 470 2 996 4 554 5

Table 3.4 Case study results, for 20 customers

Instance A cost A nVeh B cost B nVeh A+B cost A+B nVeh AB cost AB nVeh

20_1 677 4 770 4 1447 8 983 8

20_2 693 4 690 4 1383 8 1000 8

20_3 860 4 850 4 1710 8 1042 8

20_4 627 5 688 5 1315 10 898 9

20_5 686 4 614 4 1300 8 825 8

20_6 750 4 545 3 1295 7 749 7

20_7 760 4 668 4 1428 8 803 8

20_8 671 3 651 4 1322 7 951 8

20_9 769 4 800 5 1569 9 1105 9

20_10 830 4 801 4 1631 8 974 8
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Table 3.5 Case study results, for 30 customers

Instance A cost A nVeh B cost B nVeh A+B cost A+B nVeh AB cost AB nVeh

30_1 1026 6 1280 5 2306 11 1411 13

30_2 1004 5 1079 5 2083 10 1374 11

30_3 1076 6 948 7 2024 13 1416 12

30_4 885 5 964 6 1849 11 1361 12

30_5 1076 5 951 5 2027 10 1450 11

30_6 1021 6 1062 6 2083 12 1378 12

30_7 932 6 897 6 1829 12 1229 13

30_8 994 6 990 6 1984 12 1407 12

30_9 1273 6 996 6 2269 12 1233 12

30_10 896 5 1004 5 1900 10 1282 10

Table 3.6 Case study results, for 40 customers

Instance A cost A nVeh B cost B nVeh A+B cost A+B nVeh AB cost AB nVeh

40_1 1075 7 1199 8 2274 15 1654 16

40_2 1407 8 1360 7 2767 15 1881 15

40_3 1107 8 1335 7 2442 15 1756 16

40_4 1458 8 1222 7 2680 15 1699 16

40_5 1236 8 1207 7 2443 15 1694 16

40_6 1415 8 1262 8 2677 16 1713 16

40_7 1148 7 1177 7 2325 14 1691 15

40_8 1296 8 1244 7 2540 15 1758 15

40_9 1286 7 1293 8 2579 15 1650 15

40_10 1131 7 1160 7 2291 14 1747 14

Table 3.7 Case study results, for 50 customers

Instance A cost A nVeh B cost B nVeh A+B cost A+B nVeh AB cost AB nVeh

50_1 1280 10 1436 8 2716 18 2175 18

50_2 1676 9 1830 9 3506 18 2279 18

50_3 1595 8 1650 9 3245 17 1964 19

50_4 1355 9 1797 9 3152 18 2262 19

50_5 1615 9 1481 9 3096 18 2199 18

50_6 1521 9 1468 9 2989 18 2301 19

50_7 1577 8 1602 9 3179 17 2084 18

50_8 1593 9 1757 9 3350 18 2047 18

50_9 1283 8 1444 10 2727 18 2058 19

50_10 1356 8 1456 9 2812 17 1837 17
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cost saving rate ¼ Aþ B cost� AB cost
Aþ B cost

� 100%

However, in terms of total number of vehicles used, individual scheduling
slightly outperforms collaboration. As depicted in Fig. 3.6, among the 60 testing
instances, the percentage that horizontal collaboration uses less vehicles is only 5%.
In most of the cases, individual scheduling needs less or equal number of vehicles
than horizontal collaboration. However, in around half of the instances, both sce-
narios ask for the same number of vehicle, and the maximal difference on the number
of vehicle used is 2 with percentage 13.33%.

Table 3.8 Case study results, for 60 customers

Instance A cost A nVeh B cost B nVeh A+B cost A+B nVeh AB cost AB nVeh

60_1 1916 11 1951 10 3867 21 2557 23

60_2 1663 10 1882 10 3545 20 2465 22

60_3 1811 11 1896 11 3707 22 2537 24

60_4 1779 11 1813 11 3592 22 2626 22

60_5 1672 11 1965 9 3637 20 2456 22

60_6 1812 11 1870 10 3682 21 2402 23

60_7 1954 11 1925 11 3879 22 2738 22

60_8 1837 10 1768 11 3605 21 2611 22

60_9 2008 12 2418 11 4426 23 2978 24

60_10 2056 11 1889 10 3945 21 2937 23

Fig. 3.6 The statistics on
the difference of vehicle
need on both scenarios
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4 Mathematical Model of Vehicle Dispatching Problem

In the following, we will introduce the mathematical optimization model developed
for the vehicle dispatching problem in a Physical Internet.
Parameters

• T: an upper bound of the number of arcs for a path for each vehicle.
• K: the set of vehicles.
• G(N, A): the graph representation of a Physical Internet; N is the set of Physical

Internet hubs, and A is the set of the arcs connecting hubs.
• δ(a) 2 N: the head node of an arc a 2 A.
• σ(a) 2 N: the tail node of an arc a 2 A.
• ca: the traveling cost of arc a 2 A.
• lk 2 N: the initial location of vehicle k 2 K.
• da: the transportation demand for arc a.

Decision Variables

• xka
t : a binary decision variable, 1, if vehicle k takes arc a at tth link, 0, otherwise

• dka 2 Z+: the transportation demand portion that vehicle k takes from transporta-
tion demand da, a 2 A

Model

min:
X

k2K

X

1�t�T

X

a2A
caxtka ð3:1Þ

s.t.

X
a2Ax

t
ka ¼ 1, 8k 2 K, 1 � t � T ð3:2Þ

xtþ1
ká � xtka, 8k 2 K, 1 � t � T, a, á 2 A, σ að Þ 6¼ δ áð Þ ð3:3Þ

X

a2A:σ að Þ¼lk

x1ka ¼ 1, 8k 2 K ð3:4Þ

XT

t¼1
xtka � dka, 8k 2 K, a 2 A ð3:5Þ

X

k2K
dka ¼ da 8a 2 A ð3:6Þ

xtka 2 0, 1f g, dka 2 Zþ, 81 � t � T, k 2 K, a 2 A ð3:7Þ

In the above mathematical model, the objective function (3.1) aims to minimize the
total traveling distance for all vehicles. Constraints (3.2) make sure that each link of a
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path for vehicle k should be chosen from the arc set A and only one arc can be
chosen. Constraints (3.3) guarantee that a path for vehicle k should be connected.

Specifically speaking, if xka
t¼ 1, that is, vehicle k chooses arc a as the tth link in a

path, then the next link in the path should have the starting node same as the ending
node of arc a. In other word, if xka

t ¼ 0, then xka
t+1

0 should be 0 for all arcs a0 with
σ(a), δ(a0). Constraints (3.4) force that a path of a vehicle k to start from the initial
node of the vehicle, i.e., lk. Constraints (3.5) count the transportation demand
fulfilled by a vehicle k. Constraints (3.6) ensure that the total transportation demand
for an arc a is split by all vehicles. Finally, constraints (3.7) define the domains for all
the decision variables.

However, it should be highlighted that the mathematical model listed above
cannot be directly used due to some technical limitations of the selected integer
programming modeling framework (i.e., for a vehicle k, xka

t for all t � T should be
well defined, but T is just an upper bound; therefore, if T is not appropriately chosen,
xka

t for all t � T cannot be well defined). To bypass such a modeling difficulty, a
simple way is to introduce one dummy node 0 and (|A| + 1) dummy arcs with
0 traveling cost and transportation demand to transform the original graph G(N, A) to
another associated graph. Figure 3.7 shows the transformed graph of the network
given in Fig. 3.1. As illustrated in Fig. 3.7, the dummy arcs (0,0), (A,0), (B,0), (C,0),
and (D,0) are included in the new graph. The role of them is to enforce that once a
vehicle k select a dummy arcs in {(A,0),(B,0),(C,0),(D,0)}, it cannot choose other
real arcs along the path and once the vehicle is “trapped” in the dummy arc set, the
only arc it can select is (0,0).

Fig. 3.7 Add dummy node
and links for transformation
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4.1 Numerical Results

To test the developed integer programming model for the vehicle dispatching
problem, we used the P&G Switzerland historical sales order data to construct a
case study.

As depicted in Fig. 3.8, in this case study, 11 hubs located in Switzerland are
used. They are at Frenkendorf, Bremgarten, Ecublens, Frauenfeld, Langenthal, Petit-
Lancy, Schmitten, Studen, Sursee, Wangen, and Winznau (nodes A to K, respec-
tively). Figure 3.9 summarizes the information on the transportation demands, the
traveling costs for all arcs, and the initial locations of all vehicles. Note that the
distances are in the unit of kilometers and there are six vehicles: two at hub B and
one at hubs C, E, I, and J.

After network transformation, the developed mathematical model is solved by
IBM ILOG CPLEX 12.5 in a Dell M4700 (CPU 2.60 GHz and 8.00 GB RAM), and
the minimal cost is 5821 km.

Similar to the last mile problem, for the vehicle dispatching problem, we also
want to quantify the benefit of horizontal collaboration. Therefore, we test our cases
for two scenarios where there are two distribution companies in our Physical Internet
framework. As shown in Fig. 3.10, it can be seen that operatorO1 consists of hubs A,
C, G, I, and J and the rest of hubs belongs to operator O2. Both operators O1 and O2

have the same number of vehicles whose initial locations are also indicated in

Fig. 3.8 The network of the case study based on P&G Switzerland data
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Fig. 3.10. Thus, the individual scheduling problems for both O1 and O2 are delin-
eated in Figs. 3.11 and 3.12, respectively. After the calculation, we obtain that the
optimal costs for both operators are 3822 km and 3387.7 km, that is, 7209.7 km if we
took the sum of costs for the two operators. Compared to the scenario of horizontal
collaboration, the cost saving amount is 1388.7 km which is equivalent to 19.3% of
the total cost for individual scheduling case.

Fig. 3.9 The case study based on P&G Switzerland

Fig. 3.10 The case study when the network is operated by two operators
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5 Discussions and Conclusion

In this research, we propose two individual optimization problems (i.e., the last mile
problem-3D bin packing and the vehicle dispatching problem) in the context of
Physical Internet. The last mile problem is a downstream problem which takes the
dimensions of the modularized boxes into account for their final distribution to
clients. By contrast, the vehicle dispatching problem is a middle stream network
problem. Its main objective is to identify the optimal transportation demand split and
the best vehicle dispatching plan (i.e., walks for vehicles in the given graph) thus that
the cost associated to empty vehicle movements is minimized. Based on these two

Fig. 3.11 The vehicle dispatching problem for operator O1

Fig. 3.12 The vehicle dispatching problem for operator O2
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problems, one of the main purposes of this work has been to quantify the benefit of
the horizontal collaboration compared to its counterpart, the individual scheduling,
in the world of Physical Internet. We have collaborated with several industrial
partners in this project within an EU project. We have been provided with real
case studies data which we used to evaluate our algorithms. According to our
numerical experiments, the importance and great potential of the horizontal collab-
oration is highlighted. In the last mile problem, the cost saving rate of the horizontal
collaboration can amount to 32%, and in the vehicle dispatching problem, the total
vehicle traveling cost can be reduced by 19% if deep collaborations among logistics
operators prevail. By reducing the number of empty vehicles circulating in the
network, a more sustainable logistic system can be obtained that minimizes envi-
ronmental impact. We also show the positive effect of horizontal collaborations
between different service providers and distributors that make it possible to use
resources more efficiently.
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