
Designing DAWN:
a Data Analytics Workflow Notation

Master’s Thesis

R.M. de Lange

For Albert

Designing DAWN:
a Data Analytics Workflow Notation

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE
TRACK INFORMATION ARCHITECTURE

by

R.M. de Lange
born in Amsterdam, the Netherlands

Web Information Systems
Department of Software Technology
Faculty EEMCS
Delft University of Technology
Mekelweg 4
Delft, the Netherlands
wis.ewi.tudelft.nl

ORTEC Consulting Group
Houtsingel 5

Zoetermeer, the Netherlands
www.ortec-consulting.com

wis.ewi.tudelft.nl
www.ortec-consulting.com

c© 2015 R.M. de Lange.

Designing DAWN:
a Data Analytics Workflow Notation

Author: R.M. de Lange
Student id: 1534068
Email: r.m.delange@student.tudelft.nl, mick@mickdelange.nl

Abstract

Big Data is a popular research and business topic. Due to the potential value
that lies in Big Data, much effort is put in attempts to improve Big Data analysis
methods. ORTEC is a company that provides data analysis, optimisation, and
forecasting solutions. In an attempt to make Big Data analysis easier to use for its
customers, ORTEC is developing the Big Data Portal. The intention is to create
an easy-to-use cloud service that offers an all-in Big Data analysis solution.

The Big Data Portal allows users to design workflows for their data analysis
work. These workflows need to be designed in the portal through means of a
notation that is both easy to use and can be extended with the latest in Big Data
analysis tools. Furthermore, the portal should process the analysis work in an
efficient manner, to minimise costs.

In this design research DAWN, a Data Analytics Workflow Notation, was
developed. This design considers the goals set for the Big Data Portal, as well as
theoretical base for the workflow notation. The formal definition is derived from
nested relational calculus as a theoretical base.

In this work, DAWN is shown to be easily visualisable for graphically editing
the workflow. Furthermore, DAWN is flexible as it enables the addition of new
user defined functions. The compiler for DAWN, presented in this work, shows
portability to other workflow execution systems. The nested relational calculus
base is shown to enable optimisations in the workflows for cost reduction in the
execution.

Thesis Committee:

Chair: Prof. dr. ir. G.J.P.M. Houben, Faculty EEMCS, TUDelft
University supervisor: Dr. ir. A.J.H. Hidders, Faculty EEMCS, TUDelft
Company supervisor: Dr. S.F. van Dijk, ORTEC Consulting Group
Committee Member: Prof. dr. E. Visser, Faculty EEMCS, TUDelft

r.m.delange@student.tudelft.nl
mick@mickdelange.nl

Preface

This thesis represents the final work of my master Computer Science and therefore the
final step in my student life. During this period I was able to rely on input and support
by many different people, whom I wish to thank in this preface.

First of all I would like to thank my colleagues at ORTEC, and fellow graduate
interns. Specifically, I would like to thank Steven van Dijk for his dedicated guidance
and detailed feedback on both my written work as well as my code. Furthermore I
want to thank Arjan Peters, Chuck Ng, Dragos Tihauan, Vincent Berkien and Sander
Knape for their input on my work, the role they played in the Big Data Portal and the
discussions we had on the difficulties of graduation work.

From the TU Delft, I would like to extend my thanks to Jan Hidders, who has been
a great supervisor. Both in helping me figure out complex issues and telling me to
take time of when needed, Jan has been great support. I would also like to thank my
fellow alpha group members for the useful discussions and the feedback provided on
my presentation. Furthermore, I would like to thank my other committee members,
Geert-Jan Houben and Eelco Visser for taking time to read my thesis and provide
feedback.

Last but not least I would like to thank my family and friends, especially Tjitske,
for their dedication, support and feedback on early versions of my work.

It has been an interesting project, which has brought me new insights and experi-
ences, both from a scientific as well as a personal perspective. The resulting work is
something I feel pride for and which I hope you, the reader, will enjoy as much reading
as I did writing it.

R.M. de Lange
Delft, the Netherlands

November 22, 2015

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Motivation . 2
1.2 Approach . 2
1.3 Contributions . 3
1.4 Structure . 4

2 Background 5
2.1 ORTEC . 5
2.2 Big Data Portal . 6
2.3 Big Data Analysis . 6
2.4 Workflow Systems . 8
2.5 Nested Relational Calculus . 9
2.6 NRC for semi-structured data . 10

3 Design Goals 13
3.1 User Friendly . 13
3.2 Flexible . 14
3.3 Optimisable . 15

4 Data Analytics Workflow Notation 17
4.1 Syntax . 17
4.2 Semantics . 24
4.3 Relation to sNRC . 30
4.4 User Defined Functions . 31

5 DAWN in JSON 33
5.1 JSON Format . 33
5.2 Elements . 33

v

CONTENTS CONTENTS

5.3 JSON Schema . 38

6 Compiler 39
6.1 Windows Workflow Foundation . 39
6.2 Data Flow versus Control Flow . 40
6.3 Data Addressing . 41
6.4 Implicit Components . 43
6.5 User Defined Functions . 43

7 Evaluation 45
7.1 User Friendly . 45
7.2 Flexible . 47
7.3 Optimisable . 48

8 Future Work 53
8.1 Graphical Editor . 53
8.2 Data Provenance . 53
8.3 Different Execution Engines . 54
8.4 Optimisations . 54
8.5 Workflow and Component Store . 54
8.6 Expressiveness of the DAWN Type System 55

9 Conclusions 57

Bibliography 61

A NRC for semi-structured data 65
A.1 Goal of document . 65
A.2 The Underlying Data Model: Nested Values 65
A.3 NRC for semistructured data: sNRC 66
A.4 NRA for semi-structured data: sNRA 68
A.5 The relationship between sNRA and sNRC 69
A.6 A note on n-ary functions . 70
A.7 A graphical notation for sNRC/sNRA 71

B Example JSON workflow notation 75

C DAWN JSON Schema 79

vi

List of Figures

4.1 Example of a DAWN workflow graph. 19
4.2 Example associated graph for the workflow graph in Figure 4.1. . . . 19
4.3 An example of a disconnected workflow. The cross marks the missing

arrow w.r.t. Figure 4.1. 21
4.4 A Random Number Generator component showing no input ports

and a single output port. 22
4.5 A workflow containing an incorrect edge. 23
4.6 A workflow containing unconnected component f 23
4.7 The associated graph for the workflow in Figure 4.6. 24
4.8 A workflow containing an unconnected output port at component f . . 24

6.1 A topological order of the components in Figure 4.1. 40

7.1 The left side of Equation 7.1. 49
7.2 The right side of Equation 7.1. 49

A.1 General workflow notation . 71
A.2 Iterating input ports . 72
A.3 Primitive workflow components . 72
A.4 Mapping n-ary sNRC expressions to DAWN workflows 73

vii

Chapter 1

Introduction

Big Data has become an increasingly popular topic in both business and science. McK-
insey & Company has said that Big Data is “The next frontier for innovation, compe-
tition, and productivity.” [15]. This claim is based on the fact that more and more data
is being collected by a large variety of applications. This data is steadily proving its
value through analysis efforts. There is both business and scientific value in analysing
Big Data, as this data often provides insight in human behaviour through sensory data.
A large number of fields face the challenges of effectively analysing large amounts of
data.

ORTEC, a company that provides data analysis, optimisation, and forecasting so-
lutions, aims to provide businesses with an all-in solution to Big Data analysis chal-
lenges. By harnessing the computational power of cloud services into a user friendly
portal, ORTEC wants to help business analysts gain value from Big Data analysis.
This Big Data Portal (BDP) enables customers to gain insights in their data. Business
analysts at ORTEC will help the customers design their own data analysis processes.
Users will be provided with easy to use tools that enable them to employ the latest in
Big Data analysis and cloud technology.

This thesis presents the design of DAWN, a Data Analytics Workflow Notation that
allows users to design their data analysis processes in a simple manner. The design
builds on the research on Nested Relational Calculus (NRC) and nested relational
query languages to support the workflow language with a formal basis. Given this
formal basis, the design takes the user’s perspective into account and aims to provide
a user friendly portal for data analysts.

Both a formal definition of the workflow notation and a notation in JavaScript
Object Notation 1 (JSON) are presented in this work. Furthermore, a compiler is im-
plemented that allows the workflow notation to be executed in Windows Workflow
Foundation 2 (WF). This is the execution engine chosen by ORTEC to run the work-
flows. Evaluation of this design shows that the design fits the goals set for the BDP
and the application of the workflow notation in this portal.

1http://json.org/
2https://msdn.microsoft.com/en-us/library/dd489441.aspx

1

http://json.org/
https://msdn.microsoft.com/en-us/library/dd489441.aspx

1.1 Motivation Introduction

1.1 Motivation

ORTEC wants to present an easy to use interface to customers and data analysts, in-
cluding a graphical workflow designer. This requires the design of a workflow notation
that can both be used in a web-based workflow designer and apply the required con-
cepts of Big Data analysis in a cloud environment. An important challenge here is to
provide a notation that is both useful and flexible. Several workflow systems exist that
describe workflows and allow to execute them. Moreover, there is an abundance of
workflow systems [3, 24].

Designing a new workflow language in a crowded field would therefore seem il-
logical. However, the usability and flexibility targets combined with the application
of an NRC-based query language pose new challenges for a workflow language. Ap-
plying the NRC formalism will result in an algebraic approach to workflow design.
This allows for interesting optimisations as well as formal verification of the feasibil-
ity of a workflow. Furthermore, applying this formalism in an environment that aims
at non-technical users requires simplifications to make it an intuitive system to use.

The challenges in this design research are therefore interesting enough to develop
a new workflow notation. However, aspects of the designed workflow notation are
inspired on existing solutions. Furthermore, the design aims to provide a notation
that can be applied in different environments, which requires a good fit with existing
workflow solutions as well.

1.2 Approach

The approach of this design research is based on the guidelines for design science
described by Hevner et al. [10]. This section will describe this approach and relate
aspects of the approach to the guidelines discussed by Hevner et al. The main design
process is described in Hevner’s Guideline 6, which will be elaborated on in Subsec-
tion 1.2.1. Furthermore, evaluation of the results of the design research as discussed
in Guideline 3 will be clarified in Subsection 1.2.2.

The other guidelines will only be summed up briefly here. The design should
produce an artefact, show relevance, show contributions and clearly communicate the
design [10, Guidelines 1,2,4&7]. The artefacts of this design are the actual results,
which are presented in Chapter 4, Chapter 5, and Chapter 6. Relevance of the design
research is shown in Section 1.1 and Chapter 2. The contributions of this work are dis-
cussed in Section 1.3 and Chapter 9. The goal of this thesis is to clearly communicate
the design, its artefacts and contributions. Furthermore, the design applies rigorous
methods and relies upon scientific results, as described in Guideline 5 [10].

1.2.1 Design Process

The design process, as described by Hevner et al., is an iterative process. This pro-
cess is regarded a cycle between generating new design alternatives and testing these
against the requirements and constraints. In this design research this method is applied,
as it is analogous to the agile development method applied at ORTEC. This develop-
ment method revolves around an iterative process, where each iteration provides useful
results and can be improved on in the following iteration.

2

Introduction 1.3 Contributions

The design process is described as a search process in Guideline 6 [10]. This search
process is a process where each step leads to both a better design as well as a better
understanding of the problem itself. The search starts at defining small parts of the
problem and expanding with each iteration towards solving the entire design problem.

For this thesis this approach proves to be very useful, as there are many challenging
aspects to the design, which can be dealt with more easily when split up into sub-
problems. The resulting design is compared to the goals and matched with results of
other sub-problems. In this way a balance is found between scientific support for the
design, a useful artefact and a fit in the ORTEC environment.

1.2.2 Evaluation

A good design requires rigorous evaluation. Each iteration in the design process re-
quires to evaluate the results and compare these to the design goals. The final eval-
uation of the design presented here is given in Chapter 7. For this design research a
descriptive evaluation method was chosen. Hevner et al. discuss a number of eval-
uation methods in their work and emphasise the importance of selecting the correct
method [10].

The descriptive method is used here as the designed artefacts are of a conceptual
nature. The final goal to allow users to visually edit the workflow notation does not
lie within the scope of this work. Therefore, user testing is not the best approach to
evaluate the results. An informed argument can be made to show the utility of the
design artefacts, by relating to other research work and applying formal analysis to the
design artefacts. Chapter 7 applies this method to show that the design fits the goals
set in Chapter 3.

1.3 Contributions

The design research in this thesis results in a number of artefacts: the workflow model,
compiler, notation, and its validation schema. These artefacts are based on existing
work in the field of workflow systems, nested relational query languages, and data
analysis. Additionally, this work presents several contributions to these research fields.
These contributions are presented throughout this thesis and are listed here for com-
pleteness.

1.3.1 NRC-based Algebraic Workflow Model

An important contribution presented in this thesis is the model for data analysis work-
flows, as presented in Chapter 4. The model is based on both the application domain
and NRC. This model defines the workflow definition as ORTEC wishes to present this
to data analysts. It presents this in a user friendly manner, whilst showing that it can
still be mapped to NRC. The simplifications needed for this presentation are a novel
contribution to the NRC research field.

3

1.4 Structure Introduction

1.3.2 Application of NRC-like Rewrite Rules to The Workflow Notation

As shown in Subsection 7.3.1, rewrite rules known for NRC can be applied to DAWN.
This application enables a number of interesting optimisations to be applied to DAWN
workflows. Although more research is needed, this is an interesting contribution.

1.3.3 Flexible Workflow Notation

The workflow model designed is presented as a JSON notation as well. This notation is
shown to be applicable in a web-based environment and provides a definition that can
be visually edited. An important aspect for this notation is that it represents flexibility.
It allows for different execution engines to run the workflow as well as a number of
different visual designer interfaces. Additionally, the notation allows to be extended
with new components. This flexibility enables users to add new features without the
need to replace the workflow notation.

1.3.4 Named Typing System for Semi-structured Data

The workflow notation presents a named type system in Subsection 4.2.2 to allow val-
idation of the data flow. This type system is specifically designed to describe complex,
nested, semi-structured data. This type system enables a more user friendly workflow
design process, by verifying validity of the designed workflows. It provides the users
more insight into the data being processed by the workflow.

1.4 Structure

This thesis will present the design research in the following structure. Chapter 2
presents related work and important concepts. The purpose is to give an impression of
the field and position this work in the correct context. Chapter 3 discusses the design
goals to which the design must adhere. These goals are used throughout the design
process and are verified in the evaluation. Chapter 4 presents the graphical workflow
notation. A formal definition is given for the DAWN workflow syntax and semantics,
and a comparison is made to sNRC. Chapter 5 presents a JSON serialisation of the
workflow notation, which is used for storing and editing workflows in the BDP. Chap-
ter 6 describes the compiler that was built, along with the challenges the workflow
notation and execution engine presented for this compiler. Chapter 7 evaluates the
results of the design by verifying whether the goals have been achieved. Chapter 8 dis-
cusses future improvements to the designed notation and compiler. This chapter shows
which follow-up research poses interesting challenges, based on this thesis. Chapter 9
concludes the thesis and reflects on the work presented.

4

Chapter 2

Background

This chapter gives an overview of concepts and technologies which are relevant to this
thesis. The purpose of this chapter is twofold: on one hand it gives an introduction of
the topics discussed in the following chapters, on the other hand it illustrates the posi-
tion of this work in relevant research fields as well as within the business of ORTEC.
Furthermore, the concepts explained in this chapter provide terminology which will be
used throughout this work.

2.1 ORTEC

This thesis work was performed at a company called the ORTEC Consulting Group.
The Consulting Group is a business unit within the whole ORTEC organisation. To
give an insight in this business and its implications for the design, this section will dis-
cuss some key facts about ORTEC. ORTEC was founded in 1981 and has developed to
be one of the largest providers of optimisation and planning solutions. ORTEC prod-
ucts perform optimisations or calculations to help solve business challenges. Example
solutions developed by ORTEC are: planning, scheduling, routing and forecasting so-
lutions.

From the perspective of this work there are several aspects of development at OR-
TEC worth considering. ORTEC has a Microsoft-preferred development environment,
which translates to standards within the company. .NET Framework is the standard
development framework that is applied in the majority of the projects at ORTEC. Mi-
crosoft Azure is the preferred cloud platform, with several Microsoft solutions readily
available as services. Web development is done in a model-view-controller approach,
using the .NET Framework web standards. Furthermore, popular frameworks and li-
braries are used for web projects, among which AngularJS 1 and Bootstrap 2. A combi-
nation of these techniques and technologies is defined as the ORTEC web stack, which
is the standard approach to developing web applications at ORTEC.

1https://angularjs.org/
2http://getbootstrap.com/

5

https://angularjs.org/
http://getbootstrap.com/

2.2 Big Data Portal Background

2.2 Big Data Portal

ORTEC has a research and development project called the Big Data Portal (BDP),
which the design presented in this thesis is a part of. The goal of this project is to
provide a comprehensive, cloud-based, Big Data analytics solution. Business analysts,
or data analysts, are the target users of the BDP. These analysts can be either employees
at ORTEC that help clients analyse their data, or analysts employed at one of ORTEC’s
clients. The following two key characteristics define the ideas behind the BDP.

First, ORTEC aims for the BDP to be a comprehensive, all-in-one solution for Big
Data analysis in the cloud. A variety of data analysis techniques which are available
to data analysts should be presented to the user through the portal. Moreover, the BDP
should provide the user with the possibility to create workflows that operate on a large
number of different data types. This means that it should allow for different data types
and data analysis solutions to be integrated in the portal.

Second, ORTEC wants to provide these options to the user in a simple and easy
to understand interface. The interface should allow the user to design their workflow
with minimal effort, whilst at the same time providing the user with information on
the workflow execution and the data analysis results. In essence, the portal should be
an easy to use tool for data analysts. The BDP will be presented to the user through a
web interface.

Summarising, the BDP will be a easy to use portal, provided to data analysts to har-
ness the potential of Big Data analytics in the cloud, while requiring minimal knowl-
edge of cloud technology.

2.3 Big Data Analysis

Big Data is an increasingly popular topic in both science and business at this moment.
Many applications are being developed that utilise Big Data to provide scientific in-
sights or business value. The BDP is an example of such an application. However, the
definition of Big Data is not straightforward and multiple interpretations exist. This
section will briefly introduce the definition of Big Data, as it will be applied in this
thesis. Furthermore, this section describes the challenges posed by Big Data, that are
relevant to this design research.

2.3.1 Big Data

Big Data is a term to describe datasets of such large size, that they can not be managed
by classical database software. Moreover, it considers datasets which are often too
large to be read into memory in regular machines. Big Data is generally characterised
in dimensions of a number of “Vs” [12, 2], this work will consider the following five
Vs.

Volume of the datasets. Big Data comes in large sizes, often datasets have sizes which
exceed terabytes. The larger the dataset, the more time, computational power
and storage space is required to process and analyse the data. Therefore the
complexity of the analysis increases as volume increases.

6

Background 2.3 Big Data Analysis

Velocity at which the data is generated. This is the speed at which new data is added
to a dataset. In some applications data is gathered real-time or streaming, for
instance in case it is sensory data. Higher speed adds complexity, as the data
processing needs to keep up with the speed at which the data is collected.

Variety of the data source and structure. Big Data can come from a large variety of
data sources and in many different forms. The data can be structured, semi-
structured, or unstructured. Less structure in the data indicates an increase in
complexity for analysis.

Veracity of the data. Veracity indicates trustworthiness of the data and the reliability
of the data source. As the source is less reliable, it is harder to gain valuable
insights from data analysis.

Value that the data represents. Value is given by Big Data in the form of scientific or
business value that can be found in the data. Creating value is considered a goal
of the Big Data analysis process.

There are researchers who consider additional dimensions for Big Data. However,
for this thesis only the above mentioned dimensions will be considered, as these are
most relevant to this work.

2.3.2 Analysis

The Big Data dimensions indicate that analysing Big Data poses complex challenges
for data analysts. Successful data analysis can, however, provide the analysts with
interesting business value. The data analytics system designed in this thesis should
consider the challenges in the implementation of data transformation steps and optimi-
sations of the workflow. However, for this work the focus is on designing the workflow
specification on a higher level, rather than designing the lower level data processing
steps.

The main technical challenge in analysing Big Data lies in its size. Classic data
storage and analysis techniques are often not capable or not powerful enough to pro-
cess Big Data in a timely manner. Therefore Big Data analysis requires a different
approach than regular data analysis. Several solutions have been developed recently.
These often perform computations which read and write data directly from disk, as
reading all data into memory is not feasible at this size. One of the most well known
Big Data analysis solutions is the MapReduce programming model [6], developed by
Google.

This programming model splits up the data in partitions. These partitions are dis-
tributed over workers which then perform the user-defined Map function on the input
data and produce intermediate key/value pairs. The intermediate data is grouped by
key and passed to the user-defined Reduce function, again distributed over a number
of workers. The Reduce function merges the intermediate results, reducing the size of
the dataset, and produces the final result.

By splitting the dataset into small partitions and spreading the work over a number
of workers, each worker uses only a small amount of memory, whilst still producing the
correct result. This programming model is applied by many Big Data analysis systems,

7

2.4 Workflow Systems Background

most of which are based on the popular open source MapReduce implementation:
Hadoop [25].

ORTEC will not attempt to create such a system itself. Rather, the BDP will pro-
vide an interface to harness the power of such Big Data analysis tools in the form of
cloud services. For example, Microsoft Azure provides HDInsight3, a Hadoop-based
cloud service.

2.4 Workflow Systems

This thesis discusses the design of a workflow notation to enable Big Data analysis.
Data analysis is a comprehensive field and as Barker and Hemert [3] discuss, work-
flow systems are abundant. To emphasise the large number of workflow languages
available, van der Aalst and ter Hofstede introduced Yet Another Workflow Language
(YAWL) [24]. The work on YAWL mostly represents an analysis of different work-
flow patterns. This section will give an introduction to a number of workflow systems,
while distinguishing between two main classes of workflow structures.

A workflow is defined as a sequence of tasks or operations needed to manage a
computational activity [22]. This means that a workflow consists of computational
parts, which need to be executed in a certain order to achieve the desired outcome
or outcomes. These computational parts are referred to with a number of different
terms, such as tasks, activities, operations, or components. To define the order of these
components, workflows specify either a sequence or relations between components.

2.4.1 Classes of Workflow Structures

In the Workflows for e-Science book [22, Chapter 11], Shields distinguishes between
two classes of workflow structures: control-driven workflows and data-driven work-
flows. The author also discusses the hybrid option, in which a system incorporates
elements of both classes. In the YAWL publication, the authors describe these struc-
tures as perspectives [24]. Multiple perspectives are discussed, but the control flow
perspective and data flow perspective are noted as the main two perspectives. More-
over, van der Aalst and ter Hofstede mention that the data flow perspective is in fact
an approach that rests on the control flow perspective. Here we will discuss the differ-
ences between the two classes and give some examples of each class.

Control-driven workflows

Control-driven workflows, or control flows, specify the transfer of control between
components through relations. This class of workflows typically consists of a sequence
of activities, where control is passed from each activity to its successor. The activities
read their input from and write their output to a common data store, the activity that
is active has control over the data store. Optional movement of data is handled by a
specific activity tasked only with data transferral. Petri nets [16] are example tools
which can model both control and data flows [22].

3http://azure.microsoft.com/en-us/services/hdinsight/

8

http://azure.microsoft.com/en-us/services/hdinsight/

Background 2.5 Nested Relational Calculus

Data-driven workflows

Data-driven workflows, or data flows, specify the data dependencies between compo-
nents through relations. This approach allows to disregard any sequence; each com-
ponent can be run concurrently, only halting to await its data dependency. The com-
ponents take data as input and produce data as output, which is then provided to any
dependent components. Data flow representations are regarded to be simple, as they
only specify the components and the dependencies between them. The user does not
have to consider the sequence of the components in this class of workflows. There are
a large number of data flow languages.

Kepler [1] and Triana [21] are some well-known scientific data flow systems. Ke-
pler is a tool that supports scientists to design and execute scientific workflows, as well
as streamlines the execution process. Triana provides scientists with a comprehensive
workflow environment that supports multiple services, mainly focussed on peer-to-
peer and grid technologies. Another well-known example of a data-driven workflow
language is Pig Latin [18], with its workflow system Pig [9]. Pig is a data flow system
that aims to provide a simplification over Map-Reduce workflows, by implementing
elements of an SQL-like query language.

2.5 Nested Relational Calculus

For the workflow notation designed in this thesis, the Nested Relational Calculus
(NRC) formalism is used as a basis. NRC is a calculus allowing to reason and it-
erate over collections of values. To give some insight in this formalism, its origin will
be briefly discussed first.

Codd introduced a model for representation of relational data in large databases
[5]. This model allows to give a generic representation of relational data, independent
of the internal data representation in a machine. Codd’s work was extended by Roth,
Korth and Silberschatz, who considered relaxing the first normal form constraint to
allow for nested relations [19]. Roth et al. introduced an algebra and a calculus for
nested relational data by extending the classical flat relational algebra. Formalised
definitions of this algebra and calculus were presented in Wong’s PhD. thesis [26].

NRC provides a query language that can reason over collections and complex ob-
jects. Hidders et al. have shown that NRC can be used as a base to develop a workflow
language [11]. This workflow language can also be edited in a graphic designer, as was
shown in later work [20]. Another interesting aspect of NRC as a workflow language
is that it potentially provides useful optimisations for Big Data analysis. Dias et al. [7]
argue that algebraic, data-centric workflows allow for interesting optimisations both
from a scientific and a business perspective. Moreover, Fegaras and Maier [8] discuss
the use of an effective calculus to optimise object queries.

As NRC allows to reason over complex objects, this work will consider a specific
class of data structures, semi-structured data. This is defined in a dialect of NRC
called NRC for semi-structured data (sNRC), which will be discussed in the following
section.

9

2.6 NRC for semi-structured data Background

2.6 NRC for semi-structured data

sNRC is an NRC dialect developed by Hidders in work which is at this time not yet
published. Preliminary material of this work can be found in Appendix A, where a
complete discussion of sNRC, an accompanying algebra, and a graphical workflow
notation are presented by Hidders. This thesis builds upon this work, specifically on
the application of sNRC as a graphical workflow notation. This section gives a brief
summary of the important concepts of sNRC.

As discussed in Section 2.3, one of the challenging aspects of Big Data analysis
is the variety of data and the structure of this data. Semi-structured data represents a
commonly encountered challenge in Big Data analysis. Therefore sNRC is chosen as
a basis for the workflow notation designed in this thesis.

2.6.1 Semi-structured Data

Semi-structured data is data which, in contrary to relational databases, lacks a strict
data model. Often this form of structured data is self-describing, examples of such
data structures are Extensible Markup Language 4 (XML) and JavaScript Object No-
tation 5 (JSON). An important concept here is that elements in semi-structured data
are identifiable through descriptive tags, although there is no guarantee that a specific
tag is present in the data structure. Data tables on the other hand, provide a number of
columns and each entry in the table has that exact same structure.

2.6.2 Data Model

The sNRC language distinguishes between three different data constructs: bags, tuples
and constants. Bags are unordered collections of items that allow for duplicate items
to be present, similar to multisets. Tuples are ordered pairs of bags. Constants can be
any basic value, such as strings, booleans, and integers. A singleton bag is defined as
a bag with a single constant in it. A complete and formal description of the data model
can be found in Appendix A.

2.6.3 Semantics

sNRC presumes every value to be a bag, which can contain constants and tuples. Be-
cause every value is considered a bag, tuples can only contain bags and constants are
defined in the form of a singleton bag. However, a bag of bags is not a valid con-
struct. This ensures definedness of the result of each sNRC expression, similar to the
approach of XQuery. It also allows the query language to apply any function on any
input. Operators which do not expect a bag as input, are mapped over all elements of
a bag. Furthermore, any operator also produces a bag as result. The operator that is
mapped over a bag produces a bag with results for each element in the original bag.

4http://www.w3.org/XML/
5http://json.org/

10

http://www.w3.org/XML/
http://json.org/

Background 2.6 NRC for semi-structured data

2.6.4 DAWN

Hidders introduces a graphical notation for n-ary sNRC functions called DAWN in
Section A.7. An n-ary function is a function with n input parameters. Similarly, a
function with a single input parameter is called a unary function. As sNRC functions
can have more than one input parameter, these functions are called n-ary functions. A
more detailed discussion of n-ary functions can be found in Section A.6. This graphical
notation allows to represent the functions of sNRC in a workflow graph structure.

This graphical notation is an interesting tool to base the workflow design for the
BDP on. The notation designed in this thesis will therefore be called DAWN. However,
the notation designed in this thesis will make some alterations to the specification given
by Hidders. These differences will be discussed in more detail in Section 4.3. For
clarity, the work by Hidders will be referred to as sNRC, while the notation presented
in this thesis will be referred to as DAWN.

11

Chapter 3

Design Goals

The main goal of the BDP project is to provide a user friendly portal for data analysts
to help them design and use their data analysis workflows. Moreover, customers will
need to interact with the portal and its workflows as well. It is important that the
portal is easy to understand for customers with less experience in data science than
the ORTEC analysts. Additionally, ORTEC wants to provide users of the BDP with
the latest in Big Data analysis technologies, which requires the workflow system to
be flexible enough to implement this. Furthermore, this design research aims to add
scientific design rigour to the workflow system by implementing the sNRC formalism
as described in Appendix A. This formalism potentially provides useful improvements
such as optimisation of workflows.

This chapter defines the goals for the design research conducted in this thesis. The
goals are derived from the above stated main goals and provide a clear set of require-
ments. These goals are used throughout the design process to evaluate design alterna-
tives, as described in Section 1.2. Moreover, the evaluation of this work presented in
Chapter 7 will verify whether the design artefacts adhere to the goals. For clarity, the
goals are divided in three categories: user friendly, flexible, and optimisable.

3.1 User Friendly

As the main goal of the BDP is to provide a user friendly interface for designing
workflows, user friendliness is an important goal. To design a user friendly workflow
notation, the users and their preferences should be known. For this, both literature
as well as discussions at ORTEC were taken as a guideline. The users of the work-
flow notation will, in the first place, be business analysts at ORTEC. In later stages
business analysts outside of the company might use the BDP as well, although their
requirements for the workflow notation are expected to be similar.

Business analysts are skilled data analysts that use several data analysis techniques
to achieve business value. Techniques which are often applied at ORTEC are data
querying languages such as SQL, and scripting languages such as R1. Visualisation
of data is also an important tool to help provide value and information to a customer,

1http://www.r-project.org/

13

http://www.r-project.org/

3.2 Flexible Design Goals

a commonly used tool at ORTEC is Spotfire2. Goals formulated here are aimed at
designing a workflow notation that is easy to use for these data analysts.

Goal 1. Design a notation that matches the data oriented view of the users.

As the intended users of the BDP are data analysts, the approach to the workflow
notation should match their perspective. Data analysts in general have a data-centric
view on their analysis work, as they are accustomed to working with querying lan-
guages and manipulate data. Moreover, dataflow representations are often simple in
nature, as they do not provide control constructs such as loops [22]. Therefore, the
workflow notation should match the conceptual view of the data analysts and imple-
ment a data-driven approach.

Goal 2. Provide users with an easy-to-use, graphical interface to design their work-
flows.

A graphical interface for editing workflows is considered the most user friendly.
Although the data analysts do have knowledge of scripting languages and querying
data, they are not experienced programmers. Therefore, designing a graphical work-
flow editor is more suitable for these users than designing a programming language.
Moreover, editing a dataflow notation in a visual manner is an intuitive approach to
workflow editing [14, 21, 22] and helps give customers better insight in the data anal-
ysis process.

3.2 Flexible

To be able to provide users with the data analysis tools they need, and be able to up-
grade to the latest technology, the designed workflow notation needs to be flexible.
ORTEC wants to provide a comprehensive set of data analysis technologies through
the BDP. However, customers might require specific data analysis tools that need to
be added to the workflow system. This requires the notation to be flexible enough to
support easy addition of new components. Furthermore, if new workflow technologies
arise, the notation should be portable to a new system. This enables ORTEC to pro-
vide the latest in data analysis and workflow technology, whilst keeping the workflow
notation the same. Therefore, all existing workflow specifications can be used in a new
environment.

Goal 3. Support the addition of User Defined Functions to the workflow system.

Customers might require specific data analysis solutions. The workflow notation
needs to take into account that new components can be added in the form of a User De-
fined Function (UDF), to support this customer need. These UDFs can implement new
cloud services, specific scripting languages or other data analysis tools. Adding such
extensions should be a simple task, such that ORTEC has to make minimal changes to
the notation to implement these functions.

Goal 4. Design a notation that is portable to different workflow environments.

2http://spotfire.tibco.com/

14

http://spotfire.tibco.com/

Design Goals 3.3 Optimisable

ORTEC wants to keep improving the BDP, future versions might therefore require
the use of new workflow technologies. A new technology might enable ORTEC to use
a better execution engine, which gives better performance, or is more cost-effective.
In any of these cases it should be possible for ORTEC to implement a new execution
engine, without requiring the users to redesign all their workflows. The notation should
therefore be generic enough to enable the use of different execution engines.

A similar improvement might be made on the user interface side. ORTEC wants
to provide a modern interface to the user, which requires regular updates. The work-
flow notation is part of this interface. However, it should be possible to redesign the
interface without the need for changes in the workflow notation.

3.3 Optimisable

To keep costs low and processing time as short as possible, the workflow execution
should be as efficient as possible. Being able to improve the performance of the work-
flow execution engine is therefore an interesting challenge. As Olston et al. discuss in
their study of automatic optimisations in Pig [17], there are several interesting optimi-
sations which can be applied to dataflow systems.

Olston et al. distinguish between logical and physical optimisations. Logical op-
timisations are changes to the dataflow graph structure which produce a semantically
equal, but more efficient workflow. Physical optimisations are improvements in the
compiler that produce a more efficient execution of the workflow. The two goals de-
scribed here address both types of optimisations.

Goal 5. Apply logical optimisations in the form of rewrite rules for NRC-like lan-
guages.

The sNRC formalism makes it possible to implement several interesting cost-based
optimisations, similar to those discussed by Wong [26, Chapter 6]. Wong presents a
number of rewrite rules for NRC. Wong shows that these rules can be applied to rewrite
any query to a normalised form in a finite number of steps. He argues that reordering
queries can reduce costs in a sense that the amount of data that is processed in expen-
sive components can be reduced. For example, reordering a query to filter datasets
early on in the workflow, reduces the amount of intermediate data and therefore limits
unnecessary data processing.

By applying concepts from NRC-like languages, rewrite rules can also apply to the
designed workflow notation. An optimiser can be implemented that applies the rewrite
rules to achieve a cost reduction in the workflows. Users will be able to design their
own workflows, without having to consider the performance of their specification. The
optimiser will transform their workflow to a more optimal form.

Goal 6. Apply physical optimisations in the compiler or execution engine.

Physical optimisations involve the design of an execution plan for a workflow. This
type of optimisation is therefore applied at the level of the compiler or the execution
engine. These optimisations often consider the order in an execution plan or involve
more in-depth knowledge of the components to be able to execute these in a specific
way. An example of such an optimisation is parallelisation. Parallelising parts of the

15

3.3 Optimisable Design Goals

execution of a workflow helps improve the processing speed, as multiple machines
perform part of the work.

16

Chapter 4

Data Analytics Workflow Notation

This chapter presents the workflow notation that is designed in this thesis, called
DAWN. It is an adaptation of the graphical notation for sNRC as introduced by Hidders
in Section A.7. The graphical notation introduced by Hidders is altered to improve its
usability in the BDP. The differences between both notations and the implications of
these differences will be discussed in more detail in Section 4.3. The design considers
both the goals stated in Chapter 3 and the formal definition of sNRC, as provided in
Appendix A. The resulting design artefacts presented here are a formal definition of
the DAWN syntax and semantics, and a DAWN type system. Finally, a discussion on
the implications of adding UDFs to DAWN will be given in Section 4.4.

4.1 Syntax

This section will give a formal definition of the DAWN syntax. The syntax is the set
of rules that defines the notation of DAWN. To give this definition, the concept of a
workflow will be defined first. This concept is used to describe a graph representation
of workflows and is a special type of graph, which will be related to a regular graph,
called the associated graph. The workflow and associated graph concepts will be used
to give the formal definition of the DAWN syntax. To clarify the DAWN syntax,
several properties will be discussed in more detail. These properties describe key
elements of the DAWN syntax.

4.1.1 Workflow

DAWN is a graphical representation of a dataflow graph structure, a workflow. This is
considered an intuitive method to describe dataflows [22] and it fits the design goals. In
this graph structure, data operations are depicted as vertices and data dependencies as
directed edges. Data dependencies are dependencies between components, where the
target component requires input data from the source component. Edges can therefore
be seen as a description of data flow, as their direction shows the flow of data through
the workflow.

The workflow graph serves as a graphical representation, but has a formal descrip-
tion as well. However, a workflow is not a regular graph as defined in graph theory.
A special property of a workflow is that the components, or vertices, are not directly
connected, but connected through ports. These ports represent input or output for a

17

4.1 Syntax Data Analytics Workflow Notation

component or the whole workflow. Definition 1 gives a definition of a workflow, as it
will be used throughout this thesis. The notation chosen here is comparable to that of
graph theory, to emphasise the relation between the concepts.

Definition 1. A workflow GWF = (C,P,D), consists of a set of components C, a set of
ports P, and a set of edges D, such that:

• The sets C, P, and D are mutually disjoint.

• P = Pi∪Po∪Pi
C ∪Po

C, where Pi, Po, Pi
C, and Po

C are mutually disjoint, and:

– Pi is a set of workflow input ports.

– Po is a set of workflow output ports.

– Pi
C is a set of component input ports.

– Po
C is a set of component output ports .

• Each component c ∈C has a set of input ports Pi
c ⊆ Pi

C, and a set of output ports
Po

c ⊆ Po
C.

• Each edge (p,q) ∈ D is an ordered pair of ports p and q, such that p ∈ Pi∪Po
C

and q ∈ Po∪Pi
C.

Summarising, a workflow graph consists of components, edges, and ports. Com-
ponents represent data operations and have their own input and output ports. Edges
connect workflow ports and component ports to describe the flow of data. This graph
definition has a graphical representation similar to that of sNRC used by Hidders in
Section A.7. An example of a DAWN workflow graph can be seen in Figure 4.1.

All DAWN workflows in this thesis are visualised in this same style. The workflow
in Figure 4.1 has four components, labelled: f ,g,h and i. The input and output ports of
a workflow are displayed at the left and right edges of the workflow respectively. The
example workflow has two input ports on the left side of the workflow and two output
ports on the right side. Components are visualised similarly, with input ports on the
left and output ports on the right side of the component. The directed edges are shown
by arrows pointing from their source to their destination.

4.1.2 Associated Graph

As discussed in Subsection 4.1.1, a workflow is not a regular graph as defined in graph
theory. The ports in a workflow make it a special type of graph. However, a workflow
can be represented as a directed graph. The directed graph related to a workflow will

18

Data Analytics Workflow Notation 4.1 Syntax

f

g h

i

Figure 4.1: Example of a DAWN workflow graph.

be referred to as its associated graph. The formal definition of the associated graph
for a workflow is given in Definition 2.

Definition 2. For each workflow GWF = (C,P,D), with P = Pi∪Po∪Pi
C∪Po

C, there is
an associated graph GA = (V,E), such that:

• V =C∪Pi∪Po

• For each (p,q) ∈ D, where p ∈ Pi and q ∈ Po, there is an (p,q) ∈ E.

• For each (p,q) ∈D, where p ∈ Po
r and q ∈ Pi

s, there is an (r,s) ∈ E, with r,s ∈C.

• For each (p,q) ∈ D, where p ∈ Pi and q ∈ Pi
s, there is an (p,s) ∈ E, with s ∈C.

• For each (p,q) ∈ D, where p ∈ Po
r and q ∈ Po, there is an (r,q) ∈ E, with r ∈C.

The associated graph represents each component, workflow input port, and work-
flow output port as a vertex, while omitting the component ports. All edges connected
to component ports in the workflow connect to the component vertex directly in the as-
sociated graph. Figure 4.2 shows the associated graph for the DAWN workflow shown
in Figure 4.1. As the associated graph defines a directed graph, rules from graph theory
apply to it, this feature will be used to give the definition of the DAWN syntax.

in
2

in
1 i

out
2

out
1

h

f

g

Figure 4.2: Example associated graph for the workflow graph in Figure 4.1.

19

4.1 Syntax Data Analytics Workflow Notation

4.1.3 DAWN Syntax

Using the definitions given in Definition 1 and 2, this section will present the formal
definition of the DAWN syntax. DAWN is a type of workflow that a poses several
restrictions on the design of the graph that improve usability or help users design valid
workflows. These properties will be discussed in more detail in Subsection 4.1.4.
Definition 3 gives the formal definition of a DAWN workflow in terms of a workflow
and its associated graph.

Definition 3. DAWN is a workflow GWF = (C,P,D), with an associated graph GA =
(V,E), if and only if all of the following statements hold:

• GA is a directed acyclic graph.

• GA is a weakly connected graph.

• GA has a directed path from each v ∈V to a p ∈ Po, where Po ⊆V .

• Po 6= /0.

• For each c ∈C : Po
c 6= /0.

• For each p ∈ Pi
C ∪Po, there exists an ordered pair (r, p) ∈ D.

4.1.4 Properties

To clarify the definition of the DAWN syntax and the design choices behind it, this
section will discuss several main properties of DAWN workflows. These properties
are derived from the definitions of a workflow, the associated graph and the dawn
syntax as presented in the previous sections.

Property 1. The associated graph is a directed acyclic graph.

A directed acyclic graph is a graph for which it holds that all edges are directed
and there are no directed cycles in the graph. This means that there is no vertex v in the
graph for which a directed path can be found that returns to vertex v. If the associated
graph is acyclic, the DAWN workflow cannot have any cycles either. Cycles in a
DAWN workflow are unwanted, as the edges of the workflow represent the flow of
data. Data should not flow back to a component from which it originated. Doing so
would potentially cause an infinite loop in the workflow execution. Iterations over
datasets should rather be specified inside a component than in the workflow.

Property 2. The associated graph is a weakly connected graph.

A directed graph is weakly connected if removing the direction of the edges results
in a strongly connected graph. A strongly connected graph is a graph for which all
vertices can be reached by traversing the graph from any vertex. Practically, this means
all vertices are in a single graph.

DAWN requires that the workflow is represented by a single, connected graph.
This means two thing: there cannot be any disconnected components, i.e. components
that are not connected to the workflow, and there cannot be multiple graphs defined in

20

Data Analytics Workflow Notation 4.1 Syntax

one workflow. Figure 4.3 shows an example of two disconnected graphs in one work-
flow. The workflow is similar to that in Figure 4.1, however there is an edge missing
at the location of the red cross. Although both the workflow containing component i
and the workflow containing components f , g and h are considered valid workflows,
the definition of both in one workflow is not.

The motivation behind this design choice is that a data analyst working in the
BDP will work on something which is conceptually called a “workflow”. The analyst
would therefore not expect this workflow to contain multiple workflows. If the user
wants to create multiple workflows, they can create another workflow object in a new
specification. This makes it easier to keep an overview of all separate workflows as
well as allow for separate execution of these workflows.

f

g h

i

Figure 4.3: An example of a disconnected workflow. The cross marks the missing
arrow w.r.t. Figure 4.1.

Property 3. A DAWN workflow has at least one output port.

A workflow is expected to produce data, for the simple reason that this is its pur-
pose. An output port provides a result of the workflow. Therefore, a workflow should
always have at least one output port. This is formally stated in Definition 3 as: Po 6= /0.
The notation allows for multiple outputs, as data analysts might require multiple differ-
ent datasets to be generated by a workflow. For example, data analysis might produce
both a dataset that is used to generate a report as well as a dataset with the complete
analysis results. By outputting these results to different ports, the notation makes it
explicit that there are multiple results produced by the workflow. This allows to design
DAWN workflows which are side-effect free.

On the other hand, a workflow can have zero or more input ports as it is possi-
ble that the workflow does not require input data. Specifically, it is possible to have
a component that does not require input, but does produce output. A workflow con-
taining only this component would be considered a valid workflow. A more elaborate
discussion of components without input will be given in Property 4. Furthermore, a
workflow requiring multiple datasets as input is also possible. An input port is re-
quired for each input dataset. Figure 4.1 shows an example workflow with multiple
input ports, multiple output ports and a component (i) that does not require any input.

Property 4. Each component has at least one output port.

21

4.1 Syntax Data Analytics Workflow Notation

Analogous to the workflow, a component requires at least one output port, as a
component always produces output data. Definition 3 states: Po

c 6= /0 for each c ∈
C. In general, a component represents an n-ary function, such as those specified in
sNRC in Section A.6. Thus, a component would generally have only a single output
port. However, the workflow notation allows users to nest an existing workflow as
a component inside another workflow. Workflows can have multiple output ports, as
discussed in Property 3. Therefore, a component can also have multiple output ports.

As components represent n-ary functions, they reason over n input parameters.
This requires the components to have zero or more input ports, with each port repre-
senting one of the input parameters. An example of a component that does not require
input is a random number generator. Such a generator might be useful in a specific
workflow. This requires the random number generator to be defined in this notation as
a component with no input ports and a single output port. An example of this compo-
nent is shown in Figure 4.4.

RNG

Figure 4.4: A Random Number Generator component showing no input ports and
a single output port.

Property 5. An edge connects a workflow input port or a component output port to a
workflow output port or a component input port.

The formal definition of this property was given in Definition 1 as: each edge
(p,q) ∈ D is an ordered pair of ports p and q, such that p ∈ Pi∪Po

C and q ∈ Po∪Pi
C.

This statement prescribes that each edge should point in the correct direction. In a
workflow, the data flows from the workflow input ports, possibly through components,
to the workflow output ports. Flowing through components means the data enters the
component through a component input port and exits through a component output port.

This description of dataflow implies the definition of directed edges in a workflow.
Any other edges would result in an infeasible workflow. For example, an edge from
a component input port to a component output port has no logical meaning, as data is
not returned by an input port and cannot be consumed by an output port. Figure 4.5
illustrates this by means of a small workflow consisting of two components. The input
port of component h is connected to the output port of component g. This incorrect
workflow makes it clear that there is no correct flow of data due to the marked edge.

Property 6. All component input ports and workflow output ports have at least one
incoming edge.

To ensure functionality of a workflow, all output ports of the workflow should
return some results. This is only possible if there is an incoming edge on that port.
However, the result returned can be empty, as that depends on the functionality of the
workflow. Moreover, components cannot perform their data operation if not all input
is received. This means that each input port on a component should have an incoming

22

Data Analytics Workflow Notation 4.1 Syntax

g h

Figure 4.5: A workflow containing an incorrect edge.

edge as well. This holds that for each workflow output port and component input port,
there should be an edge that connects to it. Definition 3 specifies this as follows: for
each p ∈ Pi

C∪Po, there exists an ordered pair (r, p) ∈D. Pi
C is the set of all component

input ports and Po is the set of all workflow output ports.

Property 7. All workflow input ports and components contribute to the workflow out-
put.

All data input and data operations in the workflow should contribute to a result of
the workflow. Inputs or components that do not have a directed path to a workflow
output port do not contribute to the workflow result. Therefore, Definition 3 states:
GA has a directed path from each v ∈ V to a p ∈ Po, where Po ⊆ V . A directed path
to a workflow output port in the associated graph GA for each vertex v ensures that all
workflow inputs and components contribute to a result of the workflow.

f

g h

i

Figure 4.6: A workflow containing unconnected component f .

An example of an incorrect workflow is given in Figure 4.6. In this figure compo-
nent f has no outgoing edge from its output port. In the associated graph Figure 4.7
for this workflow, it can be seen that there is no directed path from in1 or f to any of
the output ports. The result of this component is therefore not used for any output of
the workflow, which means the component can be removed from the workflow without
effecting the result.

Similarly, Figure 4.8 has an output port at component f which is not connected.
However, this is a valid workflow, as all components and inputs have a directed path
to a workflow output port. The associated graph for this workflow is identical to that
given in Figure 4.2.

23

4.2 Semantics Data Analytics Workflow Notation

in
2

in
1 i

out
2

out
1

h

f

g

Figure 4.7: The associated graph for the workflow in Figure 4.6.

f

g h

i

Figure 4.8: A workflow containing an unconnected output port at component f .

4.2 Semantics

Having defined the syntax, this section will discuss the definition of the DAWN se-
mantics. The semantics defines the meaning of DAWN in the sense that it defines how
the specification should be interpreted. DAWN implements several solutions to help
users design workflows. Examples of these solutions are a type system and adding
implicit components. This section will give definitions for the DAWN type system,
implicit components and discuss the semantics of DAWN workflows.

4.2.1 DAWN Values

To be able to define the DAWN semantics, it is necessary to define the values that
are used in DAWN first. The values represent the data that is input and output to the
workflow and the components in the workflow. Definition 4 specifies the set W , which
is the set of all DAWN values. This definition shows that DAWN values can consist
of all real numbers R, boolean values T RUE and FALSE, strings in Σ∗, sets of DAWN
values, and records R. The implications of these value types will be discussed in the
following section.

As the model for semi-structured data depends on labelled data elements, field
names are an important aspect for the DAWN data model. For the following definition,
the set A is therefore defined as the set of all possible names, which are used to label a
data element.

24

Data Analytics Workflow Notation 4.2 Semantics

Definition 4. DAWN values are recursively defined as the smallest set W , for which
the following holds:

• R⊆W

• {T RUE,FALSE} ⊆W

• Σ∗ ⊆W , where Σ represents an alphabet of characters.

• {w | w⊆W} ⊆W

• (a1 : w1, ...,an : wn) ∈W , if w1, ...,wn ∈W , and a1, ...,an ∈ A are distinct.

An important data structure used in DAWN is the record. A record is a named
collection of data elements, described in Definition 4 as: (a1 : w1, ...,an : wn). The
subset of all records in W is defined as R in Definition 5.

Definition 5. R = {(a1 : w1, ...,an : wn) | (a1 : w1, ...,an : wn) ∈W}

4.2.2 DAWN Type System

To help data analysts design valid and meaningful workflows, a typing feature is added
to DAWN. Typing in this notation is done by specifying the data structure of a dataset
at a port. This means that a component defines specific data structures for each input
port. Moreover, a component specifies the data structure it returns on each output
port. This allows a user to easily notice whether or not the workflow is processing the
expected data structure. Additionally, typing helps the user discover the data structure
of intermediate data.

The type system consists of a named data structure description. As discussed in
Subsection 2.6.1, semi-structured data often consists of a nested structure with named
elements. The type system designed for DAWN specifies the structure of the data as
well as named elements in the semi-structured data. This approach was chosen as
it allows to describe the data structures most common to the BDP in which DAWN
will be applied. These structures include XML and JSON, as well as structured data
sources such as data tables.

Using named elements allows to ensure that the correct data is being compared or
addressed. As the order of elements in semi-structured data is uncertain, it is necessary
to label the values with names. Furthermore, this typing system considers names to
help users design meaningful workflows. Rather than just regarding data types to
verify correctness, names are used for this as well. For example, a port that provides a
string “user name” and integer “age” should not be input for a port that expects a string
“product name” and integer “quantity”. Although these ports have the same data types,
this data flow is considered incorrect based on the names. Logically, such a data flow
would not represent anything meaningful, as both ports represent completely different
concepts.

The definition of the type system is given in Definition 6 and 7. This definition
considers three different forms of types: primitives, records and collections. Primitives
are value types common to most typed programming languages: bool, float, int, and

25

4.2 Semantics Data Analytics Workflow Notation

string. A bool is a boolean value, an int is an integer, a float is a floating point value,
and a string is a sequence of characters. This is defined in the semantic definition of
the DAWN type, in Definition 7. Primitives are denoted by P in Definition 6. Records
represent sets of named values, for instance the example mentioned above would be
a record with a string “user name” and an integer “age”. Records are denoted as
(a1 : T1, ...,an : Tn) in Definition 6. As records can be used to map an name on a value,
it is clear that all names in a record must be unique. Collections represent repetition
and are denoted as {T} in Definition 6. Repetition means that the type defined in the
collection is repeated. This is useful for collections such as lists and tables.

Definition 6. A DAWN type T is given by the following syntactical rules:
T → R |C | P
R→ (a1 : T1, ...,an : Tn), where a1, ...,an are mutually distinct.
C→{T}
P→ bool | f loat | int | string

Definition 7. The semantics of a DAWN type is given as follows:

• J(a1 : T1, ...,an : Tn)K= {r ∈ R | r.a1 ∈ JT1K, ...,r.an ∈ JTnK}, where R is the set of
records as defined in Definition 5.

• J{T}K = {t | t ⊆ JT K}

• JintK = Z

• J f loatK = R

• JboolK = {T RUE,FALSE}

• JstringK = Σ∗

These definitions specify type T as an object which can consists of a record of
nested named types R, a collection C of a type T , or a primitive P. The lower-case
character a denotes the name of a named type. The notation used in Definition 6 is in-
spired by the NRC object description given by Van den Bussche et al. [23] and applied
in a production rule fashion. This definition allows to describe the semi-structured and
structured data types common to the BDP in the form of key/value pairs. To illustrate
this, examples will be presented here for both structured data and semi-structured data.

Examples

An example of structured data is the data table shown in Table 4.1. A definition in the
DAWN type system of this data table is given by Equation 4.1. In words, this type
definition states: Ta is a collection of records, containing three primitives: “name” as a
string, “surname” as a string, and “age” as an integer.

Ta = {(name : string,surname : string,age : int)} (4.1)

An example of semi-structured data is given in JSON in Code Fragment 4.1. The
DAWN type of this JSON object is given by Equation 4.2. In words, this type definition

26

Data Analytics Workflow Notation 4.2 Semantics

name surname age
John Doe 45
Jane Doe 33
...

Table 4.1: Example data of type Ta.

name age
John 45
Jane 33
... ...

Table 4.2: Example data of type Tb.

Code Fragment 4.1: Example data of type Tc.

{
"type": "Sales",
"products": [

{
"name": "Product A",
"amount": 12.50

},
{

"name": "Product D",
"amount": 13.60

},
...

]
}

states: Tc is a record of nested types “type” as a string and “products” as a collection.
This collection contains a record, containing two primitives: “name” as a string, and
“amount” as a float.

Tc = (type : string,products : {(name : string,amount : f loat)}) (4.2)

Subtype

An important aspect of the use of typing in DAWN is the subtype relation. This relation
specifies whether or not a type is a subtype of another type. The subtype relation is
used to determine if the input for a component port complies with the required data
structure. Specifically, if a type Ta is a subtype of type Tb, then Ta is considered valid
input for a port requiring type Tb.

An illustration of this relation is given by the types of the data tables given in
Table 4.1 and Table 4.2. Ta was given in Equation 4.1, Tb is given in Equation 4.3.
Type Ta as presented in Equation 4.1 is a collection containing a record of three named
primitives. Type Tb as presented in Equation 4.3 is a collection containing a record of
two named primitives.

Tb = {(name : string,age : int)} (4.3)

Type Ta is considered to be a subtype of Tb, denoted by Ta ≤ Tb, as Ta contains at
least all named types in Tb, in the same structure. It can easily be seen that the struc-

27

4.2 Semantics Data Analytics Workflow Notation

tures of Tb and Ta are the same: both are a collection containing a record. Furthermore,
all named primitives in the record of Tb can be found in the record of Ta. This leads to
the conclusion that Ta ≤ Tb. However, the inverse is not true: Tb � Ta. The record in
Ta has an extra string “surname”, which is not present in Tb. The formal definition of
the subtype relation is given in Definition 8.

Definition 8. The subtype relation, denoted by Ta ≤ Tb, is given by the smallest rela-
tion for which the following holds:

• int ≤ f loat

• Pa ≤ Pa for all a

• {Ta} ≤ {Tb} if Ta ≤ Tb

• (a1 : T1, ...,an : Tn)≤ (b1 : T ′1, ...,bm : T ′m) if for each by : T ′y ∈ (b1 : T ′1, ...,bm : T ′m),
there exists an ax : Tx ∈ (a1 : T1, ...,an : Tn), such that ax = by and Tx ≤ T ′y .

Note that this definition is equivalent to stating JTaK ⊆ JTbK as defined in Defini-
tion 7. If a type semantically defines a subset of another type, these types have the
subset relation. From the previous definitions it can be seen that:

• JPaK⊆ JPaK for all a

• J{Ta}K⊆ J{Tb}K if JTaK⊆ JTbK

• J(a1 : T1, ...,an : Tn)K⊆ J(b1 : T ′1, ...,bm : T ′m)K if for each by : JT ′y K∈ (b1 : JT ′1K, ...,bm :
JT ′mK), there exists an ax : JTxK ∈ (a1 : JT1K, ...,an : JTnK), such that ax = by and
JTxK⊆ JT ′y K.

Moreover, it can be seen that Ta ≤ Tb for any JTaK⊆ JTbK and vice versa. This also
explains the first rule in Definition 8, as from the subset relation Z⊆R, it follows that
int ≤ f loat.

4.2.3 Implicit Components

To help users design their DAWN workflow, some concepts are not present in the nota-
tion: implicit components. Implicit components are components which are implied by
the notation, but are not specified in the notation. These components often perform a
trivial task in manipulating data, for correct processing. An example of this is an addi-
tive union component, this component takes multiple inputs of the same type, performs
an additive union on the input, and returns a single output. An additive union is an op-
eration where all elements of each input are placed in a single collection, returning a
combined set of elements.

As will become clear from Definition 9, DAWN does not support multiple, dif-
ferent inputs on a single component input port or a workflow output port. However,
the syntax allows for multiple edges to connect to these ports. This is solved by the
use of implicit components, by inserting the additive union component at each port
with multiple incoming edges. For each incoming edge, a port is added to the additive
union component and the edge is connected to it. The output of the additive union
component is connected to the port which had multiple incoming edges.

28

Data Analytics Workflow Notation 4.2 Semantics

4.2.4 DAWN Semantics

Components are semantically assumed to be binary relations that map functions onto
functions. These functions map a port onto a DAWN value. Specifically, a component
represents a binary relation that maps functions for its input ports onto functions for its
output ports. This means that without knowing the exact operation of the component,
we can give the domain for the binary relation it represents. This domain helps for-
mally define the DAWN workflow. Furthermore, the semantics of edges in a DAWN
workflow is that both ports connected to the edge map to the same value. Therefore,
applying the rules for edges from the DAWN syntax given in Definition 3, the seman-
tics of a DAWN workflow must also be a binary relation. The formal definition of the
DAWN semantics is given in Definition 9. The following section will elaborate on this
definition in a number of properties.

Definition 9. The semantics of a DAWN workflow GWF = (C,P,D) is defined as fol-
lows:

• The semantics of a component c ∈C is assumed to be a binary relation

Bc ⊆ I×O, where I = {b | b : Pi
c→W} and O = {b | b : Po

c →W}

• The semantics of a DAWN workflow GWF = (C,P,D) is therefore given by the
following binary relation:

G= {(b[Pi],b[Po]) | b : P→W,∀(q,r)∈D : b(q) = b(r),∀c∈C : (b[Pi
c],b[P

o
c])∈

Bc}
Here b denotes a function that maps ports P onto DAWN values W and b[X]
denotes a restriction of function b to the domain of X . The semantic definition
of an edge can be seen in this relation as ∀(q,r) ∈ D : b(q) = b(r), meaning
that both ports connected to an edge map to the same value. Binary relation G
respects the semantic definition of components, the semantic definition of edges,
and the syntax as defined in Definition 3.

4.2.5 Properties

Property 8. There can only be an edge (a,b) ∈ D for ports a and b, with types Ta and
Tb respectively, if Ta ≤ Tb.

Given Definition 9, and the fact that ports that are connected by an edge bind to the
same value, it is only possible to connect ports that have a subtype relation. A subtype
relation ensures that the value bound to port a contains all elements required by port
b. However, as the definition of the semantics indicate, the values are equal in both
bindings. To this end the subtype is altered to be the exact same as the supertype. It
can be seen that if Ta ≤ Tb, removing elements from the value with Ta ensures it to be
identical to Tb.

Property 9. Data is duplicated over all outgoing edges of a port.

A port can have multiple outgoing edges. This holds for workflow input ports and
component output ports. As Definition 9 states, both endpoints of an edge bind to the
same value. This means that a port that has multiple outgoing edges, will provide the
same data to all endpoints of its outgoing edges.

29

4.3 Relation to sNRC Data Analytics Workflow Notation

Property 10. A port with multiple incoming edges is shorthand for an additive union
component.

A port that has multiple incoming edges cannot exist due to Definition 9. Seen as
both endpoints of an edge bind to the same value, this is not feasible for multiple edges
to end in one port. In this case the implicit additive union component is inserted before
this port. All incoming edges are connected to their own input port on the additive
union component and the output port of the additive union component connects to
the port that had multiple incoming edges. This ensures that the binding of values is
correct for all ports in the workflow.

4.3 Relation to sNRC

The DAWN definition presented here is similar to the notation introduced by Hidders
in Appendix A. However, some design decisions in this work have led to differences
between the two. These decisions are mostly for practical application of the notation in
the BDP, keeping the customers as users in mind. In this section the relation between
the two languages will be discussed. This is done by analysing the differences and
explaining how DAWN can be mapped to sNRC. Thereby showing that DAWN has a
solid theoretical base as well as practical application. This theoretical base in sNRC
proves useful in optimisations and helps achieve Goal 5.

4.3.1 Iterating Input Ports

The specification presented by Hidders in Appendix A defines iterating input ports in
components. These specially marked input ports indicate that the dataset that is input
to that port will be iterated over. This fits the idea of sNRC that everything is a bag,
which can be iterated over. To simplify the notation, iterating ports are not present in
the definition of DAWN. Moreover, DAWN does not consider everything to be a bag.

Data can still be iterated over, however this shall be defined in the implementation
of a specific component. The DAWN notation does not consider the specific imple-
mentation of a component, it focusses on the workflow as a whole and the interaction
between components. Although this does cause a decrease in expressiveness in DAWN
compared to sNRC.

4.3.2 Connectedness of the Graph

The definition of the DAWN syntax, Definition 3, states that the associated graph of
a DAWN workflow is a weakly connected graph. This holds that all components in
a workflow should be in a single connected graph. Both the definition of DAWN
and the definition of sNRC do not allow for disconnected components. Disconnected
components are not part of the workflow graph and therefore do not contribute to the
workflow result.

Technically, the graphical notation introduced by Hidders in Appendix A does
allow for multiple graphs in one workflow. This is not allowed in the DAWN definition
presented here. However, each of the graphs in sNRC would need to be a complete
workflow by itself. The result of having multiple workflows specified in a single graph

30

Data Analytics Workflow Notation 4.4 User Defined Functions

is that these independent workflows are executed simultaneously. As there are no edges
between the workflows, there cannot be any dependencies between the workflows.

It can be intuitively seen that any number of workflow graphs can be represented
in DAWN using multiple separate workflow specifications. The reason that this de-
sign choice was made, is that it is considered more user friendly to have a concept
of a workflow in the BDP, which contains only a single workflow. The possibility of
simultaneously running workflows is also available in the BDP, by scheduling them at
the same time or interval.

4.3.3 Multiple Output Ports

DAWN allows for multiple output ports to be defined in workflows, as discussed in
Property 3. This is done to allow users to have multiple forms of output for a workflow
and clearly specify them in the notation. As a result of the possibility to nest work-
flows, this results in having components with multiple output ports as well. Because
sNRC is a query language that uses n-ary functions it does expect multiple inputs, but
always produces one output. However, DAWN allows workflows do have multiple
outputs, an example was shown in Figure 4.1.

A special component could be defined and added to such a workflow, to allow a
mapping to sNRC with a single output port. This component has an input port for each
workflow output port. The result is a record, as defined in the DAWN type system
in Subsection 4.2.2, containing each input dataset as an element, labelled with the
name of the original workflow output port. The workflow output ports are replaced
by a single workflow output port returning this record. A reversed version of this
component can be implemented to allow the different outputs to be split up again.
This allows the workflow to be nested as a component in another workflow.

4.3.4 Typing

DAWN provides typing as an aid to the user to design meaningful and valid work-
flows. Subtyping is applied to confirm the validity of a connection between ports, as
discussed in Property 8. This typing consists of defining a named data structure as dis-
cussed in Definition 6 and 7. The sNRC query language does consider both typed and
untyped data, while assuming everything to be a bag. This construct allows to ensure
definedness of expression input and results.

As DAWN does not consider all data to be bags, this definedness needs to be
ensured differently. This is achieved by applying the type system. The type system
defines input and output types for each component, while the editor of the workflow
indicates incorrect edges in a workflow. This ensures that each component is presented
with the correct, expected, data structure.

4.4 User Defined Functions

An important aspect of the BDP is that data analysis tools and services can be easily
integrated into the portal. This is done through UDFs. UDFs are components which
can be added to the BDP workflow editor. Users can then add these to their workflows.

31

4.4 User Defined Functions Data Analytics Workflow Notation

These components are identical to existing components, as defined earlier in this chap-
ter. They have input ports, output ports and they have types associated with their ports.
Moreover, UDFs have a semantics that is compatible with the specified types. UDF
components are in fact also binary relations in the sense of Definition 9.

Although UDFs do not necessarily depend on external services, this is the most
likely use case for the BDP, as described in Section 2.2. External services are in this
case data analysis tools which are available as cloud services, such as the aforemen-
tioned Microsoft Azure HDInsight. One of the main goals for the BDP is to make such
external services available for use in workflows.

Several challenges arise from UDFs depending on external services. For example,
if an external service processes the data in a workflow, there is no guarantee that there
is no result stored at this service. This would constitute an output, which is not defined
in the workflow. Therefore, it is hard to decide whether or not a workflow is side-effect
free, as discussed in Property 3. Moreover, deciding termination for a workflow with
UDFs is also more complex. An external service might not be able to communicate
its status, leaving the workflow waiting for output which might not arrive. These chal-
lenges have to be dealt with in the implementation of the external services and the
component itself.

32

Chapter 5

DAWN in JSON

DAWN is a graphical workflow graph representation. A graphical representation is
useful for the user to design workflows. However, for efficient reading and storing
DAWN, a machine-readable format is required. For this purpose a serialisation of
the notation has been designed. This serialisation is a textual representation of the
DAWN workflow in JSON. This chapter will discuss the serialisation of DAWN, as
designed for the BDP. This includes the format and structure which are applied in the
notation. The structure and format are important, as they define the practicality of the
notation. Furthermore, the elements in the workflow notation are discussed, to show
how a workflow can be defined using the notation.

5.1 JSON Format

For the workflow notation, the JSON format was chosen, as this is a well-known and
widely used format. Furthermore, it fits within the ORTEC web stack as mentioned in
Section 2.1. It can be easily implemented in the JavaScript based web interface that
the BDP will use.

As alternative format XML was also considered, which has similar capabilities.
XML is considered less suitable, as the interface has native support for JSON and
XML is more verbose. An important advantage of XML is that it has a standardised
schema definition, which allows for validation of XML documents. Similar validation
is also available for JSON, although it is not yet considered a standard, as will be
discussed further in Section 5.3.

5.2 Elements

This section will show the structure of a JSON formatted workflow document and dis-
cuss the elements defined in the notation. The notation contains a number of elements
that combine to describe the workflow graph and additional information. A full exam-
ple workflow specification can be found in Appendix B. Note that this section omits
some non-crucial elements in the notation, for legibility.

33

5.2 Elements DAWN in JSON

Code Fragment 5.1: JSON root element

{
"dawn": {

"version": 0.9,
"resources": [...],
"workflow": { ... }

}
}

5.2.1 Root

The root of the JSON specification is an object containing a dawn element. Code
Fragment 5.1 gives an example of this element. This element contains the workflow
specification in the workflow element and two other elements. There is a version
element, which states to which version of the workflow notation this specification ad-
heres. This version number is mostly useful for development, to keep track of the
notation version used in the given specification. There is also a resources list, which
will be discussed next. All these elements in the dawn element are required for a valid
specification.

5.2.2 Resources

The DAWN notation distinguishes between two types of workflows: nested workflows
and standalone workflows. The difference between the two is that nested workflows
do not specify resources. These workflows are used as components, nested in another
workflow. Standalone workflows do specify resources, which are linked to input and
output ports of the workflow. These resources represent data sources and they are
used to point to the location of the data storage. The BDP allows users to specify a
number of resources, which can be used in several workflows. The reason that this
element is outside of the workflow element is that it is optional, as it is not a part of
nested workflows. In standalone workflows, resources are referenced from the input
and output ports of a workflow.

In the example Code Fragment 5.2 a Comma Separated Values (CSV) resource
is specified. Two fields are used to identify this resource: id and name. The type
of the resource is given by typeId, types such as CSV files, SQL databases, HDFS
storage, and document stores can be though of. These fields match the data stored
in the BDP database regarding resources. The elements field defines resource type-
specific properties. In the example, settings specific to CSV file processing are given,
such as: location, the presence of a header line and the delimiter character.

5.2.3 Workflow

The workflow element is the main component of the notation, as this gives the spec-
ification of the workflow itself. In Code Fragment 5.3 all parts of the workflow can
be seen. There are three elements that help identify the workflow: id, name, and
description. The other elements define the workflow graph.

34

DAWN in JSON 5.2 Elements

Code Fragment 5.2: Resources example with CSV resource

"resources": [
{

"id": 1,
"name": "Uploaded CSV file",
"typeId": "csv",
"elements": {

"csvLocation": "..\\input\\",
"csvFilename": "data.csv",
"csvHeader": "true",
"csvDelimiter": ";"

}
},
...

]

Code Fragment 5.3: Workflow element

"workflow": {
"id": 1,
"name": "Ranking with R script",
"description": "Executing a ranking R Script on CSV data.",
"inputs": [...],
"outputs": [...],
"nodes": [...],
"edges": [...]

}

The graph structure of the workflow can be clearly seen in the specification of
nodes (vertices) and edges. The inputs and outputs lists given here are the work-
flow input and output ports that provide access to data sources. These sources can
be resources, or, in the case of a nested workflow, point to data sources provided by
the nesting workflow. The input list can be empty, the output list on the other hand
should have at least one element, as defined in Definition 3.

5.2.4 Nodes

The nodes list contains all nodes in the workflow graph. A node element contains in-
formation to identify the node: id and name. Furthermore, a node contains a component.
This component element specifies the actual function of the node. The type specifies
the task of the component, in example Code Fragment 5.4 this is an R script, which
will be executed on the input data. The component could also reference another work-
flow, if it were to be nested here. The properties field contains a set of component
type-specific settings, which are required to perform the task.

Similar to a workflow, a node contains input and output lists. These lists specify

35

5.2 Elements DAWN in JSON

Code Fragment 5.4: Nodes element

"nodes": [
{

"id": 8,
"name": "Run an R Script",
"component": {

"type": "rScript",
"properties": {

"scriptName": "hello.r"
}

},
"inputs": [...],
"outputs": [...]

}
]

the input and output ports of a node, respectively. There must be at least one output
port in a node, the input port list can be empty, as defined in Definition 3. All fields in
the node element are required fields.

User Defined Functions

UDFs, as discussed in Section 4.4, should be added to the JSON notation as well. The
design of this notation is aimed at flexibility in the component element. This allows
different types of components to be defined, without any need for changes to the nota-
tion. As stated before, type defines a name for the component type which is executed.
A UDF would be given a unique name, which can be referenced here. This does
require some implementation work in the compiler, which will be discussed in Sec-
tion 6.5. Any extra settings for the UDF component can be placed in the properties
field. This field explicitly allows for key-value pairs where the value can be any object.
This allows for lists or other objects to be added to the properties as well.

5.2.5 Edges

The edges list is required to connect the different ports in the workflow. Edges are
defined with an id element, a start element specifying the starting port and an end
element specifying the ending port for the edge. Therefore, all ports have unique
identifiers.

5.2.6 Ports

Input and output ports are defined using an id, portName and type. All ports in the
workflow should have a unique id, as these values are referenced from the edges. All
ports in a component should have a unique portName, as this is used in the compo-
nent to address the input or output. The type specifies the data structure that a port

36

DAWN in JSON 5.2 Elements

Code Fragment 5.5: Edges element

"edges": [
{

"id": 18,
"start": 3,
"end": 9

},
{

"id": 19,
"start": 10,
"end": 4

}
]

Code Fragment 5.6: Input or Output element

{
"id": 3,
"portName": "",
"type": { ... },
"resource": 1

}

expects to receive or return. This typing system was discussed in Subsection 4.2.2, a
specification of the type element is given in the following section.

Ports are similar for workflows and nodes, with as only difference that the work-
flow ports can reference a resource, whereas the node ports do not. In Code Frag-
ment 5.6, an example workflow input port is shown.

5.2.7 Type

Type specification is used in the notation to help the user design a valid workflow,
which is also discussed in Subsection 4.2.2. It gives a definition of the data structure
that is expected in a port. For input ports this is the structure of the data it expects as
input. For output ports this is the structure of the data it returns.

This type system defines three elements: object, collection and typeName.
The first two refer to the record and collection respectively, defined as (a1 : T1, ...,an :
Tn) and {T} in Definition 6. The latter describes a primitive type, such as a boolean,
float, integer, or string. An object is a list of nested type elements, which can be
any of the provided elements. Similarly a collection is a nested type, however this
represents a repeated construct of a single type. Each type element has a name, as
defined in Definition 6.

The example given in Code Fragment 5.7 helps illustrate this element. In this
example a data structure is described that contains a collection of records with two
fields. Specifically, there is a collection element, containing an object element,

37

5.3 JSON Schema DAWN in JSON

Code Fragment 5.7: Example JSON type specification

"type": {
"collection": {

"object": [
{

"name": "Name",
"typeName": "string"

},
{

"name": "Amount",
"typeName": "float"

}
]

}
}

which contains two primitives. These sub elements define a “Name” as string and an
“Amount” as float. This data structure is therefore a description of a data table with
two columns: “Name” and “Amount”, with their respective data types.

5.3 JSON Schema

The notation that is presented here is formalised in a JSON Schema 1 (draft v4). JSON
Schema is a language that allows to describe contracts for the structure of a JSON
document. It must be noted that JSON Schema is officially still in a draft version and
it is not yet accepted as a standard by any organisation. However, it is widely used and
there is a large number of implementations available that validate JSON according to
JSON Schema. 2

The schema can be used to verify if a given workflow definition is a valid JSON
structure. JSON Schema is not powerful enough to verify the complete validity of a
workflow specification, such as the graph structure. However, it can be used to verify
that all required fields are specified and all given values are of the correct type. This
validation helps prevent parsing errors while trying to read a workflow specification.
The complete JSON Schema for the workflow notation is given in Appendix C.

1http://json-schema.org/latest/json-schema-core.html
2http://json-schema.org/implementations.html

38

http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/implementations.html

Chapter 6

Compiler

As a final artefact of this design work, a compiler was built that enables the execution
of the workflow notation on a workflow engine chosen by ORTEC. The engine chosen
is Windows Workflow Foundation 1 (WF), which will be elaborated on in Section 6.1.
An important challenge for the use of WF is that it is control flow oriented, a class
of workflow systems discussed in Subsection 2.4.1. This as opposed to the data flow
oriented approach used in DAWN. Section 6.2 will discuss how this was dealt with.
Furthermore, as a control flow does not consider the location of the data, addressing
is a challenge, which is discussed in Section 6.3. The compiler is designed in several
parts, considering the possibility that another workflow execution engine might need
to be implemented in the future.

As Goal 4 states, the notation should be portable. The compiler therefore splits
up its work into several steps. The first part of the compiler only considers parsing
the given JSON notation, translating this to a graph object and verifying the validity
of the workflow. This part can be considered generic and relies only on the definition
of DAWN. Once a valid workflow has been read from the specification, the next steps
will transform the specification into an engine-specific notation. These steps and the
engine-specific notation will be discussed in this section.

6.1 Windows Workflow Foundation

Windows Workflow Foundation, or WF, is a part of the .NET Framework. .NET
Framework is the preferred technology used at ORTEC, which is why ORTEC chose
to work with this execution engine. Furthermore, WF comes with many workflow en-
gine features which are important to ORTEC as well. One of these features is that it
supports persistence of long-running processes. This enables the engine to run work-
flows that might require long running data analytics processes and maintain their work
in a cloud environment.

WF provides a workflow designer as well, workflows can be designed within the
Visual Studio development environment. ORTEC considers this not an appropriate
environment for data analysts to edit their workflows. This is the reason that another
workflow design approach is required. The visual editor for WF can, however, be used
by developers implementing new components in the execution environment.

1https://msdn.microsoft.com/en-us/library/dd489441.aspx

39

https://msdn.microsoft.com/en-us/library/dd489441.aspx

6.2 Data Flow versus Control Flow Compiler

6.1.1 Extensible Application Markup Language

WF specifies its workflow in an Extensible Application Markup Language 2 (XAML).
This notation is a XML based notation that allows to describe applications, objects,
and relations between these object. For WF, XAML describes the whole workflow
in activities. Activities are the computational steps in the workflow, which can also
specify input variables.

A flow of activities is nested in a sequence, meaning that these activities are exe-
cuted one after the other. Parallel activity execution is possible as well. Furthermore,
the WF language allows to check conditions and execute loops. These last features are
not present in DAWN, but can be implemented in a component build in WF.

6.2 Data Flow versus Control Flow

As mentioned, one of the key challenges of using WF as an execution engine for
DAWN is that both workflow systems have different approaches to workflows. DAWN
is a data flow language, whereas WF is a control flow system. This requires the com-
piler to translate the data flow into a control flow, or sequence of activities, for it to be
executed on this engine.

The sequence of activities should respect the data dependencies defined in DAWN.
For this, an activity should be executed after all activities on which it depends are
finished. Translating this to the dawn notation: a component can be executed after all
components that have a directed path to it have been executed. The preliminary version
of the compiler that was implemented for this thesis supports only a simple approach
to this translation.

6.2.1 Component Order

A concept of graph theory is applied to get the components in the workflow in an
executable order: topological sorting. This is an operation that can be performed on
a directed acyclic graph, as will become clear from its definition. Topological sorting
places all vertices of a graph in an ordered list, in such a way that for all vertices a
and b, where an edge from a to b exists, b will come after a in the ordered list. This
does not require b to follow directly after a in the list, rather require it to be at a later
point in the list. To illustrate this, Figure 6.1 shows the components from Figure 4.1
in a topological order. Note that switching, for instance, components f and g in this
ordering would also constitute a valid topological order.

f g h i

Figure 6.1: A topological order of the components in Figure 4.1.

2https://msdn.microsoft.com/en-us/library/hh700354.aspx

40

https://msdn.microsoft.com/en-us/library/hh700354.aspx

Compiler 6.3 Data Addressing

The resulting list contains all components in an order where all data dependencies
have been met. This means that all input data for a component is available before
processing that component. The compiler follows this ordering and adds the corre-
sponding WF implementation of a component to a sequence, which is then described
in XAML. Parallel execution of components is not taken into consideration by the
compiler at this moment. Although a different approach to this sorting algorithm could
allow to verify whether or not a number of components could be executed in parallel.

6.3 Data Addressing

Another challenge that arises from the difference in approach to the data is that of
data addressing. In the control flow approach applied by WF, there is no concept of
data being passed from one activity to another, data and variables only exist inside an
activity. However, WF does allow for input and output arguments to be defined for
each activity, this feature is used for data addressing. Data addressing is the way each
component points to its data sources. To elaborate on this process, it is split in to three
parts: the resource API, locating data, and using the data. The following subsections
will discuss each of these parts.

6.3.1 Resource API

The resource API is an Application Programming Interface, which allows remote con-
nections to request data or post data. Because the BDP offers the use of multiple ex-
ternal cloud services as part of a workflow, it is important that all these cloud services
are able to access the required data. Providing an API, which is used both internally
as well as externally, allows for easy integration with different platforms. The only
requirement is that the implemented external platform is capable of making HTTP
requests.

The resource API handles requests for a URL, specifying the resource to be used
and the credentials needed to access the resource. Referring to the correct resource is
done through the use of the resource id, as it is present in both the DAWN specification
and the BDP database. The resource API then handles the correct connection to possi-
ble external resources or internal storage. The reason both are used will be discussed
in the following section.

6.3.2 Locating Data

The main idea of the applied approach is that activities are responsible for both retriev-
ing and storing their own data. This means that activities are provided with a set of
parameters that help them address the data related to a given port name. For instance, a
component defines an input port named “input1”. In the activity implementation, this
input port name is known, but the location of the data it represents is not. The param-
eters given to the activity therefore consist of a mapping of port names to resource ids
that can be used to contact the resource API.

To be able to provide the correct mapping to an activity, the compiler analyses
the workflow graph as it was read from the DAWN notation. For each input port, the
edges are traced back to their source to discover the input data. For each output port,

41

6.3 Data Addressing Compiler

the edges are followed to find the target for the output data. There are two different
possibilities to be distinguished: resources, and intermediary data stores.

Resources

Resources are a simple case for the compiler, as they can be dealt with in an easy
manner. Resources are external data storages, connected to the workflow input and
output ports, as discussed in Chapter 5. In case an edge from a port of a component is
connected to a workflow port, the compiler adds the id for this specific resource to the
mapping.

Intermediary Data Stores

Intermediary data stores are a bit more complicated, as these require some extra work
from the compiler. Intermediary data stores are locations to store data that is being
transferred between components. The compiler recognises the need for such stores by
finding edges that connect to component ports on both ends. For each such edge, the
compiler generates a new unique id in the resource API, to be able to reference this
specific data store. However, this data store does not exist yet at that point in time.

As a consequence of this approach, these stores need to be provisioned and cleaned
up as well. For this, the compiler adds an extra activity at the start and an extra activity
at the end of a workflow. These activities are provided with the information needed to
respectively provision and clean up any intermediary data stores.

Intermediary data stores only have a lifespan as long as the runtime of a workflow,
to prevent any conflicts in the data stores. Moreover, if multiple instances of the same
workflow are running, each instance uses separate intermediary data stores. This is
only possible if the compiler, which generated the unique addresses, is run before each
instantiation of a workflow. This makes the compiler a just-in-time compiler, which is
only run before execution of the code it produces. This also fits the approach for the
BDP, where only DAWN notation will be stored, XAML will be generated only for
execution.

6.3.3 Using the Data

With the two parts in place as described here, the least amount of effort is required to
address data in the component itself. An API is provided that can deliver and receive
data, and the mapping of internal port names to unique resources ids is generated by
the compiler. For components that operate in the BDP, i.e. some basic data manip-
ulations, an implementation of the API is provided. However, as the BDP focusses
strongly on providing external data analysis services in the cloud, these need to be
able to connect to the resource API as well. This requires some implementation that is
platform-specific and is able to connect to the API through HTTP requests.

Many platforms and programming languages have support for this communication
method, especially amongst cloud services. However, there is still a need for such
platform-specific implementations for each UDF. The approach of using a single re-
source API helps limit the amount of work required. If each external service would
require an implementation for each supported data storage option supported by the
BDP, this process would become very labour intensive. New data storage options can

42

Compiler 6.4 Implicit Components

be added as well, while only requiring extra implementation at the resource API. More-
over, the resource API can convert data to a standardised format to ease processing in
the component.

It must be noted that adding this API as a middle man results in slower data trans-
ferring. The data need to pass through another process before the actual analysis can
take place. However, given the benefit of limited platform-specific implementations in
accordance with the goal of the BDP to enable the use of external cloud services in a
workflow, this is considered a trade-off worth making.

6.4 Implicit Components

As discussed in Section 4.2, in some cases the DAWN specification requires com-
ponents which are not explicitly defined by the user. These components are called
implicit components. An example given in Property 10 is the additive union. This
component is added at a port which has multiple incoming edges and combines all in-
coming data into a single dataset. The compiler deals with these implicit components
through a set of rules. These rules are applied to the workflow to discover the need for
any implicit components and insert them where needed. Therefore, the additive union
is added wherever there are multiple incoming edges to a port.

Another example is a component that moves data. As discussed in Section 6.3, a
component is in charge of retrieving and storing data. An example of a valid DAWN
workflow is a workflow consisting of an input port and an output port, with an edge
between them. Although the theoretical value of this workflow might be debatable,
it is a valid workflow. And a practical application can be found in a scheduled data
transfer between resources. As activities are in charge of the data transferral, this
workflow needs an activity to actually move the data. This is done by the implicit
“move data” component. It is inserted in a workflow where there is a direct edge
between a workflow input port and a workflow output port. The sole purpose of this
component is to retrieve the data from its input and store it in its output.

The use of implicit components enables the user to design simple workflows, while
trivial tasks can be dealt with by these implicit component.

6.5 User Defined Functions

As discussed in Section 5.2.4, UDFs can be added to the notation without requiring
any changes to it. The same goes for the compiler. The compiler has been set up in
such a way that it retrieves the correct WF activity using dependency injection based
on the name of the component. This means that there is a class with the exact name for
each component, that returns the correct WF activity implementation to the compiler.
The compiler will give an error if a non-existent component is referenced from the
notation. The above stated is not only true for UDFs, but for all components provided
in the workflow. This decouples the compiler from the workflow components, allow-
ing changes to the components, while leaving the compiler unchanged. Moreover, the
actual WF activity implementation can be replaced without the component type requir-
ing changes. This allows for replacing an external cloud service, without changing any
workflows that use that component.

43

6.5 User Defined Functions Compiler

However, as the activities do need to be implemented in the BDP, not all code can
remain unchanged while adding a new component. There are several steps that need
to be taken to add new components to the BDP. Firstly, a WF activity needs to be
implemented that performs the data processing action for the new component. These
activities could do data manipulations, or handle communication with an external ser-
vice. Secondly, the activity needs to be referenced from a class that implements the
interface for component definitions. This class is the link between the component
name and the activity implementation. It is provided to the compiler through means
of dependency injection. Thirdly, the component, its parameters, and its input ports
and output ports need to be defined in the component database, to allow the workflow
editor to generate the correct component visualisation and definition. Although this
last step is of no relevance to the compiler.

44

Chapter 7

Evaluation

This chapter will evaluate the results of the design research performed for this thesis.
The aim of this evaluation is to show whether the designed artefacts accomplish the
goals set in Chapter 3. Evaluation is a crucial part of the design process, as it steers the
design process and confirms the appropriateness of the resulting artefacts [10]. As the
design approach used here was an iterative process, a number of intermediate results
have been tested to the goals and the design was changed accordingly. The evaluation
discussed in this chapter will consider the final result as presented in the previous
chapters.

Hevner et al. [10] discuss several design evaluation methods. This evaluation
applies a descriptive method, because this method has the best fit with the design work
presented in this thesis. Other evaluation methods are not as suitable for this work, as
the most important artefacts of this design are the conceptual model for the notation
and the notation itself. It is for instance not possible to perform user tests. User tests
would require a graphical workflow designer, which is not yet implement due to time
constraints. The informed argument method is used, which applies research knowledge
to validate the design. This knowledge can be utilised as arguments to show whether
or not the design complies with the goals. For clarity, the structure of this chapter
resembles that of Chapter 3.

7.1 User Friendly

One of the main goals for this design research is to provide a user friendly interface for
data analysts to design their workflows. The work presented in the previous chapters
aims to do this through a number of goals. Although it was not feasible to produce a
functional graphical interface, in some ways the goals have been met. These goals and
their evaluation are discussed here.

7.1.1 Goal 1: Design a notation that matches the data oriented view of
the users.

This goal was set to enable data analysts to design workflows in an intuitive way. As
data analysts prefer a data oriented view on data processing, the dataflow approach
was chosen. A typical data-driven workflow is defined by Shields [22] as a graph of

45

7.1 User Friendly Evaluation

operators with data dependencies between these operators. All operators in a dataflow
can be executed simultaneously, only halting to wait for their dependencies.

DAWN uses the dataflow approach to define workflows, as specified in Section 4.1.
Its components represent data operators and the edges in the workflow graph represent
data dependencies between the components. This specification of a dataflow is anal-
ogous to that in a large number of workflow system publications [24, 7, 11, 22]. Fur-
thermore, this work has shown that DAWN can be compiled to a control flow oriented
execution engine in Section 6.2. This section emphasises the differences in approach
for dataflow and control flow.

7.1.2 Goal 2: Provide users with an easy-to-use, graphical interface to
design their workflows.

Graphically editing the workflow is an important aspect in making the workflow de-
signer more user friendly. A data analyst can intuitively edit a graphical representation
of the workflow graph. Due to time constraints this work does not deliver the graphical
interface needed to design workflows. Designing a good user interface is a timely pro-
cess, which must be done carefully and correctly to provide the best user experience.
This is therefore left for future work. However, DAWN is designed with a visual rep-
resentation in mind. The notation specified in Chapter 4 is shown to be visualisable,
allowing for it to be used in a graphical workflow editor.

As DAWN is an adaptation of the work presented by Hidders in Section A.7, it
is an inherently visual notation. Therefore, it is clear that this can be represented in
visual graph. Moreover, workflow systems with graphical representations often have
in common that this representation is in the form of a graph [20, 16, 21, 1]. These
workflow languages apply similar concepts to the notation presented here. Vertices
represent data operations and edges represent data dependencies. This model for a
workflow is therefore considered visualisable. Moreover, the BDP has a preliminary
visualisation of the workflow graph in its interface. However, this is not editable and,
at this time, does not consider ports in the visualisation.

This evaluation aims to show that the JSON notation defined in Chapter 5 can
be used to generate a complete visual representation, including ports. For the JSON
notation to be visualisable, it requires that the elements defined in the notation can
be mapped to graphical objects. In the BDP, JavaScript and HTML are used as web
technologies, which require an implementation which is compatible with these tech-
nologies.

To show that the notation fits the user interface designed for the BDP, a brief dis-
cussion of graph visualisation in such a web interface will be given. There are a large
number of JavaScript libraries available that visualise graphs, charts, and diagrams,
some examples are: vis.js1, Cytoscape.js2, jsPlumb3 and sigmajs 4. A brief search
on GitHub5 provides even more (open source) libraries with similar functionality. All
these libraries have in common that they explicitly specify a list of nodes and a list

1http://visjs.org/
2http://js.cytoscape.org/
3https://jsplumbtoolkit.com
4http://sigmajs.org/
5https://github.com/

46

http://visjs.org/
http://js.cytoscape.org/
https://jsplumbtoolkit.com
http://sigmajs.org/
https://github.com/

Evaluation 7.2 Flexible

of edges in their data model. As DAWN has these lists of nodes and edges, it can be
seen that this can be visualised with minimal effort. An addition could be made in
the notation to specify the visual position of a node in the workflow, i.e. the x and y
coordinates on a canvas-like display.

The ports in both the components and the workflow represent a challenge for this
visualisation. They can, however, be modelled as extra nodes in the graph. A modi-
fication should be made to represent them as smaller nodes, displayed at the edges of
workflows or components. This would require some specific implementation and limit
the usability of a predefined library as mentioned above. However, this implementation
is trivial and can be easily added to the user interface.

7.2 Flexible

Flexibility is another main goal for the design of DAWN. The goal is to be able to
use the workflow notation in different environments and allow for the addition of new
functionality. This requires a notation that is independent of the workflow designer
as well as the execution engine. Furthermore, it requires the workflow to provide a
simple method to add new functionality. These goals will be evaluated here.

7.2.1 Goal 3: Support the addition of User Defined Functions to the
workflow system.

One of the main goals for the BDP is to offer the user a large selection of the latest data
analysis tools in the form of components. As the data analysis field keeps developing,
it is important to be able to add new components, or UDFs, to the BDP. This requires
flexibility of both the notation as well as the compiler. This work has shown that both
the notation and the compiler are designed in a flexible manner, requiring no changes
to either implementation to add UDFs.

As discussed in Section 4.4, it is possible to add UDFs to DAWN. Although there
are some risks in adding UDFs for execution, they behave the same as all other com-
ponents in the notation. Moreover, in the implementation of the BDP there is no differ-
ence between UDFs and existing components. Both are implemented using the same
approach. Section 5.2.4 discussed the JSON notation for DAWN and showed that
the specification remains unchanged, while allowing for addition of new components.
The notation also takes into account that components can have multiple different pa-
rameters which need to be defined in the workflow specification for the component to
operate. This allows the notation to be used for a large number of different component
types.

The compiler is decoupled from the component implementation, as discussed in
Section 6.5. This approach allows components to be added without requiring changes
in the compiler. However, components do need to have a WF activity implementation,
which will be used to execute the operation of the components. This does require
making changes to the implementation of the BDP for the addition of UDFs.

47

7.3 Optimisable Evaluation

7.2.2 Goal 4: Design a notation that is portable to different workflow
environments.

This goal is important, as advancements in workflow technology might motivate OR-
TEC to implement a new workflow execution engine. Preferably, ORTEC would want
to maintain its existing workflows and move these to a new system with minimal adap-
tation. This requires the workflow notation to be portable to the new engine. To achieve
this, the notation should be independent of the workflow execution engine.

As Chapter 6 shows, the workflow notation has a different workflow perspective
than the workflow execution engine. Nevertheless, the notation allows to be com-
piled to the workflow execution engine. Several workflow systems implement similar
strategies to execute dataflows in a control flow engine [9, 1]. The discussion on the
compiler has also shown that parsing the workflow notation and compiling to execu-
tion engine-specific code is decoupled in the implementation. Therefore, DAWN can
be applied to different execution engines, only requiring part of the compiler to be
redesigned.

The workflows designed in DAWN do not require modification depending on the
execution engine. Given that all information needed to perform the data operations is
specified in DAWN, settings which are execution engine-specific would not have to be
added to the notation. Rather, the compiler can handle such specifics, sparing the user
this effort.

As shown in Subsection 7.1.2, the workflow notation allows for multiple visual-
isation methods as well. This shows that a change in user interface could also be
feasible with minimal changes to the notation. An aspect that needs to be taken into
account is that additions might be required in the notation to specify visual positions
of component.

7.3 Optimisable

The final part of the goals discusses optimisations. To keep costs low and make data
processing fast, optimisations can be applied at several levels in a workflow system.
These optimisations improve the performance by lowering cost or improving process-
ing speed. A distinction can be made between logical optimisations and physical opti-
misations. Logical optimisations pertain to the workflow specification and the ordering
of its components. Physical optimisations pertain to the execution plan, or optimising
the implementation of the execution engine. These two goals will be evaluated here.

7.3.1 Goal 5: Apply logical optimisations in the form of rewrite rules for
NRC-like languages.

Rewrite rules applied to the workflow language help improve the performance of the
workflow system by reducing the size of intermediate data and therefore the cost of
processing this data. The goal to apply rewrite rules was not achieved in this im-
plementation, due to time constraints it was not possible to implement and test an
optimiser for the workflows. However, this evaluation will show that the workflow
notation designed here does allow for these rules to be applied.

48

Evaluation 7.3 Optimisable

To be able to apply known rewrite rules to the notation, it must be shown that a
mapping can be made between the notation and NRC. As shown in Chapter 4, DAWN
is an adaptation of sNRC and can, in general terms, be mapped to sNRC. As sNRC is
a dialect of NRC Hidders argues in Appendix A that rewrite rules can be applied to
sNRC as well.

Section 4.3 discussed the differences between DAWN and sNRC. In this section
it was also discussed how these differences can be translated to allow DAWN to be
mapped on sNRC. This can be used to show that it is possible to apply rewrite rules
for NRC on the workflow notation. DAWN workflows can be mapped to the notation
presented by Hidders. This enables the DAWN workflows to be represented as sNRC
expressions. These expressions are a dialect of NRC and therefore, some of the rewrite
rules applicable to NRC can apply to this dialect. Therefore these rewrite rules can
apply to DAWN. As an example the equivalence in Equation 7.1 will be applied to a
DAWN workflow.

set(e1] e2)≡ set(set(e1)] set(e2)) (7.1)

This rule states that performing a set operation on the union of two expressions
is equivalent to performing set operations on the expressions separately and then per-
forming the set operation again on the union of both resulting sets. As the set operator
removes duplicates from a collection, it can be easily seen that these expressions are
equivalent.

In this case, a cost reduction could be achieved if performing the set operation
before the union of the expressions would reduce the size of the intermediate data.
However, this can only be the case if the cost of performing the set operation is less
than the cost of processing excess data. For this example, the assumption will be made
that this is the case

The equivalence presented in Equation 7.1 can be applied to DAWN as well, as
is shown in the following figures. Figure 7.1 and Figure 7.2 show both sides of the
equivalence respectively. Recall that two incoming edges on an input port constitute
an additive union. This indicates that this rewrite rule can be applied to a DAWN work-
flow. Further research is needed to confirm that more rewrite rules will be applicable.

set

Figure 7.1: The left side of Equa-
tion 7.1.

≡ set

set

set

Figure 7.2: The right side of Equa-
tion 7.1.

49

7.3 Optimisable Evaluation

7.3.2 Goal 6: Apply physical optimisations in the compiler or execution
engine.

Optimisations in the workflow execution can help improve the performance of a work-
flow without the need for changes to the workflow itself. These optimisations are
therefore related to the interpretation of the workflow notation, which in this work
takes place in the compiler, as discussed in Chapter 6. This work has implemented
a preliminary compiler that translates the specification in DAWN to a specification
that the workflow execution engine can interpret. This compiler does not perform any
physical optimisations. However these can be added in a simple manner, as will be
shown in this evaluation.

Parallelisation

An important step that can be taken to improve performance is parallelisation. Paral-
lelisation can be applied at many levels in the workflow execution: on a data processing
level by splitting the data into parts, as well as at a workflow level by parallelising the
execution of components. The first can be done in the workflow execution engine,
which in this case is a given and will therefore not be considered. The latter is of
interest for the compiler, as will be discussed here. From the graph notation used in
DAWN, it is clear that components that have no data dependencies between them can
be executed in parallel.

Formally this can be defined as follows: if there is no directed path in either di-
rection between two components, they can be executed in parallel. The current pre-
liminary implementation of the compiler only supports sequential processing of the
workflow, it should be altered to support parallelisation. Several algorithms exist that
can recover this information from a graph structure, requiring only minor changes to
the compiler. Modifications to the notation are not required to achieve this. Therefore,
it is possible to parallelise work in the workflow with the information given by the
DAWN notation.

Data Locality

Another example of optimisation that can be achieved in the compiler is data locality.
Data locality in this context describes the location of data in the BDP with respect to the
computational work performed in a component. In Big Data applications, data locality
is an important concept. Recalling Subsection 2.3.1, there is a large volume of data
in these applications. Moving large volumes of data between machines is therefore an
expensive operation. As DAWN allows to add external services in the workflow, data
must be transferred to and from these services. As discussed in Subsection 6.3.1, the
applied approach in the BDP can be expensive if a large number of data transfers are
required.

The following example illustrates this. An external service is used as a UDF. This
service needs to receive input data and return output data. In a workflow there are
multiple components that perform work on this external system. The first component
processes part of the workflow input and the second component process the result of
the first, plus another dataset from the workflow. In this case, moving the result of the
first component back to the BDP only to transfer it back would be an expensive and

50

Evaluation 7.3 Optimisable

unnecessary operation. The compiler can recognise this and alter the data addressing
information, as specified in Section 6.3, to have the first results remain on the storage
of the external service. Only the second input then needs to be transferred, reducing
the cost of data transfers.

For this, the compiler needs to know which components require data transfers to
be able to correctly perform the data addressing. The workflow notation supplies the
information on the components and the data dependencies between them. As the ex-
ecution location of a component is known, the compiler only needs to combine this
information with the information on the location of the next component. Concluding,
if the components are directly connected, the compiler can point the second compo-
nent directly to the data on the storage of the external service. Thus, reducing the cost
of data transfers. However, this implementation would require several changes to the
resource API as discussed in Subsection 6.3.1.

51

Chapter 8

Future Work

The design research presented in this work delivers a graphical workflow notation,
its serialisation and compiler for workflows, to be used in the BDP. As shown in the
evaluation in Chapter 7, the design goals were partially met. However, there is room for
improvement and further research to provide a fully functional portal for data analysis
workflows. This chapter will describe future work in both development as well as
research. Most of these topics have been discussed in the previous sections, they are
reiterated here for completeness.

8.1 Graphical Editor

As discussed in Goal 2, the workflow notation is designed with a graphical editor in
mind. In Subsection 7.1.2 it was shown that the notation presented here enables the use
of a graphical workflow designer. However, this designer has not been implemented at
this moment. To further support the use of this workflow notation to design workflows,
this graphical designer should be developed.

Designing a good graphical interface for editing workflow graphs is not only a de-
velopment challenge. It poses a number of new design challenges on how to display
the information related to the workflow. Therefore this addition to the workflow nota-
tion is an interesting extension to the work presented in this thesis and provides ground
for new work to be added.

8.2 Data Provenance

Another interesting feature that can be added to the workflow designer and the BDP is
provenance. Provenance describes the origin of a data element. In data analysis it is
applied to show how a specific result was achieved. This feature can help data analysts
design their workflows and analyse the performance of the workflow itself. Moreover,
enabling users to view the intermediate data as it is being processed in a workflow can
greatly improve the debugging capabilities of the portal. The analyst would then be
able to more easily spot inconsistencies in the workflow and correct them using the
provenance information.

Adding this feature to the BDP poses interesting new challenges for research and
development. These challenges include the design of a workflow debugging interface,

53

8.3 Different Execution Engines Future Work

and a provenance storage solution. Provenance information adds large amounts of
metadata to a dataset and therefore requires an efficient storage approach.

8.3 Different Execution Engines

Goal 4 indicates that the notation should be independent of its execution engine. This
was shown in both the implementation of the compiler, in Chapter 6, and the evalu-
ation in Subsection 7.2.2. Although these discussions show that the notation has the
potential to be used in combination with different execution engines, there is at this
time no implementation of different execution engines for DAWN.

Interesting challenges would be to integrate with workflow systems that have a data
oriented approach or apply other dataflow concepts. For example, running DAWN
workflows on a MapReduce implementation would show both the flexibility of the
notation as well as an interesting new platform to run the workflows on. Such an
implementation poses several interesting challenges, such as the implementation of
UDFs. The workflow execution engine employed at this moment focusses strongly on
implementing such custom functions. Other platforms might make it more difficult to
support this.

8.4 Optimisations

Optimisations are an important part of improving the workflow execution performance.
Several optimisations have been suggested in Section 7.3. Moreover, it was shown that
such optimisations would be feasible in the current workflow notation and compiler.
However, the implementation of the compiler does not incorporate these optimisation
at this moment. The parallelisation of component execution could be added to the
workflow compiler in a simple manner, resulting in an immediate improvement in
workflow performance. Similarly, data locality as described in Section 7.3.2 can be
added to the compiler for this same purpose.

Further research into rewrite rules could result in a workflow optimiser. Such an
optimiser can then be applied in the compiler, optimising the order of the components
before compiling them. An interesting challenge here is to see how such an optimiser
could handle UDFs.

8.5 Workflow and Component Store

The current implementation of the BDP does consider the storage of components in
a database. However, this is currently not provided in a user friendly manner to the
users of the BDP. Moreover, the storage of template workflows is not considered in
the current implementation. Adding such features would improve the usability of the
portal tremendously, as users can select predefined workflows to get started designing
their own workflows. This feature would not only require a storage solution, a good
search feature is important as well. The user could search for key words related to
their proposed task and get an overview of related workflows or components. A good
search system and storage system would therefore be interesting future improvements
to the usability of the portal.

54

Future Work 8.6 Expressiveness of the DAWN Type System

8.6 Expressiveness of the DAWN Type System

A final challenge lies in elaborating on the DAWN type system. This type system, as
discussed in Subsection 4.2.2, was shown to be suitable for application in the BDP and
useful for verifying the validity of a DAWN workflow. However, this work considers
only a small set of possible data structures to be added. It is uncertain if the DAWN
type system is able to describe all possible data structures that might need to be con-
sidered. Moreover, the DAWN type system is not designed for recursively nested data
types. An example of such a type would be a type Ta that consists of some elements of
type Ta. This type recursively nests itself and its depth is therefore unknown. The ex-
pressiveness of the DAWN type system as defined in this work, might therefore proof
limited for application on certain data structures. Further research is needed to fully
grasp the expressiveness of the DAWN type system and show the data structures that
can be dealt with and, more importantly, those that cannot.

55

Chapter 9

Conclusions

The work set out in this thesis is a design research to develop a user friendly workflow
system to analyse Big Data. The BDP that ORTEC wishes to develop will implement
this workflow system in an interface to edit the workflows and in an execution engine
to process the data analytical work. The main goal for this thesis is therefore to develop
a workflow interface to allow users to design workflows and provide these users with
the tools needed to perform their data analysis.

The artefacts presented in this work contribute to this goal. A workflow model
is designed, based on NRC, with usability for data analysts in mind. This model is
defined in a notation that enables the design of workflows. This notation was shown
to be easily visualisable, allowing for a graphical editor to be developed for it. A
graphical editor is not designed yet and remains as future work. Another artefact
delivered in this design is a compiler that allows to execute a workflow definition on
an execution engine. Although its implementation is elementary, it is a useful base for
improvements towards a better compiler.

Concluding, the design presented here has shown to fit the goals set by the BDP
and the scientific theory. However, not all elements have been implemented at this time
due to time constraints. These elements and improvements to the designed artefacts
remain as future work. DAWN has been shown to deliver a user friendly, flexible, and
useful workflow notation in the context of Big Data analysis in the cloud.

57

Glossary

API : Application Programming Interface

BDP : Big Data Portal

BPEL : Business Process Execution Language

CSV : Comma Separated Values

JSON : JavaScript Object Notation

NRA : Nested Relational Algebra

NRC : Nested Relational Calculus

SaaS : Software as a Service

sNRC : NRC for semi-structured data

UDF : User Defined Function

WF : Windows Workflow Foundation

XML : Extensible Markup Language

XAML : Extensible Application Markup Language

YAWL : Yet Another Workflow Language

59

Bibliography

[1] Ilkay Altintas, Chad Berkley, and Efrat Jaeger. Kepler: an extensible system for
design and execution of scientific workflows. Proceedings. 16th Int. Conf. Sci.
Stat. Database Manag., 2004.

[2] Marcos D. Assunção, Rodrigo N. Calheiros, Silvia Bianchi, Marco a.S. Netto,
and Rajkumar Buyya. Big Data computing and clouds: Trends and future direc-
tions. J. Parallel Distrib. Comput., 79-80:3–15, 2014.

[3] Adam Barker and Jano Van Hemert. Scientific Workflow: A Survey and Research
Directions. Proc. 7th Int. Conf. Parallel Process. Appl. Math., pages 746–753,
2008.

[4] Michael Benedikt and Christoph Koch. From XQuery to relational logics. ACM
Trans. Database Syst., 34(4):1–48, 2009.

[5] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

[6] Jeffrey Dean and Sanjay Ghemawat. MapReduce : Simplified Data Processing
on Large Clusters. Commun. ACM, 51(1):1–13, 2008.

[7] Jonas Dias, Eduardo Ogasawara, Daniel De Oliveira, Fabio Porto, Patrick Val-
duriez, and Marta Mattoso. Algebraic dataflows for big data analysis. Proc. -
2013 IEEE Int. Conf. Big Data, Big Data 2013, pages 150–155, 2013.

[8] Leonidas Fegaras and David Maier. Optimizing object queries using an effective
calculus. ACM Trans. Database Syst., 25(4):457–516, 2000.

[9] Alan F Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan M
Narayanamurthy, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and
Utkarsh Srivastava. Building a high-level dataflow system on top of Map-Reduce:
The Pig Experience. Proc. VLDB Endow., 2(2):1414–1425, August 2009.

[10] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design Science
in Information Systems Research. MIS Q., 28(1):75–105, 2004.

61

BIBLIOGRAPHY BIBLIOGRAPHY

[11] Jan Hidders, Natalia Kwasnikowska, Jacek Sroka, Jerzy Tyszkiewicz, and Jan
Van den Bussche. DFL: A dataflow language based on Petri nets and nested
relational calculus. Inf. Syst., 33(3):261–284, May 2008.

[12] P Hitzler and K Janowicz. Linked Data, Big Data, and the 4th Paradigm. Semant.
Web J., 0(0):233–235, 2013.

[13] Christoph Koch. On the Complexity of Nonrecursive XQuery and Functional
Query Languages on Complex Values. V, 2005.

[14] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward a. Lee, Jing Tao, and Yang Zhao. Scientific work-
flow management and the Kepler system. Concurr. Comput. Pract. Exp.,
18(10):1039–1065, August 2006.

[15] McKinsey & Company. Big data: The next frontier for innovation, competition,
and productivity. McKinsey Glob. Inst., (June):156, 2011.

[16] Tadao Murata. Petri Nets : Properties , Analysis and Applications. Proc. IEEE,
77(4):541–580, 1989.

[17] Christopher Olston, Benjamin Reed, Adam Silberstein, and Utkarsh Srivastava.
Automatic Optimization of Parallel Dataflow Programs. Int. J. Parallel Program.,
31(6):429–449, December 2003.

[18] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and An-
drew Tomkins. Pig Latin: A Not-So-Foreign Language for Data Processing.
Proc. 2008 ACM SIGMOD Int. Conf. Manag. data - SIGMOD ’08, pages 1099–
1110, 2008.

[19] Mark a. Roth, Herry F. Korth, and Abraham Silberschatz. Extended algebra and
calculus for nested relational databases, 1988.

[20] Jacek Sroka, Piotr Wlodarczyk, Lukasz Krupa, and Jan Hidders. DFL designer.
In Proc. 1st Int. Work. Work. Approaches to New Data-centric Sci. - Wands ’10,
pages 1–6, New York, New York, USA, 2010. ACM Press.

[21] Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison. The Triana Work-
flow Environment : Architecture and Applications. In Work. e-Science, pages
320–339. Springer London, 2007.

[22] Ian J. Taylor, Ewa Deelman, Dennis Gannon, and Matthew S. Shields. Workflows
for e-Science: Scientific Workflows for Grids. Work. e-Science Sci. Work. Grids,
pages 1–523, 2007.

[23] Jan Van den Bussche, Dirk Van Gucht, and Stijn Vansummeren. A crash course
on database queries. In Proc. twenty-sixth ACM SIGMOD-SIGACT-SIGART
Symp. Princ. database Syst. - Pod. ’07, pages 143 – 154, New York, New York,
USA, 2007. ACM Press.

[24] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: yet another workflow
language. Inf. Syst., 30(4):245–275, June 2005.

62

BIBLIOGRAPHY BIBLIOGRAPHY

[25] Tom White. Hadoop : The Definitive Guide. O’Reilly, first edition, 2009.

[26] Limsoon Wong. Querying Nested Collections. PhD thesis, University of Penn-
sylvania, 1994.

63

Appendix A

NRC for semi-structured data

NB: The work presented in this appendix was performed by Jan Hidders. It presents
several concepts and definitions applied in this thesis. However, this work is not pub-
lished at this moment. Therefore, part of it is included in this appendix.

A.1 Goal of document

This is a working document that describes our investigations into the design of a data
analytics workflow language. The languages are based on well-known formalisms
such as NRC and formal versions of XQuery. The intent is to design a language
that (1) is well-understood in terms of semantics and expressive power, (2) can be
efficiently implemented specifically on back-ends offering large scale parallelised pro-
cessing and (3) allows the application of well-known optimisation techniques such as
cost-based query rewriting. Moreover, the language comes in different textual and
graphical notations that can be used for both theoretical analysis and workflow-like
graphical presentations of the analytical workflows.

A.2 The Underlying Data Model: Nested Values

To define the data model on which we will operate, we postulate the following sets and
basic concepts:

• C denotes the set of basic value constant denotations (like booleans, strings,
integers, etc.), B denotes the set of basic values, we distinguish one special
basic value constant denoted as 〈〉

• bags / multisets are denoted as {{1,1,2}}, the additive bag union is denoted as],
we use {{ f (x̄) | ϕ(x̄)}} to denote bag comprehension. The empty bag is denoted
as /0.

• ordered pairs containing values x and y are denoted as 〈x,y〉

• V denotes the set of nested values, which are bags of items, where items are
either (1) a basic value in B , (2) an ordered pair 〈v1,v2〉 where v1,v2 ∈ V . Note
that we do not allow bags of bags, and that tuples can contain only bags. We

65

A.3 NRC for semistructured data: sNRC NRC for semi-structured data

explicitly allow heterogeneous bags, i.e., bags that contain elements of different
types. We will allow only finitely nested values, i.e., we assume V is the smallest
set that satisfies this definition.

– The ordered pair 〈x,y〉 can also be understood as a key-value pair, rather
then a small tuple. So JSON objects can be represented as bags of such
pairs. That captures the idea that field names are first class citizens in the
language.

– It may seem odd that we allow only bags in ordered pairs, but it is a con-
sequence of the “all expressions return a bag” principle that is followed in
this language and simplifies its semantics and allows us to ignore typing.

– As a shorthand we will let 〈〉 denote the pair 〈 /0, /0〉, and 〈v〉 the value 〈 /0,v〉.

A.3 NRC for semistructured data: sNRC

We give here a formal definition of the dialect of NRC we will study here.

A.3.1 Preliminary notions

We postulate the following sets and basic concepts:

• X denotes the set of variable names

• B denoting the set of basic (user-defined) functions, with each b ∈ B we associ-
ated a binary relation [[b]] that associates nested values with nested values

A.3.2 The syntax of sNRC

The syntax for the calculus over bags we intend to use:

E ::= in | X |C | 〈E,E〉 | E.1 | E.2 |
/0 | E]E | {[E | X ∈ E, . . . ,X ∈ E]} |
B(E) | ˙set(E) | E .

= E.

Here in denotes the input value, X denotes variables, C basic value constants, {[e | ∆]}
denotes the flattening bag comprehension (i.e., it is a comprehension which addition-
ally flattens the result to avoid bags of bags), B the basic user-defined functions. The
function ˙set() eliminates duplicates and non-basic values. The expression e1

.
= e2

compares basic values and returns a bag containing as many occurrences of 〈〉 as there
are pairs of occurrences in e1 and e2, respectively, that represent the same basic value.
E.g., comparing the value {{1,2,2,3,3,4}} with {{2,2,3}} using the .

= operator results
in {{〈〉,〈〉,〈〉,〈〉,〈〉,〈〉}}.

We allow for denotations of values the same short-hands as for the values them-
selves: 〈〉 denotes the value 〈〉= 〈 /0, /0〉 and 〈e〉 denotes 〈e〉= 〈 /0,e〉. We let {[e |]} also
be simply denoted as {[e]}. We will use in the right-hand side of comprehensions the
short-hand (e1

.
= e2), z ∈ (e1

.
= e2) with z some fresh variable.

The ˙set() operator may seem weak, but does allow us to express duplicate elim-
ination as it happens in the relational model. For example, if R1 contains a bag of

66

NRC for semi-structured data A.3 NRC for semistructured data: sNRC

pairs containing singleton basic values then the corresponding set can be expressed as
{[〈x,y〉 | x ∈ ˙set(r.1),y ∈ ˙set({[z.2 | z ∈ r,z.1 .

= x]})]}. Note that these expressions can
also be used to simulate reasoning in settings where the input contains no duplicates
and only singleton fields, by replacing the input relation R1 with this expression. If
this expression is called r′ we can determine if f (r)≡ g(r) for such R1 by determining
if f (r′)≡ f (r′).

A.3.3 The semantics of sNRC

To ensure the definedness of the result of each expression in a semi-structured and
possibly untyped setting we will assume that all values, both inputs and outputs, are
bags. This is similar to the approach taken in XQuery. In fact the language is similar
to XQuery core as studied in terms of expressive power and evaluation complexity
in [13] and [4]. Note that this means that the expression 12 in fact denotes the bag
{{12}} rather then the number 12. The rule of thumb for operators that normally do
not expect a bag is that they are mapped over the elements of the bag. So e.1 in
fact constructs a bag by iterating over each element from the result of e and for each
pair returning the first element. Also as in XQuery, the comprehension automatically
flattens the result to avoid the construction of bags directly nested inside bags. So,
for example {[{[5]} | x ∈ e]} is equivalent to {[5 | x ∈ e]} which returns a bag containing
only the number 5 and is of the size of the result of e. Indeed {{e}} is always equivalent
to e. Consequently the expressions {[1]} and 1 both denote the value {{1}}, and the
expressions 1]2 and {[1]}]{[2]} both denote {{1,2}}.

The semantics is defined in terms of propositions of the form Γ ` e⇒ v where
Γ is variable binding, i.e., a function that maps variable names to items, e an NRC
expression and v a bag of nested values that represents the result of the evaluation of
e under Γ. Note that Γ maps variable names to items, rather then nested values, i.e.,
variables are bound to basic values and ordered pairs but not to bags. This is done
for the sake of simplicity as in this research we mostly use variables to iterate over
the elements of a bag. Moreover, assigning a bag b to a variable x can be simulated
by assigning the item 〈 /0,b〉 and everywhere that x occurs freely in the expression
replacing it with x.2.

67

A.4 NRA for semi-structured data: sNRA NRC for semi-structured data

Γ ` x⇒{{Γ(x)}} Γ ` c⇒{{c}}
Γ ` e1⇒ v2 Γ ` e2⇒ v2

Γ ` 〈e1,e2〉 ⇒ {{〈v1,v2〉}}

Γ ` e⇒ v

Γ ` e.i⇒{{u | 〈w1,w2〉 ∈ v,u ∈ wi}} Γ ` /0⇒ /0

Γ ` e1⇒ v Γ ` e2⇒ w

Γ ` e1] e2⇒ v]w

Γ ` e⇒ v

Γ ` {[e |]}⇒ v

Γ ` e2⇒{{v1, . . . ,vm}} ∀m
i=1(Γ[x 7→vi] ` {[e1 | ∆]}⇒ wi)

Γ ` {[e1 | x ∈ e2,∆]}⇒]m
i=1wi

Γ ` e⇒ v (v,w) ∈ [[b]]

Γ ` b(e)⇒ w

Γ ` e⇒ v

Γ ` ˙set(e)⇒{x | x ∈ v,x ∈ B}

Γ ` e1⇒ v Γ ` e2⇒ w

Γ ` e1
.
= e2⇒{{〈〉 | c1 ∈ v,c2 ∈ w,c1 = c2,c1 ∈ B}}

Note that the iterators in the comprehension iterate over all the elements of a bag.
The semantics of an sNRC expression can be interpreted as a total function that maps
variable bindings to a nested values, presuming that all user-defined functions are also
total functions that map nested values to nested values.

A.4 NRA for semi-structured data: sNRA

We give here a formal definition of the dialect of NRA that is the algebraic counterpart
of sNRC.

A.4.1 The syntax of sNRA

As an algebraic counterpart of sNRC we present sNRA. It has the following syntax:

F ::= id | λC | F ◦F | λ〈F,F〉 | π1 | π2 |
λ

/0 | λ] | fmap(F) | λ× | B | ˙set | λ .
=.

Note that we annotate some constructs with λ to indicate they denote functions rather
then values.

A.4.2 The semantics of sNRA

The semantics of the algebra is defined by the following rules. They define the propo-
sition (x,y) ∈ [[e]] which denotes that the function associated with e maps the value x
to the value y.

68

NRC for semi-structured data A.5 The relationship between sNRA and sNRC

x ∈ V
(x,x) ∈ [[id]]

x ∈ V
(x,c) ∈ [[λc]]

(x,y) ∈ [[f]] (y,x) ∈ [[g]]

(x,z) ∈ [[g◦ f]]

(x,y) ∈ [[f]] (x,z) ∈ [[g]]

(x,{{〈y,z〉}}) ∈ [[λ〈 f ,g〉]]
x ∈ V y = {{vi | 〈v1,v2〉 ∈ x}}

(x,y) ∈ [[πi]]

x ∈ V
(x, /0) ∈ [[λ /0]]

x ∈ V y = {{z | 〈u,v〉 ∈ x,z ∈ (u] v)}}
(x,y) ∈ [[λ]]]

x ∈ V y = {{v | z ∈ x,({{z}},u) ∈ [[f]],v ∈ u}}
(x,y) ∈ [[fmap(f)]]

x ∈ V y = {{〈{{s}},{{t}}〉 | 〈u,v〉 ∈ x,s ∈ u, t ∈ v}}
(x,y) ∈ [[λ×]]

x ∈ V y = {z | z ∈ x,z ∈ B}
(x,y) ∈ [[˙set]]

x ∈ V y = {{〈〉 | 〈u,v〉 ∈ x,s ∈ u, t ∈ v,s = t,s ∈ B}}
(x,y) ∈ [[λ

.
=]]

Note that no rule is specified for basic functions in B since their semantics was
already postulated.

A.5 The relationship between sNRA and sNRC

There is a direct relationship between NRA and NRC in expressive power. To illustrate
this we show that they can be mapped to each other.

A.5.1 Mapping sNRA to sNRC

Each sNRA expression can be represented by an sNRC expression with a single special
free variable in that represents the input value, and vice versa. We let e[x/e′] denote the
expression e with all free occurrences of x replaced with e′.

M(id) = in
M(λc) = c
M(g◦ f) = {[M(g)[in/x] | x ∈M(f)]}
M(λ〈 f ,g〉) = 〈M(f),M(g)〉
M(πi) = in.i
M(λ /0) = /0

M(λ]) = in.1] in.2
M(fmap(f)) = {[M(f)[in/x] | x ∈ in]}
M(λ×) = {[〈y,z〉 | x ∈ in,y ∈ x.1,z ∈ x.2]}
M(b) = b(in)

69

A.6 A note on n-ary functions NRC for semi-structured data

M(˙set) = ˙set(in)
M(λ .

=) = (in.1 .
= in.2)

A.5.2 Mapping sNRC to sNRA

We show that each sNRC expression with a single free variable in can be represented
by an sNRA expression:

M′(in) = id
M′(c) = λc
M′(〈e1,e2〉) = λ〈M′(e1),M′(e2)〉
M′(e.i) = πi ◦M′(e)
M′(/0) = λ /0

M′(e1] e2) =
λ]◦ λ〈M′(e1),M′(e2)〉

M′({[e |]}) = M′(e)
M′({[e | x ∈ e′]}) = fmap(M′(e[in/in.1,x/in.2]))◦ λ×◦ λ〈id,M′(e′)〉
M′({[e | x ∈ e′,∆]}) = M′({[{[e | ∆]} | x ∈ e′]})
M′(b(e)) = b◦M′(e)
M′(˙set(e)) = ˙set◦M′(e)
M′(e1

.
= e2) =

λ .
=◦ λ〈M′(e1),M′(e2)〉

A.6 A note on n-ary functions

In the previous setting we used sNRA and sNRC to define unary functions, i.e., func-
tions with one input parameter, but we easily interpret these functions also as n-ary
functions for some n as follows: if we interpret f : V → V as n-ary then we get the
function f [n] : V n→V such that f [n](v1, . . . ,vn)= f ({{〈v1,{{〈v2, . . .{{〈vn, /0〉}} . . .〉}}〉}}).
And, vice versa, if we take an n-ary function f [n] then we can interpret it as a unary
function f which is defined such that f (v) = f [n](v.1,v.2.1, ...,v(.2)n−1.1).

It follows that we can view sNRC and sNRA also as definition languages for n-
ary functions. In that case the notion of semantical equivalence changes somewhat
since the n-ary interpretation only considers some parts of the input. However, we
can define it in terms of the original notion of semantical equivalence. For that we
introduce a special short-hands in sNRC denoted as in[n], which is defined by induction
on n such that (1) in[0] = /0 and (2) in[n+1] = 〈in.1,(in[n])[in/in.2]〉. For example, in[3] =
〈in.1,〈in.2.1,〈in.2.2.1, /0〉〉〉. Informally this function interprets the input as a tuple of
n elements and projects on those. We now say that an sNRC expression e is an n-ary
expressions if it holds that e[in/in[n]] ≡ e.

Likewise For sNRA we can define the corresponding projection function id[n]

which is defined by induction on n such that (1) id[0]= λ /0 and (2) id[n+1]= λ〈π1, id[n] ◦π2〉.
For example, id[3] = λ〈π1,

λ〈π1,
λ〈π1,

λ /0〉 ◦π2〉 ◦π2〉. Then, for an sNRA expression f
we say it is an n-ary function if it holds that f ◦ id[n] ≡ f .

When defining n-ary functions in sNRC we will adopt the convention to let ini

with i ≤ n denote the i’th input value. This is essentially a syntactic short-hand for
in(.2)i−1.1. We will from now on assume that all user-define functions are n-ary, and
the notation b(e1, . . . ,en) will be used to denote the passing of n parameters to function
b.

70

NRC for semi-structured data A.7 A graphical notation for sNRC/sNRA

Theorem A.6.1 (n-ary functions in sNRC). For every n-ary function in sNRC there is
an equivalent sNRC function that uses no in but only ini for i≤ n.

A.7 A graphical notation for sNRC/sNRA

We introduce a graphical notation called DAWN to represent the n-ary functions that
can be defined by sNRC and sNRA. The general notation is the usual workflow style
as is shown for example in Figure A.1. Every workflow has zero or more input ports,
and exactly one output port. If a port has multiple outgoing edges it means the output
is copied for each output edge. If an input port has multiple incoming edges, it means
all the inputs are combined with an additive bag union. So the input of h is the bag
union of the output of f and g. Every output port needs to have at least one outgoing
edge, i.e., the result of every component must be used somewhere. The input ports
of the whole workflow have zero or more outgoing edges. So not all inputs must
be necessarily used. The output port of the whole workflow must have at least one
incoming edge, or it will not have a defined value. The workflow must be acyclic, i.e.,
if we consider each component as a single node, then the connecting edges do not form
a directed cycle.

g

f i

h

Figure A.1: General workflow notation

We will define the semantics of workflows in terms of sNRC expressions denoting
n-ary functions, and so do not use in but do use ini. Consider the example in Fig-
ure A.1. Assuming that we have sNRC expressions e f , eg, eh and ei for the correspond-
ing components, then the semantics of the whole workflow is given by {[(xi.2] xh.2) |
x f ∈ 〈 /0,e f (in1, in2)〉,xg ∈ 〈 /0,eg(in2)〉,xi ∈ 〈 /0,〈 /0,ei()〉,xh ∈ 〈 /0,eh(x f .2] xg.2)〉〉]}. Here
expressions of the form e(e1, . . . ,e2) are a short-hand for e[in1/e1,...,inn/en]. Note that if
we do not wrap the results of the components in a pair, they will be iterated over rather
then assigned as a whole to the iterating variable.

We of course allow the workflows to be recursively nested, so a component in the
workflow can itself be again a complex workflows.

A special feature is that input ports of a component can be marked as iterating,
which is indicated by a star, as is shown in Figure A.2. The meaning is that for these
ports the incoming bags are iterated over, i.e., the function is applied to each ele-
ment of the bag (wrapped as a singleton bag). If multiple ports are marked, then all
combinations of the elements are taken. So in the figure the computed function is
{[e f (x,y, in3) | x ∈ in1,y ∈ in2]}.

71

A.7 A graphical notation for sNRC/sNRA NRC for semi-structured data

f*

*

Figure A.2: Iterating input ports

The primitive components we need to represent the functions in sNRC and sNRA
are shown in Figure A.3. They consist of components for: (1) constants c, (2) the pair
constructor, (3) the projection operators, (4) the empty bag, (5) the basic value equality
operator, (6) user-defined functions and (7) the set operator that returns a set of basic
values.

c <.,.> .1 .2

∅ = setb

Figure A.3: Primitive workflow components

From the previous the following will be clear.

Theorem A.7.1. For every DAWN workflow with n input ports there is an equivalent
n-ary sNRC expression.

The converse also holds.

Theorem A.7.2. For every n-ary sNRC expression there is an equivalent DAWN work-
flow with n input ports.

The mapping is illustrated in Figure A.4.

72

NRC for semi-structured data A.7 A graphical notation for sNRC/sNRA

1

n

i

(1)

c

(2) (3)

<.,.>

e2

e1

.ie

(4)

∅

(5) (6)

e2

e1

(7)

e[x/id3]
*

e’

(8)

be2

e1

e3

(9)

sete

(10)

=

e2

e1

Figure A.4: Mapping n-ary sNRC expressions to DAWN workflows

73

Appendix B

Example JSON workflow notation

Code Fragment B.1: Example workflow definition in JSON

{
"dawn": {

"version": 0.9,
"resources": [

{
"id": 1,
"name": "csv 1",
"typeId": "csv",
"modifiedDate": "20150608",
"modifiedBy": "Mick",
"elements": {

"csvLocation": "..\\input\\",
"csvFilename": "data.csv",
"csvHeader": "true",
"csvDelimiter": ";"

}
},
{

"id": 2,
"name": "csv 2",
"typeId": "csv",
"modifiedDate": "20150608",
"modifiedBy": "Mick",
"elements": {

"csvLocation": "..\\output\\",
"csvFilename": "result.csv",
"csvHeader": "true",
"csvDelimiter": ";"

}
}

],
"workflow": {

75

Example JSON workflow notation

"id": 1,
"name": "R Script test WF",
"description": "Executing an R Script on CSV data.",
"inputs": [

{
"id": 3,
"type": {

"name": "records",
"collection": [

{
"name": "Name",
"typeName": "string"

},
{

"name": "Amount",
"typeName": "float"

}
]

},
"resource": 1

}
],
"outputs": [

{
"id": 4,
"type": {

"name": "records",
"collection": [

{
"name": "Name",
"typeName": "string"

},
{

"name": "Amount",
"typeName": "float"

}
]

},
"resource": 2

}
],
"nodes": [

{
"id": 8,
"name": "run R Script",
"component": {

"type": "rScript",

76

Example JSON workflow notation

"properties": {
"scriptName": "hello.r"

}
},
"inputs": [

{
"type": {

"name": "records",
"collection": [

{
"name": "Name",
"typeName": "string"

},
{

"name": "Amount",
"typeName": "float"

}
]

},
"id": 9

}
],
"outputs": [

{
"type": {

"name": "records",
"collection": [

{
"name": "Name",
"typeName": "string"

},
{

"name": "Amount",
"typeName": "float"

}
]

},
"id": 10

}
]

}
],
"edges": [

{
"id": 18,
"start": 3,
"end": 9

77

Example JSON workflow notation

},
{

"id": 19,
"start": 10,
"end": 4

}
]

}
}

}

78

Appendix C

DAWN JSON Schema

Code Fragment C.1: JSON Schema specification for DAWN

{
"$schema": "http://json -schema.org/draft -04/schema#",
"id": "http://dawn/schema.json",
"definitions": {

"object": {
"type": "array",
"minSize": 1,
"items": {

"$ref": "#/definitions/type"
},
"additionalProperties": false

},
"type": {

"type": "object",
"properties": {

"name": {
"type": "string"

},
"typeName": {

"type": "string",
"enum": [

"string",
"int",
"bool",
"float"

]
},
"collection": {

"$ref": "#/definitions/type"
},
"object": {

"$ref": "#/definitions/object"

79

DAWN JSON Schema

}
},
"required": [

"name"
],
"oneOf": [

{
"required": [

"typeName"
]

},
{

"required": [
"object"

]
},
{

"required": [
"collection"

]
}

],
"additionalProperties": false

}
},
"type": "object",
"properties": {

"dawn": {
"type": "object",
"properties": {

"version": {
"type": "number",
"minimum": 0.9

},
"resources": {

"type": "array",
"items": {

"properties": {
"id": {

"type": "integer",
"minimum": 1

},
"name": {

"type": "string"
},
"typeId": {

"type": "string",

80

DAWN JSON Schema

"enum": [
"csv",
"xml",
"sql"

]
},
"modifiedDate": {

"type": "string"
},
"modifiedBy": {

"type": "string"
},
"type": {

"$ref": "#/definitions/type"
},
"elements": {

"type": "object"
}

},
"additionalProperties": false,
"required": [

"id",
"name",
"typeId",
"modifiedDate",
"modifiedBy",
"elements"

]
}

},
"workflow": {

"type": "object",
"properties": {

"id": {
"type": "integer",
"minimum": 1

},
"name": {

"type": "string"
},
"description": {

"type": "string"
},
"inputs": {

"type": "array",
"minItems": 0,
"items": {

81

DAWN JSON Schema

"type": "object",
"properties": {

"id": {
"type": "integer",
"minimum": 1

},
"portName": {

"type": "string"
},
"type": {

"$ref": "#/definitions/type"
},
"resource": {

"type": "integer",
"minimum": 1

}
},
"additionalProperties": false,
"required": [

"id",
"type"

]
}

},
"outputs": {

"type": "array",
"minItems": 1,
"items": {

"type": "object",
"properties": {

"id": {
"type": "integer",
"minimum": 1

},
"portName": {

"type": "string"
},
"type": {

"$ref": "#/definitions/type"
},
"resource": {

"type": "integer",
"minimum": 1

}
},
"additionalProperties": false,
"required": [

82

DAWN JSON Schema

"id",
"type"

]
}

},
"nodes": {

"type": "array",
"items": {

"type": "object",
"properties": {

"id": {
"type": "integer",
"minimum": 1

},
"name": {

"type": "string"
},
"component": {

"type": "object",
"properties": {

"type": {
"type": "string"

},
"properties": {

"type": "object"
}

},
"additionalProperties": false,
"required": [

"type",
"properties"

]
},
"inputs": {

"type": "array",
"minItems": 0,
"items": {

"type": "object",
"properties": {

"id": {
"type": "integer",
"minimum": 1

},
"type": {

"$ref": "#/definitions/type"
}

},

83

DAWN JSON Schema

"additionalProperties": false,
"required": [

"id",
"type"

]
}

},
"outputs": {

"type": "array",
"minItems": 1,
"items": {

"type": "object",
"properties": {

"id": {
"type": "integer",
"minimum": 1

},
"type": {

"$ref": "#/definitions/type"
}

},
"additionalProperties": false,
"required": [

"id",
"type"

]
}

}
},
"additionalProperties": false,
"required": [

"id",
"name",
"component",
"inputs",
"outputs"

]
}

},
"edges": {

"type": "array",
"items": {

"type": "object",
"properties": {

"id": {
"type": "integer",
"minimum": 1

84

DAWN JSON Schema

},
"start": {

"type": "integer",
"minimum": 1

},
"end": {

"type": "integer",
"minimum": 1

}
},
"additionalProperties": false,
"required": [

"id",
"start",
"end"

]
}

}
},
"additionalProperties": false,
"required": [

"id",
"name",
"description",
"inputs",
"outputs",
"nodes",
"edges"

]
}

},
"additionalProperties": false,
"required": [

"version",
"resources",
"workflow"

]
}

},
"additionalProperties": false,
"required": [

"dawn"
]

}

85

	Preface
	Contents
	List of Figures
	Introduction
	Motivation
	Approach
	Contributions
	Structure

	Background
	ORTEC
	Big Data Portal
	Big Data Analysis
	Workflow Systems
	Nested Relational Calculus
	NRC for semi-structured data

	Design Goals
	User Friendly
	Flexible
	Optimisable

	Data Analytics Workflow Notation
	Syntax
	Semantics
	Relation to sNRC
	User Defined Functions

	DAWN in JSON
	JSON Format
	Elements
	JSON Schema

	Compiler
	Windows Workflow Foundation
	Data Flow versus Control Flow
	Data Addressing
	Implicit Components
	User Defined Functions

	Evaluation
	User Friendly
	Flexible
	Optimisable

	Future Work
	Graphical Editor
	Data Provenance
	Different Execution Engines
	Optimisations
	Workflow and Component Store
	Expressiveness of the DAWN Type System

	Conclusions
	Bibliography
	NRC for semi-structured data
	Goal of document
	The Underlying Data Model: Nested Values
	NRC for semistructured data: sNRC
	NRA for semi-structured data: sNRA
	The relationship between sNRA and sNRC
	A note on n-ary functions
	A graphical notation for sNRC/sNRA

	Example JSON workflow notation
	DAWN JSON Schema

