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ABSTRACT

Recommender systems usually base their predictions on user-item
interaction, a technique known as collaborative filtering. Vendors
that utilize collaborative filtering generally exclusively use their
own user-item interactions, but the accuracy of the recommenda-
tions may improve if several vendors share their data. Since user-
item interaction data is typically privacy sensitive, sharing this
data poses a privacy challenge for the collaborating vendors. In
this work, we study the use of matrix factorization with multiple
vendors under a differential privacy guarantee. Since differential
privacy incurs a trade-off between privacy and utility, one obsta-
cle is that the utility loss of the privacy-preserving measure may be
greater than the utility gain of collaboration. We show that the em-
pirical evaluation of this property in existing work is questionable,
and that these works do not solve the problem. We also demon-
strate that in a common experiment setup, the upper bound on the
utility gain that can be achieved by collaboration is limited, which
places a hard limit on the acceptable utility loss due to privacy
preservation. This limit is small enough that even the utility loss
in the current state of the art in differentially private matrix factor-
ization in general exceeds it. We conclude with a number of open
challenges for future work.
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1 INTRODUCTION

In the past decades, the internet has played an increasingly impor-
tant role in people’s daily lives. This has led to an unprecedented
increase of available information, which in turn has made it in-
creasingly difficult for a single person to process this information
to find the things they need or enjoy. Recommender systems are
tools designed to manage this information and help people quickly
find the items that are relevant to them, based on their preferences.
One of the more commonly used methods for recommender sys-
tems is known as collaborative filtering (CF) [17]. CF uses past in-
teractions with items of all users to find similarities in preferences,
which are then used to predict the preference of a specific user.
Since CF only makes use of user-item interactions, it can consider
both users and items to be opaque entities, which makes it a robust
technique that is insensitive to the domain in which it is used.
Parties who utilize CF, which we call vendors in this work, typ-
ically only use their own dataset of user-item interactions to gen-
erate recommendations. It has been shown that the accuracy of
the recommendations may significantly improve if several vendors
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collaborate by sharing their user-item interaction data [8], espe-
cially if their datasets are small. However, sharing this data is com-
plicated due to two reasons. First, user preference data is inher-
ently privacy sensitive, and vendors require explicit consent from
their users to share sensitive data with other vendors due to recent
data protection laws such as the General Data Protection Regula-
tion (GDPR). Second, vendors are usually commercial entities and
will therefore be reluctant to share user preference data directly
with potential competitors, as it will certainly be deemed business-
sensitive information. These two complications can be avoided if
the sensitive data is never shared directly, which informs our goal
of finding a solution that allows vendors to collaborate so that
they can improve their recommendation accuracy while preserv-
ing user privacy.

In this work, we specifically consider matrix factorization (MF) [25]
as the collaborative filtering technique, since it is a popular and
well-performing solution. Even though it is over a decade old, it
remains competitive to this day [11, 38].

Learning an MF model with multiple vendors may not necessar-
ily reveal direct rating information to other vendors, nonetheless,
it is a known fact that model parameters [9, 12, 41], the intermedi-
ate training steps [16, 44] and the recommendations themselves [7]
can expose sensitive user data. Consequently, we need stronger pri-
vacy guarantees to protect user data when vendors collaborate to
train a shared model. These privacy guarantees can be formalized
through differential privacy [13, 14].

The intuition of differential privacy is that if the contribution of
a single entity to the outcome of an algorithm is indistinguishable,
while trends over multiple entities can still be observed, the privacy
of a single entity is preserved. The contribution of a single entity is
typically disguised by perturbing the input, the intermediate state,
or the output of the algorithm. However, the applied perturbations
may incur utility loss in the outcome of the algorithm, so there
exists a trade-off between utility and privacy.

Since our stated goal is for multiple vendors to improve their
recommendation accuracy by collaborating, there is a significant
constraint on the trade-off between privacy and utility. If the utility
gain of collaboration is smaller than the utility loss of the privacy
measure, the collaborating vendors will only impair their recom-
mendation accuracy and are better off not collaborating at all. For
this reason, it is essential that the empirical evaluation of any pro-
posed solution shows that the accuracy of collaborating vendors
improves over a well-tuned algorithm on only the vendors’ local
data.

Our contributions are twofold:

e We show that the existing solutions in literature for multi-
vendor matrix factorization with differential privacy (DPMF)



either have experiment configurations that are highly de-
pendent on the exact partitions of the datasets and show
inconsistent results [15] or the results of the model learned
by collaborating vendors can be outperformed with simple
baselines or a better-tuned model on the local vendor data [29].
We show that the maximum possible utility gain for a collab-
orating vendor that can be shown empirically on an existing
dataset split into multiple parts is limited, which in turn lim-
its the maximum acceptable utility loss. We also compare
the utility gain of collaboration to the utility loss in the cur-
rent state of the art method for single vendor DPMF.

The outline of this work is as follows. In Section 2, we show an
overview of related work. In Section 3, we provide the necessary
background knowledge. In Section 4, we perform experiments to
give context to the reported results in existing work and we show
that these results are questionable. In Section 5, we discuss the re-
lation between single vendor DPMF and multi-vendor DPMF and
we show the maximum possible utility gain on a common experi-
ment configuration. Finally, in Section 6, we discuss challenges for
future work and we conclude the work.

2 RELATED WORK

We classify related work on multi-vendor DPMF into three cate-
gories: alternative collaborative filtering techniques, single vendor
DPMF, and learning a shared model in general.

Multi-vendor collaborative filtering has been studied with near-
estneighborhood techniques. One approach is to apply secure multi-
party computation (MPC) to allow multiple vendors to generate
predictions without having to reveal both the ratings and the in-
termediate computation results [5, 23, 40]. This approach does not
consider the privacy leakage that these predictions may incur and
does not protect against the inference attacks described by Calan-
drino et al. [7]. The application of differential privacy to the nearest
neighborhood technique to prevent these attacks was studied by Li
et al. [27]. This work focuses on a scenario with two vendors where
the data is shared in only one direction.

MF with differential privacy has been studied in various works [6,
10, 20, 21, 30, 35]. These methods all focus on the situation with a
single vendor and only aim to protect against inference attacks
based on the recommendations of the system. They do not need to
protect the intermediate results of the training process and they
can assume that all rating data is accessible during the training
process.

The problem of learning a shared model with multiple data own-
ers is studied under the umbrella of federated learning [32]. Feder-
ated learning with differential privacy for non-convex problems,
such as MF, is still an open problem [22]. Current methods [33, 34]
are based on adding noise to the iterative training process and com-
posing the privacy expenditure over multiple iterations through
privacy accounting, such as the moments accountant [1]. These
methods typically require large datasets to achieve accurate mod-
els, which contrasts our scenario of vendors with smaller datasets
trying to learn from each other.

Finally, to the best of our knowledge, there are two existing
works in literature that propose solutions for multi-vendor DPMF.
The first is a work by Ermis and Cemgil [15], in which the authors
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propose a Bayesian model that exploits a natural connection be-
tween Bayesian posterior sampling and differential privacy [26,
42]. The second work is by Li et al. [29], where the authors adopt
the moments accountant [1] to learn an MF model. We will con-
sider these two works more closely in Section 4.

3 BACKGROUND

3.1 Differential Privacy

3.1.1  Standard Differential Privacy. Differential privacy [13, 14] is
based on the notion of adjacent datasets, where any two datasets
are called adjacent when they differ at most in a single entity. The
exact definition of an entity and when they are different depends
on the chosen privacy guarantee.

DEFINITION 1 ((€, §)-DIFFERENTIAL PRIVACY). A randomized al-
gorithm A : D — R is (e, §)-differentially private if for any adja-
cent datasets D and D’ that only differ in a single entity and for any
potential outcomes S C R, the following holds:

Pr[A(D) € S] < €€ - Pr[A(D’) € S] +4.
If6 =0, A is called e-differentially private.

The € parameter is commonly called the privacy budget and the
& parameter is the probability that the privacy guarantee does not
hold.

3.1.2  Joint Differential Privacy. The standard differential privacy
definition considers all outputs of an algorithm. In the case of a
recommender system, these outputs include the personalized rec-
ommendations generated for a specific user based on their past
ratings, from which follows that a user can learn nothing about
their past ratings from their recommendations. Consequently, rec-
ommendations can no longer be personalized, thereby defeating
the purpose of a recommender system. Therefore, a slight relax-
ation of the differential privacy definition is needed, which allows
a user to learn their own ratings from the output of the algorithm.
The user’s privacy is preserved as long as the user does not make
their recommendations public. This relaxation is known as joint
differential privacy and was first formalized by Kearns et al. [24].
The joint differential privacy definition is used either implicitly or
explicitly in [10, 15, 21, 29, 30, 35].

DEFINITION 2 ((€, §)-JOINT DIFFERENTIAL PRIVACY). A random-
ized algorithm A : D — R is (€, 6)-joint differentially private if
for all users i, any adjacent datasets D and D’ that only differ in
entities for user i, and for any potential outcomes for all other users
S_i € R, the following holds:

Pr[A(D) € S_i] < e -Pr[A(D’) € S_;] + 6.
If§ =0, A is called e-joint differentially private.

3.2 Matrix Factorization

3.2.1 Model. Matrix factorization for collaborative filtering [25]
models the problem as follows. Let R € R™*" be a matrix that
represents the preferences of m users for n items. We observe a
tiny fraction Q C [m] X [n] of R in the form of ratings, where [n]
denotes the set {1,...,n}. We assume that R is low rank and can
be factored into two smaller matrices U € R™*? and V e R"™¥¢
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such that R ~ UV T, where d is the embedding dimension and d <
min(m, n).

U and V are learned by optimizing the following model, where
u; and v; are the i-th and j-th row vectors of U and V respectively:

argmin Z (Rij = (ui, o)) * + AU + IV13). (1
UV (jea

A is a regularization parameter to prevent overfitting. This model
can be extended with bias terms so that the optimization problem
becomes:

argmin Z (Rij — (ui,0j) — b - b;’ — by)?
UV (ijeo )

+AUIUNZ + VI + b} +b9),

where b;‘ is the user bias, b;? is the item bias and by is the global
bias.

Since solving this non-convex minimalization problem is NP-
hard [18], solutions are approximated. In practice, stochastic gra-
dient descent (SGD), Markov chain Monte Carlo (MCMC) [2, 39]
and alternating least squares (ALS) [25] are popular methods that
work well.

3.2.2  Differential Privacy. Mapping the joint differential privacy
definition to the MF model is straightforward. A prediction of item
Jj for user i is calculated as the dot product between the latent vec-
tors: (u;, vj). Here, u; is exclusively used to predict ratings for user
i, while v; is used for all users. Therefore, as long as differential pri-
vacy is guaranteed for the item latent vectors V, joint differential
privacy is guaranteed for the entire model, and no privacy guaran-
tees are necessary for the user latent vectors U.

There are three levels of differential privacy used in the litera-
ture. From weakest to strongest guarantee they are:

¢ Rating value: This level guarantees that the exact value of
a single rating cannot be inferred from the model. Formally,
let (R, Q) and (R’, Q') be adjacent datasets with Q = Q’, if
3(i, j) € Q for which R;; # R{j. This guarantee is used in
[6, 20].
¢ Rating existence: Here, the existence of a single rating
is protected. Formally, let (R, Q) and (R’, Q’) be adjacent
datasets if (i, j) € Q and (i, j) ¢ Q' or vice versa (i, j) ¢ Q
and (i, j) € Q’. This guarantee is used in [15, 29, 35, 36]. We
refer to this guarantee as rating level privacy.
User existence: The user level protection guarantees that
the existence of all ratings by a single user is protected. For-
mally, let (R, Q) and (R, Q') be adjacent datasets if (i,-) €
Qand (i,-) ¢ Q’ or vice versa (i,-) ¢ Q and (i,-) € Q.
This guarantee is used in [10, 21, 29, 30, 35]. We refer to this
guarantee as user level privacy.

We consider the user level privacy guarantee to be essential for
this problem because user preferences and therefore their ratings
are typically very correlated. Indeed, the very purpose of collabora-
tive filtering is to find these correlations and use them to generate
recommendations. It has been shown that this aspect of collabora-
tive filtering can be exploited to reveal user preferences [7].

3.3 Multi-Vendor Collaborative Filtering

3.3.1 Data Distribution. Collaborative filtering with multiple ven-
dors is commonly classified into three distribution scenarios:

e Horizontal: In a horizontal distribution, the vendors share
some or all items, but do not share users.

e Vertical: In a vertical distribution, vendors do not share
items, but they do share some or all users.

o Arbitrary: The arbitrary distribution is a combination of
both horizontal and vertical distribution. In this scenario,
vendors share both some or all users and some or all items.

Note that user level privacy can only be guaranteed in the hori-
zontal distribution scenario. The user-level privacy guarantee leads
to two problems in the vertical distribution scenario. First, vendors
would need to align the user identifiers across their datasets. Align-
ing user identifiers would already leak some private data about
users, namely whether they have interacted with the other ven-
dors or not. Second, differential privacy guarantees that one ven-
dor cannot infer anything about a user from another vendor, in-
cluding anything that might help improve that user’s recommenda-
tions. In a horizontal distribution scenario, these problems do not
occur, because only item latent features are learned collaboratively,
and those features do not exclusively depend on the data of a spe-
cific user. Since the arbitrary distribution is a combination of the
horizontal and vertical distributions, differential privacy can only
be applied to the horizontal component, effectively turning it into
a horizontal distribution.

3.3.2  Trust Model. We assume that users belonging to a specific
vendor allow that vendor to use their data, but do not want their
data shared beyond that boundary. Any data shared between ven-
dors must be protected in such a way that the vendors do not need
to trust each other to not learn anything about specific users be-
yond the users in their own dataset. This property is achieved when
differential privacy is guaranteed on all shared data since there is
no way for a malicious vendor to learn something that may violate
user privacy in that scenario. Other malicious behaviors, such as
influencing the resulting model to worsen its performance are out
of the scope of this work.

3.4 Datasets and Metrics

In our experiments, we use three different variants of the Movie-
Lens datasets [19]. The first variant is MovieLens 100k, which con-
sists of 100,000 ratings by 943 users on 1,682 movies. The second
variant is MovieLens 1M, which consists of 1,000,209 ratings by
6,040 users on 3,706 movies. The third variant is MovieLens 10M,
which consists of 10,000,054 ratings by 69,878 users on 10,677 movies.
The rating scale in MovieLens 100k and 1M is 1 to 5 with steps of
size 1, and in MovieLens 10M, the scale is 0.5 to 5 with steps of size
0.5.

We evaluate all models by selecting a number of ratings for
training as Qtrain and the remaining ratings for testing as Qtest.
Then, we use Qirain to learn the model, and we report the Root
Mean Squared Error (RMSE) of the predictions of the model on

Qtest~
RMSE = !
|Qtest|

Z (Rij — Rij)? (3

(Lj) thest



4 EVALUATION OF EXISTING WORK

In this section, we consider some of the baseline experiments used
in existing work and we show that these experiments do not sup-
port the conclusions of the papers when compared to the results of
better-tuned baselines. We consider collective matrix factorization
(CMF) by Ermis and Cemgil [15], and federated matrix factoriza-
tion (FMF) by Li et al. [29]. Both of these works do not have a
publicly available implementation, so we cannot reproduce their
experiments. Instead, we focus on what is reported in the papers
and replicate the setting of the experiment as closely as possible.

4.1 Collective Matrix Factorization

Description. Ermis and Cemgil propose a Bayesian MF model
with rating level differential privacy [15]. The model is learned
through stochastic gradient Langevin dynamics (SGLD) [43], which
is an approximation of the MCMC method. SGLD can provide dif-
ferential privacy without any additional injected noise if the step
size is selected small enough, although it still requires clipping the
gradient norms [26, 42]. The restriction on the step size and the
clipping of the gradient norms still incurs a utility loss compared
to a non-private model, which the authors demonstrate in their
experiments. The work only considers a horizontal distribution.

Experiment protocol. For every partition of a dataset, the authors
randomly select 80% of the ratings as training data, and the remain-
ing 20% for testing the model. In all their experiments, the authors
set the embedding dimension to d = 5.

Unreliable comparison with related work. The authors compare
CMF with the works of Hua et al. [20] and Liu et al. [30] with
€ = 0.1 on MovieLens 1M. Both of these works only consider sin-
gle vendor MF, so these experiments do not involve multiple ven-
dors. Note that the comparison with Liu et al. is not entirely valid,
since Liu et al. provides user level differential privacy, which is
much stronger than rating level differential privacy. We include
the RMSE values for predicting the global average rating and the
average rating per movie. Both the global average and the movie
averages are calculated in a differentially private way, to compare
using the same privacy constraints. We show both the reported re-
sults and the results of our baseline in Table 1. The first three rows
are results from [15, Figure 10(b)], and the second two rows are our
baselines.

Table 1: MovieLens 1M results for ¢ = 0.1. Results in the first
group are from [15, Figure 10(b)].

Method RMSE
Hua et al. [20] 2.01
Liu et al. [30] 1.93
CMF [15] 1.49
DP global average 1.12
DP movie averages 0.98

It is clear that our baselines perform much better than the re-
ported results in this setting. The comparison of the differentially
private MF techniques in these experiments is very unreliable since
the results do not indicate that the compared techniques are even
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functional recommender systems. Therefore, we cannot draw con-
clusions on the relative performance of the tested techniques based
on these experiments.

Inconsistency between experiments. The second problem we iden-
tify is the inconsistent results between the experiments that show
the impact of the privacy parameter e and the impact of including
multiple vendors.

In the experiment that shows the impact of the privacy param-
eter ¢, the authors divide the users in the MovieLens 1M dataset
between two vendors. ! They measure the performance of the algo-
rithm by the RMSE for both vendors for the non-private case and
for the private case with € € {0.05, 0.1, 1}. We use the non-private
RMSE values of both vendors to calculate the non-private RMSE on
the full dataset. The non-private RMSE on the full dataset reflects
the best-case scenario for the model performance.

For the second experiment, the authors divide the MovieLens
1M dataset by user across 10 vendors. Then, the authors report the
RMSE for a single vendor while they increase the number of ven-
dors involved in training from 2 to 10, with the privacy parameter
€ set to 1.

We point out two problems with the second experiment. The
first problem is that the RMSE of a single vendor that only uses
1/10-th of the data depends on how the data is partitioned and
which partition of the data is used. The second problem is that the
reported results in the second experiment are not consistent with
the non-private results on the full dataset in the first experiment.
The reported results for the two experiments are shown in Fig. 1a.
We expect the RMSE of the single vendor to slowly converge to
be close to the RMSE of the entire dataset when more vendors are
included. However, the reported RMSE values for the single ven-
dor with privacy are substantially lower than the reported RMSE
values for the full dataset without privacy. This result is surpris-
ing because one would expect the RMSE values to be higher than
the non-private value due to the utility loss caused by the privacy
guarantee.

To show that our concerns about the reported results are justi-
fied, we perform an experiment with the same configuration with-
out privacy. We report the results for both the single vendor with
the best and the worst RMSE and the RMSE on the entire dataset in
Fig. 1b. We make the following two observations when we compare
our results to the results reported for CMF. First, the utility gain for
the single vendor with CMF from including 6 to 10 vendors is linear
and the effect of diminishing returns is minimal. In contrast, the re-
sults of our experiment indicate that there is a much stronger effect
of diminishing returns on including more vendors. We argue that
a degree of diminishing returns should be expected and that the re-
ported results of the CMF technique are likely inaccurate. Second,
the difference between the RMSE values between the vendors with
the best and the worst results is significant. Hence, the RMSE of a
single vendor has high variance, which makes the reported results
in [15, Table 4] more dependent on the prior conditions than on
the performance of CMF itself.

!The dimensions of the rating matrices reported in [15] seem to indicate that the
movies are divided between vendors. However, since the entire work is exclusively
focused on a horizontal distribution and this error does not exist in the reported di-
mensions of the Netflix Prize dataset, we assume it to be a typographical error.



Privacy in Multi-Vendor Matrix Factorization: Any Reason to Collaborate?

0.9 —
0.8 —
0.7 —

0.6 —

RMSE

0.5 -

—@— single vendor

= = = full data

03— | | | | | | | |
2 3 4 5 6 7 8 9 10

Number of vendors

0.4 —

(a) CMF

2 o\'\.
= 0.85 — T —0 9o o o o
~
0.8 = —@— best vendor
075 — —A— worst vendor
full data
0.7 = | | | | | | | |

o —

1 2 3 4 5 6 7 8 10

Number of vendors

(b) Non-private replication

Figure 1: RMSE for a single vendor in a random horizontal partition of MovieLens 1M into 10 vendors, with a varying amount

of data from other vendors included.

4.2 Federated Matrix Factorization

Description. Li et al. introduce a MF model with differential pri-
vacy that is learned with SGD [29]. FMF can provide either rat-
ing level and user level privacy guarantees in both horizontal and
vertical distributions. The authors provide differential privacy by
bounding the latent vectors, which limits the sensitivity of a sin-
gle rating, followed by using the moments accountant [1] to yield
tighter privacy losses for the sequential composition of the training
process. To provide user level privacy, the authors trim the datasets
to include only a small number of ratings per user, which limits the
sensitivity per user.

Experiment protocol. The authors select 90% of the ratings of ev-
ery partition of a dataset for training the model, and the remain-
ing 10% for testing. Throughout their work, the authors report the
Mean Squared Error (MSE) instead of the RMSE. For consistency
with the rest of our work, we convert the reported MSE values to
RMSE when we compare them to our own results.? The authors
set the embedding dimension to d = 20.

Vertical distribution. The authors evaluate FMF in a vertical dis-
tribution by partitioning the MovieLens 10M dataset by movie across
multiple vendors and reporting the MSE values for € € {0.037, 0.055,
0.086, 0.174} with rating level privacy. They also evaluate the verti-
cal distribution with user level privacy, but as noted in Section 3.3.1,
vertical distribution with user level privacy by definition cannot
lead to improved results across vendors; we will therefore ignore
this configuration in our analysis. The authors include two variants
of the experiment on the vertical distribution setting. In the first
variant, they partition the dataset such that 18 vendors each have
the ratings of all movies of a certain genre, and then they compare
the results to the results of a random partition of the movies across
18 vendors. In the second variant, they compare the results for a
random partition of movies across 2, 5, and 10 vendors.

We compare the reported values of both experiment variants
with a baseline that recommends the average rating per movie with
differential privacy. Note that calculating this average rating does
not require any communication between the vendors, since every

2RMSE = YMSE

vendor knows all ratings for their own movies. We show the results
in Fig. 2. The RMSE values for FMF are taken from [29, Figure 6(a),
6(b), and 7(a)].

In all experiment configurations in a vertical distribution setting
for all €, FMF is outperformed by recommending the average rating
of a movie.

Horizontal distribution. In a horizontal distribution, the authors
evaluate FMF by partitioning the MovieLens 10M dataset by user
across 10 and 40 vendors. For rating level privacy, they report the
MSE for € € {0.037,0.055,0.086,0.174,0.355,0.944} and for user
level privacy, they report the MSE for € € {0.5,1,2,3,4,5}.

We replicate this setting and perform a baseline experiment where
we learn a non-private MF model using only the local vendor data.
Similar to FMF, we set the embedding dimension d = 20, to show
that the reported results can be outperformed even with the same
embedding dimension. We show the results for rating level privacy
in Fig. 3a and for user level privacy in Fig. 3b. The RMSE values for
FMF are taken from [29, Figure 9].

For both rating level and user level privacy, and for both 10 and
40 vendors, our baseline MF model trained on only local vendor
data significantly outperforms FMF.

5 UPPER BOUNDS IN COMMON BASELINE

Splitting an existing dataset into equal parts and distributing these
parts across multiple vendors appears a natural experiment con-
figuration to evaluate the performance of a proposed solution for
multi-vendor DPMF. This configuration is used in both works we
evaluate in Section 4, and also in non-MF works, such as [5, 23,
40]. In this section, we evaluate this experiment configuration by
showing the maximum possible utility gain the vendors can have
by collaborating using an MF model. We do not consider privacy-
preserving measures, since the maximum possible utility gain for a
vendor occurs when the other vendors directly share data without
taking the privacy requirement into account.
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Figure 2: FMF on MovieLens 10M in a vertical distribution scenario.
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Figure 3: FMF on MovieLens 10M in a horizontal distribution scenario.

5.1 Single Vendor vs. Multiple Vendors

In a horizontal distribution, single vendor and multi-vendor DPMF
have a similar goal: ensure that the item latent vectors V are pro-
tected with differential privacy, while the user latent vectors U do
not need to be. This similarity allows one to compare the model per-
formance of single vendor and multi-vendor methods directly, as
the privacy guarantee is equivalent. That is, the current state of the
art method for single vendor DPMF, which is DPALS [10], reflects
the current state of utility loss in DPMF in general. Multi-vendor
DPMF is a strictly harder problem because of the added constraints
of distributed data and protecting the intermediate training out-
puts, both of which likely increase the utility loss further.

5.2 Experiment

We consider the three variants of the MovieLens dataset: 100k, 1M,
and 10M, with the same experiment configuration, as follows. We
randomly assign each user to 1 out of N vendors. For each vendor,
we train a biased MF model on the dataset of that vendor, which
we evaluate through a 10-fold cross-validation protocol. We repeat
this process for N from 1 to 10. We use the result for N = 1 as the
best possible RMSE for this model when all vendors collaborate,
since in that case, the model is trained on the full dataset.

Figure 4 shows the results of our experiment. For the Movie-
Lens 10M dataset, we include the best result for DPALS (e = 20).
Our first observation is that the relative difference between the
RMSE on the full data and the local vendor data is smaller for larger
datasets. Intuitively, when vendors’ datasets contain fewer users,
they have the most to gain from collaborating. However, the util-
ity loss of a model with differential privacy is typically inversely
proportional to the dataset size. So, while the potential utility gain
for vendors in MovieLens 100k is larger than for vendors in Movie-
Lens 10M, the utility loss incurred by the privacy guarantee is al-
most certainly higher as well. The second observation we make is
that the non-private model trained on only 1/10-th of MovieLens
10M still outperforms DPALS, which is trained on the full dataset.
In other words, if DPALS could be applied to the multi-vendor set-
ting as is, it would still be advantageous for the vendors to not
collaborate.

6 CONCLUSIONS

In this section, we summarize issues with the methodology in ex-
isting work. We also discuss the challenges that must be overcome
in any future method for multi-vendor DPMF.



Privacy in Multi-Vendor Matrix Factorization: Any Reason to Collaborate?

1- 1- 1-
—@— local data
0.95 — 0.95 — 0.95 — I
0.9 - 0.9 — 0.9 — DPALS (e = 20)
g g g
£ 085 - £ 085 - £ 085 -
~ ~ ~
0.8 — 0.8 — 0.8 —
075 —@— local data 075 —&— local data 075
- = = full data - = = full data
0.7 = v v 07— v v 07 = v v
1 2 3 45 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Number of vendors

(a) MovieLens 100k

Number of vendors

(b) MovieLens 1M

Number of vendors

(c) MovieLens 10M

Figure 4: Performance difference between full data and local data access for MovieLens datasets.

6.1 Methodological Issues in Existing Work

Empirical evaluation plays an important role in recommender sys-
tems research. Reporting metrics on well-known datasets allows
researchers to compare new methods to established baselines to
show improvements. However, empirical results in existing research
in general recommender systems are often questionable, which has
been demonstrated by Rendle et al. [38] and Dacrema et al. [11].
Questionable empirical results make it difficult to judge the perfor-
mance of a newly proposed method relative to the existing base-
lines. Nonetheless, the method may still generate new insights and
have value beyond the performance on specific datasets.

Our results in Section 4 indicate that problems with empirical
results occur in existing work on multi-vendor DPMF as well. We
argue that the consequences of unreliable empirical results in re-
search into multi-vendor DPMF are even worse than those for gen-
eral recommender systems research. First, for any method, the em-
pirical results are used to justify the accuracy improvements ven-
dors make when they collaborate. If the baseline results of ven-
dors using their local data are inaccurate, any accuracy improve-
ments are deceptive and cannot be used to determine whether col-
laboration is actually advantageous for vendors. Second, the im-
pact of applying differential privacy to an existing model such as
MF is not intuitive. It is practically impossible to estimate the ef-
fects of adding noise and limiting user sensitivity on the perfor-
mance of the model. Therefore, without reliable empirical results,
researchers cannot judge the proposed method in a meaningful
way.

Dacrema et al. offer various guidelines and best practices for
research in recommender systems to increase the reliability of the
empirical evaluations [11, Section 5.4]. These suggestions apply to
multi-vendor DPMF as well, so any future work should take them
into account.

6.2 Challenges in Future Work

Collaborative filtering offers a unique challenge for differential pri-
vacy because users typically only interact with a small subset of
all items, but user level differential privacy guarantees that even
a user who rates every single item against the model prediction

will have their privacy preserved. Since differential privacy con-
siders the worst-case scenario of privacy leakage, these extreme
users increase the required magnitude of the noise for all users.
To prevent large magnitudes of noise, it is common in existing
work to limit the number of ratings a single user can contribute
to the model [10, 29, 30]. As a consequence, this limit also restricts
the number of ratings a single vendor can contribute to the model
when training a model collaboratively. That is, by collaborating
with other vendors, a vendor can no longer utilize their local data
to the fullest extent to train the model, which further limits the po-
tential utility gain of collaboration, even without the addition of
noise. It is unknown whether this problem is solvable, as user level
differential privacy is still relatively poorly understood in machine
learning [3], especially federated learning [22].

In practice, the number of observed ratings in a recommender
system is not uniformly distributed over the items [31]. Instead, the
distribution is skewed towards a small number of popular items
(short head) and the number of items with a small number of rat-
ings is much larger (long tail). It has been shown that the utility loss
caused by differential privacy affects underrepresented classes in
a dataset disproportionately [4]. Therefore, the recommendation
accuracy for the items in the long tail will suffer more when differ-
ential privacy is applied to MF. Unfortunately, collaborating ven-
dors in a horizontal distribution will have the most to gain from
improving recommendations precisely in the long tail, as they are
more likely to already have a sufficient number of ratings in the
short head. Future work should consider this issue and potentially
include experiments to show the impact of differential privacy on
the long tail.

As we demonstrate in Section 5, even the current state of the art
for single vendor DPMF incurs more utility loss than can be gained
through collaboration. This result suggests that more effort is still
needed to reduce the utility loss in single vendor DPMF before any
solution for multi-vendor setting can be proposed. Nonetheless, we
stress that the experiment in Section 5 is only a single experiment
on three datasets. The rating prediction task is only one aspect of
the performance of a recommender system. Future work may con-
sider more specific scenarios with different metrics in which the



maximum possible utility gain is much higher than in our experi-
ment. Still, it is essential that these specific scenarios are well mo-
tivated beforehand.
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A BASELINES
A.1 Averages

Algorithm 1 guarantees e-differential privacy on calculating the av-
erage of data where every individual entry is bounded. It is taken
from [28, Algorithm 2.4]. Laplace(b) in Algorithm 1 refers to a ran-
dom sample of the Laplace distribution with mean 0 and scale b.

To calculate item averages (Algorithm 2), we first calculate the
global average rating to fill in for any item for which no ratings
exist in Qtrain. Through sequential composition, the calculation of
the average rating of a single item is e-differentially private. Since
every rating is only involved in the calculation of a single average
item rating, as long as the global average rating is calculated only
once, we can use parallel composition to guarantee e-differential
privacy on all average item ratings.

To calculate the global average in Table 1, we use Algorithm 1
with all ratings in the dataset. We use the same algorithm in Table 1
and Fig. 2 for the average item ratings.

Algorithm 1 Differentially Private Average ([28, Algorithm 2.4])

1: procedure DPAVG(X, Xmin, Xmax, €)

2 S Dixex x_|X|'%(xmin+xmax)+Laplace(é(xmax_xmin))
3 ¢ «— |X| +Laplace(%)

4 if ¢ < 1 then

5: return %(xmin + Xmax)
6 else

7 return £ + 1 (xmin + Xmax)
8: end if

9: end procedure

A.2 Matrix Factorization

We use an Bayesian model learned by a Gibbs sampling algorithm
for all our matrix factorization experiments. This algorithm has the

Algorithm 2 Differentially Private Average Item Rating

Require: rpyjy and rmax are the minimum and maximum rating
respectively

1: procedure DPITEMAVG(R, Qtrain, €)

2 X « {Rij | (i,j) € Qtrain}

3 g < DPAVG(X, rmin, 'max, 0.01€) > global average
4: for k € [m] do
5
6

X — {Rij | (i, J) € Qtrain A j = k}

if X; = 0 then » ensure that every item has at least
one rating
7: Xy —{g}
8: end if
9: Pt < DPAVG(X}, mins Fmax, 0-99€) > item average
10: Clamp 7 to [Fmin, "max]
11: end for
12: return 7

13: end procedure

major advantage of having a minimal set of hyperparameters. We
use libFM [37] as the implementation of this algorithm.

Table 2 shows all the hyperparameters for the experiments in
our work. ¢ is the variance of the random initialization of the la-
tent vectors, d is the embedding dimension and T is the number of
iterations.

Table 2: Hyperparameter choices

Experiment | ¢ d T

Fig. 1b 0.1 5 256
Fig. 3 0.1 20 256
Fig. 4a 0.1 16 100
Fig. 4b 0.1 24 100
Fig. 4c 0.1 32 100
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