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1
Introduction

In 1971 the first email has been sent. Since then this and more advanced digital technology has be-
come part of our day-to-day life. The rise of digital communication also brought the necessity of online
security and digital signatures. Where before the presence of a seal made it clear whether or not a letter
from one person to another has been read by some eavesdropper a new method had to be implicated
to get something similar to send digital letters. One of the first systems developed to provide online
security is what is now known as RSA encryption. This method has been first published by Rivest,
Shamir and Adleman in 1978 [10]. Even on this day, a modification of the first method of RSA encryp-
tion is being used and considered safe. However no proof exists that an efficient method to break the
security of the RSA encryption can not be developed in the future.

At the end of last year, Chinese researchers have made the claim that they have figured out a
method to break RSA using quantum computers [13]. We could increase the length of the keys since
they claim to be able to break RSA with keys of 2048 bits (approximately 600 digits) or less. The idea
that the development of quantum computers would impose great risks on our data is not new. In 1994
Peter Shor already published a possible algorithm that would make it possible to break the most impor-
tant part for the security of RSA encryption [11]. However, in 1994 this could only exist in theory since
the necessary quantum computer did not exist.

If the day comes that RSA encryption is not considered safe anymore we need to implement a
new form of security. Many scientists have been working on new cryptosystems unrelated to RSA-
encryption. However, there is also the possibility that we could increase the key length or modify RSA
encryption in such a way that it is secure again, or so we have some more time to develop the new
cryptosystem without leaking all information that is currently secured with RSA encryption.

Instead of increasing the key length, we also might be able to extend the RSA algorithm to different
mathematical structures, where the security still might hold. This paper explores a number of these
structures and describes whether or not it could be possible to extend RSA encryption. In this paper
we will focus on verifying whether the RSA encryption and decryption algorithms are well defined on
the mathematical structures.

In Chapter 2 the mathematics necessary to understand the algorithm that will be introduced. Chap-
ter 3 explains the RSA encryption, talks about the underlying mathematics and the security of this
system and will explain which part of RSA encryption will be focused on. Chapter 4 explores the im-
plementation of RSA encryption on different classes of semifields.
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2
Preliminaries

The RSA encryption method relies on branches of mathematics such as algebra and number theory. In
order to understand the mathematics behind the RSA algorithm for both the encryption and decryption,
some mathematical concepts will be introduced.

2.1. Algebra
Theorem 2.1.1 (Bezout’s Identity). Let 𝑎, 𝑏 ∈ ℤ such that 𝑎, 𝑏 ≠ 0, and 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑏). Then 𝑥, 𝑦 ∈ ℤ
exists such that 𝑥𝑎 + 𝑦𝑏 = 𝑑.

Proof. Cf. e.g. [5]

The next corollary is a special case of Bezout’s Identity.

Corollary 2.1.2. 𝑎, 𝑏 ∈ ℤ unequal to zero are coprime (𝑔𝑐𝑑(𝑎, 𝑏) = 1) if and only if there exist 𝑥, 𝑦 ∈ ℤ
such that 𝑥𝑎 + 𝑦𝑏 = 1.

For 𝑎 and 𝑏 integers, the Euclidean Algorithm can be used to 𝑑 such that 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑏). In chapter
3 we will see that this algorithm, with minor modifications, can also be used to find the values for 𝑥 and
𝑦 such that 𝑥𝑎 + 𝑦𝑏 = 𝑑 with 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑑.

Algorithm 2.1.3 (The Euclidean Algorithm). Let 𝑎 and 𝑏 be integers such that 𝑎 ≥ 𝑏 ≥ 0. A sequence
𝑟0, 𝑟1, … of (non negative) integers is going to be constructed. Start by setting 𝑟0 = 𝑎 and 𝑟1 = 𝑏. Assume
𝑟𝑛 is the last computed term. Define

𝑟𝑛+1 = 𝑟𝑛−1 − 𝑞𝑛 ⋅ 𝑟𝑛
where 𝑞𝑛 is the largest integer such that 0 ≤ 𝑟𝑛+1 < 𝑟𝑛. In other words; 𝑟𝑛+1 is the remainder when
dividing 𝑟𝑛−1 by 𝑟𝑛. Continue this process until 𝑟𝑛 = 0. Now return 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑟𝑛−1.

Example 2.1.4 (Euclidean Algorithm). The Euclidean Algorithm will be used to find 𝑔𝑐𝑑(254, 32). Start
by setting 𝑟0 = 254 and 𝑟1 = 32. Now 𝑟2 = 254 − 𝑞1 ⋅ 32. Since 𝑞1 must be the largest integer such
that 0 ≤ 𝑟2 < 32, we find 𝑞1 = 7 which gives 𝑟2 = 30. Repeat this to find 𝑞2 = 1 and 𝑟3 = 2. Repeating
again gives 𝑞3 = 15 and 𝑟4 = 0. Since 𝑟4 = 0 we return 𝑟3, that is gcd(254, 32) = 2.

Definition 2.1.5 (Group). A set 𝐺 with an operation ∘, 𝐺 × 𝐺 → 𝐺, is a group when the following
requirements are met.

G1 (Associativity) 𝑎 ∘ (𝑏 ∘ 𝑐) = (𝑎 ∘ 𝑏) ∘ 𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝐺.

G2 (Identity element) There exists an 𝑒 ∈ 𝐺 such that 𝑒 ∘ 𝑎 = 𝑎 ∘ 𝑒 = 𝑎 for all 𝑎 ∈ 𝐺.

G3 (Inverse element) For all 𝑎 ∈ 𝐺, there exists an 𝑎∗ ∈ 𝐺 such that 𝑎 ∘ 𝑎∗ = 𝑎∗ ∘ 𝑎 = 𝑒.
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4 2. Preliminaries

Definition 2.1.6. Let 𝐺 be a group and let 𝑆 be a subset of 𝐺. Define𝐻 ⊆ 𝐺 as the set of those elements
𝑔 ∈ 𝐺 that can be written as 𝑔 = 𝑠1𝑠2⋯𝑠𝑛 with 𝑠𝑖 ∈ 𝑆 or 𝑠−1𝑖 ∈ 𝑆 for all 𝑖 = 1,… , 𝑛. Then 𝐻 is a subgroup
of group 𝐺.
Definition 2.1.7. Let 𝐺1 and 𝐺2 be groups. A map 𝑓 ∶ 𝐺1 → 𝐺2 is a group homomorphism if for all
𝑎, 𝑏 ∈ 𝐺1

𝑓(𝑎𝑏) = 𝑓(𝑎)𝑓(𝑏)
where multiplication of 𝑎 and 𝑏 on the left-hand side takes place in group 𝐺1, and the multiplication
of 𝑓(𝑎) and 𝑓(𝑏) on the right-hand side takes place in the group 𝐺2. A bijective homomorphism is an
isomorphism. If such isomorphism exists we say that 𝐺1 and 𝐺2 are isomorphic.

Theorem 2.1.8. Let 𝐺1 and 𝐺2 be groups with identity elements 𝑒1 and 𝑒2 respectively. Let 𝑓 ∶ 𝐺1 → 𝐺2
be a group homomorphism. Then 𝑓(𝑒1) = 𝑒2 and 𝑓(𝑥−1) = 𝑓(𝑥)−1 for all 𝑥 ∈ 𝐺1.
Proof. Cf. e.g. [3] p.38.

Definition 2.1.9. Let 𝐺 be a group. A map 𝑓 ∶ 𝐺 → 𝐺 is an automorphism if it is an isomorphism from
𝐺 to itself. That is 𝑓 is bijective and preserves the structure of the group 𝐺, i.e. for ∘ an operation on
group 𝐺 and 𝑎, 𝑏 ∈ 𝐺, 𝑓(𝑎 ∘ 𝑏) = 𝑓(𝑎) ∘ 𝑓(𝑏).
Definition 2.1.10. Let 𝐺1 and 𝐺2 be groups with identity elements 𝑒1 and 𝑒2 respectively. Let 𝑓 ∶ 𝐺1 → 𝐺2
be a group homomorphism. The kernel of 𝑓 is defined as 𝑘𝑒𝑟(𝑓) = {𝑥 ∈1∶ 𝑓(𝑥) = 𝑒2}.
Theorem 2.1.11. Let 𝐺1 and 𝐺2 be groups with identity elements 𝑒1 and 𝑒2 respectively. Let 𝑓 ∶ 𝐺1 → 𝐺2
be a group homomorphism. 𝑓 is an injective group homomorphism if and only if 𝑘𝑒𝑟(𝑓) = 𝑒1.
Proof. Assume 𝑓 is injective. For 𝑥 ∈ 𝑘𝑒𝑟(𝑓), 𝑓(𝑥) = 𝑒2 = 𝑓(𝑒1) by Theorem 2.1.8. Since 𝑓 is injective
we must have 𝑥 = 𝑒1 and therefore 𝑘𝑒𝑟(𝑓) = 𝑒1. Assume 𝑘𝑒𝑟(𝑓) = 𝑒1. Suppose 𝑓(𝑥) = 𝑓(𝑦) for some
𝑥, 𝑦 ∈ 𝐺1. Then by Theorem 2.1.8, 𝑓(𝑥𝑦−1) = 𝑓(𝑥)𝑓(𝑦)−1 = 𝑒2. This would imply 𝑥𝑦−1 = 𝑒1, hence
𝑥 = 𝑦. Therefore 𝑓 is injective.

A well-known example of a group is a multiplicative group (ℤ/𝑛ℤ)∗.
Definition 2.1.12. Define a multiplicative group by

(ℤ/𝑛ℤ)∗ = {𝑎 ∈ ℤ/𝑛ℤ ∶ 𝑔𝑐𝑑(𝑎, 𝑛) = 1}.

Here, 𝑎 ∈ ℤ/𝑛ℤ means 𝑎 ≡ 𝑎 (𝑚𝑜𝑑 𝑛), that is the remainder when dividing 𝑎 by 𝑛. For exam-
ple, if 𝑛 = 6, then (ℤ/6ℤ)∗ = {1, 5}. For 𝑝 prime, (ℤ/𝑝ℤ)∗ = {1, 2, … , 𝑝 − 1} so if 𝑛 = 7 one has
(ℤ/7ℤ)∗ = {1, 2, 3, 4, 5, 6} .

Euler’s totient function counts the number of (positive) integers up to 𝑛 that are coprime to 𝑛. There-
fore it also counts the number of elements in a multiplicative group.

Definition 2.1.13 (Euler’s totient function).

𝜙(𝑛) = #{𝑎 ∈ ℤ ∶ 1 ≤ 𝑎 ≤ 𝑛, 𝑔𝑐𝑑(𝑎, 𝑛) = 1} = #(ℤ/𝑛ℤ)∗.

Since a prime number is coprime with all (positive) integers smaller that itself we have for 𝑝 prime
that 𝜙(𝑝) = 𝑝 − 1.

Definition 2.1.14 (Order). Let 𝐺 be a finite group with identity element 𝑒. If 𝑛 is the smallest positive
integer such that 𝑥𝑛 = 𝑒 for 𝑥 ∈ 𝐺, we say that the order of 𝑥 is 𝑛, and use notation 𝑜𝑟𝑑(𝑥) = 𝑛. The
order of a group 𝐺 is the number of elements of 𝐺 denoted by either #𝐺 or 𝑜𝑟𝑑(𝐺).

As a result of the definitions of Euler’s totient function and the order of a group (Definition 2.1.13
and Definition 2.1.14), for the multiplicative group we have 𝑜𝑟𝑑((ℤ/𝑛ℤ)∗) = 𝜙(𝑛).

The next corollary will give a relation between the order of an element and the order of the group
the element belongs to.
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Corollary 2.1.15. Let 𝐺 be a group with finitely many elements. Then for all 𝑥 ∈ 𝐺, 𝑜𝑟𝑑(𝑥)|𝑜𝑟𝑑(𝐺).
Proof. Cf. e.g. [3].

Similarly, there is a relation between the order of a group 𝐺 and the order of a subgroup 𝐻 of 𝐺.
The next corollary is an result of Lagrange’s Theorem which will not be discusses here. For Lagrange’s
Theorem we refer to [3] p.59-64.
Corollary 2.1.16. Let 𝐺 be a group and 𝐻 ⊆ 𝐺 a subgroup of 𝐺. Then 𝑜𝑟𝑑(𝐻)|𝑜𝑟𝑑(𝐺).

Euler’s product formula can be used to easily compute Euler’s totient function, and thus determines
the order of the multiplicative group.
Theorem 2.1.17 (Euler’s product formula). Let 𝑛 ∈ ℤ with 𝑛 > 0. Then

𝜙(𝑛) = 𝑛 ⋅ ∏
𝑝|𝑛, 𝑝 𝑝𝑟𝑖𝑚𝑒

(1 − 1𝑝) .

Proof. Cf. e.g. [12] p.271-272.

Whenever 𝑛 = 𝑝 where 𝑝 is a prime, we get 𝜙(𝑝) = 𝑝 ⋅ ∏𝑞|𝑝, 𝑞 𝑝𝑟𝑖𝑚𝑒 (1 −
1
𝑞) = 𝑝 − 1.

Corollary 2.1.18 (Euler’s Theorem). Let 𝑎,𝑚 ∈ ℤ be such that 𝑚 > 0 and 𝑔𝑐𝑑(𝑎,𝑚) = 1. Then
𝑎𝜙(𝑚) ≡ 1 (𝑚𝑜𝑑 𝑚),

Proof. 𝑔𝑐𝑑(𝑎,𝑚) = 1 implies 𝑎 ∈ (ℤ/𝑚ℤ)∗. Therefore 𝑜𝑟𝑑(𝑎)|𝑜𝑟𝑑((ℤ/𝑚ℤ)∗) = 𝜙(𝑚). As a result
𝑎𝜙(𝑚) = 1. Which is 𝑎𝜙(𝑚) ≡ 1 (𝑚𝑜𝑑 𝑚).

2.2. Fermat’s Little Theorem
Theorem 2.2.1 (Fermat’s Little Theorem). Let 𝑝 be a prime number and let 𝑎 ∈ ℤ. Then

𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝).
Proof. If 𝑝|𝑎, then 𝑎𝑝 ≡ 0 ≡ 𝑎 (𝑚𝑜𝑑 𝑝). Assume 𝑝 ∤ 𝑎. Since 𝑝 is prime, 𝑔𝑐𝑑(𝑎, 𝑝) = 1 and𝜙(𝑝) = 𝑝−1.
Together with Euler’s Theorem, Corollary 2.1.18 we have 𝑎𝜙(𝑝) ≡ 𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝). Multiply both sides
by 𝑎 to get 𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝)

Besides the proof stated above, many methods are known to prove Fermat’s Little Theorem such
as using induction, binomial expansion and using Lagrange’s Theorem. Above a proof for Fermat’s
Little Theorem using Euler’s Theorem is given. Another proof for Fermat’s Little Theorem, this time
without Euler’s Theorem will be given.[1]

Proof. Consider (ℤ/𝑝ℤ)∗ = {1, 2, … , 𝑝 − 1}. Define the set 𝑆 = {𝑎, 2𝑎, … , (𝑝 − 1)𝑎}, which we get by
multiplying all the elements in (ℤ/𝑝ℤ)∗ with some integer 𝑎 ∈ ℤ such that 𝑝 ∤ 𝑎 and take them modulo
𝑝. By the coprimality of 𝑎 and 𝑝, all elements in 𝑆 are distinct. Hence #𝑆 = #(ℤ/𝑝ℤ)∗ = 𝑝−1 by Euler’s
product formula, Theorem 2.1.17. Moreover, since all elements in 𝑆 are taken modulo 𝑝 and 𝑝 ∤ 𝑎,
0 < 𝑠 < 𝑝 for all 𝑠 ∈ 𝑆. Together these imply 𝑆 = (ℤ/𝑝ℤ)∗. Therefore

∏
𝑠∈𝑆

𝑠 ≡ ∏
𝑞∈(ℤ/𝑝ℤ)∗

𝑞 (𝑚𝑜𝑑 𝑝).

By the commutative property of multiplication

𝑎𝑝−1(𝑝 − 1)! ≡ (𝑝 − 1)! (𝑚𝑜𝑑 𝑝).
By the cancellation law

𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝).
Multiply both sides by 𝑎 to derive

𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝).
We are left with the case when 𝑝 ∣ 𝑎. Then both 𝑎𝑝 ≡ 0 (𝑚𝑜𝑑 𝑝) and 𝑎 ≡ 0 (𝑚𝑜𝑑 𝑝), hence 𝑎𝑝 ≡
𝑎 (𝑚𝑜𝑑 𝑝).



6 2. Preliminaries

2.3. Finite fields
Before one is able to define finite fields, it is necessary to know the definition of a field. A field is a
mathematical structure in which addition, subtraction, multiplication and division (excluding division by
zero) can be performed. For these operations the field axioms should hold. Examples of fields are the
rational numbers ℚ and the real numbers ℝ.
Definition 2.3.1 (Field axioms). Let 𝐹 be a set with operations + and ⋅, (𝐹, +, ⋅) is a field if and only if
the following properties are satisfied if for all 𝑎, 𝑏, 𝑐 ∈ 𝐹:

A1 (Associativity) (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)

A2 (Commutativity) 𝑎 + 𝑏 = 𝑏 + 𝑎

A3 (Additive identity) there exists a 0 ∈ 𝐹 such
that 𝑎 + 0 = 𝑎

A4 (Additive inverse) there exists a−𝑎 ∈ 𝐹 such
that 𝑎 + (−𝑎) = 0

DL (Distributivity) 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐

M1 (Associativity) (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐)

M2 (Commutativity) 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎

M3 (Multiplicative identity) there exists an 1 ∈ 𝐹
such that 𝑎 ⋅ 1 = 𝑎

M4 (Multiplicative inverse) if 𝑎 ≠ 0, there exists
an 𝑎−1 ∈ 𝐹 such that 𝑎 ⋅ 𝑎−1 = 1

• The additive identity 0 and the multiplicative
identity 1 are different, that is 0 ≠ 1.

Definition 2.3.2 (Field characteristic). The field characteristic of a field 𝐹 with unit element 𝑒 is the
smallest 𝑛 ∈ ℕ such that

0 = 𝑛𝑒 = 𝑒 + 𝑒 + … + 𝑒⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝑛 summands

.

We denote the field characteristic of field 𝐹 by 𝑐ℎ𝑎𝑟(𝐹) = 𝑛. If no such 𝑛 exists we say 𝑐ℎ𝑎𝑟(𝐹) = 0.
Theorem 2.3.3. The field characteristic of any field is either a prime or is equal to zero.

Proof. Let 𝐹 be a field with field characteristic 𝑐ℎ𝑎𝑟(𝐹) = 𝑚 with𝑚 not a prime. Since𝑚 is not a prime,
there exist integers 𝑟 and 𝑠 smaller than 𝑚 such that both 𝑟 and 𝑠 divide 𝑚 and in particular 𝑚 = 𝑟 ⋅ 𝑠.
By the definition of the field characteristic, 0 = 𝑚𝑒 = (𝑟𝑒)(𝑠𝑒). This implies either 𝑟𝑒 = 0 or 𝑠𝑒 = 0, but
since 𝑟 and 𝑠 are smaller than 𝑚, this contradicts 𝑚 being the smallest integer such that 𝑚𝑒 = 0.

A finite field 𝐹 is a finite set where the field axioms hold. Per definition, this set 𝐹 is closed under
both addition and multiplication. i.e. for all 𝑎, 𝑏 ∈ 𝐹, 𝑎 + 𝑏 ∈ 𝐹 and 𝑎 ⋅ 𝑏 ∈ 𝐹. Finite fields are also called
Galois fields after the founder of finite field theory, Évariste Galois.

Theorem 2.3.4. The field order, i.e. the number of elements of a finite field, is always a prime or the
power of a prime.

Proof. Before, in Theorem 2.3.3, we have shown that every finite field has a prime number 𝑝 as the field
characteristic. Therefore every field 𝐹 has a subfield 𝐻, where 𝐻 is isomorphic to ℤ𝑝 = {0, 1, … , 𝑝 − 1}.
By Corollary 2.1.16, 𝑜𝑟𝑑(𝐻)|𝑜𝑟𝑑(𝐹). Hence 𝑜𝑟𝑑(𝐹) = 𝑘 ⋅ 𝑜𝑟𝑑(𝐻) for some integer 𝑘. Since a field is a
vector space over any subfield, 𝑜𝑟𝑑(𝐹) = (𝑜𝑟𝑑(𝐻))𝑙 for some integer 𝑙.

Up to isomorphisms, these finite fields are unique.

A finite field with 𝑝𝑛 elements, where 𝑝 is prime and 𝑛 a natural number, is often denoted by 𝐺𝐹(𝑝𝑛).
For 𝑛 = 1, the integers modulo 𝑝 form a field with field order 𝑝, thus 𝐺𝐹(𝑝) = {0, 1, … , 𝑝 − 1}. All oper-
ations are performed modulo 𝑝. The field 𝐺𝐹(𝑝𝑛) has field characteristic 𝑝.

When 𝑛 > 1, then the elements of 𝐺𝐹(𝑝𝑛) are polynomials with degree up to 𝑛 − 1 instead of
’just’ integers. The coefficients for the polynomials are elements of 𝐺𝐹(𝑝). Addition is as expected;
∑𝑛−1𝑖=0 𝑎𝑖𝑥𝑖 +∑

𝑛−1
𝑖=0 𝑏𝑖𝑥𝑖 ≡ ∑

𝑛−1
𝑖=0 𝑐𝑖𝑥𝑖, where 𝑐𝑖 ≡ 𝑎𝑖 +𝑏𝑖 (𝑚𝑜𝑑 𝑝) for all ∑

𝑛−1
𝑖=0 𝑎𝑖𝑥𝑖 , ∑

𝑛−1
𝑖=0 𝑏𝑖𝑥𝑖 ∈ 𝐺𝐹(𝑝𝑛). To

define multiplication over 𝐺𝐹(𝑝𝑛) we need to decide on an irreducible polynomial (over the integers)
𝑔(𝑥) of degree 𝑛. 𝑔(𝑥) being an irreducible polynomial means that the coefficients of 𝑔 are elements
of 𝐺𝐹(𝑝) but 𝑔(𝑥) can not be factored in the product of two polynomials (both non-constant). Multi-
plication is defined as the remainder of the product after dividing by the polynomial 𝑔(𝑥). Subtraction
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is defined similar as addition. Division is the same as multiplication by the inverse element, which
exists by axiom 𝑀4. Different choices of irreducible polynomials yield different but isomorphic (finite)
fields. Some examples of finite fields with corresponding addition and multiplication tables will be given.

The elements of 𝐺𝐹(𝑝𝑛) can be written using multiple representations. In this paper the polynomial
representation will be used. Other representations are the representation by powers of 𝑥 or using bi-
nary. Some examples of finite fields will be discussed.

Example 2.3.5 (𝐺𝐹(4)). Since 4 = 22, an irreducible polynomial of degree 2 will be used in the con-
struction of this finite field. Take 𝑔(𝑥) = 𝑥2+𝑥+1 as the irreducible polynomial in 𝐺𝐹(4). The elements
of this finite field are 𝐺𝐹(4) = {0, 1, 𝑥, 𝑥 + 1}. Multiplication and addition are as in the addition and mul-
tiplication table below. Addition is performed modulo 2. As a result of our decision on the irreducible
polynomial, 𝑥2 ≡ 𝑥 + 1, this is used in constructing the multiplication table.

Addition Table

+ 0 1 𝑥 𝑥 + 1
0 0 1 𝑥 𝑥 + 1
1 1 0 𝑥 + 1 𝑥
𝑥 𝑥 𝑥 + 1 0 1

𝑥 + 1 𝑥 + 1 𝑥 1 0

Multiplication Table

⋅ 0 1 𝑥 𝑥 + 1
0 0 0 0 0
1 0 1 𝑥 𝑥 + 1
𝑥 0 𝑥 𝑥 + 1 1

𝑥 + 1 0 𝑥 + 1 1 𝑥

Example 2.3.6 (𝐺𝐹(9)). Since 9 = 32 again an irreducible polynomial of degree 2 will be used in
the construction of this finite field. Take 𝑔(𝑥) = 𝑥2 + 1 as the irreducible polynomial in 𝐺𝐹(3). In-
stead of working modulo 2 we will work modulo 3. The elements of this finite field are 𝐺𝐹(9) =
{0, 1, 2, 𝑥, 𝑥 + 1, 𝑥 + 2, 2𝑥, 2𝑥 + 1, 2𝑥 + 2}. Multiplication and addition are as in the addition and multipli-
cation table. Addition is performed modulo 3. As a result of our decision on the irreducible polynomial,
𝑥2 = −1 ≡ 2, this is used in constructing the multiplication table.

Addition Table

+ 0 1 2 𝑥 𝑥 + 1 𝑥 + 2 2𝑥 2𝑥 + 1 2𝑥 + 2
0 0 1 2 𝑥 𝑥 + 1 𝑥 + 2 2𝑥 2𝑥 + 1 2𝑥 + 2
1 1 2 0 𝑥 + 1 𝑥 + 2 𝑥 2𝑥 + 1 2𝑥 + 2 2𝑥
2 2 0 1 𝑥 + 2 𝑥 𝑥 + 1 2𝑥 + 2 2𝑥 2𝑥 + 1
𝑥 𝑥 𝑥 + 1 𝑥 + 2 2𝑥 2𝑥 + 1 2𝑥 + 2 0 1 2

𝑥 + 1 𝑥 + 1 𝑥 + 2 𝑥 2𝑥 + 1 2𝑥 + 2 2𝑥 1 2 0
𝑥 + 2 𝑥 + 2 𝑥 𝑥 + 1 2𝑥 + 2 2𝑥 2𝑥 + 1 2 0 1
2𝑥 2𝑥 2𝑥 + 1 2𝑥 + 2 0 1 2 𝑥 𝑥 + 1 𝑥 + 2

2𝑥 + 1 2𝑥 + 1 2𝑥 + 2 2𝑥 1 2 0 𝑥 + 1 𝑥 + 2 𝑥
2𝑥 + 2 2𝑥 + 2 2𝑥 2𝑥 + 1 2 0 1 𝑥 + 2 𝑥 𝑥 + 1

Multiplication Table

⋅ 0 1 2 𝑥 𝑥 + 1 𝑥 + 2 2𝑥 2𝑥 + 1 2𝑥 + 2
0 0 0 0 0 0 0 0 0 0
1 0 1 2 𝑥 𝑥 + 1 𝑥 + 2 2𝑥 2𝑥 + 1 2𝑥 + 2
2 0 2 1 2𝑥 2𝑥 + 2 2𝑥 + 1 𝑥 𝑥 + 2 𝑥 + 1
𝑥 0 𝑥 2𝑥 2 𝑥 + 2 2𝑥 + 2 1 𝑥 + 1 2𝑥 + 1

𝑥 + 1 0 𝑥 + 1 2𝑥 + 2 𝑥 + 2 2𝑥 1 2𝑥 + 1 2 𝑥
𝑥 + 2 0 𝑥 + 2 2𝑥 + 2 2𝑥 + 2 1 𝑥 𝑥 + 1 2𝑥 2
2𝑥 0 2𝑥 𝑥 1 2𝑥 + 1 𝑥 + 1 2 2𝑥 + 2 𝑥 + 2

2𝑥 + 1 0 2𝑥 + 1 𝑥 + 2 𝑥 + 1 2 2𝑥 2𝑥 + 2 𝑥 1
2𝑥 + 2 0 2𝑥 + 2 𝑥 + 1 2𝑥 + 1 𝑥 2 𝑥 + 2 1 2𝑥

Example 2.3.7 (𝐺𝐹(8)). Instead of an irreducible polynomial of degree 2, for the construction of the
finite field 𝐺𝐹(8) we will need an irreducible polynomial in 𝐺𝐹(2) of degree 3. The polynomial 𝑔(𝑥) =
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𝑥3 + 𝑥 + 1 will be used. Since this time we have an irreducible polynomial of degree 3, the ele-
ments of our finite field also include polynomials of degree 2. The full set of elements is 𝐺𝐹(8) =
{0, 1, 𝑥, 𝑥+1, 𝑥2, 𝑥2+1, 𝑥2+𝑥, 𝑥2+𝑥+1}. Multiplication and addition are as in the addition and multipli-
cation table. Addition is performed modulo 2. As a result of our decision on the irreducible polynomial,
𝑥3 ≡ 𝑥 + 1, this is used in constructing the multiplication table.

Addition Table

+ 0 1 𝑥 𝑥 + 1 𝑥2 𝑥2 + 1 𝑥2 + 𝑥 𝑥2 + 𝑥 + 1
0 0 1 𝑥 𝑥 + 1 𝑥2 𝑥2 + 1 𝑥2 + 𝑥 𝑥2 + 𝑥 + 1
1 1 0 𝑥 + 1 𝑥 𝑥2 + 1 𝑥2 𝑥2 + 𝑥 + 1 𝑥2 + 𝑥
𝑥 𝑥 𝑥 + 1 0 1 𝑥2 + 𝑥 𝑥2 + 𝑥 + 1 𝑥2 𝑥2 + 1

𝑥 + 1 𝑥 + 1 𝑥 1 0 𝑥2 + 𝑥 + 1 𝑥2 + 𝑥 𝑥2 + 1 𝑥2
𝑥2 𝑥2 𝑥2 + 1 𝑥2 + 𝑥 𝑥2 + 𝑥 + 1 0 1 𝑥 𝑥 + 1

𝑥2 + 1 𝑥2 + 1 𝑥2 𝑥2 + 𝑥 + 1 𝑥2 + 𝑥 1 0 𝑥 + 1 𝑥
𝑥2 + 𝑥 𝑥2 + 𝑥 𝑥2 + 𝑥 + 1 𝑥2 𝑥2 + 1 𝑥 𝑥 + 1 0 1

𝑥2 + 𝑥 + 1 𝑥2 + 𝑥 + 1 𝑥2 + 𝑥 𝑥2 + 1 𝑥2 𝑥 + 1 𝑥 1 0

Multiplication Table

⋅ 0 1 𝑥 𝑥 + 1 𝑥2 𝑥2 + 1 𝑥2 + 𝑥 𝑥2 + 𝑥 + 1
0 0 0 0 0 0 0 0 0 0
1 0 1 𝑥 𝑥 + 1 𝑥2 𝑥2 + 1 𝑥2 + 𝑥 𝑥2 + 𝑥 + 1
𝑥 0 𝑥 𝑥2 𝑥2 + 𝑥 𝑥 + 1 1 𝑥2 + 𝑥 + 1 𝑥2 + 1

𝑥 + 1 0 𝑥 + 1 𝑥2 + 𝑥 𝑥2 + 1 𝑥2 + 𝑥 + 1 𝑥2 1 𝑥
𝑥2 0 𝑥2 𝑥 + 1 𝑥2 + 𝑥 + 1 𝑥2 + 𝑥 𝑥 𝑥2 + 1 1

𝑥2 + 1 0 𝑥2 + 1 1 𝑥2 𝑥 𝑥2 + 𝑥 + 1 𝑥 + 1 𝑥2 + 𝑥
𝑥2 + 𝑥 0 𝑥2 + 𝑥 𝑥2 + 𝑥 + 1 1 𝑥2 + 1 𝑥 + 1 𝑥 𝑥2

𝑥2 + 𝑥 + 1 0 𝑥2 + 𝑥 + 1 𝑥2 + 1 𝑥 1 𝑥2 + 𝑥 𝑥2 𝑥 + 1



3
RSA encryption

RSA is one of the oldest versions of public key cryptosystems. Cryptosystems are widely used to have
a secure way for (digital) communication. Public key cryptography, also known as asymmetric cryp-
tography, is characterized by the use of two different keys; a public key and a private key. Two uses
of public key cryptography are public key encryption for message exchange and digital signatures.
The first version of the RSA encryption algorithm has been published by Ron Rivest, Adi Shamir and
Leonard Adleman in 1978[10], the encryption method they suggested was used for digital signatures.
RSA encryption can also be used to encrypt and decrypt messages so anyone eavesdropping the con-
versation can not uncover the original message. Until this day, no method has been published that
would break this systems security as long as the key used is large enough. Breaking the security of
the RSA encryption is known as the RSA problem.

3.1. Digital signatures
We will start with explaining how the RSA algorithm works according to Rivest, Shamir and Adleman.
They created an algorithm to add digital signatures, this algorithm consists of two parts; the encryption
algorithm 𝐸 and the decryption algorithm 𝐷.

When they developed this method they agreed on four necessary properties any public key cryp-
tosystem has to satisfy;

• Deciphering the enciphered form of a message 𝑀 returns the original message 𝑀. Formally,

𝐷(𝐸(𝑀)) = 𝑀. (3.1)

• Both 𝐸 and 𝐷 are easy to compute.

• By publicly revealing 𝐸, no easy way to compute 𝐷 will be revealed. This means in practice that
only the owner of the private key can decrypt messages encrypted with 𝐸, or compute𝐷 efficiently.

• If a message 𝑀 is first deciphered and then enciphered, the message 𝑀 is the result. Formally,

𝐸(𝐷(𝑀)) = 𝑀. (3.2)

Now we know what properties the cryptosystem has to satisfy, let’s discuss how RSA encryption
works.

As we often do in the field of cryptography, we consider two persons called Alice (𝐴) and Bob (𝐵)
who will use the system. Both Alice and Bob have an encryption and a decryption procedure, which
we call 𝐸𝐴, 𝐷𝐴, 𝐸𝐵 and 𝐷𝐵 (the encryption and decryption procedure for Alice and the encryption and
decryption procedure for Bob respectively). For the encryption algorithms, both Alice and Bob have

9
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their own public key. For the decryption they both have a private key. Assume Bob wants to send Alice
a signed message. He starts by computing the signature for the message 𝑀;

𝑆 = 𝐷𝐵(𝑀)
Instead of sending 𝑆 to Alice, Bob computes 𝐶 = 𝐸𝐴(𝑆) and sends the result to Alice. If Bob would

send 𝑆 instead, everyone could apply Bob’s (public) encryption algorithm to read the original message
𝑀. By sending 𝐶, only Alice can decrypt the original message. After receiving the ciphertext 𝐶, Alice
decrypts the ciphertext with her decryption algorithm to obtain 𝑆;

𝑆 = 𝐷𝐴(𝐸𝐴(𝑆)).
To read the original message, all Alice needs to do is compute 𝐸𝐵(𝑆), which she can do since the

key for Bob’s encryption algorithm is a public key;

𝑀 = 𝐸𝐵(𝐷𝐵(𝑀)) = 𝐸𝐵(𝑆).
The message exchange procedure described above is visualized in figure 3.1.

Figure 3.1: Visualization of the RSA encryption algorithm

Following these steps ensures Alice she has received a message from Bob that has not been al-
tered by any eavesdropper; Bob is the (single) owner of the private key and therefore he must have
been the one to encrypt the message. Moreover, for this same reason Bob cannot deny he was the
sender of the message that Alice received.

3.2. Message exchange
A similar scheme as used for digital signatures can be applied to exchange messages. Assume Alice
(𝐴) wants to send a message 𝑀 to Bob (𝐵), but she does not want anyone eavesdropping on the
conversation to be able to decrypt the message she sent. Alice starts by computing 𝐶 = 𝐸𝐵(𝑀) and
sends 𝐶 to Bob. The key used for encryption is the public key, so anyone could compute 𝐶. However,
the key for decryption is a private key (in this situation Bob’s private key). Only individuals with the
private key can compute 𝑀 after receiving the ciphertext 𝐶

𝑀 = 𝐷𝐵(𝐶) = 𝐷𝐵(𝐸𝐵(𝑀)).
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Figure 3.2 shows a visualisation of this process.

Figure 3.2: Visualisation of message exchange

3.3. Mathematics
We will once again describe message exchange using RSA encryption. This time using mathematics.
This process is represented in figure 3.3. Here Bob sends a message to Alice. We will devide the
process in three steps; key generation, encryption and decryption.

Key generation is performed by Alice; Alice starts with randomly selecting two large enough primes
𝑝 and 𝑞 and uses these to calculate 𝑛 = 𝑝 ⋅𝑞. The following step will be selecting some positive integer
𝑒 < 𝑛 such that 𝑔𝑐𝑑(𝑒, 𝜙(𝑛)) = 1 and calculating 𝑑 = 𝑒−1(𝑚𝑜𝑑 𝜙(𝑛)). 𝑒 is the public key and 𝑑 will be
refered to as the private key.

Encryption is done by Bob; he starts with receiving the public key (𝑒, 𝑛) from Alice. Before he can
encrypt the message he wants to send to Alice he needs to represent the message as some integer 𝑀
with 1 ≤ 𝑀 < 𝑛. Bob now has everything to compute the ciphertext 𝐶 ≡ 𝑀𝑒 (𝑚𝑜𝑑 𝑛), which he sends
back to Alice.

Decryption is again executed by Alice. She uses the private key to compute𝑀 ≡ 𝐶𝑑 (𝑚𝑜𝑑 𝑛), and
extract the original plaintext from the integer 𝑀.

Figure 3.3: Message exchange with RSA encryption

Now it is time to prove the validity of this encryption. To use the method described above, one starts
with selecting two very large (random) primes 𝑝 and 𝑞 and calculates 𝑛 = 𝑝⋅𝑞. To encrypt the message
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𝑀, it needs to be represented as an integer in {0, 1, … , 𝑛−1} such that𝑀 and 𝑛 are coprime. Our public
key is a pair (𝑒, 𝑛) and our private key is another pair (𝑑, 𝑛). Equation (3.3) describes the encryption
and decryption formula used.

𝐸(𝑀) ≡ 𝑀𝑒 (mod 𝑛)
𝐷(𝑀) ≡ 𝑀𝑑 (mod 𝑛) (3.3)

In order to make sure the recipient encodes the correct message, it is important that Equation (3.1)
and Equation (3.2) both hold.

Proposition 3.3.1. 𝐷(𝐸(𝑀)) = 𝑀𝑒⋅𝑑 ≡ 𝑀 (𝑚𝑜𝑑 𝑛) and 𝐸(𝐷(𝑀)) = 𝑀𝑑⋅𝑒 ≡ 𝑀 (𝑚𝑜𝑑 𝑛).

Proof. Since multiplication is commutative we can write 𝐷(𝐸(𝑀) = 𝐸(𝐷(𝑀)) ≡ 𝑀𝑒∗𝑑 (𝑚𝑜𝑑 𝑛), one
needs

𝑀𝑒⋅𝑑 ≡ 𝑀 (𝑚𝑜𝑑 𝑛).
Assume 𝑀 and 𝑛 are coprime, Euler’s Theorem, Theorem 2.1.18, implies 𝑀𝜙(𝑛) ≡ 1 (𝑚𝑜𝑑 𝑛). By
Euler’s product formula, Theorem 2.1.17, 𝜙(𝑛) = 𝜙(𝑝) ⋅ 𝜙(𝑞) = 𝑛 − (𝑝 + 𝑞) + 1 = (𝑝 − 1)(𝑞 − 1).
𝑑 is chosen such that 𝑔𝑐𝑑(𝑑, (𝑝 − 1)(𝑞 − 1)) = 1. 𝑒 needs to be such that Equation (3.4) holds

𝑒 ⋅ 𝑑 ≡ 1 (𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1)). (3.4)

Since 𝑔𝑐𝑑(𝑑, (𝑝 − 1)(𝑞 − 1)) = 1, we have 𝑑 ∈ (ℤ/𝜙(𝑛)ℤ)∗. By the definition of groups, there must
exists an 𝑒 such that Equation (3.4) holds.
Since 𝑒 ⋅ 𝑑 ≡ 1 (𝑚𝑜𝑑 𝜙(𝑛)), we can write 𝑒 ⋅ 𝑑 = 𝑘 ⋅ 𝜙(𝑛) + 1 for some 𝑘 ∈ ℤ. Together with Fermat’s
Little Theorem, Theorem 2.2.1, Equation (3.5) can be established.

𝑀𝑝−1 ≡ 1 (mod 𝑝), (𝑝 − 1) ∣ 𝜙(𝑛) ⟹ 𝑀𝑘𝜙(𝑛)+1 ≡ 𝑀 (mod 𝑝)
𝑀𝑞−1 ≡ 1 (mod 𝑞), (𝑞 − 1) ∣ 𝜙(𝑛) ⟹ 𝑀𝑘𝜙(𝑛)+1 ≡ 𝑀 (mod 𝑞)

(3.5)

As a result of Equation (3.4) and Equation (3.5), 𝑀𝑒⋅𝑑 ≡ 𝑀𝑘𝜙(𝑛)+1 ≡ 𝑀 (𝑚𝑜𝑑 𝑛).

Notice that Equation (3.1) and Equation (3.2) still hold when 𝑀 and 𝑛 are not coprime. Assume 𝑀
and 𝑛 are not coprime, that is 𝑔𝑐𝑑(𝑀, 𝑛) ≠ 1. Since 𝑛 = 𝑝 ⋅ 𝑞 with 𝑝 and 𝑞 both prime, this would mean
that either 𝑝 ∣ 𝑀 or 𝑞 ∣ 𝑀 (not both). WLOG assume 𝑝 ∣ 𝑀. It is trivial that now 𝑀𝑒⋅𝑑 = 𝑀𝑘𝜙(𝑛)+1 ≡
𝑀 (𝑚𝑜𝑑 𝑝). The same method as before can be used to show 𝑀𝑒⋅𝑑 = 𝑀𝑘𝜙(𝑛)+1 ≡ 𝑀 (𝑚𝑜𝑑 𝑞). Hence
𝑀𝑒⋅𝑑 ≡ 𝑀 (𝑚𝑜𝑑 𝑛).

Even though theoretically our public key 𝑒 could be a small number, 𝑒 is often large. For the calcu-
lation of 𝐶 ≡ 𝑀𝑒, an algorithm like the left-to-right binary method is often used to speed up the process
of calculating the (high) power. Algorithm 3.3.2 explains how this algorithm works. Common choices
for 𝑒 are 3, 5, 17, 257 and 65537 since these can all be written as 2𝑘+1 for some 𝑘 ∈ ℕ and are prime.
Example 3.3.3 gives an example of how Algorithm 3.3.2 works.

Algorithm 3.3.2 (left-to-right binary method). This algorithm is one of the ways to reduce the number
of calculations necessary to compute 𝑟 = 𝑘𝑛 for 𝑘 ∈ ℤ and 𝑛 ∈ ℕ.

• Write 𝑛 in binary.

• Initialize 𝑟 ← 1.

• Go through the bits representing 𝑛 in binary from left to right.
If 𝑏𝑖𝑡 = 0, set 𝑟 ← 𝑟2 and continue with the next bit.
If 𝑏𝑖𝑡 = 1, start with 𝑟 ← 𝑟2. Then set 𝑟 ← 𝑟 ⋅ 𝑘 and continue with the next bit.

Example 3.3.3 (left-to-right binary method). To compute 2317 using the left-to-right binary method, we
start with writing 17 as a binary number; 17 = 10001. Initialize 𝑟 ← 1.

• Bit 1 = 1, 𝑟 ← 𝑟2 = 1, then set 𝑟 ← 𝑟 ⋅ 𝑘 = 23.

• Bit 2 = 0, 𝑟 ← 𝑟2 = 529.

• Bit 3 = 0, 𝑟 ← 𝑟2 = 279 841.
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• Bit 4 = 0, 𝑟 ← 𝑟2 = 7 831 098 281.

• Bit 5 = 1, 𝑟 ← 𝑟2 = 6 132 610 415 680 998 648 961, then set 𝑟 ← 𝑟⋅𝑘 = 141 050 039 560 662 968 926 103.

Using the left-to-right binary method we have computed 2317 = 141 050 039 560 662 968 926 103
using 7 computations.

Now we know how to compute the encryption and the decryption is it necessary to know how to
chose the public key 𝑒 and the private key 𝑑. Let 𝑑 be an integer such that 𝑔𝑐𝑑(𝑑, (𝑝 − 1)(𝑞 − 1)) = 1.
To determine the public key to execute RSA encryption we need to find 𝑒 such that 𝑒 ⋅ 𝑑 ≡ 1 (𝑚𝑜𝑑 (𝑝−
1)(𝑞 − 1)). This means that 𝑒 and 𝑑 are each others inverses modulo 𝜙(𝑛), Corollary 2.1.2 and a
modification of Algorithm 2.1.3 will be used to find 𝑒. By Corollary 2.1.2, which is a special case of
Bezout’s Identity, there must exist integers 𝑥 and 𝑦 such that 𝑥𝑑 + 𝑦𝜙(𝑛) = 1. After finding these 𝑥
and 𝑦 we can take 𝑒 = 𝑥. To find these 𝑥 and 𝑦, start by performing the Euclidean Algorithm, Algorithm
2.1.3, with 𝑎 = 𝜙(𝑛) and 𝑏 = 𝑑. When using this algorithm to find the greatest common divider of two
integers it is not necessary to remember the values for the 𝑞𝑖 ’s. However, this time it is necessary to
safe those integers alongside the sequence 𝑟0, 𝑟1, …. We can stop the algorithm as soon as we find
𝑟𝑖 = 1 for some 𝑖 ∈ ℕ. We use substitution to express this 𝑟𝑖 using 𝑞𝑗 with 0 < 𝑗 < 𝑖 and 𝑟0 and 𝑟1.
Example 3.3.4 shows how one can find the inverse of an element in the group (ℤ/𝑛ℤ)∗.

Example 3.3.4 (Inverse of 100 modulo 257). 𝑔𝑐𝑑(257, 100) = 1, therefore 100 ∈ (ℤ/257ℤ)∗ and there
must exist some 100−1 ∈ (ℤ/257ℤ)∗ such that 100 ⋅ 100−1 ≡ 1 (𝑚𝑜𝑑 257).

• Set 𝑟0 = 257 and 𝑟1 = 100.

• 𝑟2 = 𝑟0 − 𝑞1𝑟1, thus 57 = 257 − 2 ⋅ 100.

• 𝑟3 = 𝑟1 − 𝑞2𝑟2, thus 43 = 100 − 1 ⋅ 57.

• 𝑟4 = 𝑟2 − 𝑞3𝑟3, thus 14 = 57 − 1 ⋅ 43.

• 𝑟5 = 𝑟3 − 𝑞4𝑟4, thus 1 = 43 − 3 ⋅ 14.

Now use substitution to find 𝑥 and 𝑦 such that 100𝑥 + 257𝑦 = 1

1 = 43 − 3 ⋅ 14
= 43 − 3(57 − 1 ⋅ 43) = −3 ⋅ 57 + 4 ⋅ 43
= −3 ⋅ 57 + 4(100 − 1 ⋅ 57) = 4 ⋅ 100 − 7 ⋅ 57
= 4 ⋅ 100 − 7(247 − 2 ⋅ 100) = −7 ⋅ 257 + 18 ⋅ 100.

We have found 𝑦 = −7 and 𝑥 = 18 = 100−1 (one can easily confirm that 18 is indeed the inverse of
100 modulo 257).





4
Semifields

This chapter will be on the implementation of RSA encryption on a number of mathematical structures.
The focus will be on checking whether encryption 𝐸 and decryption 𝐷 are well defined as in Equation
(4.1) and Equation (4.2).

𝐸(𝑀) ≡ 𝑀𝑒 (4.1)

𝐷(𝑀) ≡ 𝑀𝑑 (4.2)

One example of a category of so-called exotic fields are the semifields constructed by Knuth[7].

Definition 4.0.1 (Semifield). A finite semifield 𝑆 is a finite algebraic system containing at least two
elements. 𝑆 possesses two binary operations, addition and multiplication, which satisfy the following
axioms

A1 Addition is a group, with identity element 0.
A2 If 𝑎𝑏 = 0, then either 𝑎 = 0 or 𝑏 = 0.
A3 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐; (𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐.
A4 There is an element 1 in 𝑆 such that 1𝑎 = 𝑎1 = 𝑎.

Within the category of semifields, there is the category of proper semifields;

Definition 4.0.2 (Proper semifield). A proper semifield is a semifield which is not a field.

Definition 4.0.3 (Pre-semifield). A system is a pre-semifield if all conditions for semifields are satisfied
except possibly 𝐴4.

Example 4.0.4 (Proper semifield). A proper semifield 𝑉 will be constructed and the possibility to use
RSA encryption on the field will be analyzed.

𝑉 = {𝑢 + 𝜆𝑣; 𝑢, 𝑣 ∈ 𝐺𝐹(4)}

The operations addition and multiplication are both defined on 𝑉 as follows:

(𝑢 + 𝜆𝑣) + (𝑥 + 𝜆𝑦) = (𝑢 + 𝑥) + 𝜆(𝑣 + 𝑦)

(𝑢 + 𝜆𝑣)(𝑥 + 𝜆𝑦) = (𝑢𝑥 + 𝑣2𝑦) + 𝜆(𝑣𝑥 + 𝑢2𝑦 + 𝑣2𝑦2).
Here, the addition and multiplication of 𝑢, 𝑣, 𝑥 and 𝑦 is defined as multiplication and addition in 𝐺𝐹(4).
𝑉 is indeed a proper semifield. All the properties 𝐴1,𝐴2, 𝐴3 and 𝐴4 are satisfied;

• Property 𝐴1 holds. Since 𝑢, 𝑣, 𝑥 and 𝑦 are elements of 𝐺𝐹(4), both 𝑢 + 𝑥 and 𝑣 + 𝑦 are in 𝐺𝐹(4)
and therefore (𝑢 + 𝜆𝑣) + (𝑥 + 𝜆𝑦) = (𝑢 + 𝑥) + 𝜆(𝑣 + 𝑦) ∈ 𝑉.
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• To get (𝑢 + 𝜆𝑣)(𝑥 + 𝜆𝑦) = 0 + 0, we require both 𝑢𝑥 + 𝑣2𝑦 = 0 and 𝑣𝑥 + 𝑢2𝑦 + 𝑣2𝑦2 = 0. If
𝑢𝑥+𝑣2𝑦 = 0 and none of the original factors is zero, then there must be some 𝑧 (unequal to zero)
such that 𝑥 = 𝑣2𝑧 and 𝑦 = 𝑢𝑧. Then, 𝑣𝑥 + 𝑢2𝑦 + 𝑣2𝑦2 = 𝑣3𝑧 + 𝑢3𝑧 + 𝑣2𝑢2𝑧2 = 0. This would
imply 𝑢 = 𝑣 = 0, which gives a contradiction. Therefore 𝐴2 must hold.

• Write 𝑎 = 𝑢 + 𝜆𝑣, 𝑏 = 𝑥 + 𝜆𝑦 and 𝑐 = 𝑝 + 𝜆𝑞. One can show that 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 =
(𝑢𝑥 + 𝑢𝑝 + 𝑣2𝑦 + 𝑣2𝑞) + 𝜆(𝑣𝑥 + 𝑣𝑝 + 𝑢2𝑦 + 𝑢2𝑞 + 𝑣2𝑦2 + 𝑣2𝑞2). Something similar holds for
(𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐. This implies that property 𝐴3 is valid for 𝑉.

• Take 1 = 1 + 𝜆0 ∈ 𝑉. Then 1𝑎 = 𝑎1 = 𝑎 for any 𝑎 ∈ 𝑉. Hence property 𝐴4 is satisfied.
Moreover, if 𝑎 = 𝑡+𝜆0, 𝑏 = 𝑡+𝜆1 and 𝑐 = 𝑡+𝜆𝑡, then (𝑎𝑏)𝑐 = 𝑡+𝜆𝑡2 and 𝑎(𝑏𝑐) = 𝑡+𝜆0. Therefore

the system 𝑉 is not only a semifield but a proper semifield. Multiplication as defined for system 𝑉 is not
associative as can be found in 4.1. This multiplication table is optained using Python (see Appendix
A).

Figure 4.1: Multiplication table system 𝑉. (𝑢, 𝑣) = 𝑢 + 𝜆𝑣, cell (𝑋, 𝑌) has value 𝑌 ⋅ 𝑋.

Despite multiplication not being associative, powers still might be defined (i.e. the left (𝑋(𝑋𝑋)) and
right ((𝑋𝑋)𝑋) powers are equal). A quick analysis of the table of both left and right powers (see Ap-
pendix B) obtained using Python code (see Appendix A) tells us that for this system 𝑉 the left and
right powers are not necessarily equal and therefore powers are not well defined. An example of an
element in 𝑉 for which the left and right power are different is the element 𝑥 = 𝑡+𝜆1, as for this element
𝑥(𝑥𝑥) = 𝑡2 + 𝜆𝑡 while (𝑥𝑥)𝑥 = 𝑡2 + 𝜆𝑡2. If we would have 𝑥(𝑥𝑥) = (𝑥𝑥)𝑥 for all 𝑥 ∈ 𝑉, then the powers
are well defined and we would say that the structure 𝑉 is power associative.

In Example 4.0.4 we have seen that whenever we are dealing with a proper semifield, this field
needs to be power associative in order to extend the RSA algorithm onto this field. We will consider a
structure that is power associative.

Example 4.0.5 (Power associative). Let 𝑆 be the set 𝑆 = {0, 𝑢, 𝑣, 𝑢 + 𝑣}. The operations addition and
multiplication are defined as in the addition and multiplication tables.

Addition Table

+ 0 𝑢 𝑣 𝑢 + 𝑣
0 0 𝑢 𝑣 𝑢 + 𝑣
𝑢 𝑢 0 𝑢 + 𝑣 𝑣
𝑣 𝑣 𝑢 + 𝑣 0 𝑢

𝑢 + 𝑣 𝑢 + 𝑣 𝑣 𝑢 0

Multiplication Table

⋅ 0 𝑢 𝑣 𝑢 + 𝑣
0 0 0 0 0
𝑢 0 𝑢 𝑢 + 𝑣 𝑣
𝑣 0 𝑢 + 𝑣 𝑣 𝑢

𝑢 + 𝑣 0 𝑣 𝑢 𝑢 + 𝑣
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To see that the system 𝑆 is not muliplicative associative, take the elements 𝑢, 𝑣 and 𝑢 + 𝑣. Then
𝑢 ⋅ (𝑣 ⋅ (𝑢 +𝑣)) = 𝑢 while (𝑢 ⋅ 𝑣) ⋅ (𝑢 +𝑣) = 𝑢+𝑣. However, it is clear that 𝑆 is power associative: for all
𝑥 ∈ 𝑆, 𝑥(𝑥𝑥) = 𝑥 = (𝑥𝑥)𝑥. While implementing RSA encryption on the system 𝑆 as in Equation (4.1)
and Equation (4.2), the values for the public key 𝑒 and secret key 𝑑 can be chosen arbitrarily from the
set of natural numbers since 𝑥𝑛 = 𝑥 for all 𝑥 ∈ 𝑆 and all 𝑛 ∈ ℕ.

The system 𝑆 as defined in Example 4.0.5 does not have a multiplicative identity and therefore
does not satisfy condition 𝐴4, hence 𝑆 is not a (proper) semifield. However, it is rather easy to show
that the other three properties for semifields are satisfied by the system S. As a result this system is a
pre-semifield.

Another pre-semifield given by Knuth[7] is the one derived from any field 𝐹 with more than one
automorphism (thus an automorphism that is not the identity). A possible choice for an automorphism
is the Frobenius Automorphism.

Definition 4.0.6 (Frobenius Automorphism). Let 𝐹 be the finite field with characteristic 𝑝 and 𝑞 = 𝑝𝑛
elements, thus 𝐹 = 𝐺𝐹(𝑞). Take 𝐾 = 𝐺𝐹(𝑞𝑁) for some fixed 𝑁 ∈ ℕ. For all 𝑎 ∈ 𝐾, the Frobenius
Automorphism of 𝐾 over 𝐹 is defined as

𝜎(𝑎) = 𝑎𝑞

The first step in proving wheter the Frobenius Automorphism is indeed an automorphism on any
finite field is to proof that the Frobenius Automorphism preserves the structure of a finite field, i.e. it
preserves addition and multiplication.

Proposition 4.0.7. The Frobenius Automorphism perserves addition and multiplication, that is for any
𝑎, 𝑏 ∈ 𝐹,

𝜎(𝑎 + 𝑏) = 𝜎(𝑎) + 𝜎𝑏
𝜎(𝑎 ⋅ 𝑏) = 𝜎(𝑎) ⋅ 𝜎(𝑏)

Proof. We start with proving that the Frobenius Automorphism preserves addition. Let 𝐺𝐹(𝑞) be a finite
field with 𝑞 = 𝑝𝑛 for some prime 𝑝 and some 𝑛 ∈ ℕ. Take 𝑎, 𝑏 ∈ 𝐺𝐹(𝑞) arbitrary. Using the Binomium
of Newton to write

𝜎(𝑎 + 𝑏) = (𝑎 + 𝑏)𝑞

=
𝑞

∑
𝑘=0

(𝑞𝑘)𝑎
𝑞−𝑘𝑏𝑘

= 𝑎𝑞 + (𝑞1)𝑎
𝑞−1𝑏 + … + ( 𝑞

𝑞 − 1)𝑎𝑏
𝑞−1 + 𝑏𝑞 .

If 𝑘 = 1, 2, … , 𝑞−1, then (𝑞𝑘) =
𝑞⋅(𝑞−1)!
𝑘!(𝑞−𝑘)! . Hence for 𝑘 = 1, 2, … , 𝑞−1, (𝑞𝑘)𝑎

𝑞−𝑘𝑏𝑘 = 𝑞⋅(𝑞−1)!
𝑘!(𝑞−𝑘)!𝑎

𝑞−𝑘𝑏𝑘 ≡ 0
in the field 𝐺𝐹(𝑞). Therefore 𝜎(𝑎 + 𝑏) = (𝑎 + 𝑏)𝑞 = 𝑎𝑞 + (𝑞1)𝑎

𝑞−1𝑏 +…+ ( 𝑞
𝑞−1)𝑎𝑏

𝑞−1 + 𝑏𝑞 ≡ 𝑎𝑞 + 𝑏𝑞 in
the finite field, which is exactly equal to 𝜎(𝑎) + 𝜎(𝑏).

For multiplication we have 𝜎(𝑎 ⋅ 𝑏) = (𝑎 ⋅ 𝑏)𝑞 = 𝑎𝑞 ⋅ 𝑏𝑞 = 𝜎(𝑎) ⋅ 𝜎(𝑏).

Next, we will prove that the Frobenius Automorphism is a bijection.

Proposition 4.0.8. The Frobenius Automorphism is a bijective function.

Proof. Let 𝑒 be the identity element of an arbitrary finite field 𝐹 with corresponding Frobenius Auto-
morphism 𝜎. Since the Frobenius Automorphism preserves multiplication, we have 𝜎(𝑒𝑒) = 𝜎(𝑒) =
𝜎(𝑒)𝜎(𝑒), which only holds when 𝑒 = 𝜎(𝑒). Then by Theorem 2.1.11, the Frobenius Automorphism is
injective. Since the domain and the codomain of the Frobenius Automorphism both are the finite field 𝐹
and therefore have the same number of elements, the Frobenius Automorphism must be bijective.
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Now we can conclude that the Frobenius Automorphism is indeed an automorphism on a finite
field. The next example will show how the Frobenius Automorphism works on the finite fields 𝐺𝐹(9)
and 𝐺𝐹(8) over 𝐺𝐹(3) and 𝐺𝐹(@) respectively.
Example 4.0.9 (𝐺𝐹(9)). 𝐺𝐹(9) is the finite field with prime characteristic 𝑐ℎ𝑎𝑟(𝐺𝐹(9)) = 3. By definition
the Frobenius Automorphism 𝜎 ∶ 𝐺𝐹(9) → 𝐺𝐹(9) is

𝜎(𝑎) = 𝑎3

for all 𝑎 ∈ 𝐺𝐹(9).

Figure 4.2 shows how the automorphism acts on the elements of the field.

𝑎 𝜎(𝑎)
0 0
1 1
2 2
𝑥 2𝑥

𝑥 + 1 2𝑥 + 1
𝑥 + 2 2𝑥 + 2
2𝑥 𝑥

2𝑥 + 1 𝑥 + 1
2𝑥 + 2 𝑥 + 2

(a) (b)

Figure 4.2: 𝜎 on 𝐺𝐹(9)

Notice that for 0, 1 and 2, 𝜎(𝑎) = 𝑎. This can be generalized as in the next theorem.

Theorem 4.0.10. Let 𝐹 = 𝐺𝐹(𝑞) with 𝑞 = 𝑝𝑛 be a finite field with 𝑐ℎ𝑎𝑟(𝐹) = 𝑝 and let 𝜎 be the
corresponding Frobenius Algorithm. Then 𝜎(𝑎) = 𝑎 if and only if 𝑎 ∈ ℤ𝕡 ≅ {0, 1, … , 𝑝 − 1}.
Proof. By Theorem 2.3.4, 𝑜𝑟𝑑(𝐹) = 𝑞. Therefore 𝐹 has a subfield 𝐾 that is isomorpic to {0, 1, … , 𝑝−1}.
By Fermat’s Little Theorem, Theorem 2.2.1, for all 𝑎 ∈ 𝐾 we have 𝜎(𝑎) = 𝑎𝑝 ≡ 𝑎 within the field 𝐹.

Example 4.0.11 (𝐺𝐹(8)). 𝐺𝐹(8) is the finite field with prime characteristic 𝑐ℎ𝑎𝑟(𝐺𝐹(8)) = 2. Since 8 =
23, there are two options 𝜎1 and 𝜎2 for the Frobenius Automorphism over 𝐺𝐹(2) and 𝐺𝐹(4) respectively.
By definition the Frobenius Automorphisms 𝜎1, 𝜎2 ∶ 𝐺𝐹(8) → 𝐺𝐹(8) are

𝜎1(𝑎) = 𝑎2
𝜎2(𝑎) = 𝑎4

for all 𝑎 ∈ 𝐺𝐹(8).

Figure 4.3 and Figure 4.4 show how the automorphisms acts on the elements of the field.

Using the Frobenius Automorphism we are able to construct the structure (𝐹, +, ∘) where 𝐹 is a finite
field and the operation ∘ is defined as 𝑥 ∘ 𝑦 = 𝜎(𝑥𝑦) for all 𝑥, 𝑦 ∈ 𝐹. Notice that the multiplication of
𝑥 and 𝑦 on the right-hand side takes place in the field 𝐹. We will show that the structure (𝐹, +, ∘) is a
pre-semifield;

A1 Since 𝐹 is a field and addition takes place in this field, addition is a group with identity element 0.

A2 Assume 𝑎∘𝑏 = 0. Then by Theorem 4.0.10 and Proposition 4.0.7, 𝑎∘𝑏 = 𝜎(𝑎𝑏) = 𝜎(𝑎)𝜎(𝑏) = 0.
Because the multiplication of 𝜎(𝑎) and 𝜎(𝑏) takes place in the field 𝐹 and not in the structure
(𝐹, +, ∘), we must have either 𝜎(𝑎) = 0 or 𝜎(𝑏) = 0. This is equivalent to saying either 𝑎 ∈ ker(𝜎)
or 𝑏 ∈ ker(𝜎). Since 𝑘𝑒𝑟(𝜎) = 0, either 𝑎 = 0 or 𝑏 = 0.
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𝑎 𝜎1(𝑎)
0 0
1 1
𝑥 𝑥2

𝑥 + 1 𝑥2 + 1
𝑥2 𝑥2 + 𝑥

𝑥2 + 1 𝑥2 + 𝑥 + 1
𝑥2 + 𝑥 𝑥

𝑥2 + 𝑥 + 1 𝑥 + 1

(a) (b)

Figure 4.3: 𝜎1 on 𝐺𝐹(8)

𝑎 𝜎2(𝑎)
0 0
1 1
𝑥 𝑥2 + 𝑥

𝑥 + 1 𝑥2 + 𝑥 + 1
𝑥2 𝑥

𝑥2 + 1 𝑥 + 1
𝑥2 + 𝑥 𝑥2

𝑥2 + 𝑥 + 1 𝑥2 + 1

(a) (b)

Figure 4.4: 𝜎2 on 𝐺𝐹(8)

A3 Let 𝑎, 𝑏, 𝑐 ∈ 𝐹 be arbitrary. Then 𝑎∘(𝑏+𝑐) = 𝜎(𝑎(𝑏+𝑐)) = 𝜎(𝑎𝑏+𝑎𝑏) = 𝜎(𝑎𝑏)+𝜎(𝑎𝑐) = 𝑎∘𝑏+𝑎∘𝑐
by Proposition 4.0.7.

In order to ensure that it is possible to extend RSA encryption to the pre-semifield (𝐹, +, ∘), Equation
(4.1) and Equation (4.2) must hold. This requires our pre-semifield to be power associative.

Proposition 4.0.12. The pre-semifield (𝐹, +, ∘) with 𝑥 ∘ 𝑦 = 𝜎(𝑥𝑦) for all 𝑥, 𝑦 ∈ 𝐹 is power associative.

Proof. Let 𝑎 ∈ 𝐹 be arbitrary. Then by Proposition 4.0.7

𝑎 ∘ (𝑎 ∘ 𝑎) = 𝜎(𝑎 ⋅ 𝜎(𝑎𝑎))
= 𝜎(𝑎)𝜎(𝜎(𝑎𝑎))
= 𝜎(𝜎(𝑎𝑎))𝜎(𝑎)
= 𝜎(𝜎(𝑎𝑎) ⋅ 𝑎)
= (𝑎 ∘ 𝑎) ∘ 𝑎.





5
Conclusion

This paper aimed to construct mathematical structures RSA encryption could be extended onto. Both
the encryption and decryption of the RSA algorithm are based on computing a power of either the mes-
sage 𝑀 or the encrypted ciphertext 𝐶. The mathematical structures we decided to study were different
types of (finite) semifields. A finite semifield 𝑆 is a finite algebraic system containing at least two ele-
ments and possesses the operations addition and multiplication. Besides semifields, also proper semi-
fields and pre-semifields have been discussed. What seems crucial in extending the RSA algorithms for
encryption and decryption on these structures is whether powers are associative, i.e. 𝑥(𝑥𝑥) = (𝑥𝑥)𝑥.
It is possible for a structure to be power associative but not associative with respect to multiplication.
The set 𝑆 = {0, 𝑢, 𝑣, 𝑢 + 𝑣} with addition and multiplicatoin as in the addition and multiplication table
is an example of a mathematical structure that is not multiplicative associative but is power associative.

Addition Table

+ 0 𝑢 𝑣 𝑢 + 𝑣
0 0 𝑢 𝑣 𝑢 + 𝑣
𝑢 𝑢 0 𝑢 + 𝑣 𝑣
𝑣 𝑣 𝑢 + 𝑣 0 𝑢

𝑢 + 𝑣 𝑢 + 𝑣 𝑣 𝑢 0

Multiplication Table

⋅ 0 𝑢 𝑣 𝑢 + 𝑣
0 0 0 0 0
𝑢 0 𝑢 𝑢 + 𝑣 𝑣
𝑣 0 𝑢 + 𝑣 𝑣 𝑢

𝑢 + 𝑣 0 𝑣 𝑢 𝑢 + 𝑣
Furthermore we have seen that the structure (𝐹, +, ∘) is a pre-semifield and is power associative.

Here 𝐹 is a finite field, the operation ∘ is defined as 𝑥 ∘ 𝑦 = 𝜎(𝑥𝑦) for all 𝑥, 𝑦 ∈ 𝐹 and 𝜎 denotes the
Frobenius algorithm.

This paper did not discuss the safety of the extension of RSA on these mathematical structures.
Research on this topic is necessary before being able to use RSA as a cryptosystem for our digital
world.
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A
Python code

1 import plotly.graph_objects as go
2 from tabulate import tabulate
3 import pandas as pd
4

5

6

7 ### define addition function for semifield ###
8 def addition(x,y):
9 x=str(x)

10 y=str(y)
11

12 valid_set = {”0”, ”1”, ”t”, ”t^2”}
13

14 if x not in valid_set or y not in valid_set:
15 return ”Invalid input”
16

17 elif x==y:
18 return ”0”
19 elif x==”0”:
20 return y
21 elif y==”0”:
22 return x
23 elif {x,y}=={”1”,”t”}:
24 return ”t^2”
25 elif {x,y}=={”1”,”t^2”}:
26 return ”t”
27 else:
28 return ”1”
29

30

31

32 ### define product function for semifield ###
33 def product(x,y):
34 x=str(x)
35 y=str(y)
36

37 valid_set = {”0”, ”1”, ”t”, ”t^2”}
38

39 if x not in valid_set or y not in valid_set:
40 return ”Invalid input”
41

42 elif x==”0” or y==”0”:
43 return ”0”
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44 elif x==”1”:
45 return y
46 elif y==”1”:
47 return x
48 elif x==”t” and y==”t”:
49 return ”t^2”
50 elif y==”t^2” and x==”t^2”:
51 return ”t”
52 else:
53 return ”1”
54

55

56

57 ### define multiply function for semifield ###
58 def multiply(u,v,x,y):
59 u=str(u)
60 v=str(v)
61 x=str(x)
62 y=str(y)
63

64 valid_set = {”0”, ”1”, ”t”, ”t^2”}
65

66 if u not in valid_set or v not in valid_set or x not in valid_set or y not in
valid_set:

67 return ”Invalid input”
68

69 return [addition(product(u,x),product(product(v,v),y)),addition(addition(
product(v,x),product(product(u,u),y)),product(product(v,v),product(y,y)))]

70

71

72

73 ### create the pairs (u,v) ###
74

75 elements = [”0”, ”1”, ”t”, ”t^2”]
76 pairs = []
77

78 for x in elements:
79 for y in elements:
80 pair = (x, y)
81 pairs.append(pair)
82

83 #print(pairs)
84

85

86

87 ### headers and showindex ###
88 labels=[]
89

90 for pair in pairs:
91 label=’(’+pair[0]+’,’+pair[1]+’)’
92 labels.append(label)
93

94 #print(labels)
95

96

97

98 ### print multiplication table ###
99 multiplication_table = []

100 columns = pairs
101 rows = pairs
102
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103 for r in rows:
104 row = []
105 for c in columns:
106 value = multiply(r[0], r[1], c[0], c[1])
107 entry = ’(’+’,’.join(value)+’)’
108 row.append(entry)
109 multiplication_table.append(row)
110

111 print(’table for multiplication’)
112 print(tabulate(multiplication_table, headers=labels, showindex=labels))
113

114

115

116 ### print powers table ###
117 powers_table = []
118 columns = list(range(1,17))
119 rows = pairs
120

121 for r in rows:
122 row = [’(’+r[0]+’,’+r[1]+’)’]
123 value = r
124 for i in range(1,16):
125 value = multiply(value[0], value[1], r[0], r[1])
126 entry = ’(’+’,’.join(value)+’)’
127 row.append(entry)
128 powers_table.append(row)
129

130 print(’table for powers’)
131 print(tabulate(powers_table, headers=columns))
132

133

134

135 ### print left powers table ###
136 left_powers_table = []
137 columns = list(range(1,17))
138 rows = pairs
139

140 for r in rows:
141 row = [’(’+r[0]+’,’+r[1]+’)’]
142 value = r
143 for i in range(1,16):
144 value = multiply(r[0], r[1], value[0], value[1])
145 entry = ’(’+’,’.join(value)+’)’
146 row.append(entry)
147 left_powers_table.append(row)
148

149 print(’table for left powers’)
150 print(tabulate(left_powers_table, headers=columns))
151

152

153

154 ### convert multiplication table to excel file ###
155 dataframe = pd.DataFrame(multiplication_table)
156 dataframe.index = pd.Index(labels)
157

158 file_path = r’C:\Users\lvanb\Documents\Bsc Applied Mathematics\BEP\code semifield\
multiplication_table.xlsx’

159 dataframe.to_excel(file_path, header=labels)
160

161

162
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163 ### convert powers table to excel file ###
164 dataframe = pd.DataFrame(powers_table)
165

166 file_path = r’C:\Users\lvanb\Documents\Bsc Applied Mathematics\BEP\code semifield\
powers_table.xlsx’

167 dataframe.to_excel(file_path, header = range(1,17))
168

169

170

171 ### convert left powers table to excel file ###
172 dataframe = pd.DataFrame(left_powers_table)
173

174 file_path = r’C:\Users\lvanb\Documents\Bsc Applied Mathematics\BEP\code semifield\
left_powers_table.xlsx’

175 dataframe.to_excel(file_path, header = range(1,17))

Listing A.1: Python code



B
Powers

Figure B.1 and Figure B.2 show the left (𝑥(𝑥𝑥)) and the right ((𝑥𝑥)𝑥) powers of the elements of structure
𝑉. Here (𝑢, 𝑣) = 𝑢 + 𝜆𝑣 and the header indicates to what power we raise the element.

Figure B.1: Left powers of structure 𝑉

Figure B.2: Right powers of structure 𝑉
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