

Graduation Plan

Master of Science Architecture, Urbanism & Building Sciences

M
as
te

Graduation Plan: All tracks

Submit your Graduation Plan to the Board of Examiners (Examenscommissie-BK@tudelft.nl), Mentors and Delegate of the Board of Examiners one week before P2 at the latest.

The graduation plan consists of at least the following data/segments:

Personal information	
Name	Elisa Pastorelli
Student number	5152801

Studio		
Name / Theme		Architectural Engineering/ Intecture, Harvest_BK
Main mentor	Roel van de Pas	Architectural Design
Second mentor	Jos de Krieger	Research
Argumentation of choice of the studio	The choice was based on the possibility the studio offered to explore a personal fascination which is the relationship between nature and technology. Post-animal agriculture is developing at great speed and artificial food is going to replace conventional food. I'm interested in speculating how architecture can define the new paradigm of 'human' farming, promoting environmental sustainable principles and technology democratisation.	

Graduation project	
Title of the graduation project	Floating Dairy Farm 2.0
Goal	
Location:	Noorder IJpolder, Amsterdam

The posed problem,

_Global:

People are eating too much meat and dairy. The United Nation's FAO trends show that the demand for animal-based food will disproportionately increase as population will reach 9.8 billion by 2050 (The future of food and agriculture, 2017). According to Bill Gates (How to avoid a climate disaster, 2021) as people get richer, they consume more calories and thus more meat and dairy. To reach the zero hunger sustainable goal, aiming to end hunger and all forms of malnutrition and achieve food security by 2030, we must intervene on our food production systems. This means investing in infrastructures and technology to boost the production yields while experimenting sustainable and resilient practices to reduce the environmental footprint all along the food chains. (SDG-2)

_Local: The Netherlands is a dairy country and has the highest livestock density in Europe. This brings numerous environmental issues connected with GHG emissions, water use and energy consumption but the main concern is the availability of land for agriculture practices. Currently the 53,3% of the Dutch surface (about 2 million ha) is destined to agricultural practices ([pbl.nl](#), 2020) of which 1.1 million ha, divided into grassland and maize fields, is employed for livestock practices (ZuivelNL, 2019). Considering population growth and that the surface of the Netherlands is gradually shrinking due to the rise in the sea level, innovative alternatives for a more sustainable dairy production are vital to solve this pressing societal issue.

<p>research questions and</p>	<p>Main research question:</p> <ol style="list-style-type: none"> 1. How cultured/cow-less milk technology might be disruptive for the built environment? <p>Sub-questions:</p> <ol style="list-style-type: none"> 2. What is cultured/cow-less milk technology? 3. How cultured/cow-less milk is produced? 4. What are the potential environmental and societal benefits of cultured/cow-less milk technology? 5. What are the benefits of replacing conventional milk with cultured/cow-less milk production in the Netherlands? 6. What are the material, energy and water flows of a hypothetical cultured/cow-less milk farm?
<p>design assignment in which these result.</p>	<p>_Floating Cultured/cow-less milk farm:</p> <p>The new paradigm of 'human farm' defines a new boundary between nature and technology. The project will speculate about this new relationship, integrating nature and technology with principles of sustainability and ecology on a floating structure.</p> <p>The floating cultured/cow-less milk farm will be a production pole (on a neighbourhood scale) but also an educational and social hub. The transition to cellular agriculture should promote the democratisation of technology being transparent and engaging the community to build a new food culture.</p>
<p>[This should be formulated in such a way that the graduation project can answer these questions. The definition of the problem has to be significant to a clearly defined area of research and design.]</p>	

Process

Method description

_ Literature review:

Studying scientific papers about cultured/cow-less technology to understand the process and the potential environmental and societal benefits.

_ Comparison and elaboration of data:

the data collected from the papers are applied to the Dutch context and a comparison between conventional dairy production and cow-less milk production is assessed to understand the environmental benefits of the new technology in terms of GHG emissions, energy consumption, water use and land use.

_ Flow analysis:

A flow analysis diagram is elaborated to understand the material, energy and water flows of an hypothetical cultured/cow-less milk farm. A second MFA poses the Noorder IJpolder as system boundary to understand how to integrate the natural resources available on the site in the design.

Literature and general practical preference

1. BEC Crew, 2014, World's First Artificial Cow's Milk to Hit the Market Next Year, ScienceAlert.com, <https://www.sciencealert.com/worlds-first-artificial-cows-milk-to-hit-the-market-next-year>
2. Burke-Kennedy E., 2015, How synthetic milk may put cows out of business, The Irish Time, <https://www.irishtimes.com/business/how-synthetic-milk-may-put-cows-out-of-business-1.2222468>
3. Burton R.J.F., 2019, The potential impact of synthetic animal protein on livestock production: The new "war against agriculture?", Journal of Rural Studies 68, 33-45 <https://doi.org/10.1016/j.jrurstud.2019.03.002>
4. ciwf.org, 2012, The life of: dairy cows, ciwf.org
5. Datar, I. 2016. "On Animal Products Without Animals", Bitten, New York, March 9. <https://www.youtube.com/watch?v=5FbQ89PFSsk>
6. Dixon H., 2019, Synthetic food: should NZ worry? A scene setter, www.berl.co.nz
7. Doermann L., 2019, Milk without the cow. Eggs without the chicken, Anthropocene Magazine <https://www.anthropocenemagazine.org/2018/08/milk-without-the-cow-eggs-without-the-chicken/>
8. Food and agriculture organisation of the united nations (FAO), 2010, Greenhouse Gas Emissions from the Dairy Sector: a life cycle assessment, www.FAO.org
9. Gaikwad V. Et al., 2018, Designing of fermenter and its utilisation in food industries, doi:10.20944/preprints201808.0433.v1, www.preprints.org
10. Garnett T., 2011, Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?, Food Policy 36 S23-S32, Elsevier, doi:10.1016/j.foodpol.2010.10.010
11. Gates B. 2021, How to avoid a climate disaster, Penguin Randon House UK
12. Grandic I., 2018, Genetically Modifying yeast-changing the future of dairy, www.medium.com, <https://izzygrandic.medium.com/genetically-modifying-yeast-changing-the-future-of-food-38cc16ac3db9>
13. Groot M.J., vant Hooft K., 2016, The hidden effects of dairy farming on public and environmental health in the Netherlands, India, Ethiopia, and Uganda, considering the use of antibiotics and other agro-chemicals, Frontiers in Public Health, Research Gate, <https://www.researchgate.net/publication/295830744>

14. Hoestra A.Y., 2012, The hidden water resource use behind meat and dairy, Twente Water Centre, University of Twente, PO Box 217, 7522AE Enschede, the Netherlands, <http://dx.doi.org/10.2527/af.2012-0038>
15. Hohlsen M., 15th April 2015, Cow Milk Without the Cow Is Coming to Change Food Forever, *wired.com*, <https://www.wired.com/2015/04/diy-biotech-vegan-cheese/>
16. Kenner R., 2009, Food Inc, documentary, USA, <http://www.documentarymania.com/player.php?title=Food%20Inc>
17. Kinney Mj, 2019, Formulating with animal-free ingredients, food technology magazine, www.ift.org
18. Knvul Sheikh, 2019, Got Impossible Milk? The Quest for Lab-Made Dairy, *New York Times*, <https://www.nytimes.com/2019/08/02/science/lab-grown-milk.html>
19. Martine Meireles, Elodie Lavoute, Patrice Bacchin. Filtration of a bacterial fermentation broth: harsh conditions effects on cake hydraulic resistance. *Bioprocess and Biosystems Engineering*, Springer Verlag, 2003, 25 (5), pp.309-314. [10.1007/s00449-002-0310-0](https://doi.org/10.1007/s00449-002-0310-0) . hal-00323069
20. Milburn J., 2018, Death-Free Dairy? the Ethics of Clean Milk , *J Agric Environ Ethics* (2018) 31:261–279 <https://doi.org/10.1007/s10806-018-9723-x>
21. Mouat M., Prince R., 2018, Cultured Meat and Cowless milk: On making markets for animal-free food, School of People, Environment and Planning, Massey University, Palmerston North, New Zealand
22. Navarrete, Clara J., Irene H.; Martínez, José L.; Procentese A.. 2020. "Cell Factories for Industrial Production Processes: Current Issues and Emerging Solutions" *Processes* 8, no. 7: 768. <https://doi.org/10.3390/pr8070768>
23. Panda S.K., Prathapkumar Shetty H., 2018, Innovations in Technologies for Fermented Food and Beverage Industry, Springer, *Food Microbiology and Food Safety*, <https://doi.org/10.1007/978-3-319-74820-7>
24. Passetti Cortez R. A., Eiras C. E., Gomes L.C., dos Santos J.F, do Prado I. N., Intensive dairy farming systems from Holland and Brazil:SWOT analyse comparison, Doi: 10.4025/actascianimsci.v38i4.31467 , <http://www.uem.br/acta>
25. Pichler A., 2017, The milk system, *Netflix*, www.Netflix.com
26. Premanandh J., 2020, bin Salem S., Religious and Regulatory concerns of animal free meat and milk, Abu Dhabi, Unite Arab Emirates, <https://www.scienceopen.com/>
27. Prince R., 2018, Cultured Meat and Cowless Milk: On Making Markets for Animal-Free Food, *Journal of Cultural Economy* <https://www.researchgate.net/publication/323303157>
28. Qiu L., 2014, Milk Grown in a Lab Is Humane and Sustainable. But Can It Catch On?, *National Geographic*, <https://www.nationalgeographic.com/news/2014/10/141022-lab-grown-milk-biotechnology-gmo-food-climate/>
29. Rigon Spier M., Vandenberghe L., Bianchi Pedroni Medeiros A., Soccol C., 2011, Application of different types of bioreactors in bioprocesses, *Bioreactors: Design, Properties and Applications* ISBN: 978-1-62100-164-5 Editors: P.G. Antolli and Z. Liu, pp. 55-90

30. Roland Berger Strategy Consultants, Dutch Diary Association (NZO), DairyNL, 2015, Engine of the economy: the Dutch dairy sector's strengths and the challenges ahead, www.nzo.nl

31. Schierhorn C., 2019, Technologies in food are making an animal-free future possible, Food Processing (the information source for food and beverages manufacturers) <https://www.foodprocessing.com/articles/2019/animal-free-food/>

32. Slane C., 2019, Fake milk is real news, as synthetic alternatives threaten traditional dairy farms, nbcnews.com, <https://www.nbcnews.com/business/business-news/fake-milk-real-news-synthetic-alternatives-threaten-traditional-dairy-farms-n973236>

33. Small B. , 2018, Synthetic foods: a technological disruption to the agricultural production of food, International Journal of Advances in Science Engineering and Technology, ISSN(p): 2321 –8991, ISSN(e): 2321 –9009 Volume-6, Issue-1, <http://iraj.in>

34. Smith K., 2020, Dairy-Identical vegan cheese is coming to save cows, <https://www.livekindly.co/dairy-identical-vegan-cheese-is-coming-to-save-cows/>

35. Specht L., 2018, Is the future of meat animal-free?, food technology magazine article, <https://www.ift.org/news-and-publications/food-technology-magazine/issues/2018/january/features/cultured-clean-meat>

36. Stephens N, Ellis, 2020, M. Cellular agriculture in the UK: a review [version 1; peer review: awaiting peer review] Wellcome Open Research, 5:12 (<https://doi.org/10.12688/wellcomeopenres.15685.1>)

37. Sui Ming et al., 2019, Optimisation of Trichoderma Fermentation Medium, IOP Conf. Ser.: Mater. Sci. Eng. 612 022075

38. Tullo E., Finzi A., Guarino M., 2019, Review: Environmental impact of livestock farming and precision livestock farming as a mitigation strategy, Science of the total environment 650 (2019) 2751-2760, Elsevier, <https://doi.org/10.1016/j.scitotenv.2018.10.018>

39. Udmale P., Indrajit Pal, Szabo S., Pramanik M., Large A., 2020, Global Food Security in the context of COVID-19: A scenario-based exploratory analysis, Progress in Disaster Science 7 (2020) 100120, Elsevier, <http://dx.doi.org/10.1016/j.pdisas.2020.100120>

40. van der Straten S., Apr 16 2019, Towards an animal-free food system: 7 tech innovation areas and 100+ startups, Noteworthy - The Journal Blog <https://blog.usejournal.com/towards-an-animal-free-food-system-7-tech-innovation-areas-and-100-startups-57b2f717543>

41. van der Weele, C., & Driessen, C. (2013). Emerging profiles for cultured meat: Ethics through and as design. *Animals*, 3(3), 647–662. <https://doi.org/10.3390/ani3030647>.

42. Van Zanten HHE, Herrero M, Hal OV, et al., 2018, Defining a land boundary for sustainable livestock consumption. *Glob Change Biol.* 2018;24:4185–4194. <https://doi.org/10.1111/gcb.14321>

43. Von Massow M., Gingerich M., 2019, Lab-grown dairy: the next food frontier, www.physorg.com, <https://phys.org/news/2019-06-lab-grown-dairy-food-frontier.html>

44. Waschulin V., Specht L., March 6 2018, Cellular agriculture: an extension of common production methods for food, The Good Food Institute, gfi.org

45. Watson E., 2016, Don't have a cow? Perfect Day animal free milk bids for slice of multibillion-dollar global dairy market, [www. dairyreporter.com](http://www.dairyreporter.com), <https://www.dairyreporter.com/Article/2016/08/22/Perfect-Day-vegan-animal-free-milk-a-gamechanger#>

46. Zimberoff L., 2019, Here comes lab-grown dairy: milk proteins made without animals, Los Angeles Time, <https://www.latimes.com/business/la-fi-lab-dairy-synthetic-whey-protein-gmo-20190711-story.html>

47. ZuivelNL, June 2019, Dutch dairy in figures 2018, www.zuivelnl.org

48. www.Perfectdayfoods.com

49. [www. realvegancheese.com](http://www.realvegancheese.com)

50. www.clarafoods.com

51. www.legendairy.com

52. www.novacca.com

53. [www. new-harvest.org](http://www.new-harvest.org)

54. www.mosameat.com

Reflection

1. What is the relation between your graduation (project) topic, the studio topic (if applicable), your master track (A,U,BT,LA,MBE), and your master programme (MSc AUBS)?
2. What is the relevance of your graduation work in the larger social, professional and scientific framework.