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Abstract 

Structural joints influence the design strength, material requirement of a structure. 

Structural joints experience damping dissipation due to friction damping or hysteresis 

damping. Damping is often used for reducing the vibrations in a structure. However, large 

amount of energy dissipation leads to deterioration of the material used for constructing 

the joint. Hence it is important to identify the system parameters like stiffness, viscous 

damping, friction force as well as the hysteretic restoring force that cause the energy 

dissipation in the structure. 

For identifying the uncertain system parameters like stiffness, viscous damping and 

magnitude of friction force, the SINDy algorithm is extended by using stick and slip temporal 

constraints. This is done by segregating the data of external forcing and response of SDoF 

system, applying the existing SINDy algorithm and applying the sticking and slipping 

conditions in the time domain. The proposed Extended SINDy approach estimates the 

system parameters more accurately compared to the existing SINDy algorithm. 

For studying the hysteresis in the structural joints, a pinned column base-plate was 

considered in an elastic region. Further, the Dahl model with different slope parameter for 

each branch of moment-rotation hysteresis is employed. The correct values of parameters 

are estimated using the Bayesian Optimization technique. This procedure yields a functional 

form representing a resisting hysteretic moment-rotation behaviour in a structural joint 

with good accuracy. 
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1. Introduction 

1.1. Motivation 
 

A structural joint is a key component in a structural design of a building because the loads 

are transferred from the beam to columns and from columns to the foundation via a 

structural joint. A joint can be flexible, semi-rigid, or fully rigid. The rigidity of the structural 

joints influences the flexibility of a structure and its response to lateral loads. Hence, it is 

important to study the nonlinear behaviour of a structural joint when subject to different 

external loading conditions. The nonlinear behaviour of a structural joint is studied by 

performing computational modelling in finite element softwares as well as using structural 

health monitoring techniques. Structural health monitoring techniques are widely used for 

identifying the properties of existing structures using the data of external forcing and the 

response of the structure to the external forcing. Recently, identifying the properties of an 

existing structure (nonlinear system identification) using machine learning techniques has 

acquired the attention of researchers. 

The application of the system identification technique depends upon the nonlinearity 

present in the structure. Some well-known sources of nonlinearities are (i) geometric 

nonlinearity arising from large displacements of structure [1]; (ii) inertia nonlinearity due to 

the nonlinear terms of velocities and/ or acceleration [2]; (iii) material nonlinearity caused 

by the nonlinear stress-strain relationship, e.g. foams [3]; (iv) damping dissipation due to 

friction effects [4], or hysteric damping [5]. The widely used models for studying damping 

dissipation are the Dahl model for friction [6] and the Bouc-Wen model [7], [8] for the 

dynamic systems representing hysteresis. 

Friction nonlinearity can be found in Civil Engineering structures such as the grandstands at 

sporting events [9]. The grandstands are prone to a great amount of nonlinearity, produced 

by the looseness of joints, which creates friction and unwanted clearance. The friction in the 

structural joints results in the rise of unwanted vibrations and heat in the structure. As the 

vibrations are significantly nonlinear, it invalidates the linear-model-based simulation 

response due to the crowd movement [9]. Hence, it is important to identify the functional 
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form of the friction force contributing to the dynamic response of engineering systems. This 

would improve the models employed for predicting the response of structures in operating 

conditions. 

Furthermore, the structural joints are subject to harmonic as well as random dynamic 

loading because of earthquakes, vibrations due to heavy mechanical machinery. There is a 

loss of energy (hysteresis) when the column base-plate joint is subjected to a harmonic 

external excitation as shown in [10]. This is observed via the restoring moment-rotation 

diagram of the pinned column base-plate connection. The moment-rotation curve of the 

pinned column base-plate connection shows considerable non-zero rotational stiffness [10]. 

The accurate prediction of the moment-rotation behaviour will help in the accurate 

estimation of loss of energy and variation in rotational stiffness. Hence, it is important to 

study the hysteresis in the pinned column base-plate connection. 

1.2. Problem Statement 
 

The scope of this thesis is twofold; firstly, the development of a framework that 

combines a data-driven system identification technique with stick and slip temporal 

constraints. This includes identifying governing EOM of the Single Degree of Freedom (SDoF) 

system subjected to Coulomb friction nonlinearity. This is done by augmenting the existing 

SINDy algorithm [11] with the stick and slip temporal constraints (Extended SINDy). Later, 

the robustness of the Extended SINDy algorithm is analyzed under varying noise levels. 

Secondly, an equation representing the moment-rotation relationship for a pinned column 

base-plate connection is proposed. This is achieved by considering the Dahl model with 

different slope parameter for each branch of hysteresis. Further, the optimum value of 

slope parameter is estimated using the Bayesian Optimization technique [12] 

1.3. Research Question 
 

There are 2 research questions that can be formulated as follows: 

1. How to derive the correct Equation Of Motion (EOM) for SDoF dynamic system with 

the Coulomb friction using a Machine Learning technique with the minimal use of 
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physics? 

To successfully answer the first research question, it is further simplified into the following 

sub-questions: 

a) How does the state-of-the-art machine learning algorithm perform, in the case of a 

discontinuous nonlinearity? 

b) What type of data is required as an input for the machine learning algorithm, to 

correctly identify the governing EOM? 

c) Which physics information is missing in the machine learning algorithm and how to 

incorporate it? 

d) How does the proposed machine learning algorithm perform in a noisy 

environment? 

2. How to derive a governing equation representing moment-rotation relationship in a 

pinned column base-plate connection? 

The second research question is further divided into the following sub-questions: 

a) How to represent the pinned column base-plate connection schematically? 

b) Which pre-existing hysteresis model can reproduce an asymmetric hysteresis similar 

to the pinned column base-plate connection? 

c) How to vary the parameters in the Dahl model to control the shape of hysteresis 

diagram? 

These research questions are answered in this thesis leading: 

1. Successful addition of stick and slip temporal constraints to the machine learning 

algorithm 

2. Formulation of strategy to estimate the correct EOM in the presence of discontinuous 

nonlinearity. This formulation shows good performance for various noise levels 

3. Formulation of the governing equation for the pinned column base-plate connection. 

The estimated equation represents the hysteresis behaviour observed in the moment-

rotation diagram when the connection is in the elastic region 
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1.4. Outline of the thesis 
 

This thesis is composed of 4 chapters. Chapter 2 presents the research paper that discusses 

the proposed Extended SINDy algorithm for the identification of the dynamic system 

parameters like stiffness, viscous damping and Coulomb friction (all mass normalized). In 

Chapter 3, the research paper presents the Dahl model with different slope parameter for 

each branch of hysteresis for identification of governing equation of pinned column base-

plate connection. Chapter 4 reiterates the conclusions drawn in the research papers and 

discusses the challenges for the current as well as future work. 
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2. Research Paper 1 

Governing equation identification of nonlinear single degree of freedom 

oscillators with Coulomb friction using explicit stick and slip temporal 

constraints 

Saurabh Mahajan1, Alice Cicirello1 

1 Faculty of Civil Engineering and Geosciences 

Delft University of Technology, 

Delft, 2628 CN, South Holland, The Netherlands. 

Abstract 

The friction force at joints of engineering structures is usually unknown and not directly 

identifiable. This contribution explores a procedure for obtaining the governing equation of 

motion and correctly identifying the unknown Coulomb friction force of a mass-spring-

dashpot system. In particular, a Single-Degree-of-Freedom system is investigated both 

numerically and experimentally. The proposed procedure extends the state-of-the-art data-

driven SINDy algorithm by developing a methodology that explicitly imposes constraints 

encoding knowledge of the non-smooth dynamics experienced during stick-slip phenomena. 

The proposed algorithm consists of three steps: (i) data segregation of mass-motion from 

mass-sticking during stick-slip response; (ii) application of SINDy on the mass-motion dataset 

to obtain the functional form of the governing equation; (iii) applying sticking and slipping 

conditions to identify the unknown system parameters. It is shown that the proposed 

approach yields an improved estimate of the uncertain system parameters such as stiffness, 

viscous damping, and magnitude of friction force (all mass normalized) for various signal-to-

noise ratios compared to SINDy. 

Keywords: Stick and slip temporal constraints, Nonlinear dynamic system identification, 

SINDy, Epistemic uncertainty, Discontinuous nonlinearity, Coulomb friction 
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2.1. Introduction 
 

The dynamics of various engineering structures like wind turbines, robots, buildings, 

etc. are greatly influenced by the friction present in joints. The amplitude of structural 

response can be drastically reduced due to the loss of energy resulting from frictional 

contact. As a result of heat produced because of friction, repetitive motion can cause wear 

and tear of the surfaces in contact with each other. Hence, it is important to identify the 

functional form of the friction force contributing to the dynamic behaviour of engineering 

systems as it would improve models employed for predicting the response of structures in 

operating conditions. Currently, it is not possible to directly characterise the friction force of 

structural joints without affecting the joint behaviour itself. Consequently, the friction force 

can be regarded as an epistemic uncertainty, that is uncertainty caused by lack of 

knowledge. To this end, a large body of research has focused on the use and development 

of system identification approaches which use measurements of output and input signals to 

a dynamic system. These approaches can be broadly grouped into: (i) approaches based on 

an equivalent linearization techniques as well as stochastic linearization methods [1-5]; (ii) 

time-domain methods, such as  Auto-Regressive with eXogenous input model (ARX) for 

linear systems [1], [6], [7] and Nonlinear Auto-Regressive with eXogenous (NARX), Nonlinear 

Auto-Regressive Moving-Average with eXogenous inputs model (NARMAX) for nonlinear 

system identification [8]. However, the NARX model fails to capture the noise as a separate 

entity which is overcome by NARMAX. However, NARMAX models the nonlinearity as a 

polynomial function which might limit its applicability; (iii) approaches leveraging on 

Machine Learning strategies because of the availability of measurement on the external 

excitation and response of nonlinear systems. The last group has recently gained particular 

interest in the research community [9]. The Sparse Identification of Nonlinear Dynamics 

(SINDy) [10], [11], [12] belongs to this group and has recently been applied to estimate the 

governing Equation Of Motion (EOM) based on the data of input and output of a dynamic 

system. SINDy has been applied for identifying EOM in the chemical reactor [13], 

parameters of the power grid model [14], and delayed differential equation [15]. In 

particular, in nonlinear structural dynamics, it has been used for estimating nonlinear 

normal modes [16], and reconstructing governing EOM for geometrical nonlinear systems 
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[17]. However, in the presence of a discontinuous nonlinearity, e.g., frictional joints subject 

to the stick-slip motion, the error in predictions of the SINDy algorithm can be substantial, 

as shown in this paper. This leads to errors in the estimates of the epistemic uncertain 

system parameters such as stiffness, viscous damping and value of nonlinear force in a 

dynamic system (all mass normalized), which are fixed but unknown. 

To address this issue for a Single Degree of Freedom (SDoF) system with Coulomb 

friction subject to a harmonic excitation, the Extended SINDy is proposed by introducing two 

key modifications to SINDy [10]. Firstly, in the stick-slip dynamic regime, the data of 

response and forcing is segregated into mass-sticking and mass-motion. Further the data of 

mass-motion is used as an input for the existing SINDy algorithm to identify the correct 

functional form of EOM. Secondly, the correct functional form of the EOM is used to enforce 

the physics-based constraints to estimate the epistemic uncertain system parameters. The 

applicability and accuracy of the Extended SINDy algorithm for obtaining the EOM are 

explored and compared to SINDy, also in the presence of varying noise levels. 

2.2. Sparse Identification of Nonlinear Dynamics (SINDy) 
Algorithm: Review and applicability 

 

2.2.1. Review 

Let us consider a dynamic system whose governing equations can be written as [10] 

 𝑑

𝑑𝑡
𝒙(𝑡) = 𝒇(𝒙(𝑡)) 

Eq. (1) 

Where 𝒙(𝑡) is the state vector with 𝑛 number of states of the system at general time instant 

t (𝒙(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)]
𝑇) and 𝒇(𝒙(𝑡)) is a vector that represents the dynamic 

system in terms of mass, stiffness, viscous damping and nonlinear forces present in the 

system. By explicitly accounting for an external forcing 𝒖(𝑡), Eq. (1) can be rewritten as [10] 

 𝑑

𝑑𝑡
𝒙(𝑡) = 𝒇(𝒙(𝑡), 𝒖 (𝑡)) 

Eq. (2) 

The system’s response (𝑿) to the forcing (𝑼) can be written in a matrix form to account for 

the N discrete time steps as [10] 
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             𝑿 =

[
 
 
 
 
 
 
𝒙𝑇(𝑡1)

𝒙𝑇(𝑡2)
..
.
.

𝒙𝑇(𝑡𝑁)]
 
 
 
 
 
 

= [

𝑥1(𝑡1) 𝑥2(𝑡1) ⋯ 𝑥𝑛(𝑡1)

𝑥1(𝑡2) 𝑥2(𝑡2) ⋯ 𝑥𝑛(𝑡2)
⋮

𝑥1(𝑡𝑁)
⋮

𝑥2(𝑡𝑁)
⋱
⋯

⋮
𝑥𝑛(𝑡𝑁)

] 

Eq. (3)  

 

             𝑼 =

[
 
 
 
 
 
 
𝒖𝑇(𝑡1)

𝒖𝑇(𝑡2)
..
.
.

𝒖𝑇(𝑡𝑁)]
 
 
 
 
 
 

= [

𝑢1(𝑡1) 𝑢2(𝑡1) ⋯ 𝑢𝑛(𝑡1)

𝑢1(𝑡2) 𝑢2(𝑡2) ⋯ 𝑢𝑛(𝑡2)
⋮

𝑢1(𝑡𝑁)
⋮

𝑢2(𝑡𝑁)
⋱
⋯

⋮
𝑢𝑛(𝑡𝑁)

] 

Eq. (4) 

 

                             �̇� =

[
 
 
 
 
 
 
�̇�𝑇(𝑡1)

�̇�𝑇(𝑡2)
..
.
.

�̇�𝑇(𝑡𝑁)]
 
 
 
 
 
 

= [

�̇�1(𝑡1) �̇�2(𝑡1) ⋯ �̇�𝑛(𝑡1)

�̇�1(𝑡2) �̇�2(𝑡2) ⋯ �̇�𝑛(𝑡2)
⋮

�̇�1(𝑡𝑁)
⋮

�̇�2(𝑡𝑁)
⋱
⋯

⋮
�̇�𝑛(𝑡𝑁)

] 

Eq. (5)  

Hence the final form of the governing equation of dynamic system is written in a standard 

state-space formulation as [18]  

 �̇� = 𝑨𝑿 + 𝑩𝑼 Eq. (6) 

Where 𝑨 and 𝑩 are the state and input matrix, respectively. SINDy [10] identifies the 

unknown governing EOM from the available data of external forcing and of the response to 

external forcing. The identification is performed using sparsity promoting techniques and 

machine learning. Some user-specified set of functions which might be contributing to 

describe the governing EOM of the dynamic system are listed (e.g. see Eq. (7)). A sparse 

regression with low risk of overfitting is obtained by the combination of sparsity and user-

specified terms, producing a parsimonious model [10]. The user-specified terms are 

included in the candidate function library 𝚯(𝑿) which might contain polynomial terms, 

trigonometric terms, exponential terms and other user-specified functions (e.g. g(X)), or 

their combination [10]. For example: 

 𝚯(𝑿) = [𝑰   𝑿   𝑿𝑷𝟐   𝑿𝑷𝟑  …   𝑠𝑖𝑛(𝑿)  cos(𝑿)  𝑒𝑿𝑔(𝑿) . . ] Eq. (7) 

Where the 𝑁 × 𝑛 matrix representing  𝑖𝑡ℎ order polynomial terms is  

 

𝑿𝑷𝒊 =

[
 
 
 
𝑥1
𝑖(𝑡1) 𝑥2

𝑖(𝑡1) ⋯ 𝑥𝑛
𝑖(𝑡1)

𝑥1
𝑖(𝑡2) 𝑥2

𝑖(𝑡2) ⋯ 𝑥𝑛
𝑖(𝑡2)

⋮
𝑥1
𝑖(𝑡𝑁)

⋮
𝑥2
𝑖(𝑡𝑁)

⋱
⋯

⋮
𝑥𝑛

𝑖(𝑡𝑁)]
 
 
 

 

Eq. (8) 
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A selection matrix 𝚵 = [𝛏𝟏𝛏𝟐 𝛏𝟑 . . 𝛏𝒏] is then introduced, such that the final equation in the 

state-space form is written as [10] 

 �̇� = 𝚯(𝑿)𝚵 Eq. (9) 

The selection matrix 𝚵 selects the terms in Eq. (7) that will be present in the governing EOM 

[10]. This is done by introducing an optimizer with specific minimization function [10]. For 

example, if the Sequential Threshold Least Squares (STLSq) is used, the minimization 

function is given by [10]  

 ‖�̇� − 𝚯(𝑿)𝚵‖
2

2
+ 𝛼‖𝚵‖2

2 Eq. (10) 

Where, 𝛼 is a coefficient that is chosen by the user to boost the sparsity of the terms in the 

governing EOM. A high value of 𝛼 leads to a smaller number of terms in the governing EOM. 

2.2.2. Applicability of SINDy to friction problems 

Although never explicitly mentioned in the literature, the applicability of the SINDy 

algorithm [10] depends on the functional form of the governing EOM. The dynamic system 

might contain a nonlinear restoring force term which is discontinuous or changes abruptly in 

the time domain leading to a non-smooth response. The non-smooth response is a response 

where the dynamic system changes abruptly from one motion regime to another in the time 

domain. For example, when the restoring force is a function of signum as in the case of the 

Coulomb friction model, the response of a SDoF dynamic system with such friction model 

can be characterized by a sequence of mass-motion and mass-sticking regimes. The EOM 

representing such a dynamic system is stiff [19]. Without any specified constraints, SINDy 

performs a regression poorly on such a sequence of regimes to estimate an EOM that would 

fit simultaneously both mass-motion and mass-sticking. As a major part of the regime 

consists of mass-motion, the SINDy algorithm would identify the correct functional form of 

the EOM. However, the coefficients of the identified EOM would be inaccurate. 

Let us consider a SDoF dynamic system with friction subject to a harmonic excitation 

𝑢(𝑡) = 𝐴 𝑠𝑖𝑛(𝜔𝑡) (where 𝐴 and 𝜔 denote the amplitude and frequency of harmonic base 

excitation respectively), as shown in Fig. 1 (a), and described by: 

 𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑥(𝑡) + 𝐹𝑓𝑠𝑔𝑛[�̇�(𝑡)] = 𝑘𝑢(𝑡) + 𝑐�̇�(𝑡) Eq. (11) 
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Where, 𝑘, 𝑐, 𝑚, 𝐹𝑓 , 𝑥(𝑡) and 𝑢(𝑡) are the stiffness, viscous damping, mass, friction force 

magnitude, displacement of SDoF, and harmonic base excitation, respectively, all 

represented in SI units. The magnitude of friction force ( 𝐹𝑓) is defined as a product of the 

coefficient of friction ( μ ) and the normal force exerted by mass on the surface. The 

function sgn[.] represents signum function. 

Table 1 Properties of synthetic as well as experimental dynamic system 

Quantity Description Value Units 

�̂� Mass normalized stiffness 358.706 𝑁

𝑚. 𝑘𝑔
 

�̂� Mass normalized viscous 

damping 

0.0658 𝑁𝑠

𝑚. 𝑘𝑔
 

𝐹�̂� Mass normalized 

magnitude of friction force 

0.0856 𝑁

𝑘𝑔
 

 

The EOM of such a system can be represented in a state-space form as 

{

𝑥1(𝑡) = 𝑥(𝑡)

[
�̇�1(𝑡)
�̇�2(𝑡)

] = [
0 1
−�̂� −�̂�

] [
𝑥1(𝑡)
𝑥2(𝑡)

] + [
0

−�̂�𝑓sgn[�̇�(t)]
] + [

0
�̂�𝑢(𝑡) + �̂��̇�(𝑡)

] ∀ 𝑥2 ≠ 0
 

Eq. (12) 

Where, �̂�, �̂�, �̂�𝑓 , 𝑥2(𝑡) are the mass-normalized stiffness, viscous damping, friction force 

magnitude, velocity of SDoF, respectively (see Table 1). It is worth mentioning that the 

synthetic data is obtained by numerically solving Eq. (12) with ode45 function in MATLAB 

[20] and explicitly setting the event conditions as explained in [19] for dealing with stiff 

problems. The event conditions are [21] 

 |�̂��̇�(𝒕) + �̂�𝑢(𝒕) − �̂�𝑥1(𝒕) | ≤ 𝐹�̂�𝑰 Eq. (13) 

 |�̂��̇�(𝒕) + �̂�𝑢(𝒕) − �̂�𝑥1(𝒕) − �̇�2(𝒕) − �̂�𝑥2(𝒕)| ≥ 𝐹�̂�𝑰 Eq. (14) 

Where |.| denotes absolute value, 𝒕 is a vector representing different time instants 𝒕 =

[𝑡1 𝑡2 … 𝑡𝑁]𝑇 and 𝑰 denotes a vector with all entries as 1, respectively. 
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Fig. 1 Schematic representation of SDoF with friction (a), response of SDoF in 
continuous motion (b) and stick-slip motion (c) 

The physical meaning of Eq. (13) is that the mass will indefinitely remain still until Eq. (13) is 

satisfied [21]. Further, the mass will remain in motion until Eq. (14) is satisfied. This can be 

further interpreted as follows [21]: when the velocity is zero and the mass is sticking, the 

friction force is sufficient to resist the inertial force, spring force, and viscous damping force 

– as described by Eq. (13); when the velocity is non-zero, the friction force is insufficient to 

resist the restoring forces as described by Eq. (14). This mass-sticking and mass-motion 

phenomenon cannot be accurately represented by solving Eq. (12) numerically. Hence, the 

event conditions are explicitly enforced. 

Further, 𝑥1(𝑡) and 𝑥2(𝑡) represent the displacement and velocity of SDoF dynamic 

system in continuous time domain. To perform the analysis in discrete time domain, the 
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displacement and velocity are represented as vectors 𝑥1(𝒕) and 𝑥2(𝒕). �̇�2(𝒕) is obtained by 

numerically differentiating 𝑥2(𝒕). In this paper, the smooth finite differentiation available in 

PySINDy package is used for performing the numerical differentiation. In particular, the 

Savitzky-Golay filter is used in smooth finite differentiation. The window length specified in 

smooth finite differentiation governs the accuracy of the differentiation. The base is excited 

at different excitation frequencies (see Table 2) to investigate the response of the mass in 

continuous, 2-stop stick-slip, and 4-stop stick-slip regime. The continuous and the stick-slip 

motion of the SDoF system shown in Fig. 1 (b) and Fig. 1 (c) are obtained for the values of 

system parameters specified in Table 1. 

Table 2 Base excitation frequencies for synthetic and experimental case study 

 Base excitation frequencies (Hz) 

 Continuous motion 2-stop stick-slip 

motion 

4-stop stick-slip 

motion 

Synthetic case study 2.013, 2.583, 4.611 0.95, 1.034, 1.11 0.47, 0.51, 0.54 

Experimental case 

study 

2.013, 2.583, 4.611 1.023, 1.07, 1.10 0.61, 0.62, 0.64 

 

From external excitation and response data, the SINDy [10] is applied to estimate the 

governing EOM in state-space form. The nonlinear system identification is done in the 

Python package for SINDy (PySINDy) [11]. PySINDy includes a candidate library and an 

optimizer for performing regression analysis on the collected data. The custom library 

chosen for the problem at hand includes linear polynomials and signum functions. For 

regression analysis, the Sequential Threshold Least Squares (STLSq) and Sparse Relaxed 

Regularized Regression (SR3) [22] optimizer are selected for continuous and stick-slip 

motion, respectively. The threshold values of 0.01 and 0.05 are used for STLSq and SR3 

respectively. SR3 optimizer is used with the constraint 
𝑑𝑥1(𝒕)

𝑑𝒕
= 𝑥2(𝒕). Further, the SINDy is 

used to obtain the governing EOM as shown in Table 3. 

As anticipated, it is observed from Fig. 2 that the SINDy algorithm estimates the 

governing EOM with good accuracy in the case of continuous motion. However, from Table 
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3, it is observed that SINDy [10] fails to identify the coefficients of the EOM correctly in the 

case of 2-stop and 4-stop stick-slip motion. Based on this physics understanding of the 

problem, it is clear that there is a need to incorporate explicitly the stick and slip temporal 

constraints stated in Eq. (13) and Eq. (14). 

2.3. Extended SINDy 
 

The Extended SINDy is an approach proposed to address the identification of the 

governing equation of the SDoF system with Coulomb friction, and it is generally applicable 

to the dynamic system with discontinuous restoring force when the physics constraints in 

the time domain are known along with the measurements of the input and output of such 

system. The main idea behind the Extended SINDy is to augment the pre-existing SINDy 

algorithm by explicitly enforcing the physics constraints in the time domain by means of a 

three-step procedure. The detailed step-by-step procedure is described in the following 

subsections. 

2.3.1. Step 1: Data segregation 

Consider a SDoF system with Coulomb friction system subject to a harmonic 

excitation described by Eq. (12). In the stick-slip regime, the motion is a combination of 

mass-motion and mass-sticking. To obtain a correct functional form of the EOM, the data 

points of mass-motion and mass-sticking are stored separately. The segregation is done 

based on the condition applied to the velocity at each time instant as  

 
{
|𝑥2(𝒕)| ≤ 𝑣𝑠𝑡𝑜𝑝 → 𝒕𝜖𝒕𝒔𝒕𝒐𝒑 → 𝒙𝒔𝒕𝒐𝒑 = 𝑥(𝒕𝒔𝒕𝒐𝒑)

|𝑥2(𝒕)| > 𝑣𝑠𝑙𝑖𝑝 → 𝒕𝜖𝒕𝒔𝒍𝒊𝒑 → 𝒙𝒔𝒍𝒊𝒑 = 𝑥(𝒕𝒔𝒍𝒊𝒑)
 

Eq. (15) 

Where 𝑣𝑠𝑡𝑜𝑝 and 𝑣𝑠𝑙𝑖𝑝 denote the cut-off velocity for mass-stop and mass-motion 

respectively. These values are specified by the user and are based on the available 

measurements of the velocity. The 𝑣𝑠𝑡𝑜𝑝 will strongly depend on the noise level in the 

measurements and will be chosen such that 𝑣𝑠𝑡𝑜𝑝~0. As a rule of thumb, 𝑣𝑠𝑙𝑖𝑝 is chosen 

such that 𝑣𝑠𝑙𝑖𝑝 ≫ 𝑣𝑠𝑡𝑜𝑝 and  𝑣𝑠𝑙𝑖𝑝 ≈ max (
|𝑥2(𝒕)|

20
). 
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2.3.2. Step 2: Using PySINDy 

The data points of mass-motion are used as an input to the SINDy [10] algorithm 

implemented in PySINDy [11], and the functional form of the EOM is identified. The steps 

within SINDy have been already described in section 2.2.1. The computational cost of this 

step is equivalent to that of using SINDy. By implementing the STLSq and SR3 the number of 

iterations needed to converge to a sparse solution is drastically reduced when compared to 

the LASSO [10]. 

2.3.3. Step 3: Adding constraints on mass-sticking and mass-motion datasets 

In this step, both mass-sticking data and mass-motion data are used. The 

optimization constraint in Eq. (13) is applied to the former, while the Eq. (14) is applied to 

the latter. As the physics-based constraints are added in the time domain, this approach is 

different from the pre-existing approach of applying constraints using an SR3 optimizer [22]. 

SR3 optimizer requires the user to specify the dependency of each coefficient appearing in 

the governing EOM. 

While Eq. (13) yields the lower bound limit of �̂�, �̂�, �̂�𝑓; hence, the region above the 

lower bound surface is the solution, Eq. (14) provides the upper bound limit and thus the 

region below the upper bound surface is the solution. The lower bound and the upper 

bound surfaces are calculated as follows. By indicating with (𝑡𝑠𝑡𝑜𝑝)𝑗  and (𝑡𝑠𝑙𝑖𝑝)𝑙 the 𝑗𝑡ℎ and 

𝑙𝑡ℎ time instants for mass-sticking and mass-motion, respectively, the lower bound Φ1(�̂�, �̂�) 

is obtained by using the mass-sticking condition in 

 

{
 

 
|�̂��̇�(𝑡𝑠𝑡𝑜𝑝)𝑗 + �̂�𝑢(𝑡𝑠𝑡𝑜𝑝)𝑗 − �̂�𝑥1(𝑡𝑠𝑡𝑜𝑝)𝑗 | = 𝐹�̂�𝑗

𝜙𝑗(�̂�, �̂� ) = 𝐹�̂�𝑗(�̂�, �̂� )

Φ1(�̂�, �̂�) = 𝑚𝑎𝑥|𝜙𝑗(�̂�, �̂� )|

 

Eq. (16) 

And the upper bound Φ2(�̂�, �̂�) surfaces is obtained by using the mass-motion condition  

 

{

|�̂��̇�(𝑡𝑠𝑙𝑖𝑝)𝑙 + �̂�𝑢(𝑡𝑠𝑙𝑖𝑝)𝑙 − �̂�𝑥1(𝑡𝑠𝑙𝑖𝑝)𝑙 − �̇�2(𝑡𝑠𝑙𝑖𝑝)𝑙 − �̂�𝑥2(𝑡𝑠𝑙𝑖𝑝)𝑙| = 𝐹�̂�𝑙
𝜙𝑙(�̂�, �̂� ) = 𝐹�̂�𝑙(�̂�, �̂� )

Φ2(�̂�, �̂�) = 𝑚𝑖𝑛|𝜙𝑙(�̂�, �̂� )|

 

Eq. (17) 

Where, 𝐹�̂�𝑗and 𝐹�̂�𝑙 are the lower bound and upper bound values of friction at 𝑗𝑡ℎ and 𝑙𝑡ℎ 

time instant respectively. As a result, the terms �̂�, �̂�, �̂�𝑓 which uniquely identify the system in 
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Eq. (16) and Eq. (17) are not known. As both the lower bound and an upper bound represent 

the same dynamic system, intuitively, there should be only one triplet of �̂�, �̂�, �̂�𝑓 , that 

satisfies both surfaces. However, the generation of both surfaces is affected by numerical 

errors due to numerical differentiation of the measurements of position and velocity of the 

mass and of the input. Hence, rather than estimating the �̂�, �̂� optimum point, it is proposed 

to evaluate the distance 𝐷 between two surfaces perpendicular to the �̂��̂� − plane defined 

as 

 𝐷(�̂�, �̂�) = |Φ2(�̂�, �̂�) − Φ1(�̂�, �̂�)| Eq. (18) 

Where, the distance (D) is the function of mass normalized stiffness and mass normalized 

viscous damping. Furthermore, the optimum triplet(�̂�∗, �̂�∗, �̂�𝑓∗) is chosen where 𝐷(�̂�, �̂�) is 

minimum and hence the problem is defined as  

 (�̂�∗, �̂�∗) =  𝑎𝑟𝑔𝑚𝑖𝑛
�̂�,𝑐̂

[𝐷(�̂�, �̂�)] Eq. (19) 

 �̂�𝑓∗ = Φ1(�̂�∗, �̂�∗) 
Eq. (20) 

The optimum system parameters are then updated in the EOM found in step 2 of the 

Extended SINDy. The accuracy of the identification of the optimum parameters is dependent 

on the noise levels in the measurement, and the window length selected to carry out the 

numerical differentiation of the input and output measurements. The accuracy of the 

numerical differentiation is also dependent on the presence of abrupt changes in the time 

domain caused by the non-smooth response due to stick-slip phenomena. In particular, it is 

expected to observe an accuracy reduction as the number of stops per cycle in the stick-slip 

motion increases. All of the above will affect the generation of the upper bound and lower 

bound surfaces, and consequently the identification error on each term of the EOM. The 

computational cost of this step is negligible, since it requires evaluating over a grid of k,c 

parameters the values of friction force according to Eq. (13) and Eq. (14), rather than 

carrying out the full nonlinear analyses for each grid point. This means that the optimization 

in Eq. (19) is carried out explicitly having evaluated the objective function at every point of 

the grid. This proposed methodology is applied to the stick-slip motion with 2-stops as well 

as 4-stops. 
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2.4. Synthetic Model Case Study 
 

Consider a SDoF oscillator with Coulomb friction contact subject to a harmonic 

excitation as represented in Eq. (11) and Fig. 1. The physical properties of the system are 

stated in Table 1. The base is excited at different frequencies to obtain continuous as well as 

stick-slip motion. These frequencies are mentioned in Table 2. The amplitude of base 

excitation is 0.0015 m. The synthetic data is generated by solving Eq. (11) with ode45 in 

MATLAB [20] with explicit event conditions. Both input and output datasets are then used to 

investigate the identification of the system parameters (�̂�∗, �̂�∗, �̂�𝑓∗) and the governing EOM 

with the Extended SINDy. The hyperparameters used for the Extended SINDy are specified in 

Table 4. 

The results obtained by using Extended SINDy for various noise levels are then 

compared in terms of Root Mean Square Error (RMSE) and in terms of the relative 

percentage error in the estimate of the coefficients of the governing EOM to those yielded 

by SINDy and to their true values (as specified in Table 1) Indicating with 𝑥1(𝒕)  the synthetic 

data, with [𝑥1(𝒕)]∗ the solution of the governing EOM obtained with SINDy, and with 

[𝑥1(𝒕)]∗∗ the response obtained with the Extended SINDy, two RMSEs can be considered 

 

𝑅𝑀𝑆𝐸∗ = √∑
{𝑥1(𝑡𝑖) − [𝑥1(𝑡𝑖)]∗}

2

𝑁

𝑖=𝑁

𝑖=1

 

Eq. (21) 

 

𝑅𝑀𝑆𝐸∗∗ = √∑
{𝑥1(𝑡𝑖) − [𝑥1(𝑡𝑖)]∗∗}

2

𝑁

𝑖=𝑁

𝑖=1

 

Eq. (22) 

2.4.1. Results of system identification of synthetic model with no noise 

contamination 

The Extended SINDy algorithm converges to the SINDy [10] algorithm in the case of 

continuous motion as the stick-slip time constraints for the stops are not activated. From 

Table 3, it is possible to observe that the system identification is accurate with a very low 

value of 𝑅𝑀𝑆𝐸∗∗. The displacement response obtained with the Extended SINDy algorithm 

and with SINDY are compared to the synthetic data in Fig. 2. It is possible to observe a very 

good agreement between the Extended SINDy and the synthetic data, while the accuracy of 
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SINDy is affected by the number of stops per cycle during stick-slip. It is also important to 

discuss the upper bound and lower bound surfaces (see Eq. (16) and Eq. (17)). From Fig. 3, it 

is possible to observe that they do not intersect each other at one unique point due to the 

errors arising from numerical differentiation of 𝑥1(t) and 𝑥2(t). The error in estimation of 

stiffness, viscous damping and friction force magnitude (all mass-normalized) is reported in 

Table 5. It is possible to observe that as the number of stops increases, the Extended SINDy 

display a much lower percentage relative error compared to SINDy. 
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Table 3 Results of system identification using synthetically generated data 
R
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Algorithm Identified Equation 
RMSE 
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SINDy 

𝑥1̇ = 𝑥2 

𝑥2̇ = −358.706𝑥1 − 0.08𝑥2 + 358.432𝑢 + 0.08�̇�

− 0.085sgn(𝑥2) 

0.014 

Extended 

SINDy 
Converges to SINDy 

- 

2
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SINDy 

𝑥1̇ = 0.97𝑥2 

𝑥2̇ = −336.48𝑥1 − 0.47𝑥2 + 332.5𝑢 + 1.2�̇�

− 0.015sgn(𝑥2) 

1.06 

Extended 

SINDy 

𝑥1̇ = 0.97𝑥2 

𝑥2̇ = −355.69𝑥1 − 0.05𝑥2 + 355.69𝑢 + 0.05�̇�

− 0.08sgn(𝑥2) 

0.01 
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SINDy 

𝑥1̇ = 0.97𝑥2 

𝑥2̇ = −323.482𝑥1 − 0.41𝑥2 + 369.92𝑢 + 1.5�̇�

− 0.025sgn(𝑥2) 

5.4 

Extended 

SINDy 

𝑥1̇ = 0.97𝑥2 

𝑥2̇ = −354.56𝑥1 − 0.04𝑥2 + 354.56𝑢 + 0.04�̇�

− 0.083sgn(𝑥2) 

0.05 

 

Table 4 Values of hyperparameters used in Extended SINDy 

Description of Hyperparameters Synthetic data Experimental data 

Threshold value for STLSq 0.03 0.03 

Threshold value for SR3 0.05 0.05 

Cut-off velocity for mass-sticking (𝑣𝑠𝑡𝑜𝑝
𝑚

𝑠
) 10−7 10−7 

Cut-off velocity for mass-motion (𝑣𝑠𝑙𝑖𝑝
𝑚

𝑠
) 10−3 10−3 

Window length for smooth finite difference 35 41 
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Fig. 2 Comparison between the response of the SDoF nonlinear system in the case of 
synthetically generated data 
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Fig. 3 Lower bound and upper bound surfaces for 2-stop stick-slip synthetic model (a) 
4-stop stick-slip synthetic model (b) 2-stop stick-slip experimental model (c) 4-stop 

stick-slip experimental model (d) 
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Table 5 Relative percentage error in parameter estimation using SINDy and Extended 
SINDy for synthetic data 
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friction force magnitude (all mass-normalized) 
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SINDy 6.19,623.07, 82.35 

Extended 

SINDy 
0.84, 23.07, 5.88 

4
-s
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o

ti
o

n
 

SINDy 9.82, 530.7, 70.58 

Extended 

SINDy 
1.15, 38.46, 2.35 

 

2.4.2. Effect of noise on synthetic model case study 

The synthetic data is contaminated with different signal-to-noise ratio (SNR) levels to 

evaluate the extent of applicability of Extended SINDy algorithm. This is done by using the 

random.normal function from the NumPy library of Python with zero mean. The standard 

deviation of noise and the corresponding SNR levels are reported in Table 6. The effect of 

noise on dynamic system parameter estimation and RMSE is reported in Fig. 4 and Fig. 5. 
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Fig. 4 Error in estimation of mass normalized stiffness, damping, and magnitude of 
friction force using extended SINDy for 2-stop stick-slip motion (a) and 4-stop stick-

slip motion (b) in presence of different levels of noise 

It is observed that below the SNR of 20 dB, the SINDy algorithm fails to identify the 

functional form of the EOM, therefore affecting the step 2 of the Extended SINDy. 

Nonetheless, it is observed that the Extended SINDy yields a lower RMSE. Above the SNR of 

20 dB, the effect of noise on parameter estimation and RMSE is found within an acceptable 

range. 
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Fig. 5 Effect of noise on RMSE using Extended SINDy algorithm for 2-stop stick-slip 
motion (a) and 4-stop stick-slip motion (b) 

Table 6 Conversion between standard deviation and signal -to-noise ratio 

Standard deviation (𝜎) mm Signal-to-noise ratio (dB) 

1.4× 10−2 20 

1.4× 10−3 30 

1.4× 10−6 60 

1.4× 10−7 70 

1.4× 10−9 90 

1.4× 10−10 105 

1.4× 10−12 120 
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2.5. Experimental Model Case Study 
 

The performance of the Extended SINDy is further evaluated by considering an 

experimental case study which involves a single storey frame structure with a Coulomb 

friction contact excited via base excitation. 

2.5.1. Test rig and mechanical model 

The single-storey frame is shown in Fig. 6 and it has been used in [19]. This structure 

consists of an Aluminium base plate connected to an electric motor via a scotch-yoke 

mechanism. Four thin steel bars are used to connect via bolts this base plate to a steel top 

plate, that represents the mass of the equivalent SDOF. The base plate is excited by using an 

approximately harmonic excitations generated by the electric motor. A brass disk mounted 

on a bar pinned to the external frame is used to produce a friction contact on the top plate. 

The friction force is proportional to the weight of the brass disk, and it can be adjusted by 

using a counterweight system. The EOM of the experimental system corresponds to Eq. (12) 

with parameters as specified in Table 1 – these were calculated by using free vibration tests 

on the experimental system with and without friction (as described in [19]). More details 

about the experimental system can be found in [19]. The parameter space investigated is 

such that the Coulomb friction model provides a good approximation of the friction force as 

shown in [23]. For the experimental data, the base excitation frequencies are given in Table 

2 and the amplitude of base excitation is 0.0015 m. 
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Fig. 6 SDoF dynamic system with friction as nonlinearity 

2.5.2. Identification of the governing equation and results 

The hyperparameters used in Extended SINDy are illustrated in Table 4. From Table 7 

it can be observed that the estimated values of �̂�∗, �̂�∗, �̂�𝑓∗ obtained with the Extended SINDy 

provide a good approximation of terms specified in Table 1, improving the accuracy of 

SINDy. However, compared to the numerical simulations, these results are overall less 

accurate. This is because the data of 𝑥2(𝒕), and �̇�2(𝒕) are affected by the nonideal harmonic 

excitation, other sources of the dissipation in the experimental setup not accounted for in 

the mathematical model and because of additional numerical errors caused by the 

numerical differentiation. The difference between the results yielded by the SINDy and the 

Extended SINDy is not obvious in the case of 2-stop stick-slip motion reported in Fig. 7. 

However, a difference can be observed in terms of RMSE from Table 7. Further, from Fig. 7, 

it is possible to observe a notable difference between the results yielded by SINDy and 

Extended SINDy for 4-stop stick-slip motion. The improvement in parameter identification 

when using the Extended SINDy can be further observed in Table 8. 
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Table 7 Results of system identification using experimental data 
R
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𝑥1̇ = 0.97𝑥2 

𝑥2̇ = −365.48𝑥1 − 0.04𝑥2 + 365.48𝑢 + 0.04�̇�
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𝑥1̇ = 0.97𝑥2 
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1.52 
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Fig. 7 Comparison between the response of the SDoF nonlinear system in the case of 
experimentally generated data 
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Table 8 Relative percentage error in parameter estimation using SINDy and Extended 
SINDy for experimental data 
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Relative percentage error in identification of stiffness, viscous damping, 

friction force magnitude (all mass-normalized) 
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SINDy 3.56, 1469.23, 97.64 

Extended 

SINDy 
1.63, 23.07, 23.52 
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2.6. Conclusions 
 

An Extended SINDy algorithm has been proposed for identifying the governing EOM 

of a SDoF system with friction contact subject to a harmonic excitation. It is shown that the 

existing SINDy approach is unable to accurately identify the epistemic uncertainty of the 

system parameters such as the stiffness, viscous damping, and friction force (all mass 

normalized) of the dynamic system. The Extended SINDy overcomes these limitations by 

using the SINDy algorithm on part of the data to evaluate the functional form of the 

governing EOM and by incorporating physics knowledge by using stick and slip temporal 

constraints. The last step is implemented by employing a constrained optimization strategy. 

The proposed Extended SINDy algorithm is applied to the data obtained from two dynamic 

systems, namely a synthetic SDoF oscillator with friction contact subject to a harmonic 

excitation and an experimental setup representing a SDoF dynamic system with steel to 

brass contact subject to an approximately harmonic base input. A good agreement was 

found between the estimated system parameters and the actual system parameters of both 

the above-stated systems. 

The main advantage of the Extended SINDy algorithm over existing data-driven 

algorithms is that it can explicitly incorporate the physics constraints in the time domain. 

The output is in the form of an EOM and hence can be used to interpret the uncertain 

system parameters like stiffness, viscous damping, and nonlinear friction force, all 

normalized with mass. Leveraging on the SINDy algorithm, the Extended SINDy algorithm 

can accurately estimate the system parameters for various noise levels. It has been 

observed that an improved parameter estimate is obtained when using a dataset which 

includes the transient response (measured from zero initial conditions) and the steady state 

response caused by a sinusoidal load. 

Although the current investigations have been limited to a non-smooth nonlinearity 

caused by a friction contact, the proposed approach can be generally applied to SDoF 

dynamic systems with discontinuous nonlinearity causing the system to show different 

motion behaviour which can be explicitly identified with physics constraints. Current 

investigations are exploring the applicability of the Extended SINDy algorithm to the 
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Multiple Degree of Freedom (MDoF) dynamic system with single and multiple friction 

contacts, and to a random external excitation. 

The proposed methodology can be used in identifying the model parameters and 

identifying the governing EOM of a SDoF dynamic system in laboratory conditions Using the 

obtained EOM, a representative virtual model of the dynamic system is identified. This 

enables the virtual investigations of the behaviour of such system under a broad range of 

loading conditions that might not be possible to reproduce in laboratory conditions because 

of cost or time constraints. The proposed approach is a first step towards the real-time 

identification of nonlinearity of structural joints in operating conditions. It is worth 

mentioning that the implementation of more advanced numerical differentiation schemes 

might improve the accuracy in estimating the lower bound and upper bound surfaces. This 

will further improve in accurately estimating the system parameters �̂�∗, �̂�∗, �̂�𝑓∗. 
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Abstract 

The pinned column base-plate connections experience hysteresis when loaded in the elastic 

region. This study proposes an approach to represent the hysteretic moment-rotation 

relationship in the time domain. Precisely, an unsymmetric hysteresis is investigated both 

numerically and experimentally. The methodology consists of (i) collecting and segregating 

the moment-rotation data into different branches of hysteresis (ii) schematic representation 

of experimental setup (iii) using the Dahl model with different slope parameter for each 

branch of hysteresis and estimating the parameter using Bayesian Optimization. It is shown 

that the Dahl model with different slope parameter for each branch of hysteresis yields 

moment-rotation diagram with good accuracy when compared with the numerical and 

experimental moment-rotation data. 

Keywords: Pinned column base-plate connection, Unsymmetric hysteresis, Dahl model, 

Bayesian Optimization 

3.1. Introduction 
 

Buildings are subject to dynamic loading due to earthquakes and wind. The response of the 

structure subject to dynamic load depends on its lateral and rotational stiffness. Dynamic 

loads affect high-rise as well as low-rise buildings. Many times, low-rise structures (e.g. 

warehouses, retail stores, libraries) are built considering their cost-effectiveness. Hence, an 

understanding of the strength design of low-rise structures is important. The strength 

design and serviceability of the building structure are influenced by the moment capacity 
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and the rotational stiffness of the column-to-foundation connections. In the case of low-rise 

buildings, the column-to-foundation connection is pinned. Hence, while performing design 

calculations, the rotational stiffness of the connection is considered zero. 

However, due to the large size of the pinned connection, it may provide a non-trivial 

rotational stiffness [1-4]. This non-trivial rotational stiffness will increase the design strength 

of the connection as well as the structure. Hence, to design the structure with good 

accuracy, it is important to study the moment-rotation behaviour of the pinned column-to-

foundation connections. The existing models for representing the moment-rotation curves 

can be broadly divided into (i) Models depending on parameters with clear physical meaning 

(e.g. stiffness, resistance) and a shape factor [5]. The well-known examples of these models 

are the linear model [6], the bilinear model [7-9], and the nonlinear model [10]. (ii) Models 

relying on formulation based on curve fitting by regression analysis [5]. 

Although the above-mentioned models give a good approximation of moment-

rotation curves, they are time-invariant. The rotational stiffness varies in time when the 

connection is subject to external dynamic loading. This is observed when the pinned 

column-to-foundation connection is loaded in an elastic or inelastic region [11]. Further, the 

loss of energy (hysteresis) is observed when the connection is subject to an external loading 

in an elastic or inelastic region. An elastic and inelastic region is when the stresses in the 

material of the connection are below and above the yield point respectively. The possible 

reason for the loss of energy in an elastic region is due to the heat generated due to loading 

and unloading [12]. Furthermore, due to the different maximum positive and negative 

values of the hysteretic moment, the observed moment-rotation hysteresis diagram is 

unsymmetric. Hence, to accurately represent the unsymmetric moment-rotation 

relationship in the time domain, it is necessary to have a time-dependent functional form of 

the moment-rotation curve. 

In this study, the governing equation is proposed for representing the unsymmetric 

moment-rotation relationship in the time domain. This is done by segregating the moment-

rotation hysteretic data into positive increasing, positive decreasing, negative increasing, 

and negative decreasing branches. The positive increasing branch indicates the moment is 

positive and the magnitude of rotation is increasing, positive decreasing branch denotes a 

positive moment and decreasing magnitude of rotation. Similarly, the negative increasing 
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branch represents that the moment is negative and the magnitude of rotation is increasing, 

the negative decreasing branch denotes negative moment and decreasing magnitude of 

rotation. As the experimental data has an issue of low sampling frequency, a synthetic 

moment-rotation hysteresis data is generated using the Bouc-Wen model of hysteresis [13], 

[14]. Further, the experimental setup of pinned column base-plate connection is 

represented as an equivalent rotational Single Degree of Freedom (SDoF) with restoring 

hysteretic moment. Furthermore, the Dahl model [15] with different slope parameter for 

each branch of hysteresis is considered. The next step consists of using the considered Dahl 

model to validate the restoring hysteretic moment-rotation diagram generated by the Bouc-

Wen model of hysteresis. The slope parameter for the different branches of the Dahl model 

is estimated using Bayesian Optimization [16]. The Dahl model with different slope 

parameter for each branch is later used to identify the governing equation for the 

experimental data of three different pinned column base-plate connections. 

3.2. Experimental Setup and Data Segregation 
 

3.2.1. Experimental setup 

As shown in   Fig. 1 the experimental setup consists of a pinned column base-plate 

connection resting on the concrete foundation and it has been used in [11]. The base-plate 

and the concrete foundation are connected via anchor rods. 

 

(a) 

 

(b) 

  Fig. 1 Top view (a) and Front view (b) of Pinned column base-plate connection 
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The connection is loaded by applying the cyclic displacements at the top of the column as 

shown in  Fig. 1. Additionally, an axial load of 222 KN was applied at the top of the column 

to take second-order moments into consideration. Further, the resisting moment is defined 

as the sum of the first-order and second-order moments. The resulting rotation at the 

bottom of the connection is recorded using the potentiometers. Three different specimens 

(S01, S03, and S07 of [11]) were considered for finding the governing equation for 

representing the unsymmetric moment-rotation relationship in the time domain.  

 

(a) 

 

(b) 

Fig. 2 Restoring hysteretic moment-rotation diagram of S03 in an elastic and inelastic 
region (a) and elastic region (b) 

The hysteretic restoring moment-rotation diagram for S03 is reported in Fig. 2 (a). Further, 

as the study is in the primary stage, the hysteresis loop in the elastic region is considered for 

estimating the governing equation. 

Table 1 Details of experimental base-plate connection 

Spec-

imen 

𝑑𝑤 𝑏𝑓 𝑡𝑓𝑜 𝑡𝑓1 𝑏𝑏𝑝 𝑑 𝑡𝑤 𝑡𝑝 𝑑𝑏 𝑔 𝑆0 𝑆1 𝑆 

S01 304.8 203.2 6.4 9.5 203.2 320.7 4.7 15.9 19.1 101.6 76.2 101.6 15.8 

S03 304.8 203.2 6.4 9.5 203.2 320.7 4.7 25.4 19.1 101.6 101.6 101.6 117.5 

S07 558.8 355.6 12.7 15.9 355.6 587.4 6.4 15.9 31.8 127 101.6 127 231.8 
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The hysteresis loop in the elastic region is shown in Fig. 2 (b). The geometrical description of 

these connections is stated in Table 1. More details about the experimental specimen, 

instrumentation, and material properties can be found in [11]. The next step involves 

segregating the moment-rotation dataset into positive increasing, positive decreasing, 

negative increasing, and negative decreasing branches. 

3.2.2. Data segregation 

Let 𝑚(𝒕) and 𝜃(𝒕) denote the restoring hysteretic moment and angular displacement, 

respectively, of the pinned column base-plate connection. The time vector is represented as 

 𝒕 = [𝑡1 𝑡2…𝑡𝑛𝑑], 𝑡1 = 0 & 𝑡𝑛𝑑 = 𝑇 Eq. (1) 

Where, 𝑇 is the time period of one cycle of angular displacement. The moment-rotation 

data of the experimental setup is segregated by applying conditions based on moment and 

rotation as 

 
{
𝑚(𝒕) > 0 𝑎𝑛𝑑 𝜃(𝑡𝑖) < 𝜃(𝑡𝑖+1 ) → 𝒕𝝐𝒕𝑷𝑰 → 𝒎𝑷𝑰 = 𝑚(𝒕𝑷𝑰), 𝜽𝑷𝑰 = 𝜃(𝒕𝑷𝑰)

𝒕𝑷𝑰 = [𝑡1 𝑡2…𝑡𝑝𝑖]
 

Eq. (2) 

 
{
𝑚(𝒕) > 0 𝑎𝑛𝑑 𝜃(𝑡𝑖) > 𝜃(𝑡𝑖+1 ) → 𝒕𝝐𝒕𝑷𝑫 → 𝒎𝑷𝑫 = 𝑚(𝒕𝑷𝑫), 𝜽𝑷𝑫 = 𝜃(𝒕𝑷𝑫)

𝒕𝑷𝑫 = [𝑡𝑝𝑖+1 𝑡𝑝𝑖+2…𝑡𝑝𝑑]
 

Eq. (3) 

 
{
𝑚(𝒕) < 0 𝑎𝑛𝑑 𝜃(𝑡𝑖) > 𝜃(𝑡𝑖+1 ) → 𝒕𝝐𝒕𝑵𝑰 → 𝒎𝑵𝑰 = 𝑚(𝒕𝑵𝑰), 𝜽𝑵𝑰 = 𝜃(𝒕𝑵𝑰)

𝒕𝑵𝑰 = [𝑡𝑝𝑑+1 𝑡𝑝𝑖+2…𝑡𝑛𝑖]
 

Eq. (4) 

 
{
𝑚(𝒕) < 0 𝑎𝑛𝑑 𝜃(𝑡𝑖) < 𝜃(𝑡𝑖+1 ) → 𝒕𝝐𝒕𝑵𝑫 → 𝒎𝑵𝑫 = 𝑚(𝒕𝑵𝑫), 𝜽𝑵𝑫 = 𝜃(𝒕𝑵𝑫)

𝒕𝑵𝑫 = [𝑡𝑛𝑖+1 𝑡𝑝𝑖+2…𝑡𝑛𝑑]
 

Eq. (5) 

Where, 𝒕𝑷𝑰, 𝒕𝑷𝑫, 𝒕𝑵𝑰, and 𝒕𝑵𝑫 represent time corresponding to positive increasing, positive 

decreasing, negative increasing, and negative decreasing branches respectively. 

The hysteresis observed in the moment-rotation data of the experimental setup has 

an unsymmetric shape (see Fig. 2 (b)). Further, due to the large sampling time (1 second), 

while collecting the experimental moment-rotation data, a few data points are missing. This 

can be seen in the region where the positive increasing branch of hysteresis connects the 

positive decreasing branch, and the negative increasing branch connects the negative 

decreasing branch. Hence, it is important to consider an existing hysteresis model to 

generate an unsymmetric moment-rotation diagram without the error of time sampling.  
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Additionally, the moment-rotation diagram generated by the considered hysteresis 

model is validated using the Dahl model [15] with different slope parameter for each branch 

of hysteresis. To estimate the governing equation for pinned column base-plate connection, 

the next step involves a schematic representation of the experimental setup. 

3.3. Schematic Representation and Generating Synthetic 
Data Using The Bouc-Wen Model 

 

3.3.1. Schematic representation of the experimental setup 

As the column base-plate connection is pinned, it has a rotational degree of 

freedom. As the dynamic displacements and axial load are applied at the top of the column, 

the external moments experienced by the connection are difficult to estimate due to their 

complex geometry. Further, the restoring moment of pinned column base-plate connection 

is hysteretic (see Fig. 2 (b). Considering all the above-mentioned characteristics, the pinned 

column base-plate connection is represented as a rotational SDoF dynamic system with 

restoring hysteretic moment. The schematic representation of the pinned column base-

plate connection is shown in Fig. 3. 

 

Fig. 3 Schematic representation of pinned column base-plate connection 
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The Equation Of Motion (EOM) of a dynamic system shown in Fig. 3 is  

 𝐼�̈�(𝑡) + 𝑚ℎ(𝜃, 𝑡) = 𝑀(𝑢𝑒𝑥𝑡(𝑡)) Eq. (6) 

Where, 𝜃(𝑡) is the angular displacement of the of the rotational SDoF dynamic system as 

well as the experimental pinned column base-plate connection. The restoring hysteretic 

moment in the experimental setup is represented as 𝑚ℎ(𝜃, 𝑡) in the rotational SDoF 

dynamic system. The external moment experienced by the pinned column base-plate 

connection is denoted as 𝑀(𝑢𝑒𝑥𝑡(𝑡)). Further, 𝐼 and �̈�(𝑡) represent polar moment of inertia 

associated with the mass m and angular acceleration respectively. Further, as stated in 

3.2.2, the Bouc-Wen model of hysteresis is considered for generating the synthetic moment-

rotation data. 

3.3.2. Bouc-Wen hysteresis model 

For generating an unsymmetric moment-rotation diagram, the most commonly used 

Bouc-Wen model of hysteresis [13], [14] is used. This model is selected because it can yield 

an unsymmetric hysteretic moment-rotation diagram. The procedure for the same is stated 

in the following text. 

Consider a rotational SDoF dynamic system with restoring hysteretic moment as shown in 

Fig. 3. The EOM of the same is given by  

 𝐼�̈�(𝒕) + 𝑚ℎ(𝜃(𝒕), �̇�(𝒕), 𝑧(𝒕)) = 𝑀(𝑢𝑒𝑥𝑡(𝒕)) Eq. (7) 

Let 𝑚ℎ(𝜃(𝒕), �̇�(𝒕), 𝑧(𝒕)) be the restoring hysteretic moment defined by the Bouc-Wen 

model of hysteresis. Further, 𝑧(𝒕) is an internal variable representing material properties. 

The other parameters have the same meaning as stated in Eq. (6). The hysteretic moment 

using the Bouc-Wen model and the internal variable representing material properties are 

given by [17] 

 𝑚ℎ[𝜃(𝒕), �̇�(𝒕), 𝑧(𝒕)] = 𝛼𝑘𝑜𝜃(𝒕) + (1 − 𝛼)𝑘𝑜𝑧(𝒕)   Eq. (8) 

 

{

𝑑𝑧(𝒕)

𝑑𝒕
= �̇�(𝒕){𝐵 − |𝑧(𝒕)|𝑛𝜓[𝜃(𝒕), �̇�(𝒕), 𝑧(𝒕)]}

𝐵 = 𝐵1 ∀ 𝑧(𝒕) ≥ 0
𝐵 = 𝐵2 ∀ 𝑧(𝒕) < 0

 

Eq. (9) 

Where 𝑘𝑜 and 𝛼 denote the initial stiffness of the material and post to preyield stiffness 

ratio respectively. 𝐵 and 𝑛 are the parameters that control the scale and sharpness of the 
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hysteresis loops. The two different values of 𝐵 are adopted to create an unsymmetric 

hysteretic moment-rotation diagram. The 𝜓 function of the Bouc-Wen model is represented 

as [17] 

 𝜓[𝜃(𝒕), �̇�(𝒕), 𝑧(𝒕)] = 𝛾 + 𝛽sgn(�̇�(𝒕)𝑧(𝒕)) Eq. (10) 

Where 𝛾 and 𝛽 are the parameters controlling the shape of hysteresis loops. sgn(.) denotes 

the signum function. Further, Eq. (9) is integrated in MATLAB using the ode45 function [18] 

and 𝑚ℎ[𝜃(𝒕), �̇�(𝒕), 𝑧(𝒕)] is calculated using Eq. (8) and Eq. (11). 

 𝜃(𝒕) = 𝐴𝑠𝑖𝑛(𝜔𝒕) Eq. (11) 

The values of all the parameters of the Bouc-Wen model are calibrated and further stated in 

Table 2. 

Table 2 Parameters of the Bouc-Wen model 

Parameter Value 

𝐴 0.0044 

𝜔 0.216 

𝑘𝑜 5000 

𝛼 0.85 

𝐵1 1 

𝐵2 1.5 

𝑛 0.41 

 

 

Fig. 4 Restoring hysteretic moment-rotation diagram of the Bouc-Wen model 
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The moment-rotation diagram using the Bouc-Wen model is shown in Fig. 4. The hysteretic 

moment-rotation diagram is unsymmetric as the maximum positive and maximum negative 

moments are different. 

The Dahl model [15] with different slope parameter for each branch of hysteresis is 

employed for estimating an unsymmetric hysteretic moment-rotation diagram generated 

using the Bouc-Wen model. In particular, the Dahl model is used because it is the simplest 

rate-and-state model. Further, the Dahl model has the least number of parameters and 

hence the slope of the Dahl model can be controlled by varying the parameter associated 

with the slope. 

3.4. Parameter Estimation Of The Dahl Model Using Bayesian 
Optimization 

 

The Dahl friction model was formulated by Dahl [15] for studying the effects of 

nonlinear friction in ball bearings [19] under the action of an external load. The ball bearing 

will initially provide an elastic resistance and return to its initial position after the load is 

removed; however, if the load exceeds its elastic resistance, the entire ball bearing will 

move. The Dahl friction resistance (𝐹) in the ball bearings is represented as [19]. 

 𝑑𝐹

𝑑𝑥
= 𝜎 |1 −

𝐹

𝐹𝑐
sgn(�̇�(𝑡))|

𝑖

sgn (1 −
𝐹

𝐹𝑐
sgn(�̇�(𝑡))) 

Eq. (12) 

Where 𝜎 denotes the slope of force to displacement curve. 𝐹𝑐  represents sliding Coulomb 

friction force. Further, 𝑖, 𝑥 and �̇�(𝑡) denote the shape factor, displacement, and velocity, 

respectively, of a ball bearing. Additionally, the influence of 𝑖 on the hysteresis curve is 

shown in Fig. 5. The Dahl model can be expressed in terms of the time derivatives as [19] 

 𝑑𝐹

𝑑𝑡
=
𝑑𝐹

𝑑𝑥
∙
𝑑𝑥

𝑑𝑡
= 𝜎�̇�(𝑡) |1 −

𝐹

𝐹𝑐
sgn(�̇�(𝑡))|

𝑖

sgn (1 −
𝐹

𝐹𝑐
sgn(�̇�(𝑡))) 

Eq. (13) 
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Fig. 5 Effect of i on the Dahl model 

3.4.1. Dahl model for investigating hysteresis 

The Dahl model is used for studying the hysteresis in materials subject to cyclic 

loading [20]. Due to cyclic loading, the shear stress (𝜏) and strain (𝛾) generated in the 

material are shown in the form of the Dahl model as [20] 

 𝑑𝜏

𝑑𝛾
=
𝜎𝜏
𝜏𝑐
(𝜏𝑐 − 𝜏sgn (�̇�))

𝑖
 

Eq. (14) 

 𝑑𝜏

𝑑𝑡
=
𝜎

𝜏𝑐
�̇�(𝜏𝑐 − 𝜏sgn (�̇�))

𝑖
 

Eq. (15) 

Where 𝜎𝜏 represents the slope of the stress-strain curve, 𝜏𝑐 is the yield limit of the material 

and 𝑖 denotes the shape of the hysteresis loop. Therefore, in this study, the Dahl model with 

different slope parameter (𝜅) for each branch of hysteresis is used to represent the 

restoring hysteretic moment in the rotational SDoF dynamic system (see Fig. 3). The EOM of 

rotational SDoF with restoring hysteretic moment is 

 𝐼�̈�(𝒕) + 𝑚𝑑(𝜃, 𝒕, 𝜅 ) = 𝑀(𝑢𝑒𝑥𝑡(𝒕)) Eq. (16) 
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{
  
 

  
 𝑑𝑚𝑑(𝜃, 𝒕, 𝜅 )

𝑑𝒕
= 𝜅�̇�(𝒕) (1 −

𝑚𝑑(𝒕)

𝑀𝑐
sgn (�̇�(𝒕)))

𝑖

sgn (1 −
𝑚𝑑(𝒕)

𝑀𝑐
sgn (�̇�(𝒕)))

𝜅 = �̂�∗ ∀ 𝒕 = 𝒕𝑷𝑰
𝜅 = �̂�∗∗ ∀ 𝒕 = 𝒕𝑷𝑫
𝜅 = �̂�∗∗∗ ∀ 𝒕 = 𝒕𝑵𝑰
𝜅 = �̂�∗∗∗∗ ∀ 𝒕 = 𝒕𝑵𝑫

 

Eq. (17) 

Where 𝑚𝑑(𝜃, 𝒕, 𝜅 ) is the restoring hysteretic moment using the Dahl model. 𝜅 denotes the 

slope of the hysteretic moment rotation diagram. From the available data of moment-

rotation, 𝑀𝑐 represents the magnitude of a maximum value of moment. The other 

parameters have the same meaning as stated in Eq. (2)-Eq. (6). The Dahl moment 

[𝑚𝑑(𝜃, 𝒕, 𝜅 )] is estimated by integrating Eq. (17) in MATLAB using ode45 function [18]. Let 

�̂�∗, �̂�∗∗, �̂�∗∗∗, and �̂�∗∗∗∗ be the optimum values of the slope parameters 𝜿∗, 𝜿∗∗, 𝜿∗∗∗, and 

𝜿∗∗∗∗. The optimum values are estimated using Bayesian Optimization [21]. Further, the 

variables can be represented as follows: 

 

{
 
 

 
 𝜿∗ = [𝜅1

∗ 𝜅2
∗ … 𝜅𝑛

∗ ]

𝜿∗∗ = [𝜅1
∗∗ 𝜅2

∗∗… 𝜅𝑛
∗∗]

𝜿∗∗∗ = [𝜅1
∗∗∗ 𝜅2

∗∗∗… 𝜅𝑛
∗∗∗]

𝜿∗∗∗∗ = [𝜅1
∗∗∗∗ 𝜅2

∗∗∗∗… 𝜅𝑛∗∗∗∗]

 

Eq. (18) 

Let 𝑀(𝒕) be the available data of restoring hysteretic moment. The selection of the 

optimum value of the slope parameter will result in a minimum error between the moment 

generated using the Dahl model [15] and the available data of restoring hysteretic moment. 

Hence the objective function (𝑤(𝜅𝑗
∗)) is defined as the root mean square error between the 

available data of restoring hysteretic moment (𝑀(𝒕)) and the restoring Dahl moment 

(𝑚𝑑(𝜃, 𝒕, 𝜅 )). The objective function for estimating the parameter of a different branch of 

hysteresis are stated in Table 3. 

Further, 𝑀(𝒕) is replaced by 𝑚ℎ[𝜃(𝒕), �̇�(𝒕), 𝑧(𝒕)] for comparing the Dahl model [15] 

hysteresis with the Bouc-Wen model [13], [14] hysteresis. Additionally, the order (𝑖) chosen 

for comparison with the Bouc-Wen model is 0.15. For comparison of the hysteretic 

moment-rotation data generated using the Dahl model with experimental moment-rotation 

data, 𝑀(𝒕) is replaced by 𝑚(𝒕) and the order (𝑖) is 1. It is worth mentioning that the 

procedure followed for data segregation in the case of the Bouc-Wen model is the same as 

stated in section 3.2.2. 
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Table 3 Objective function for estimating the optimum slope parameters 

Objective function 

{
 
 

 
 
𝑤(𝜅𝑗

∗) = √
∑ [𝑀(𝑡𝑖)−𝑚𝑑(𝜃, 𝑡𝑖, 𝑘𝑗

∗)]
2𝑖=𝑝𝑖

𝑖=1

𝑝𝑖

𝑤(𝜿∗) = [𝑤(𝜅1
∗),𝑤(𝜅2

∗),… ,𝑤(𝜅𝑛
∗)]

(�̂�∗) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜿∗

[𝑤(𝜿∗)]

 

{
 
 

 
 
𝑤(𝜅𝑗

∗∗) = √
∑ [𝑀(𝑡𝑖)−𝑚𝑑(𝜃, 𝑡𝑖, 𝑘𝑗

∗∗)]
2𝑖=𝑝𝑑

𝑖=1

𝑝𝑑

𝑤(𝜿∗∗) = [𝑤(𝜅1
∗∗),𝑤(𝜅2

∗∗), … , 𝑤(𝜅𝑛
∗∗)]

(�̂�∗∗) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜿∗∗

[𝑤(𝜿∗∗)]

 

{
 
 

 
 
𝑤(𝜅𝑗

∗∗∗) = √
∑ [𝑀(𝑡𝑖)−𝑚𝑑(𝜃, 𝑡𝑖, 𝑘𝑗

∗∗∗)]
2𝑖=𝑛𝑖

𝑖=1

𝑛𝑖

𝑤(𝜿∗∗∗) = [𝑤(𝜅1
∗∗∗),𝑤(𝜅2

∗∗∗), … ,𝑤(𝜅𝑛
∗∗∗)]

(�̂�∗∗∗) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜿∗∗∗

[𝑤(𝜿∗∗∗)]

 

{
 
 

 
 
𝑤(𝜅𝑗

∗∗∗∗) = √
∑ [𝑀(𝑡𝑖)−𝑚𝑑(𝜃, 𝑡𝑖, 𝑘𝑗

∗∗∗∗)]
2𝑖=𝑛𝑑

𝑖=1

𝑛𝑑

𝑤(𝜿∗∗∗∗) = [𝑤(𝜅1
∗∗∗∗),𝑤(𝜅2

∗∗∗∗), … ,𝑤(𝜅𝑛
∗∗∗∗)]

(�̂�∗∗∗∗) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜿∗∗∗∗

[𝑤(𝜿∗∗∗∗)]

 

 

The procedure for estimating the optimum value of  𝜿∗ is illustrated in the following 

text. The same procedure is adopted for estimating the optimum value of  𝜿∗∗, 𝜿∗∗∗, and 

 𝜿∗∗∗∗. It is worth mentioning that first �̂�∗ is estimated and later �̂�∗∗, �̂�∗∗∗, and  �̂�∗∗∗∗ are 

estimated one at a time using the objective functions mentioned in Table 3. The objective 

functions represent the root mean square error over different time intervals. The value of 

objective function 𝑤(𝜿∗) is assumed to be a Gaussian random variable for each value of 𝜿∗. 

Hence the objective function can be modeled as a Gaussian process [21]. Further, the 

objective function is divided into two parts (i) 𝒘𝒐:points where the value of 𝒘 is known 

(noise-free observations) and (ii) 𝒘∗: where the value of 𝒘 is predicted. Hence the 𝒘 is 

written as [21]  
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𝒘 = [𝒘𝒐 , 𝒘∗ ]
𝑻

{
 
 
 
 

 
 
 
 

𝒘𝒐 =

[
 
 
 
 
𝑤(𝜅

𝑜1
∗ )

𝑤(𝜅𝑜2
∗ )
⋮

𝑤(𝜅
𝑜𝑛𝑜

∗ )]
 
 
 
 

𝒘∗ =

[
 
 
 
 
𝑤(𝜅

∗1
∗ )

𝑤(𝜅∗2
∗ )
⋮

𝑤(𝜅
∗𝑛∗

∗ )]
 
 
 
 

 

Eq. (19) 

As 𝒘 is a Gaussian process, 𝒘𝒐 and 𝒘∗ are jointly a Gaussian process defined as [21] 

 
(
𝒘𝒐
𝒘∗
)~𝑁 ([

𝝁𝒐
𝝁∗
] , [
𝚺𝑜𝑜 𝚺𝑜∗
𝚺∗𝑜 𝚺∗∗

]) Eq. (20) 

Where 𝝁𝒑, 𝚺𝒑𝒑,and, 𝚺𝒑𝒒, are mean of 𝒘𝒑, variance of 𝒘𝒒 and covariance of 𝒘𝒑, 𝒘𝒒 

respectively which are represented as follows. 

 𝝁𝒐 = [𝑚𝑜(𝜅𝑜1
∗ ),… ,𝑚𝑜(𝜅𝑜𝑛𝑜

∗ )] Eq. (21) 

 𝝁∗ = [𝑚∗(𝜅∗1
∗ ),… ,𝑚∗(𝜅∗𝑛∗

∗ )] Eq. (22) 

 (Σ𝑜∗)𝑖,𝑗 = 𝐶𝑜𝑣[𝑤(𝜅𝑜𝑖
∗ ), 𝑤(𝜅∗𝑗

∗ )] Eq. (23) 

The covariance matrix is described by a kernel function that encodes the smoothness of the 

objective function. The kernel function used in this study is Squared Exponential Kernel [22], 

[23]. To estimate the optimum value of the slope parameter without running simulations for 

each value of 𝜿∗, Bayesian Optimization is used [21]. 

3.4.2. Bayesian Optimization 

The Bayesian Optimization leverages 𝒘𝒐 to estimate the values of 𝒘∗. The 𝜅∗𝑗
∗  is 

chosen such that the improvement in estimating the 𝑤(𝜅∗𝑗
∗ ) is maximum. The improvement 

𝐼+(𝒌∗) is defined as [21] 

 𝐼+(𝒌∗) = {
𝑤𝑚𝑖𝑛 −𝑤(𝜿

∗)
0

 Eq. (24) 

 𝑤𝑚𝑖𝑛 = min (𝒘𝒐) Eq. (25) 

As the 𝑤𝑚𝑖𝑛 is deterministic and 𝑤(𝜿∗) is a Gaussian process, 𝐼+(𝜿∗) follow a normal 

distribution with mean and variance as [𝑤𝑚𝑖𝑛 −𝑚(𝜿
∗)] and 𝜎2(𝜿∗) respectively (see Eq. 

(26) and Eq. (27)). Further, the best new point is chosen such that the value of acquisition 

function is maximum. The acquisition function is expressed as given in Eq. (28). 

 𝑚(𝜅𝑗
∗) = 𝑚∗(𝜅∗𝑗

∗ ) + Σ𝑗𝑜Σ𝑜𝑜
−1(𝑤𝑜 − 𝜇𝑜) Eq. (26) 

 𝜎2(𝜅𝑗
∗) = 𝐶𝑜𝑣[𝑤(𝜅∗𝑗

∗ ), 𝑤(𝜅∗𝑗
∗ )] − ΣjoΣ𝑜𝑜

−1Σ𝑜𝑗 Eq. (27) 
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Aquisition Function(𝜿∗) = 𝐸𝐼+(𝜿∗) = ∫ 𝐼+𝑝(𝐼+(𝜿))𝑑𝐼+

∞

0

 
Eq. (28) 

 𝜅𝑖
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥

𝜅∗≤𝜅∗≤𝜅
∗
[Aquisition Function(𝜿∗)] Eq. (29) 

Where 𝜅∗ and 𝜅
∗
 represent the user-specified limits of the variable 𝜿∗. In the current study, 

3 random initial points are chosen as the noise-free observations, and the next best points 

are chosen using Bayesian Optimization. The representation of Bayesian Optimization is 

shown in Fig. 6. For this study, the total number of iterations performed by Bayesian 

Optimization to estimate the 𝑤(𝜿∗) is 50. Further, the optimum point is selected using Eq. 

(29). This method for estimating the optimum value of parameter for an increasing branch 

of hysteresis is implemented using the MATLAB function bayesopt [16]. 

 

(a) Bayesian Optimization suggesting next 

point 

 

(b) Objective function after running the 

simulation at the new point 

Fig. 6 Working of Bayesian Optimization 

Further, the same methodology is repeated for estimating the optimum slope for the 

positive decreasing �̂�∗∗, negative increasing �̂�∗∗∗, and negative decreasing �̂�∗∗∗∗ branches of 

the hysteresis curve. The Root Mean Square Error for comparison between the results is 

defined as 

 

𝑅𝑀𝑆𝐸∗ = √∑
{𝑀(𝑡𝑖) −𝑚𝑑(𝜃, 𝑡𝑖,𝜅)}2

𝑛𝑑

𝑖=𝑛𝑑

𝑖=1

 

Eq. (30) 
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3.5. Results 
 

The Dahl model with different slope parameter for each branch of moment-rotation 

hysteresis is used. Further, the obtained moment-rotation diagram using the Dahl model is 

compared with the moment-rotation diagram obtained using the Bouc-Wen hysteresis 

model. Additionally, the hysteretic moment-rotation diagram generated using the Dahl 

model with different slope parameter is compared with experimental moment-rotation 

data. 

3.5.1. Comparison with data generated using the Bouc-Wen model of 

hysteresis 

From Fig. 7, it is observed that there is a good agreement between the moment-

rotation diagram generated using the Dahl model with different slope parameter for each 

branch and the moment-rotation diagram using the Bouc-Wen hysteresis model. The 

optimum values of each slope parameter for different branches of hysteresis are reported in 

Table 4. Further, as seen in Fig. 8, the estimation of the moment in the time domain is 

accurate with RMSE value of 0.09 KNm. 

Table 4 Optimum values of slope parameter in the case of comparison between Bouc-
Wen and dahl model hysteresis 

Optimum slope parameter Optimum value 

�̂�∗ 4514 

�̂�∗∗ 4454 

�̂�∗∗∗ 4351 

�̂�∗∗∗∗ 4351 
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(a) 

 

(b) 

Fig. 7 Rotation of the Bouc-Wen model (a) and comparison between moment-
rotation diagram obtained using the Bouc-Wen and the Dahl model with 
different slope parameter for each branch of hysteresis (b) 

 

Fig. 8 comparison between moment-rotation diagram obtained using the Bouc-Wen 
and the Dahl model with different slope parameter for each branch of hysteresis 

  



Research Paper 2 

56 
 

3.5.2. Comparison with experimental data 

Using the data of experimental moment-rotations shown in Fig. 9 and following the 

methodology mentioned in section 3.2, section 3.3, and section 3.5, the governing 

equations of the three pinned column base-plate connections are estimated. 

Table 5 Values of RMSE and optimum slope parameters for experimental data 

 S01 S03 S07 

𝑅𝑀𝑆𝐸∗ [KNm] 1.05 1.58 1.76 

�̂�∗ 4451 6110 50175 

�̂�∗∗ 3605 5196 55027 

�̂�∗∗∗ 9510 9501 75010 

�̂�∗∗∗∗ 8998 8995 80094 

 

As shown in Table 5 and Fig. 9, the obtained results show good accuracy with an acceptable 

value of RMSE. The obtained moment-rotation diagram using the Dahl model with different 

slope parameter for each branch of hysteresis exhibit good accuracy. There is a good 

agreement between the variation of moment in the time domain using the Dahl model and 

the experimental data as observed in Fig. 10. The values of the optimum slope parameters 

are stated in Table 5. The error is due to the assumption of a constant slope parameter of 

the Dahl model for each branch of hysteresis. As the slope parameter is a constant value 

over one branch of hysteresis, the variation in one branch of the moment-rotation diagram 

generated using the Dahl model is close to linear. Hence, the local yielding observed in the 

experimental data though small is not captured. 
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Fig. 9 Data of experimental rotations (a) and restoring hysteretic moment-rotation 
diagrams of different experimental specimen 
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Fig. 10 Comparison between restoring hysteretic moment obtained via experimental 
investigations and the Dahl model with different slope parameter for each branch of 
hysteresis 

3.6. Conclusions 
 

The methodology for estimating the governing equation of an unsymmetric 

moment-rotation hysteresis diagram has been proposed. This includes setting different 

slope parameter in the Dahl model for each branch of the hysteresis diagram. The model is 

used to estimate the governing equation for the moment-rotation diagram generated using 

the Bouc-Wen model as well as for the hysteretic moment-rotation diagram of pinned 

column base-plate connection. The unknown slope parameter of the Dahl model is 

estimated using Bayesian Optimization. 
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The main advantage of the proposed approach is, it can be used to identify the 

governing equation of different types of connection in the elastic region. The identified 

equations can be used by practicing engineers. The identified equations can be used when 

the connections have the same geometry and loading conditions. Further, the approach can 

be used for calculating the loss of energy accurately. As the proposed approach yields a 

moment-rotation relationship, it can be used for estimating the non-zero rotational stiffness 

of a connection. The non-zero rotational stiffness will result in increasing the design 

strength of the structure and hence it can save the material and cost associated with the 

construction of the building structure. The future work will focus on studying the response 

of connection under different amplitude of rotation in an elastic region and further in an 

inelastic region. 
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4. Conclusions and Challenges 

Civil Engineering structures such as buildings and grandstands experience dissipation of 

energy due to the Coulomb friction and hysteresis damping in joints. Hence, it is crucial to 

identify the magnitude of the Coulomb friction force as well as the governing equations 

representing hysteresis damping in joints. In this research, an effort is made to identify (i) 

the governing equation of a SDoF dynamic system with the Coulomb friction using the 

Extended SINDy (ii) the governing equation of the hysteretic moment-rotation by employing 

the Dahl model with different slope parameter for each branch of hysteresis. This chapter 

highlights the important findings about the previously stated problem statement in section 

1.2 and discusses challenges for future work. 

4.1. Conclusions 
 

The existing SINDy algorithm is first used to identify the nonlinear Coulomb friction 

in a SDoF system subject to external harmonic excitations. The SINDy algorithm fails to 

identify the correct coefficients of the EOM that denote the system parameters such as 

mass normalized stiffness, viscous damping, and friction force. Hence, the Extended SINDy 

algorithm has been proposed which augments the existing SINDy algorithm with the stick 

and slip temporal constraints. In the Extended SINDy algorithm, the SINDy algorithm is used 

to identify the correct functional form of the EOM by leveraging the mass-motion data. 

Further, the stick and slip temporal constraints are employed on the correct functional form 

of EOM. This is done using constrained optimization. 

The Extended SINDy algorithm is first used to identify the synthetic model of a SDoF 

dynamic system with the nonlinear Coulomb friction. The Extended SINDy yields excellent 

results by identifying the system parameters like mass normalized stiffness, viscous 

damping, and the Coulomb friction force more accurately than the SINDy algorithm. Later, 

the proposed Extended SINDy is employed to identify an experimental SDoF dynamic system 

with friction contact. The Extended SINDy identifies the system parameters within an 

acceptable range of RMSE. 
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To address the second research question, the experimental setup is schematically 

represented as a rotational SDoF dynamic system with restoring hysteretic moment. 

Further, the Bouc-Wen model is employed for generating the unsymmetric hysteresis with 

characteristics resembling the experimental moment-rotation data. Additionally, the 

hysteresis diagram is divided into four branches based on the values of moments and 

rotations. Later, the Dahl model with different slope parameter (𝜅) for each branch of 

hysteresis is used to identify the governing equation of moment-rotation hysteresis in the 

time domain. The Bayesian Optimization is employed for estimating the optimum slope 

parameters of the Dahl model. The governing equations are identified for the hysteresis 

diagrams generated using the Bouc-Wen model as well as the experimental data of the 

column base-plate connection. It is assumed that the slope parameter is constant for each 

branch of hysteresis. Additionally, the order of the Dahl model is assumed to be the same 

for all branches of the hysteresis diagram. The governing equations are estimated for three 

different pinned column base-plate connections in an elastic region with a constant 

amplitude of rotation. 

Using the optimum parameters, the Dahl model estimates the moment-rotation 

diagram with good accuracy. The error between the moment-rotation diagram obtained 

using the Bouc-Wen model and the Dahl model with different slope parameter is within an 

acceptable range. The same is observed when the moment-rotation diagram using an 

experimental setup is compared to the moment-rotation diagram generated using the Dahl 

model with different slope parameter. 

4.2. Challenges 
 

The proposed Extended SINDy algorithm needs to be analyzed when the SDoF 

dynamic system is subject to random base excitation. The main challenge in the case of 

random base excitation is the identification of the functional form of EOM in step 2 of the 

Extended SINDy. When the SDoF dynamic system with the Coulomb friction is excited using 

harmonic excitation in a continuous regime, SINDy estimates correct coefficients in the 

EOM. However, this is possible only if the response data has clear distinction between 

transient as well as steady-state responses. In the case of random excitation, the response 
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of SDoF with Coulomb friction is random and there is no clear distinction between the 

transient and the steady-state response in the time domain. 

Additionally, the proposed Extended SINDy algorithm needs to be analyzed in the 

case of a MDoF dynamic system with single or multiple friction contacts. Estimating the 

system parameters in step 3 remains the main challenge in the case of a MDoF dynamic 

system with the Coulomb friction. The number of parameters (e.g. stiffness, damping and, 

magnitude of friction force) will increase with the increase in the degrees of freedom. The 

current methodology in step 3 of the Extended SINDy involves representing the system 

parameters in x,y,z coordinate system. This is no longer possible when the number of 

parameters increases. Hence a different optimization approach in step 3 is required to 

estimate the correct system parameters. 

Further, in real Civil Engineering structures, there are different sources of energy 

dissipation along with the Coulomb friction. Hence it is important to have a knowledge of 

the functional form of the other dissipative forces to accurately estimate the magnitude of 

the Coulomb friction force. Furthermore, the measurements collected contain noise which 

is not always Gaussian. The noise causes errors in numerical differentiation and will affect 

the performance of the Extended SINDy in step 2 and step 3. 

 The pinned column base-plate connections are often subject to random excitations 

which lead to angular rotations with varying amplitude. The current approach considers a 

constant amplitude of rotations. Hence the current approach considering the Dahl model 

with different parameter for each branch of hysteresis needs to be extended. In the current 

methodology, the value of the yield limit (𝑀𝑐) is constant. Hence the maximum value of 

restoring hysteretic moment generated by current approach is equal to 𝑀𝑐. In the case of 

random angular rotations, the maximum value of restoring hysteretic moment varies in 

time. Therefore, a special attention is required while setting the value of the yield limit 

(𝑀𝑐). 

 When the pinned column base-plate connection is subject to external loading with 

high amplitude and frequency, the energy dissipation due to heat can be significantly large. 

Large energy dissipation leads to a wider hysteresis loop. In the case of a wider hysteresis 

loop, the change in the slope of the branches of the moment-rotation curve is significant as 
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compared to the current experimental case study. The change in the slope of the hysteresis 

diagram is governed by parameter 𝑖. Hence the issue can be solved by setting the correct 

value of parameter 𝑖 using Bayesian Optimization. 

In Civil Engineering structures, due to fabrication defects, the pinned column base-

plate connections experience localised yielding in an elastic region. The current approach is 

unable to yield an accurate moment-rotation diagram in the case of localised yielding in an 

elastic region. This is because of the constant value of the slope parameter (𝜅) for each 

branch of hysteresis diagram. In the case of localised yielding in an elastic region, the 

accuracy of the proposed approach can be increased by considering the slope parameter 

(𝜅) a function of time. 

 

 


