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Abstract
Reinforcement Learning agents can be supported by feedback fromhuman teachers in the learning loop that guides the learning
process. In this work we propose two hybrid strategies of Policy Search Reinforcement Learning and Interactive Machine
Learning that benefit from both sources of information, the cost function and the human corrective feedback, for accelerating
the convergence and improving the final performance of the learning process. Experiments with simulated and real systems
of balancing tasks and a 3 DoF robot arm validate the advantages of the proposed learning strategies: (i) they speed up the
convergence of the learning process between 3 and 30 times, saving considerable time during the agent adaptation, and (ii)
they allow including non-expert feedback because they have low sensibility to erroneous human advice.

Keywords Reinforcement learning · Learning from demonstration · Policy search · Interactive machine learning

1 Introduction

An important issue of Reinforcement Learning (RL) meth-
ods is the relative long training time of systems/controllers
to be used in complex/dynamic environments, which can
be a limitation for their application in robots interacting in
the real-world. This shortcoming can be addressed with the
support of human users who participate/collaborate in the
learning process. Thus, Learning from Demonstration (LfD)
and RL can be sequentially combined for learning skills
autonomously froman initial policy that could be obtained by
human teachers’ demonstrations (Atkeson and Schaal 1997;
Kober et al. 2012).
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There are some approaches that combine RL with
human reinforcements (Thomaz andBreazeal 2006; Tenorio-
Gonzalez et al. 2010; Knox and Stone 2012). This combina-
tion takes advantage of the user’s knowledge for speeding up
the learning process while keeping the convergence proper-
ties of RL algorithms.

Thus, combining RL with interactive machine learning
strategies might be a synergetic relationship, in which the
learning processes are sped up asRL benefits from the human
knowledge of the task. The RL part also provides more sta-
bility and robustness to the interactive framework, which is
susceptible to the inherent occasional erroneous feedback
associated to human teachers (human are not perfect and
prone to fail in repetitive tasks).

In this context, we postulate that the use of reinforce-
ment learning with human feedback will allow addressing
important requirements of robotics applications. Since Pol-
icy Search (PS) RL seems to be more appropriate than value
based RL for facing the challenges of robot RL (Deisen-
roth et al. 2013), this paper proposes the use of learning
methods based on PS techniques that additionally make use
of available human knowledge for reducing the learning
time, which is one of the main constraints of classical robot
learning applications. Corrective feedback advised by human
teachers is used in the introduced approach, similarly to the
mentioned hybrid learning systems based on RL and human
reinforcements. In the proposed approach, human knowledge
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is provided to the PS learning agents with corrective advice
using the COACH algorithm (Celemin and Ruiz-del Solar
2015), which has outperformed some pure autonomous RL
agents and pure interactive learning agents based on human
reinforcements, and demonstrated to be useful in some con-
tinuous actions problems such as the balancing of cart-pole
problem, bike balancing, and also navigation for humanoid
robots (Celemin and Ruiz-del Solar 2018).

In the presented hybrid approaches, the corrective feed-
back given in the action domain by the human teachers
speeds up the learning process dramatically, especially dur-
ing the early stage. On the other hand, the reward based
feedback encoded in the cost function plays a more impor-
tant role for refining the policy when the human perception
and understanding capabilities no longer benefit the pol-
icy improvement. This is supported by the results of the
experiments with 2 simulated balancing environments (cart-
pole, and inverted pendulum swing-up) and 3 real systems
(inverted pendulum swing-up, inverted wedge, and learning
an inverse kinematics model for a 3DoF robot arm). In the
validation, the performance of pure PS, and pure COACH
is compared against the proposed hybrid approaches. The
results show that the hybrid approaches learn faster and
obtain better policies than the original methods. The con-
siderable time reductions render learning on real physical
systems feasible.

Some experiments show that the RL component pro-
vide robustness to noisy and erroneous corrections of the
human teacher, while the pure human corrective advice based
method is more sensitive to these situations that are always
associated to humans. Additionally, in the last part of the
experimental evaluation of this work, experiments show that
using these hybrid interactive RL approaches, non-expert
users can achieve policies with better performance than
obtained while they try to operate and execute the tasks
directly.

This paper is organized as follows: Sect. 2 provides a brief
overview of the kind of PS algorithms explored in the work,
followed with the Interactive Machine Learning (IML) strat-
egy based on human continuous corrective feedback to be
combined with PS. Section 3 presents the algorithmic for-
mulation of the proposed hybrid learning approaches, based
on PS and human corrective feedback. Section 4 presents
experimental results, and Sect. 5 presents conclusions and
future work.

2 Background and related work

Both autonomous and interactivemachine learning strategies
have shown to reduce either the workload of the user or the
time required for the convergence. For instance, robotic arms
can already learn autonomously to solve manipulation tasks

based on RL, PS, and deep neural networks directly from raw
images without any pre-processing (Levine et al. 2015). Also
using RL, several industrial arms are able to simultaneously
learn by trial and error to execute grasping tasks directly
from the camera images without the necessity of executing
calibration processes by the user (Levine et al. 2016).

IML techniques involve users that interact with the agents
for adapting the policies (Chernova andThomaz 2014;Argall
et al. 2009). For instance, actions and state representations are
learned from user demonstrations for learning manipulation
tasks in Rozo et al. (2013), and the problems ofwhat and how
to imitate? are addressed. There are learning strategies that
learn from occasional human feedback that could be either
corrective in the actions space, or evaluative, as mentioned
below.

Corrective feedback has been used in Argall et al. (2008,
2011), wherein policies for continuous action problems are
learned from human corrective advice; this kind of feedback
also showed to be faster than critic-onlyRLalgorithms for the
reported experiments, even when the users were non-experts
Celemin and Ruiz-del Solar (2015, 2018).

Evaluative feedback has been reported in applications of
RLwith human reinforcements, for instance, in Pilarski et al.
(2011) a myoelectric controller of a robotic arm is learned
through a RL approach that employs the reinforcement from
a human teacher instead of an encoded reward function.
An object sorting task is learned from human rewards and
guidance in Najar et al. (2016). Human preferences based
approaches use another type of evaluative feedback. Here the
teacher iteratively chooses the preferred execution among
two policies demonstrated by the agent, leading to good
results in simple tasks (Akrour et al. 2011, 2014). This
approach has also been applied to learn complex simulated
tasks with deep neural networks (Christiano et al. 2017), and
applied to manipulation tasks with real robots (Jain et al.
2013).

One of the best known approaches of sequential combina-
tion of interactive and autonomous learning isApprenticeship
Learning (Abbeel and Ng 2004). This approach has a
first stage, wherein a human begins controlling the agent.
Then, in a second stage, a reward function is derived with
Inverse Reinforcement Learning (IRL) (Ng and Russell
2000; Zhifei and Joo 2012) from the collected demonstra-
tions. Finally, this reward function is used in a standard RL
process.

A brief overview of the algorithms used in the proposed
hybrid learning scheme is presented below.

2.1 Policy search

Policy Search (PS) is a branch of RL where parametrized
policies are learned directly in the parameter space, based
on the cost given by the reward function. Thus, PS methods
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do not learn a value function as most of RL algorithms do.
For this reason, PS has advantages with respect to value func-
tion based RL in robotic applications, because computing the
value function requires data from the complete state-action
space. Additionally, the use of parametrized policies reduces
the search space, which is important in applications with
physical limitations as is usually the case when learning with
robots (Deisenroth et al. 2013).

Moreover, in robotic applications PS is a better choice
compared to value-based methods due to the properties of
scalability and stability of the convergence (Kober et al.
2013). That is, a small change of the policy may lead
to a big change of the value function, that can again
produce a big modification of the policy. This instabil-
ity is not necessarily a problem for finding global optima
after exhaustive training in simulated environments, how-
ever with real robots a smooth and fast convergence is
desired.

The general structure of a PS method is presented in
Algorithm 1, which includes three main steps: exploration,
evaluation, and updating. The exploration step creates sam-
ples of the current policy for executing each roll-out or
episode. This process can be step-based or episode-based,
depending on whether the exploration elements are changing
through the time steps or are constant during each episode,
respectively. In the evaluation step, the quality of the exe-
cuted roll-outs is examined, and the strategies can also
be step-based or episode-based, depending on whether the
assessment is over every single action or over the parameter
vector. The update step uses the evaluation of the roll-outs
to compute the new parameters of the policy. This update
can be based on policy gradients, expectation-maximization,
information theoretic, or stochastic optimization approaches.
During the last years, several PS algorithms have been pro-
posed and evaluated using different strategies in each of the
three steps. Nevertheless, the most suitable method to be
used depends on the specific application being addressed.
In this work we use episode-based methods with stochastic
optimization update strategies that can be considered black-
box optimizers, due to the good combination of simplicity
and good learning convergence (Stulp and Sigaud 2012b,
2013; Heidrich-Meisner and Igel 2008). Its simplicity makes
it easier to combine PS with other learning approaches.
In Algorithm 2, the episode-based model free PS scheme
used in this work is presented. In the exploration step, a
set of noisy samples of the current policy parameter vec-
tor is generated. In the evaluation step, a global cost R of
each m-th roll-out corresponding to the m-th sample of the
policy parameter vector is measured. In the third step, the
policy is updated using the exploration samples and their
respective evaluations. In the next paragraphs three episode-
based black-box methods used for policy improvement are
described.

2.1.1 Cross-entropy method

TheCross-EntropyMethod (CEM) for policy searchwas pro-
posed in Mannor et al. (2003), and more recently has been
used by Busoniu et al. (2011) Stulp and Sigaud (2012a) for
learning problems of discrete and continuous actions. Using
this approach, the method creates M samples of the current
policy for the exploration step, according to a normal distri-
bution as:

θ [m] ∼ N (θk,Σk),m = 1, . . . , M (1)

where θk is the policy vector at the k-th iteration and Σk

the covariance matrix. The cost function must be minimized
and return a scalar that represents the performance index.
The update step is executed first by sorting the samples in
ascending order with respect to the cost function R[m]. Then,
the normal distribution is updated as:

θk+1 =
Me∑

m=1

1

Me
θ [m] (2)

Σk+1 =
Me∑

m=1

1

Me
(θ [m] − θk+1)(θ

[m] − θk+1)
T (3)

taking into account only the first Me “elite” samples with the
lowest costs, i.e., Me < M .

2.1.2 Episode-based PI2

The Path Integral Policy Improvement (PI2) is a PS method
formulated from the principles of stochastic optimal control,
and is based on probabilityweighted average for updating the
policy parameters, specially for learning in trajectory con-
trol problems (Theodorou et al. 2010). In Stulp and Sigaud
(2012a) PI2 with covariance matrix adaptation (PI2-CMA)
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is presented, which combines the standard PI2 with a com-
putation borrowed from the CEM to automatically adapt the
exploration term. An episode-based version of PI2 that can
be classified as Black-Box optimization called PIBB is pre-
sented in Stulp and Sigaud (2012b), obtaining interesting
results with respect to the original version and other variants.

Thismethod executes the exploration step like the CEM in
(1), however, the covariance Σ is not updated by the method
itself, but rather the size of this exploration term has to be
adaptedwith an additional strategy that is not part of the algo-
rithm, usually this covariance is diminished through the time.
The evaluation for obtaining R[m] has the same restrictions
as for CEM, but before the update, the evaluation set is nor-
malized between 0 (the best roll-out) and 1 (the worst). Then,
the normalized costs are mapped to a probability distribution
P [m] as:

P [m] = e− 1
λ
R[m]

∑M
n=1 e

− 1
λ
R[n] (4)

with λ the temperature parameter. Finally, the update step is
carried out with the probability-weighted average using the
parameter vector of every roll-out and its respective proba-
bility P [m]:

θk+1 =
M∑

m=1

P [m]θ [m]. (5)

2.1.3 Episode-based PI2 with covariance matrix adaptation

In the present work, we propose to extend the PI2-CMA pre-
sented in Stulp and Sigaud (2012a) to PIBB . This extension is
intended to incorporate an automatic adaptation of the explo-
ration term in PIBB , with a similar strategy as the one used in
(3) for CEM. This alternative strategy can be also seen as a
combination of PIBB andCEM. This extension uses the same
algorithm employed by PIBB , but it updates Σ according to

Σk+1 =
M∑

m=1

P [m](θ [m] − θk+1)(θ
[m] − θk+1)

T (6)

instead of (3), based on the probability computed using (4).
We refer to this approach as PIBB-CMA.

The three presented PS algorithms along with the orig-
inal PI2 and the PI2-CMA have slight differences that are
summarized in Table 1. The “Covariance Adaptation” field
indicates whether the algorithms have covariance adaptation
for the exploration distribution or not; the field “Exploration”
shows the strategy for disturbing the parameters vector for
exploration which can be episode based, or time-step based;
the column of “Evaluation” shows the kind of evaluation
that the algorithm has, for episode based evaluations it is
used a “trajectory cost” which is a scalar index, whereas for
time step based evaluations the “cost to go” is computed for
every time step; all the listed algorithms update the policy
with probability weighted averaging, so the corresponding
field indicates the technique the algorithm uses to compute
the probability for updating the policy. For instance, CEM
takes the best Me roll-outs with associated uniform proba-
bility 1/Me used in (2) and (3), the rest of the algorithms use
normalized exponentiation of the cost computed with (4).

Additionally, the proposed methods of this work are
included in this table, but the details are presented in the
next section.

2.2 Learning from human corrective advice

COrrective Advice Communicated by Humans (COACH)
was proposed for training agents interactively during task
execution (Celemin and Ruiz-del Solar 2015). In this frame-
work, the state space is represented with the vector s ∈ S.
The policy P : S → R

D maps directly from states to con-
tinuous actions, and occasionally human teachers suggest
corrections for the performed actions immediately after their
execution with vague binary signals h ∈ [−1, 1] (increase,
decrease respectively). The advice is a relative change of the
action’s magnitude, which is used for updating the policy
with Stochastic Gradient Descent (SGD). The binary sig-
nals are “to increase” or “to decrease” the executed action,
and could be independently given for each of the D degrees
of freedom that compose the action space A. The frame-

Table 1 PS comparison

Algorithm Covariance adaptation Exploration Evaluation Probability for weighted averaging

CEM � Episode Trajectory cost Uniform with the elite samples

PI2 ✗ Time-step Cost to go Normalized exponentiation

PI2-CMA � Time-step Cost to go Normalized exponentiation

PIBB ✗ Episode Trajectory cost Normalized exponentiation

PIBB-CMA � Episode Trajectory cost Normalized exponentiation

COACH+PS � Time-step/episode Trajectory cost Normalized exponentiation
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work was proposed for training policies parameterized with
linear models of basis functions, and it has been success-
fully applied to problems like the well known cart-pole and
the ball-dribbling with biped humanoid robots. The learning
process is supported in the following modules.

Policy supervised learner

The policy P(s) is a linear combination of the feature vector
f ∈ F and the weights vector θ (P(s) = f T θ ). When a
human teacher advises a correction, he/she is trying tomodify
the executed P(s) in the direction of the advice h; therefore,
thismodule updates theweights of the policymodel (θ ), using
a SGD based strategy. But for this model, the error prediction
is unknown, since the teacher provides the correction trend,
not the exact value of the action to be executed, which could
not be intuitive to the human teachers. COACH has the error
assumption that sets the prediction error as:

error = h · e (7)

with h and e as sign and magnitude of the error, h is the
teacher feedback, and e is a constant value defined by the
user before the learning process. In order to apply the teacher
correction, the squared error is used as cost function J (θ) to
be minimized with SGD.

θ = θ − α∇θ J (θ) (8)

Therefore, incorporating (7) into (8) and considering the pol-
icy P(s) a linear model of the features f , the updating term
is

θ = θ + α · error · ∂P(s)

∂θ
= θ + α · h · e · f (9)

wherein α is an adaptive learning rate or step size, calculated
from the magnitude of α(s) = |H(s)| in each time step,
and H(s) is the prediction of the human correction that is
described below.

Human feedback modeling

H(s) is a model learned during the training process, that pre-
dicts the human corrective advice with respect to the current
state s. It maps H : S → R

D that is constrained in the range
[−1, 1] in every dimension. Negative predictions mean that
the teacher would advise “to decrease” the action magnitude
associated to the corresponding axis, while positive compu-
tations correspond to predictions of the advice: “to increase”
the action. The prediction is used to compute the adaptive

learning rate α(s) used for the policy P(s) updating. The
absolute value of the prediction defines how much the pol-
icy is modified when the teacher advises a correction to the
policy in the state s. For instance, if the prediction is very
close to zero, it means that in previous corrections for the
same region of S, the advice has been alternated between
1 and −1, so the correction tends to be smaller because
the teacher is fine tuning around a specific action magni-
tude.

Human feedback supervised learner

This module updates the parameters vector ψ of the Human
Feedback model H(s) = f Tψ , using SGD like in the P(s)
updating. These weights are updated similarly to (7) and (8),
but in this case the error is known

errorprediction = h − H(s). (10)

The prediction error is given by the difference between the
actual human advice h and the prediction given by H(s).
The basis vector f is the same used in the Human feedback
Model H(s) and the Policy Model P(s).

Credit Assigner

This module is necessary for problems of high frequency,
in which human teachers are not able to independently
advise the executed continuous action at each time step.
This Credit Assigner module is borrowed from the TAMER
framework (Knox and Stone 2009), it tackles this problem
by associating the feedback not only to the last state-
action pair, but to several past state-action pairs. Each
past state-action pair is weighted with the corresponding
probability ct (11) computed from the probability density
function pd fdelay that characterizes the human response
delay.

ct =
∫ t

t−1
pd fdelay(x)dx (11)

In this process a new feature vector is computed by the Credit
Assigner ( f cred ), which is the weighted sum of the feature
vectors from the past states; this is the actual vector used by
the Human Feedback and the Policy Supervised Learners.
This credit assigner can be seen like an eligibility tracesmod-
ule for the human correction and implementation. Details
can be found in the original paper. This module might not
be necessary in problems of low sampling frequency, e.g., 1
Hz.
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The complete COACH framework is illustrated in Fig. 1,
and described in Algorithm 3, where at the beginning the
credit assigner module computes the probabilities (11) for
weighting the n previous time steps relative to the current
state (line 4). These weights are used in the line 15 for
computing the feature vector. The amount of n time steps
considered in the credit assigner window depends on the
sampling frequency of the task, and the probability density
function used for modeling the human delay (see Knox and
Stone 2009). Every time step the environment is observed
and the policy executed (lines 7–11). Time steps wherein
the human teacher provides feedback, the human model and
the policy are updated taking into account the mentioned
assumptions (lines 14–21).

In this work COACH is combined with PS in order to
have human guidance based on corrective advice for the PS
progress.

3 Policy search guided with human
corrective feedback

Policy Search RL algorithms, as any autonomous RL algo-
rithm, take only the feedback given by the cost or reward
function and along with the exploration strategy, the search

Fig. 1 Architecture of COACH

of the solution is performed. This work proposes to combine
episode-based PS with human guidance, where the human
teacher is able to correct the policy every time step, whereas
the PS only updates the policy model after each iteration of
M trials, based on the global performance measurement of
every roll-out. This combination of feedback sources is pre-
sented in two different approaches, where the learning agent
is updated by the users with the COACH framework and the
PS algorithm in either a sequential or a simultaneous fashion
as explained below.

3.1 Learning sequentially with COACH and policy
search

In this scheme called Sequential COACH+PS, we propose to
have two independent learning phases, as depicted in Fig. 2.
At the beginning, the human teacher interacts with COACH
providing corrective feedback to the agent during the task
execution. The learning could be from scratch or the ini-
tial policy parameters can be set from a policy that needs
to be refined. The interactive learning process is executed
during several episodes of learning until the user considers
that he/she cannot improve the quality of the policy fur-
ther. Thereafter, the resulting policy is taken as the initial
set of parameters for the normal PS process. It has the objec-
tive of performing a refinement of the learned parameters in
order to achieve an optimal point while locally exploiting
the parameters space. The learning process finishes with the
same criteria of convergence used when learning only with
PS.
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Fig. 2 Learning sequentially with COACH+PS

3.2 Learning simultaneously with COACH and policy
search

This second approach named Simultaneous COACH+PS
uses simultaneously both sources of information, human
feedback and parameter update of PS, for training an agent as
shown in Fig. 3. Since the learning progress with COACH is
completely based on the human teacher criteria, the conver-
gence is prone to be unstablewhen the users providemistaken
feedback. Sequential COACH+PS also suffers from this sen-
sitivity to human errors in its first stage of human advice.

We propose to have the PS algorithm at a supervisory level
of COACH, in which the cost function determines whether
the policy trained by the human teacher is evolving prop-
erly or not. Previously we stated that this work is based on
episode-based PS, however the proposed simultaneous PS
and COACH learning strategy can be seen as a PS algorithm
in which the evaluation is episodic, but the exploration is
step-based and completely given by the corrections of the
human teacher, wherein the changes that COACH obtains
over the policy vector are taken as exploration noise by the
PS algorithm.

For this hybrid learning scheme, during each roll-out, a
regular COACH process of interactive training is carried out
(Algorithm 3). From the PS point of view, the evaluation and
update stages are kept exactly the same as defined by episode-
based PS in Algorithm 2 at lines 3 and 4 with Eqs. (2)–(5),
depending on the used algorithm.

The exploration stage is significantly different from the
strategy given by (1), because the samples are only created
from thedistributionN (θ,Σ)when it is detected that the user

Fig. 3 Learning simultaneously with COACH+PS

is not providing corrective advice anymore. However, dur-
ing roll-outs advised via COACH, the users advise the agent
incrementally, so little by little the policy is improved with
the knowledge the users have about the previous policy. Once
a teacher started providing feedback, going back to creating
independent samples from the current policy distribution for
every roll-out tends to confuse the user. In this scenario, some
of the obtained samples can result in behaviors completely
contrary to what has been taught by the user in the imme-
diately previously executed roll-out. They can interpret this
situation as “the agent is not interacting properly or is reject-
ing the results of the advice after each episode”. This situation
diminishes the user interaction with the agent. Therefore, the
system would not benefit from the human knowledge.

To avoid this problem, in this hybrid learning strategy, the
resulting policy of a roll-out is set as the initial policy for
the next one. There are two different parameter vectors for
each roll-out, the vector θ [m] which is the initial parameter
set at the m-th roll-out advised with COACH, and the vector
θ ′[m] that is the parameters set returned at the end of the roll-
out. The difference of these two vectors is associated to the
corrections advised by the teacher.

This sequential exploration allows the teachers to have
insights of the operation of the policy, and notions of how to
keep improving it through the next roll-out executions. After
M trials, the PS updates the policy. In cases where the teacher
is continuously improving the task execution, the parameters
computed for θk+1 have to be similar to the ones of the most
recent task executions. According to the cost function, when
the human feedback is harming the policy, the update stage
should result in a set of parameters similar to the ones that
controlled the agent, before the erroneous human feedback.

Algorithm 4 shows that for every k-th iteration, the first
roll-out is executed with the actual parameters vector of the
current policy (line 2). The execution of every roll-out is
given by RunRollOutCOACH (θ [m]) that has the policy vec-
tor as input argument, and returns the corrected policy (line
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4). When the vector returned at the end of the trial is identi-
cal to the initial one, the teacher did not provide any advice
and, consequently, the exploration can be carried out by the
PS algorithm with the regular strategy (line 8). Regardless
whether the roll-out includes teacher advice or not, the pol-
icy vector θ ′[m] returned after each execution is added to the
set of samples (line 10) for the update stage.

4 Experiments and results

The proposed hybrid learning approaches are tested using
simulated and real problems. The proposed sequential and
simultaneous approaches are validated and compared to stan-
dard Policy Search methods. First, we present an experiment
where a previously trained policy is used to simulate a human
teacher that interacts with the learning methods in order to
train an agent to perform a task. This experiment with simu-
lated teachers is carried out for evaluating the convergence of
the learning systems in a setupwith controlled human factors,
i.e., the experiment only evaluates the capacity of the algo-
rithms to track the intention of the teacher for approximating
the policy.

Second, validation experiments with actual human teach-
ers are carried out for learning balancing tasks in simulated
and real environments. Finally, we compare the perfor-
mance of users tele-operating the systemswith the controllers
learned interactively. This third comparative analysis is
intended to show the performances that non-expert users can
reach when they are teachers.

For all the experiments of this section themeta-parameters
for the PS operation along with the ones related to COACH
are fixed. The amount of roll-outs for each PS iteration was
set to M = 10; in the case of CEM the amount of elite sam-
ples is Me = 5. For COACH, the learning rate for the Human
Feedback modeling was set β = 0.3, whereas the error mag-
nitude e was fine tuned for every problem with an initial
magnitude that is half of the action range. Any change of this
magnitude has proportional impact on the action updating,
i.e., it is intuitive to tune for the user.

4.1 Learning with a simulated human teacher

Afirst evaluation of the proposedmethods is presented in this
section, wherein a pre-trained policy is used for emulating
a human teacher that advises the learning agent. The need
to implement non-real human teachers is motivated by two
reasons: (i) To evaluate robustness of the learningmethods to
mistaken human corrections. Unfortunately it is not easy to
quantify percentage ofmistakeswith real human teachers. (ii)
To evaluate the learning strategies for correcting the policies
themselves in a transparent setup without influence of human
factors. Humans not only perform mistakes, but also their

attention and effort vary according to their motivation, mood
and other factors (e.g., a unmotivated user who never advises
corrections, never does mistakes, but also does not transfer
any knowledge).

This experiment is carried out using the well known
“cart-pole” RL problem (Sutton and Barto 1998), and our
implementation is based on this environment.1 The objec-
tive of the task is to learn the forces applied to a cart in order
to keep the attached pole balanced. The observed states are
the position and velocity of the cart along with the angle of
the pole and its velocity respectively s = [p, ṗ, ϑ, ϑ̇]. Usu-
ally the goal is to keep the pole balanced, but in this work
the complexity of the task is slightly increased by the cost
function to minimizeC(T ) = ∑T

t=0 |pt |−1, which requires
the pole to be balanced with the cart in the center of the envi-
ronment in p = 0. The episodes start with the cart placed
in the center and the pole balanced in upright position; the
episode finishes if the pole falls over, the cart reaches the
boundaries of the environment, or after 5000 time steps. The
policy is parameterized by 4 radial basis functions (RBF) per
state variable, for a total of 256 RBF features in the vector
f (s). For these experiments, 50 runs of each algorithm with
constant parameters were carried out. The figures show the
average learning curves and their standard deviations.

4.1.1 Policy search comparison

First, we compare the PS algorithms for learning to solve
the cart-pole problem. The task is approached with agents
performing the CEM, PIBB , and PIBB-CMA strategies. Each
algorithmwas run 50 times, and the statistical results are pre-
sented in Fig. 4. The learning curves show that PIBB-CMA
agents obtain better final performances than the other two
PS approaches. Both PIBB-like agents have slightly faster
convergence than CEM, and reach considerably lower costs.
Additionally, the covariance adaptation component of PIBB-
CMA improved the performance by 10% compared to the
original PIBB . Therefore, this faster algorithm is used in the
experiments of the hybrid approaches proposed in this work.

4.1.2 Hybrid agents with simulated teacher comparison

The emulated human teacher is a block added to the learn-
ing loop, that contains the pre-trained policy Ppt (s) from
Sect. 4.1.1. The objective of this block is to advise correc-
tions like humans do to the learning policy P(s), in order
to converge to a similar performance of Ppt (s). The correc-
tions h are the same kind of vague binary signals that users
provide to a COACH agent, e.g., increase or decrease the
executed action. Since the human teachers do not provide cor-

1 https://github.com/david78k/pendulum/tree/master\penalty\z@/
matlab/SARSACartPole.
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Fig. 4 Learning curves of PS agents with the cart-pole task

rections in every time step the policy is executed, in this block
the frequency of the advice is controlled by a probability ε.
Therefore, the correction is computed every time step as:

h =
{
sign(Ppt (s) − P(s)) with probability ε

0 with probability 1 − ε
, (12)

where h would be the “human corrective advice” of line 12
in Algorithm 3. The probability ε is diminished after every
roll-out with a decay factor of 0.95.

In these experiments, we also consider the fact that in
general mistakes are always inherent to human feedback or
demonstrations. Therefore, for the simulated teacher, wrong
corrective advice is provided to the agent with a probability
η as

h =
{

−h with probability η

h with probability 1 − η
. (13)

The probability η was varied for running learning processes
with 0, 20, and 40% ofmistakes. In the case of the Sequential
COACH+PS, the human feedback is given to the COACH
agent only during the first 50 roll-outs, this is indicated with
a dotted line in the plots. Then, the PS exploration continues
the learning process. Additionally, the hybrid approaches are
compared to the performance of the pure COACH agent, the
PIBB-CMA approach previously presented in Fig. 4, and the
performance of the pre-trained agent used for simulating the
human teacher using (12).

The experiments show that for this task, approaches that
use the “human feedback” learn faster than the pure Policy
Search agent. COACH-only agents have the highest improve-
ment during the very first episodes, however they converge
to lower performances than the hybrid agents. Moreover, the

Fig. 5 Learning curves of hybrid agents with simulated human teachers
without mistakes

Fig. 6 Learning curves of hybrid agents with simulated human teachers
with 20% of mistaken advice

performance of COACH is the one most sensible to mistaken
feedback, since its convergence decreasesmore than the other
agents when the probability of mistakes η is higher. The pre-
vious observation is expected because the human advice is
the unique source of information for COACH. Hence, the
policy performance only depends on the quality of the feed-
back. This is one of the motivations for combining COACH
with RL.

Sequential COACH+PS shows the most stable conver-
gence, since from the 50th episode on, there is no human
advice that might harm the already good policies obtained
with COACH. The results of the experiments with 0 and
20% of mistakes (Figs. 5, 6), show that in the moment when
the stage of learning with COACH stops and the PS phase
starts, the learning curve turns into the least steep but the
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Fig. 7 Learning curves of hybrid agents with simulated human teachers
with 40% of mistaken advice

most monotonic. This happens as PS can be seen as a fine
tuning of the policy obtained by the COACH stage, which
quickly learns good policies. In the case of 40% of mistakes
in Fig. 7, the PS stage drastically improves the performance,
the learning curve looks like the pure PS convergence, but
displaced to the left by 300 trials.

The Simultaneous COACH+PS approach obtains the best
final performances of the policies compared to the other
agents, it even outperforms the pre-trained policy used for
simulating the teacher when there is 0 and 20% of erroneous
feedback.The simultaneous combinationof interactive learn-
ing andPSmakes the learning slower in the veryfirst episodes
compared to COACH. However, it outperforms COACH’s
performances after approximately 30, 40, and 90 episodes
in the cases of “human feedback” with 0, 20, and 40% of
incorrect advice respectively.

These experiments show that hybrid approaches are more
robust to noisy corrections, and faster than pure autonomous
or pure interactive learning approaches.

4.2 Learning with real human feedback

Amore detailed validation of the proposedmethods is carried
out with experiments involving real human teachers interact-
ing with simulated and real problems, in which the corrective
feedback is provided to the agent with a keyboard. Again, the
cart-pole problem is approached along with a real inverted
pendulum swing-up (Adam et al. 2012). In these experi-
ments five participants interacted with the agents as teachers.
They advised Simultaneous COACH+PS agents during the
episodes they considered appropriate. The users also inter-
acted with the COACH agent during 30 episodes, and the
obtained policies were used for the initial policy in the sec-
ond stage of the Sequential COACH+PS. The learning curves

Fig. 8 Learning curves of the experiments for the cart-pole problem
with real human teachers

are also compared to those obtained by pure PS agents. The
video2 shows the interactive learning and execution of the
agents.

4.2.1 Cart-Pole

In this validation, the same environment used in the previ-
ous experiments is used for learning to execute the task with
support of real humans. Results in Fig. 8 show that all the
agents that use human advice obtain five times faster con-
vergence than pure PS, and that the hybrid agents obtain
better policies than pure COACH or pure PS. The Simulta-
neous COACH+PS obtains the best performances, but in the
very first episodes is slower than COACH, and consequently
slower than the sequential scheme. For this problem it is
possible to see that the convergence is more monotonic than
the experiments with simulated human teachers, although
lower final performances are obtained. This can be due to the
capacity of real human teachers that are adapting to advise
the current policy, leading to different final policies with sim-
ilar performance, whereas, the simulated teachers only try to
teach to imitate the pre-trained policy.

4.2.2 Pendulum swing-up

The second experiment is carried out using an under-actuated
inverted pendulum swing up, which is a weight attached to a
DCmotor depicted in Fig. 9. The observed states are the angle
and its velocity s = [ϑ, ϑ̇], while the action is the voltage
u applied to the motor, which is in the range − 2 to 2V. As
the motor does not have enough force to rotate the pendulum
up directly, the first problem to solve is to learn to swing the

2 https://youtu.be/VIJiK7Rhe4o.
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Fig. 9 Inverted pendulum swing-up setkup (taken from Adam et al.
2012)

weight back and forth for reaching the upper position (ϑ =
π ). Then, the second problem is to learn to keep the pendulum
balanced in the unstable equilibrium. In this case, each state
variable is split into 20 RBF features (20× 20) for a total of
400 features that compound the vector f . The episodes are
terminated after 500 time steps (10s), and the cost function
is given by C(T ) = ∑T

t=0 −(ϑt/π)4, which is engineered
to be sensitive to small angles close to the upright position.

For this problemCOACHuses an InverseKinematics (IK)
model to map the advice from the effector space to the actu-
ator space. The user provides corrections like “move the
pendulum more towards right, left, up, or down” with the
arrows of a keyboard, and this module based on the current
state, uses the IK for mapping the advice into “apply more
or less voltage to the motor”.

The results obtained with the real system are very similar
to the simulations (both in Fig. 10). In this new set of exper-
iments we again observe that all interactive approaches are
faster than the pure PS. However, the performances obtained
with only COACH are outperformed by PS after several
episodes. The PS agent takes seven times more episodes to
reach the performance reached by the users after 20 trials
advisedwith COACH. The hybrid schemes have the best cost
indices; the sequential approach successfully employs PS to
fine-tune the initial policy obtained via COACH. As before,
the Simultaneous COACH+PS has slower convergence than
pure COACH in the first episodes, but keeps improving until
reaching the highest performances.

Simultaneous COACH+PS is slower than Sequential
COACH+PS at the beginning, because in the simultaneous
scheme, the probability weighted average computed by the
PS can be compared to a lowpass filter, that avoids dras-
tic changes in the parameters that might obtain considerable
positive or negative impact on the performance. Neverthe-
less, during the episodes before convergence, the occasional
human feedback (not present in Sequential COACH+PS at
that moment) seems to be more efficient than the random
exploration given by the normal distribution of (1).

Fig. 10 Learning curves of the experiments for the inverted pendulum
swing-up problemwith the simulated system (normal lines) and the real
system (dashed)

4.2.3 3DoF arm inverse kinematics

This third evaluated problem is about learning the inverse
kinematics model for a real 3 DoF robot arm (Fig. 11). The
model has to map the input request of a 3D coordinate posi-
tion into the space of the angles of the three servos that
compose the robot arm, which is the output. The cost func-
tion used in this problem is the Euclidean distance between
the points requested to the model and the actual arm’s end
effector position, which is given in centimeters.

Fig. 11 Robot arm used for learning the IK model. The robot was
designed and built by the Robotics and Mechatronics group, University
of Twente, the Netherlands
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Fig. 12 Learning curves of the experiments for the inverse kinematics
for a 3 DoF robot arm. Average Cost in cm

In this application, when the human teachers interact with
the learning robot, they observe the position of the end
effectorwith respect to the target point, then they provide cor-
rective advice in the joints space for decreasing the distance.
This robot does not have an operation mode for kinesthetic
teaching, so this corrective advice is the only way to obtain
human feedback in the action domain. For the experiments
of learning with COACH and Sequential COACH+PS, the
human teachers only interact with the robot during the first
five episodes, whereas with Simultaneous COACH+PS the
users continue advising when considered necessary.

The results obtained from the learning processes in Fig. 12
show similar trends as the previous experiments. In this case,
the PS algorithm, which is a local search methods, converges
to local minima. With the interactive agents, the obtained
costs are considerably lower than the ones reached with only
PS. Again Simultaneous COACH+PS showed to be slowest
at the first episodes, however it outperforms the performance
of pure COACH after 40 roll-outs. For this problem the
sequential hybrid algorithm converge to a slightly lower cost
than the simultaneous counterpart, however both reduce 40%

of the error obtained with only COACH, thus the average
error of the hybrid agents is 7 mm, while in the best run the
policy model converged to an error of 3 mm.

In this experiment, the human knowledge leveraged the
convergence of the policy, the visual perception of the human
teacher can help in the very first part of the learning pro-
cess, nevertheless, that can bring on inaccuracies, especially
for sensing depth. However, the RL component of the algo-
rithms, that evaluates based on the cost function supports the
refinement of the model for attaining a better accuracy.

4.3 Comparison between tele-operation and
learning

In this set of experiments, the abilities of the users for teach-
ing the agents to perform the tasks are compared to the
capacities of the users for actually executing the tasks with
tele-operation. The participants interacted with the system
several trials for learning to execute the tasks. Their best
execution is compared to the performance obtained using
COACH. Additionally, an inverted wedge is employed as a
fourth case study; for this balancing task the cost function is
the average angle per episode, where the equilibrium point
is zero degrees. This task is illustrated in the video.

Table 2 shows the results comparing the users tele-
operation and teaching; since the cost functions have to be
minimized, the lower the index the better the performance.
For all the cases explored in this work, the users did not learn
to tele-operate the systems successfully, as reflected in Table
2. They kept the equilibrium only for a few seconds for all
the problems except for the pendulum swing up, in which
the pendulumwas never balanced. It is interesting to observe
that the users can obtain agents which can perform tasks that
the human teachers cannot demonstrate, i.e., the interactive
learning approaches based on advise of corrections let non-
expert users in the task domain teach policies of good quality
from vague binary pieces of advice. The numeric results in
Table 2 show the big difference between the two options of
interaction of users with the systems (operating and teach-
ing). This highlights the advantages of sharing the work with

Table 2 Comparison of users
tele-operating and teaching

Task Performances

Tele-operation Interactive learning

Cart-pole −249.13 −4576.43

Simulated pendulum swing-up −81.79 −360.52

Real pendulum swing-up −68.44 −390.55

Simulated inverted wedge 0.2276 0.07024

Real inverted wedge 0.2718 0.0838
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intelligent systems that can learn from the users who are not
able to provide good demonstrations. These particular fea-
tures of the hybrid approaches are desirable in environments
where users frequently need to adapt the agent to new con-
ditions or tasks.

5 Conclusion

This work has proposed and validated approaches for pol-
icy search supported with human feedback. Two schemes
of combining PS with an interactive framework based on
corrective instructions were presented: a sequential scheme
and a scheme that learns simultaneously from human and
autonomous feedback.

The experiments with balancing tasks and the inverse
kinematicsmodel showed that the hybrid algorithms can ben-
efit from the advantages of both kinds of learning strategies,
where the corrections provided by human teachers result in
fast learning to a high but suboptimal performance, whereas
PS can optimize policies based on cost functions that are
not very explicit or intuitive to the users’ understanding,
or simply when the human perception becomes too limited
to support the learning process. Therefore, the addition of
human support to PS speeds up the convergence between 3
to 30 times according to the results obtained. From the point
of view of interactive machine learning, these hybrid strate-
gies provide more robustness to the convergence, since the
sensitivity to noisy or mistaken corrections is diminished.
Moreover the quality of the policies is improved with the
cost based corrections of PS which perform fine tuning of
the policies taught by the users.

The proposed hybrid schemes showed to be better choices
thanpureCOACHorPS frameworks in applications that need
fast learning. Sequential COACH+PS is a simple scheme
easy to implement and completely agnostic of the type of PS
used; it facilitates the learning especially in the first trials.
Simultaneous COACH+PS scheme showed to be slower than
the sequential one at the very beginning. However, it benefits
from the occasional corrections given by the teachers, which
guide the exploration to the highest achieved performances.

The comparison of all the learning approaches, and even
the performance of the users tele-operating the agents, shows
that the proposed strategies can have high impact on cyber-
physical systems of the coming industrial developments, that
require to reduce the workload of factory operators. and also
to ease the adaptability of the products for the final users,
who can interact formodifying the operation of technological
products.
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