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Abstract 

Through the years, companies have been exploring the field of data science. The Nederlandse                           

Spoorwegen (NS) is not an exception to this. Modern trains are equipped with sensors that measure a                                 

variety of conditions within the train. This data is being stored in their data warehouse. This data has been                                     

proven useful for detection and response times to problems, which warrants two high-level goals of the NS:                                 

punctuality and reliability. However, even with the available data, visualization and detection of                         

location-specific problems are not yet implemented. Location-specific problems are problems that are not                         

caused by the train, but by the infrastructure or human fault at that specific location. At the moment, most                                     

patterns in error codes are only backed up by suspicions, since these error codes are not stored in a way                                       

they are easily readable. Therefore, it is hard to find connections between multiple error codes. This                               

document describes the created system that supports the analysis of location-specific error code patterns.                           

With the system, the NS will be able to improve their two high-level goals and ultimately improve customer                                   

satisfaction. 

 

For the system, a framework was made, which allows the NS to further develop and extend on data                                   

analyses. Furthermore, an extensive UI was created, allowing users to investigate found error code                           

patterns and trace back problems to their origin. With the system, the NS is able to verify and create new                                       

hypotheses on possible problematic locations. In this document, the problem in elaborated on, multiple                           

solutions are given of which one is chosen and thoroughly motivated, the solutions are elaborated on and,                                 

finally, some recommendations for future expansion are given. 
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Introduction 

Every day more than a million people travel by train in the Netherlands. For all these passengers it is of                                       

uttermost importance that they arrive at their location on time. It is not uncommon for trains to have delays,                                     

whereas there are many causes that could lead to an uphold. Presumably, some of these upholds can be                                   

prevented if data gathered by trains could indicate on which track sections infrastructural problems are                             

situated. Currently, there are systems that could show error codes in trains and surveillance on this data                                 

helps in picking out trains at the right moment for repairs. However, there are currently no systems that                                   

indicate where a problem is caused. Especially problems caused by a location, e.g. the rails, are not                                 

detected. For this project, the aim is to find these problems and try to trace back their exact location.                                     

Examples for these location-specific problems could be skewed rails, maimed power signals, but also the                             

education of train operators. 

For an enterprise, data analysis provides insight which supports decision making that ultimately leads to                             

the achievement of higher (business) goals, when done in a meaningful way. In this case, the data of the                                     

trains, owned by the Dutch Railways (NS), is subject to analysis. By analyzing such data the NS hopes to                                     

gain meaningful insight into patterns that occur in diagnostic error codes that are location-specific. For                             

example, a certain code occurring abnormally often on Rotterdam Central Station. A diagnostic error code                             

is a code, e.g. ATB105, that is thrown when sensors detect deviant behavior in the train system(s) they                                   

belong to. The indication that such patterns may be location-specific allows analysts to address these                             

location-specific problems. 

A long-term goal for the maintenance and development department of the NS is to use data generated by                                   

trains to improve punctuality and reliability of the trains while balancing the costs of train maintenance.                               

Punctuality and reliability will lead to better customer satisfaction, which includes the ordinary traveler.                           

Being able to detect location-specific observations helps with addressing infrastructure issues, which will                         

both prevent future breakdowns/delays and reduce costs due to unnecessarily sending trains through                         

maintenance to fix problems that were not related to the train. Other applications, such as seeing what                                 

mistakes are often made for a certain location, follow and add value in a similar manner. 

 

A system was created for giving insight into location-specific patterns in train data. This is an entirely new                                   

system within the analytics environment of the NS using big-data analysis in order to find location-specific                               

patterns. It also is one of the first systems within the analytics environment that attempts to make a more                                     

centralized environment for long-term, user-friendly data analysis. 

 

The system is designed to be a manageable, scalable and high-performance system for running varying                             

types of analyses, data filters, and post processors with a running database connection which is open for                                 

end-user interaction and customization. The design of the system ought to make it easier to implement                               

new types of analyses, filters and post-processors and make it easier to visualize the results of the                                 

analyses. It also provides an attractive user interface (UI) which allows the user to run analyses, customize                                 

analysis settings/parameters and a separate UI for data visualization (Power BI). 
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This great potential comes with several challenges to be overcome. The relatively recent transition of the                               

NS to a more (digital) data-driven organization is one of these challenges. This transition applies to the train                                   

maintenance part of the NS in particular, where they are (e.g.) progressing from periodic maintenance                             

towards condition-based maintenance. Another challenge is the sheer volume of data the analyses have to                             

run on. Additionally, challenges were found in the fact that it is a new system.  

In broad terms, this report consists out of three main sections: the problem description, solutions to this                                 

problem and a discussion. The problem is elaborated upon in the problem description, in order to better                                 

understand the problem, its challenges and the context in which a solution had to be made. In the solutions                                     

section, different solutions to the problem are given. This includes the high-level design that is to address                                 

the problem and more specific solutions that are placed within the high-level design. Finally, the previous                               

sections are discussed and an evaluation of the process as a whole is given. From this, a conclusion is                                     

drawn and some future recommendations are given.   
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Problem Description 
To understand the problem of the NS, the problem description is elaborated on. The problem description is                                 

divided in the problem statement and the challenges. The problem statement analyzes the problem that                             

needs to be solved by the system and describes the current situation. The challenges section describes                               

the challenges that come with solving the problem statement. The long term vision of the maintenance and                                 

development department of the NS can be found in Appendix M: Research report, chapter ‘Vision’. 

 
Problem statement 
A long-term goal for the maintenance and development department of the NS is to use data generated by                                   

trains to improve punctuality and reliability of the trains while balancing the costs of train maintenance.                               

Equipping trains with sensors and collecting (real-time) data has proven to be useful for the NS, in order to                                     

be able to detect and respond to problems faster. A faster response time helps with improving punctuality                                 

and reliability. 

The NS has to make the trade-off between premature maintenance sessions and failures due to a lack of                                   

maintenance check-ups. Premature maintenance sessions cost money and put more stress on the service                           

stations. Train failures result in extra costs and are detrimental to the punctuality, reliability, and image of                                 

the NS. Premature maintenance thus should be done as few times as possible, whereas failures which                               

could be prevented with a maintenance session are to be minimized as well. These are two contradicting                                 

goals for which achieving the optimal balance is wanted. 

 

However, not all failures are due to the trains themselves. The track could be a huge factor in failures as                                       

well. It could now be the case that a train appears to be causing troubles, although the track it was riding                                         

on initially caused it. This may result in unnecessary maintenance check-ups and delayed repairs to the                               

tracks. Therefore, it is a good idea to check for problems on the track. This can be done by checking if                                         

there are multiple trains that have the same problems at this track section. This can be spotted by having                                     

multiple trains sending the same error codes. In this report, these recurring error codes will be called                                 

location-specific error code patterns. Being able to find such trends would contribute to achieving the                             

long-term goal of improving punctuality and reliability.  

 

At the moment, there is no system implemented that allows for the detection of location-specific error code                                 

patterns, whilst there is data that could possibly indicate the existence of location-specific problems. As a                               

result of the lack of this system, it is hard to detect which problems structurally occur or suddenly arise on                                       

given railway sections. Patterns in problems are being found, although they are now mostly based on                               

human notice. Moreover, the data sent by trains is currently not used for long-term location-specific                             

analyses, which implies that there is still a lot of room for patterns to be found. This project will be one of                                           

the first steps toward location-specific analyses.  
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Objective 
The objective is to create a system that can be integrated within the current software environment of the                                   

NS, in order to gain insight into location-specific error code trends to prevent future breakdowns and faults.                                 

The target demographic consists of two end-users: the Reliability Engineer and the Fleet Analyst. 

 

Current System 
The current system is defined in this subsection. First, the end users will be introduced in more detail.                                   

Secondly, an overview of the existing software will be given. Thirdly, the available data will be assessed.                                 

Finally, the available tools for this project will be expanded on. 

End users 

There are two kinds of end users which are key for indicating for what kind of users the application will be                                         

developed for. In choosing solutions related to the problem their needs need to be taken into account. As                                   

their knowledge of specialization is important for understanding the technical significance behind the data. 

The function of the Reliability Engineer (RE) is to monitor the reliability of an assigned train type. His task is                                       

to ensure the reliability and safety of trains, within a given budget. He generally functions on more                                 

long-term analyses. The Fleet Analyst (FA) on the other hand, looks at the problems that are going on right                                     

now, determines where and in which train or area those problems occur and delegates this problem to the                                   

task force. More extensive descriptions can be found in Appendix M: research report, chapter ‘End users’. 

RTMO / RTMA 

Real-Time Monitoring Operations (RTMO) is an integrated environment with a visual interface used for by                             

the operations side of the NS. This environment is outsourced to be developed by another company.                               

RTMO is primarily used by the Fleet Analyst to see what problems are going on at the moment and to                                       

connect those problems to actions for the OCCR taskforce. RTMO uses data until the last maintenance                               

session, which is, on average, every three months. 

Real-Time monitoring Analytics (RTMA) is a concept used in the data analytics environment. This                           

environment has no universally platform/API, nor does it have a universally way of displaying data. RTMA is                                 

primarily used by the Reliability Engineer and other technical analysts. RTMA contains all available data                             

fetched from sensors in trains and is not time-bound. 

Available tools 

Big data processing 

The NS has an integrated big data processing environment. During the project, this environment can be                               

used without having to consider the implementation of the underlying cluster too much. The following tools                               
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are available: Apache Hadoop, Hive, Mahout, Pig, Zookeeper, and Spark. These tools can be accessed                             

through Jupyter. 

Visualization 

For visualization NS primarily uses Microsoft Power BI. As quoted from the front page of the Power BI site :                                     1

“Power BI is a suite of business analytics tools that deliver insights throughout your organization. Connect                               

to hundreds of data sources, simplify data prep, and drive ad hoc analysis. Produce beautiful reports, then                                 

publish them for your organization to consume on the web and across mobile devices.” This tool is used by                                     

data analysts to display their data. Other data visualization techniques for the RTMA environment are                             

incoherent, commonly various Python libraries or interfaces such as Excel are used. 

Challenges 

From the problem statement and the current system, a number of challenges stand out. Creating an                               

application is influenced by the given challenges. Explaining what these challenges mean for the project is                               

essential for understanding the context in which choices are made and why, consequently, the certain                             

solutions are chosen. This chapter outlines which challenges affect the project the most in the sense of                                 

time and/or complexity. 

Unknown domain 

This is one of the first project within the NS that creates a system within RTMA that attempts to make a                                         

more centralized environment for long-term, user-friendly data analysis. This means that an application has                           

to be created for an unknown domain. Currently, the NS is advancing in the field of data science. The                                     

relatively recent transition to a more (digital) data-driven organization has some on-going effects, which                           

means that the data present is still not perfect, that knowledge about what types of analyses are useful for                                     

location-specific analysis is in the process of being figured out, and that validating whether the chosen                               

system delivers meaningful results is seemingly difficult. 

There are only hypotheses made about the existence of location-specific error code patterns. It could be                               

that there is no such thing. The challenge that comes with this is that the end user has to be convinced the                                           

application can actually point him to real-world problems which are worth his time. Without being able to                                 

prove a found pattern is valuable by ourselves, close communication is needed between the developers                             

and experts in order to distill a concept of how the system could add value to the organization. Feature                                     

selection has to be done by asking the experts for the meaning of certain data/features, with respect to the                                     

underlying technicalities that determine the assumptions that can be made for a given feature or                             

aggregation of features. However, it is challenging to get an idea of which supposed facts can be used to                                     

base value propositions on because it is an unknown domain. This makes it not at all self-evident which                                   

analyses should be used and whether those analyses are meaningful. 

1 https://powerbi.microsoft.com/en-us/ 
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There is no validation data present, to check if a found error pattern from past data really was paired with a                                         

problem. This means algorithms which need this verification data cannot be used. Furthermore, the results                             

of other algorithms have to be closely looked at. It could be that these results contain lots of false positives,                                       

which is hard to check without verification data. 

As the search for location-specific error patterns is still in the experimental phase, it is important to make                                   

the system easily extendable. The challenge for the system lies in the expandability of the program.                               

Therefore, the system must be built as a framework for the user, in order to allow more future analyses to                                       

be built with the reuse of components. Furthermore, class contracts must be built, allowing the user to                                 

expand the system with new analysis, while still following consistent coding agreements. 

Existing environment 

The application has to be integrated within current software and hardware systems in use by the NS, as                                   

stated in design goal 3: Manageability. Which systems are exactly available can be found in the Current                                 

Systems section. 

Given that the system has to be integrable within the NS, additional research has to be done in order to                                       

figure out what system is already implemented within the existing development environment and how the                             

project can be developed within this existing environment’s architecture. The NS has strict protocols                           

regarding which software/libraries they use and who gets which permissions to do what. They have to do                                 

this as software often costs a fair amount of money when used for commercial purposes and changing                                 

versions of libraries may give unexpected errors if not done in a controlled manner. This brings along two                                   

challenges: restricted freedom in designing the architectural design of the system and limited access to                             

permissions required to use software/libraries. 

The NS working environment lacks some utilities which make programming easier. There is no access to                               

Git on the cluster, which means no access to version control. This becomes a challenge when a team of                                     

four developers is working on the same code. Also, there is no Integrated Development Environment                             

available for use, which means, for example, no static code checking.   

Big data 

The application has to run on large, rapidly growing, data sets which are filled with data that is not perfect                                       

yet. Not every train sends real-time diagnostic data yet, but as time passes, more trains will be equipped                                   

with this functionality. Every new train will have this functionality enabled. This means the already large                               

dataset will grow even faster in the future. Even with the NS having its own powerful Hadoop cluster to                                     

perform calculations on, more complex analyses have to be designed in a way that does not use all the                                     

available memory and computational resources. 

Big data algorithms generally function differently from more classical algorithms by having different needs                           

in terms of underlying hardware. This has its direct implications for the types of algorithms that could be                                   
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used effectively and on the paradigm, the system’s design is based on. In the current environment of the                                   

NS, the only viable option for data analysis is Hadoop in combination with PySpark.  

Due to the lack of centralized knowledge on our part about trains and how they operate, it is difficult to                                       

interpret the data they transmit. As there is no manual that contains the location and structure of data, it is                                       

also a challenge to grasp which data is actually available and where it can be found. Data is stored in                                       

separate tables within the data warehouse, without necessarily keeping in mind how these could be                             

combined in order to achieve more valuable information. As such collection of combined information may                             

leave some columns sparsely filled. The fact that some data can be incomplete, ranging from NULL values                                 

to entire missing data points, requires even more knowledge about the data. Information about the current                               

system is decentralized, so a lot of asking around and collaboration is needed.  

 

Besides the challenge of incomplete data, there has to be dealt with excessive data. A mechanic triggers a                                   

lot of error codes on purpose during maintenance and these error codes are also sent to the database.                                   

There is no clear indication of the train throwing the error code was under maintenance at the time, so the                                       

database contains false data which needs to be filtered out. The challenge that comes with this is finding                                   

good parameters to filter maintenance data out. Another example of excessive data is that some problems                               

cause multiple error codes to be thrown out. Because of this, it is hard to determine whether multiple error                                     

codes were caused by one problem or by multiple problems. 
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Solutions 

The final product is an aggregation of multiple solutions. In this section, these solutions are explained. First                                 

of all, the design is extensively explained in the ‘Design’ section. Afterward, the chosen solutions for the                                 

implementation are given. These two sections together will give a detailed overview of the final product as                                 

a whole. The reasoning behind choosing the used frameworks and algorithms can be found in Appendix M:                                 

Research Report, in chapter ‘Solutions’. 

Design 

This section starts off by shortly elaborating on the design goals that should be warranted by the system’s                                   

design in order to achieve a successful project and then explains the design of the system that was made                                     

in terms of high-level architecture and more specific implementation details. 

Design goals 

The following design goals are a broad overview of what should be warranted by the design of the system,                                     

in order to best address the problem as defined in the problem statement. These design goals were                                 

defined at the start of the project in the research report (Appendix M) and have been key throughout the                                     

execution of the project. 

1. End-user satisfaction: The final product should satisfy the long-term goal of the NS and should aid                               
the end-users in helping them achieve this long-term goal. Customer collaboration should be                         
valued in order to achieve this design goal. 

2. A quick insight into data: Error trends should be visible in one eyesight by summarizing the data,                                 
as it should help the end-users find trends. Further, more detailed, information regarding each                           
trend should also be easily accessible. 

3. Manageability: The application will be made using techniques easily integrable by the NS,                         
additionally the code-base should be able to be maintained well. Independent layers of analysis, as                             
described in the vision, would warrant this design goal. The design of the system must also be                                 
easy to extend. 

4. Performance: The application should not overload the server. Users should be able to obtain the                             
results of their queries in a reasonable time, with respect to the complexity/size of the query. 

5. Scalability: Collecting data has proven to be useful for the NS as they are trying to innovate in the                                     
direction of data analytics . Plans for increasing the amount of collected data have been made. In                               2

order to accommodate for this increase in collected data, the application should be scalable. 

2 https://www.newcraftgroup.com/nl/nl-24-hour-data-challenge_students/ 
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System Design 

This section will specify the final architecture of the system. The system design from the research phase is                                   

implemented, with some extra additions. The use cases and requirements from the research phase can be                               

found in Appendix M: Research report. The overall design will be explained in three sections: high-level                               

design, individual class design, and the data flow diagram. For the high-level and individual class design,                               

the core elements and their interaction will be explained to the extent of being able to implement a similar                                     

system as was made during this project. The data flow diagram, as can be seen in figure 2, will primarily                                       

focus on the interaction of the core components and the visualization of this interaction, from the                               

perspective of a user. 

High-level design 

The system is designed to be a manageable, scalable, and high-performance system for running varying                             

types of analyses, data filters, and post-processors. This is done with a running database connection which                               

is open for end-user interaction and customization. The design of the system ought to make it easier to                                   

implement new types of analyses, filters, and post processors and make it easier to visualize the results of                                   

the analyses. It also provides an attractive user interface (UI) which allows the user to run analyses,                                 

customize analysis settings/parameters and a separate UI for data visualization (Power BI). The system                           

comes with some pre-implemented analyses, filters, and post-processors. The high-level component                     

diagram can be found in figure 1 and will be elaborated upon in this section. 
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Figure 1: High-level component diagram. 

 

To understand the architecture of the system, the following components are essential: 

Analysis Engine: The Analysis Engine is the core driving the analysis of the data. It makes sure the data                                     

from the database is fetched by the responsible class and calls the filters module as specified by the user,                                     

calls the various types of analyses over this data, makes sure the analysis results are written to the                                   

database and ultimately calls the post-processing module, whose results are also written to the database.                             

The Analysis Engine is what makes the individual components for data analysis work together. 

 

Filter Engine: The Filter Engine is used by the Analysis Engine in order to filter the input data that is used                                         

for the analyses. The Filter Engine reads the settings for the filters and instantiates the filters using a                                   

decorator pattern. A filter may, for example, filter all diagnostic report codes that were thrown outside a                                 

certain interval or limit the selection to a certain subset of train series. 
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Analysis: Analyses explore and transform the (filtered) input data in order to discover error-code patterns                             

for specific locations. There are currently two types of analyses: Counting Analysis and FP-Growth Analysis.                             

For the former: every diagnostic code on each track section will be counted. This gives insight into track                                   

sections where a lot of error codes are thrown. This information is enriched with paired train delays and                                   

relative occurrences of the error with respect to the number of trains on the track section. For the latter, all                                       

diagnostic codes on each track are mined for patterns following the FP-Growth Frequent Pattern Mining                             

algorithm by Han, Pei & Yin (2000). The patterns resulting from this type of analysis consist out of two or                                       

more diagnostic codes, which reveals something about errors which co-occur on a track section. 

Post Processor: The Post Processor runs after all analyses have finished. The Post Processor is meant to                                 

process the found patterns. A typical use case is to post-process the trends for statistics, e.g. ‘how many                                   

trends were on each track section?’ At the moment the Post Processor is only used for collaborative                                 

filtering. 

Jupyter UI: Jupyter , a browser-based notebook interface, is used to display the UI that allows the end-user                                 3

to directly interact with the Analysis Engine. The user can specify settings for the filters that are to be                                     

applied and the user can create analysis jobs that will execute an analysis at a given time with the given                                       

settings. Through Jupyter the user can fill the NS data warehouse with data resulting from his analysis jobs.                                   

The Jupyter UI can be seen in Appendix F. 

Power BI: Power BI is used as the tool to visualize the data that was generated by running the analyses, by                                         4

means of interactive reports. These reports are relatively easy to make and allow for a dynamic, attractive                                 

insight into the data. As for now, Power BI desktop does not allow for interaction with the Python code                                     

base and is solely used as a separate interface for visualization.  

Class diagram 

In this section, some technical system engineering details, that relate to the structure of the individual                               

classes, will be covered. Mostly the interactions/designs that are essential to the understanding of the                             

design of the system are explained. The classes follow the same structure as the high-level design above.                                 

The individual classes and their position in the system can be seen in Appendix D: UML Class diagram.  

Some classes have an additional explanation in the section ‘Chosen solutions’. 

 

Writers: Writers are used for Create, Read, Update and Delete (CRUD) operations related to managing the                               

filter settings and managing analysis jobs. Each writer inherits the parent Writer class, which includes the                               

basic CRUD functionality, defines the FILE_PATH, which indicates where the Writer should read/write to                           

and may be extended with extra functions needed for its task. There are three writers: TrendBlacklistWriter,                               

SettingsWriter, and JobWriter. 

 

Event Handler: The Event Handler functions as the middle layer between the functions present in the                               

3 https://jupyter.org/ 
4 https://powerbi.microsoft.com/en-us/ 
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Jupyter UI and the back-end. Its primary function is to handle updates from the back-end to the front-end                                   

and to handle and validate user-input towards the back-end. Because this middle layer exists, it will be                                 

relatively easy to plug other UIs into it. 

 

Analysis Queue: The Analysis Queue is a priority queue that receives analysis jobs from the JobListener                               

and calls the Analysis Engine with the appropriate jobs one by one. 

Database Connector: The Database Connector is the place where, as the name suggests, the connection                             

with the database is handled. Tables get read out from here and loaded into workable data frames. The                                   

data frame also gets written back to a table here. 

Counting Analysis: This analysis type goes over every track section and for each track section counts the                                 

number of times each error code type occurred.  

 

FP-Growth Analysis: This analysis type goes over every track section and checks for each track section                               

how many unique trains have thrown the same type of error code. When this is above a certain                                   

percentage, this error code type is shown. 

 

Occurrences Recommender: The recommender system for occurrences is a form of post-processing. The                         

recommender makes use of Collaborative Filtering, in order to recommend the user which track section or                               

trend might become relevant in the future. The Occurrence Recommender is instantiated and called by the                               

Post Processor. 

 

Application flow 
This subsection describes the application and data flow when a user uses the program. UML visualizing the                                 

full application flow including user interaction can be found in Appendix E: Application flow.  

When the Jupyter UI is started a number of events happen and some objects are created in the                                   

background. Their interaction is visualized by the UI Data flow diagram in Appendix E. What the Jupyter UI                                   

looks like can be seen in Appendix E. Upon launch, the first object that is created is a JobListener. The Job                                         

Listener has an Analyses Queue object and the Analysis Queue object has an Analysis Engine. The Job                                 

Listener will check for newly created jobs and pass them to the Analysis Queue which will execute them                                   

one by one by calling the Analysis engine. Using the start analysis button, the user can create an analysis                                     

job. The then stored settings will be attached to the job. This job will, in turn, be passed to the Analysis                                         

Queue again. 

 

The Analysis Engine first applies every filter specified by the user. This is done by calling its FilterEngine.                                   

The FilterEngine reads the settings for the filters and instantiates the filters using a decorator pattern. When                                 

the filters are applied to the input data, the Analysis Engine starts running the different analyses one by                                   

one. When an Analysis is finished, it returns a Spark DataFrame with found trends. These trends are                                 

converted to the format used in the database and thereafter written to the database. The database now                                 

contains the result of the analysis and the application terminates. This process is visualized in figure 2.  
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Figure 2: Data flow of the back-end Analysis Engine 

 

After the results are stored in the database they can be fetched in Power BI and loaded in the there                                       

defined structure. This structure and the current state of the Power BI interface can be seen in Appendix G.                                     

Power BI allows flexible views and visualizations to be applied to the structured data. 

 

The Power BI interface that was delivered alongside this project visualized the Counting Analysis,                           

FP-Growth analysis, and Occurrences Recommender results. This visualization is highly interactive,                     

allowing different perspectives of the data, and can be changed by applying visual level filters which filter                                 

the results based on certain conditions. Related figures can be found in Appendix G: Power BI. 

The Counting Analysis result, as visualized in figure 19, displays the most important features of the                               

patterns that were found for each track section from a top-level view. From this top-level view, two more                                   

detailed visualizations can be accessed: ‘Track Section’ and ‘Error Codes’, figure 20 and 21 respectively.                             

The ‘Track Section’ view shows all the patterns that were found for the selected track section, shows which                                   

combined codes (FP-Growth patterns) often occurred and gives predictions for which patterns are likely to                             

occur again (Occurrence Recommender). The ‘Error Codes’ view, in some ways similar to the ‘Track                             

Section’ view, shows all the diagnostic error codes that were part of a (counting) pattern shown at the                                   

top-level view. This more detailed view is essential for giving the top-level patterns credibility for both the                                 

end-users at the NS and those who are going to have to act upon the supposed pattern that is causing a                                         

problem on a specific location. The FP-Growth Analysis result is visualized in a very similar manner as the                                   

Counting Analysis, this visualization can be seen in figure 22. It has one more detailed view which shows                                   

the diagnostic error codes that were part of the (FP-Growth) pattern that was selected. This view can be                                   

seen in figure 23. 

 

Manageability 

The system provides a framework in which several components can easily be added. The main points of                                 

extension are the Analysis classes, the Filter Engine filters, and Post Processor processes. This section will                               

describe briefly how this extension can be done. Further details can be found in the Systems engineering                                 

guide in Appendix L. 

To add a new analysis, a new class inheriting the Analysis class must be created in the analyses.py                                   

module. For this class, three required methods must be specified: execute(), convert_to_db_tables() and                         

is_finished(). The Analysis Engine will immediately detect new analyses and instantiate them. The system                           
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does not allow priority execution, as each analysis is expected to be fully independent of other analyses. 

To add a new filter, a new class in the filters.py module which extends the FilterDecorator class has                                   

to be created. The __init__ and filter method from FilterDecorator have to be overwritten. In the __init__                                 

method, the filter attributes can be set, the filter method gets an input Data Frame, removes rows from it by                                       

using a PySpark SQL filter , and returns the filtered Data Frame. One also has to instantiate the filter in the                                       5

FilterEngine class. To make the filters configurable, the filter must be registered in the filters.json.                             

Furthermore, in the FilterEngine class __init__ function, the filter must be configured as desired. All settings                               

for filters are read in JSON format. 

To add a new post-process, a new class inheriting the PostProcess class in the postprocessing.py                             

module. For this class, two required methods must be specified: execute( ) and database_names( ). All post                                 

processes are instantiated by the Post Processor. Just like the analyses, all post processes are                             

automatically instantiated after the coding guidelines have been followed. Post-processes support multiple                       

results, as all results are returned as tuples of undefined sizes. 

Chosen Solutions 

The following section explains what the chosen solutions are and why they were chosen. Additionally, the                               

problems that were found during the development of these solutions and the reasoning behind these                             

solutions will be explained. The solutions that will be explained are FP-Growth, Filters, Collaborative                           

filtering, the consideration of computing in Power BI and in Pyspark, the user interface and finally the                                 

database normalization. 

 

FP-Growth 

Single error codes might give different information than the combination of error codes. These combination                             

patterns of error codes can be found using the FP-Growth algorithm. The purpose of this algorithm was to                                   

unveil some of the underlying patterns between multiple error codes which are statistically relevant                           

(Mabroukeh & Ezeife, 2010). This should provide the end-users with a quick insight as to which                               

combinations occur within the individual codes. This provides insight as to how codes causally relate to                               

each other, which is a kind of analysis providing more analytical depth. 

FP-Growth is one of the available Frequent Pattern Mining (FPM) algorithms (also see Appendix M for a                                 

comparison of FPM algorithms). For this algorithm, different lists of error codes are analyzed for frequent                               

combinations of elements within lists. An example of this algorithm would be with groceries, where each                               

basket of groceries forms a list. In figure 3, possible lists with pseudo-Python code and their respective                                 

outcome are given. 

 

5 http://spark.apache.org/docs/2.1.0/api/python/pyspark.sql.html 
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FP-Growth grocery code example 

basket1 = ["apple", "banana"] 
basket2 = ["apple", "kiwi", "apple", "banana"]  # This will become a set! 

basket3 = ["orange"] 
basket4 = ["apple", "banana", "kiwi"] 
basket5 = ["razer"] 
 

# Call the FP-Growth algorithm with a minimum support of 40%. 

result = fp_growth([basket1, basket2, basket3, basket4, basket5], minSupport=0.4) 
print(result) 

 

>>>> 

Frequent items sets: 

["apple"] = 3 

["banana"] = 3 

["apple", "banana"] = 3 

["apple", "banana", "kiwi"] = 2 

Figure 3: FP-Growth grocery code example 

 

In the above example, there are four different sets as the outcome. Note that the baskets at first were                                     

represented as lists but are converted to sets (even as the output) in the FP-Growth algorithm, i.e.                                 

duplicates are removed and the order is not important. The order of items, that is diagnostic error codes,                                   

could not be kept when using the PySpark FP-growth implementation. This property was not considered as                               

important initially, as this sequentiality of items could be checked by looking at the activation time of the                                   

corresponding diagnostic error codes. Additionally, codes that have some causal relationship to each other                           

will often appear on the same track section within a similar time frame. As a result, these sequences will                                     

often be able to be detected without initially preserving the order. 

This example could be transformed to work with trains if each basket is replaced with a unique ride of a                                       

train. The content of the basket is replaced with the error codes thrown during the single ride. The baskets                                     

could also possibly have been replaced with unique trains, but this would make the algorithm rather                               

train-specific, which is not intended by the scope, and would decrease the chances of finding                             

location-specific patterns. Whenever all rides of a single train would form a set, there would be less                                 

possible patterns given the fact that duplicates are removed in sets. 

 

To make the algorithm location-specific, the algorithm runs for each track section. This means that for each                                 

run of the algorithm, the frequent patterns are only on that specific track section. Besides making the                                 

analysis location-specific, running it for each track section also has the benefit that the memory usage is                                 

lowered. Several groupings are needed to make the sets, as described above, in order to run the                                 

algorithm. Whenever these grouping would be performed on all data, it would require massive amounts of                               
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memory (RAM) to perform those operations. Consider hundreds of thousands of lines that need to be                               

grouped multiple times This is now reduced to of all records for each grouping (if no filters are applied),              1
749                      

as there are 749 distinct track sections as of the current state of the database table. 

The example above was a typical example of memory issues during the development of the FP-Growth                               

pattern mining algorithm. Because combinations are created, the memory usage can grow rapidly.  

Specifying rides 

As mentioned earlier, sets are formed from rides of a train. However, individual rides are not indicated in                                   

the database. Each train gets a train number, which can be used to identify individual rides. However, train                                   

numbers are not unique and may be used again on a new day. 

Therefore, to uniquely identify rides on a day, a combination of the rolling stock (the individual train), the                                   

train number, and the date is needed. Still, some rides are excluded from this, as trains moving from a                                     

station toward a maintenance facility or service station usually do not have a train number. For these rides,                                   

some information is lost, as the same trains on the same day, on the same track section are identified as a                                         

single ride. The impact should be minimized for this, if assumed there is only a small chance for a train to                                         

make this ride multiple times on the same day. Only the same train with a return ride on the same day is                                           

collected as one single ride.  

In the current implementation, this may be considered as a flaw in the algorithm, while it can also be                                     

considered a flaw in the data. The identification of single rides is already lost after the train number is                                     

removed. Therefore, if these individual rides should be identified as distinct rides, then a new identification                               

method for these trains should be implemented. 

 

The problem as described above was a typical example of missing and incomplete data, as well as                                 

inconsistent data. With the solution described above, the system is still able to distinguish different rides,                               

while not losing too much information. 

Minimum support problem 

As was earlier mentioned, a minimum support is given to the FP-Growth algorithm. This minimum support                               

specifies how many rides should support a pattern (i.e. have the combination of error codes in the ride) to                                     

be included for a new iteration. In such a new iteration, new combinations are made between the error                                   

codes. For example, sets [A] and [B] in a new iteration form a new set [A, B] if both [A] and [B] satisfy the                                               

minimum support. Assume the algorithm has a minimum support set to 0.05, i.e. 5% of the rides should                                   

support the pattern, then at least one in twenty rides on a single track section should include the pattern.                                     

Imagine a track section where less than or equal to twenty distinct train rides were. In this case, every error                                       

code generated by a train is considered a pattern, as  is already more than 5%.1
19  

To prevent such a scenario, we introduced a variable specifying the minimum amount of supporting rides,                               

which is by default set to two. The minimum support is incremented such that, whenever the minimum                                 

support is too low to require a support of two trains (in the case of default), it will still require two rides. For                                             

example, if the support is 0.05 and only has fifteen train rides based on the input of the FP-Growth                                     

algorithm on a single track section, then the minimum support will be adjusted to . Similarly, if                          /15 .1332 = 0      

there are only two train rides, then the minimum support will be adjusted to Whenever there are no                            /2 .2 = 1          
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train rides or only a single train ride, the FP-Growth will not be executed. The above mentioned solution is                                     

executed before each call to the FP-Growth algorithm for each track section. 

This problem was a typical case of inconsistent behavior on different track sections, where one track                               

sections could be far less crowded than others.  

The challenge 

The FP-Growth solution was one of the solutions to our challenges. First of all, it was important to figure out                                       

what exactly would be a valid solution for location-specific problems. With the FP-Growth, combinations of                             

different error codes can be found, where the order of the errors is irrelevant. By leaving out the order in                                       

the errors, some information is lost. However, as was thought from the start, this information is not required                                   

to find error patterns. Especially for rare occurrences of error patterns, it would be hard to find the error                                     

patterns in such a large data set, if the order was also included. With FP-Growth, the challenge of the                                     

unknown domain of location-specific errors was encountered for both the assumptions and the validation.                           

During the development, most outcomes would have to be verified through assumptions, verification with                           

knowledge of experts, and logical reasoning. From the start, it was hard to make assumptions about the                                 

data, as there were both unforeseen hiccups (e.g. inconsistency) in the data, as well as missing knowledge                                 

about trains. 

Filters 

In this section, some of the more advanced filters will be discussed. For each filter, the name of the filter is                                         

mentioned and a description for the filter is given. Overall, filters provide the general purpose of denoising                                 

the data for the end-users or the types of analysis, in order to make the data easier and more meaningful to                                         

analyze. With respect to denoising the data for the types of analysis, this is motivated with the 'garbage in,                                     

garbage out' (Kim, et al., 2016, O'hurley, et al., 2014) principle; if the data is not filtered properly, the result                                       

cannot be expected to be always right . 

ServiceTrackFilter 

All trains generate data during a ride but also during maintenance or repairs. These diagnostic codes come                                 

from the testing done by the engineers. The data generated by these trains should be excluded (to the                                   

extent possible) from all analyses, as trends found in the data would then indicate trends during                               

maintenance. All errors generated during maintenance would then also be location-specific, because trains                         

do not move to different track-sections during maintenance. For this section, two different types of                             

maintenance locations are used: maintenance facilities and service stations (Appendix A: Glossary). Both                         

mean the same for the outcome of the filter, as both should be excluded, but actually have different                                   

meanings in practice. 

From the NS, some proposals for the filters were introduced. These proposals provided some of the                               

technical knowledge that was needed to implement an effective filter. Below a list of their proposals is                                 

explained: 
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(1) A train is assumed to be in service [not to be confused with a service track] when it has a train                                         

number (may also be referred to as ‘treinnummer’).  

(2) Whenever a train has no train number but the gap between their previous ride and next ride is less                                     

than 30 minutes, it is assumed to be in (near-)service and may, therefore, not be in maintenance.                                 

This time would be required for a train to startup and it should thus not be possible for it to have a                                           

quick maintenance run. All codes generated within this timespan are assumed to be dependent on                             

either the previous ride or the startup for the next ride. 

(3) The speed of the train is higher than 30 km/h. The reason for this is that some rides do not have an                                           

existing train number, e.g. the ride from Station Maastricht toward the maintenance facility of                           

Maastricht. The ride toward the maintenance facility may also introduce location-specific problems                       

and should, therefore, also be included. 

In all other cases, the train is assumed to be in maintenance. Although these proposals filter out most                                   

errors generated during maintenance, they still do not filter out all maintenance errors and also filter out                                 

more than desired. Each of the three proposed filter options has some problems. 

(1) The data is not always consistent and can not always be trusted. Some trains in maintenance still                                 

have a train number. Rules state that a train that is stranded on a track section should be removed                                     

within three hours. Therefore, we introduced an additional condition that any code generated                         

should be generated on a track section, where at the time of being generated the train should be                                   

within a three-hour range from its next track section or its previous track section. This means that if                                   

a train departs from A toward B (i.e. track section A-B) and generates an error on location a                                   

location we call x, which is somewhere between the timetable points A and B. The time before x                                   

(i.e. the difference in time of the train being in position A and the train being in position x) and the                                         

time after x (i.e. the difference in time of the train being in position x and the train being in position                                         

B) summed should be less than three hours for the data to not be filtered out. The figure below                                     

illustrates the scenario described. 

 

Figure 4: a train riding from A to B, which fires an error code on position x. The time before x and time after x summed 
should be less than three hours. 

(2) The first proposal only stated that the gap between two rides should be 30 minutes. However, the                                 

time to start up a train takes 30 minutes but this does not include the time required for a train to                                         

shut down. This means that if a train was to stop and shutdown and start up again for a new ride, it                                           

would take more than the specified 30-minute gap. Therefore, the 30-minute gap was split into a                               
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gap of 10 minutes after a ride and 30 minutes before a ride, which would be needed for a train                                       

operator to execute his full checklist. This means that the 30-minute gap is still included, but as                                 

described earlier, a 40-minute gap might be possible in some scenarios.  

This condition may still be insufficient, as train operators may do it faster or slower than specified. It                                   

may, therefore, still be better to include a schedule for all train maintenance. 

(3) When trains are only included if they drive faster than 30 km/h it is assumed that on all track                                     

sections between stations and maintenance facilities the driving speed is above 30 km/h. This may                             

not be true for all track sections. Also, many trains that do not have real-time (RTM) data system                                   

have invalid GPS coordinates and their speed is unknown. These trains are still filtered out if they                                 

do not comply with the other two conditions. From a visit to a maintenance facility, indications were                                 

given that trains are defrosted while driving 5 km/h, while they normally drive a maximum speed of                                 

40 km/h on the train yard. This shows that there may still be an improvement on the 30 km/h, as it                                         

now only includes the trains driving between 30-40 km/h (if the inaccuracy of GPS is not taken into                                   

account). According to Sathyamoorthy, Shafiii, Amin & Ali (2015), the error rate can be optimized to                               

maximum 0.254 km/h with a change of satellite geometry included. This would mean that if the                               

GPS speed in the NS database is corrected using the right method, the speed threshold of 30km/h                                 

could be lowered to somewhere around 5.254 km/h. Although, it is recommended to keep the                             

threshold higher, or dependent on the number of available satellites at the moment of the                             

measurement. The maximum error rate of Sathyamoorthy et al. (2015) was created with the                           

availability of six satellites, while the trains mostly use similar numbers of satellites but are not                               

guaranteed to.  

Besides the conditions, it was still possible to find some cases of trains that did not comply with the above                                       

conditions but did not seem to be in maintenance. To test this all records were filtered using the negation                                     

of the above conditions (i.e. all records assumed to be fired during maintenance). The data that was left                                   

was filtered based on the name of the track section they were on. All track sections that could possibly be                                       

a service track were removed. First, all track sections with the exact name of all service stations were                                   

removed. This assumption was in some cases a very strong assumption. For example, all track sections                               

with the name The Hague, Amsterdam, Rotterdam, and Utrecht were removed. Also, trains were filtered                             

out if they did not seem to drive, i.e. the timetable point the train is coming from is equal to the timetable                                           

point it is driving to. Even after most records on track sections were removed, where even too many were                                     

removed, there were still trains that seemed to be where they should not be (see table 1 below). The trains                                       

there show some possible scenarios. (1) the data is corrupted; the trains are driving, not where the data                                   

says they are, or they should have a train number. (2) the trains are really not where they should be.                                       

Although the first scenario is far more likely, it is still interesting for the NS to further investigate this                                     

situation to verify the integrity of the data and also verify that the trains were not really ‘missing’. 
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Table 1: possible ‘missing’ trains. These trains do not have a train number but are not on a service station. 

These records may possibly indicate that some records are corrupted. 

Property  Train #1  Train #2  Train #3  Train #4  Train #5  Train #6 

rolling_stock_number  8707  9402  9555  9575  9575  9575 

date_time  2017-08-06 
14:46:54 

2018-01-18 
20:32:46 

  

2018-01-24 
13:32:02 

2017-09-10 
15:58:41 

2017-09-10 
14:52:29 

2017-09-10 
15:48:00 

date_time_deact  2017-08-06 
14:48:18 

2018-01-18 
20:33:04 

2018-01-26 
20:40:52 

2017-09-10 
16:14:42 

2017-09-10 
15:25:50 

2017-09-10 
15:49:36 

track_section  Dtzo-Dtz  Odw-Gdg  Utg-Cas  Hlo-Utg  Hlo-Utg  Hlo-Utg 

location_name_start  Delft Zuid   
Overloopwis
sel 

Oudewater 
Wachtspoor 

Uitgeest  Heiloo  Heiloo  Heiloo 

gebiedtype_start  STATION  OVERLOOP  STATION  HALTE  HALTE  HALTE 

location_name_eind  Delft Zuid  Gouda 
Goverwelle 

Castricum  Uitgeest  Uitgeest  Uitgeest 

gebiedtype_eind  STATION  STATION  HALTE  STATION  STATION  STATION 

record_id  2500255  2746540  2760184  2681448  2681446  2681447 

DuplicateFilter 

Whenever a train fires an error, this is due to some conditional constraints in, for example, a thermometer.                                   

There are cases where a train fires the same error code multiple times within a few seconds. This may be                                       

due to many reasons. Most likely the error is not sent for a short while due to inconsistency and inaccuracy                                       

in a gauge. The problem is that, if no filter is applied, a train with a single problem sending a single error                                           

code for this problem seems less severe than a train, which has the same problem but sends five of the                                       

same error codes. To reduce this problem, we introduced a DuplicateFilter. The name implies that the                               

records that are filtered out are duplicates, this is not per se the case. The filter merely decreases the                                     

chance of double counting for a single problem, as in most of these cases the cause of the problem is the                                         
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same but multiple codes were fired. For this filter, we recommend a five-second interval between codes. All                                 

codes between this interval are removed. From the NS an indication for the filter of 60 seconds was given                                     

but seemed to filter out more than desired. Also, as stated earlier, the codes are not duplicate and,                                   

therefore, removing too many records means that you ignore the fact that they were present.  

Merging the records was not an option, as Hive uses an immutable data structure. Furthermore, changing                               

the database table would mean that other users of the table would be affected by the changes.  

An advantage of merging the records would be that problems with the same cause are seen as a single                                     

record. Ultimately this would be implemented for this system and all similar analysis scripts. However, this                               

would come with the major drawback, where wrongly merged records would lose information. Imagine two                             

records that are wrongly merged into one record. These will now be seen as one single record with a                                     

longer timespan. The information of these records being two distinct occurrences is lost. Also, analyses,                             

where these presumed duplicates are expected to be distinct records, cannot be executed freely anymore,                             

as the data suggests there are fewer records left. 

Another option would be to duplicate the table with merged records but this would be a bad decision                                   

memory-wise. Especially with the future expansion of RTM trains, the number of records will increase                             

significantly. Duplicating the database table would double this increase. 

It is, however, important to notice that the order in which the filters are applied affects the outcome of the                                       

analysis. Whenever the filter is applied first, too many records might be removed. Take, for example, the                                 

case where the filter threshold is set to 60 seconds. Below the scenario is visualized. In the first scenario,                                     

the duplicates are removed first, which leads to all records to be removed. With the duplicates removed                                 

after all other filters, one record is left. This is because the record is not duplicate anymore, as the records                                       

it would be duplicate with are removed. 
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Figure 5: duplicates removed before all other filters are applied leads to no records being left. 

 

Figure 6: applying all filters except the duplicate filter, leads to one record being left. This is the desired 
behavior. 
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Filter influence 

A difference in filter order can also benefit or hinder performance. For performance’s sake, it is best to                                   

have the filter that filters out the most records execute first. Because of this, figuring out which filter filters                                     

the most records is essential. For each of the filters, the percentage of records left, the absolute amount of                                     

records left and the absolute amount of filtered out records of the total 636,011 records is calculated in the                                     

tables below. 

In the first table, the individual filters are tested. The DuplicateFilter with the interval set to 60 seconds will                                     

maintain 67.5% of the records. As stated in the previous section about the DuplicateFilter, these 60                               

seconds proved to filter more out than desired. The interval set to 5 seconds will maintain 99.4% of the                                     

records. We believe that this interval is better since not too many records will be filtered out now.                                   

Furthermore, the FP-growth analysis is not affected by having too many of the same records, since it uses                                   

sets. The CountTrend analysis is however affected. But since it is better to keep a few too many records in                                       

the data and therefore give some track sections a bit more attention than necessary than it is to keep                                     

important records out of the data. Leaving out records out of the data can lead to missing an important                                     

pattern. We decided that a lower interval for the Duplicatefilter, like 5 seconds, may be better. However,                                 

since this interval is easily changeable and the difference is more easily visible with the interval of 60                                   

seconds, the tables below will feature the DuplicateFilter with the 60 seconds interval. 

 

The simplest ServiceTrackFilter, which only filters out the records with ‘treinnummer’ equal to null,                           

maintains 44.7% of the records. This is quite a rough filter and will not be used as a final filter. 

By adding the requirement of the gps_speed being faster than 30 km/h, the filter maintains 47.0% of the                                   

records. By decreasing this minimum speed to more than 5 km/h, the percentage of records left gradually                                 

increases up to 48.3%. However, with a speed of more than 0 km/h, this percentage makes an interesting                                   

bump to 82.4%. The reason for this bump is inaccuracy in the data is, mostly, the GPS sensor. A lot of GPS                                           

locations of the trains sway a bit due to this inaccuracy. Because of this, the gps_speed is often also a bit                                         

more than 0 and will thus not be filtered out in this last instance. 

The program will use the filter configured at a 30 km/h. This could maybe be improved by lowering this                                     

speed, but with this data, it is uncertain whether the records that are removed are actually the correct                                   

records to remove. 

 

When taking into account the amount of time needed to perform maintenance, only 49.8% of the total                                 

records remains when using a minimum gap of 30 minutes in between two rides for maintenance to be                                   

able to happen. When using 30 minutes before each ride and a minimum of 10 minutes after each ride, the                                       

percentage of records maintained is upped to 55.5%. 

 

When using a filter for corrupted data, i.e. when the date_time_deact is null, 98.7% of the records remain.                                   

When only allowing RTM trains in this filter, 99.5% remains. This filter shows that there is more than 1.3% of                                       

the data that can not be trusted, which for this filter it is merely based on a single column. If more columns                                           

were filtered for their validity, more incorrect rows will likely be found. The reason for these corrupted                                 

records is probably caused, during their generation, by the train operators. Whenever these error codes                             
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are generated, the train operator might shut down the train instantaneously, which does not allow the train                                 

to add a deactivation time to the error code. 

Table 2: Individual filter influence on data. The amount of records filtered out by each of the filters is 

indicated in this table, both relative and absolute.  

Filter influence on the data 

ID  Name filter  Description of records left  Records 
left 

Percentag
e 
left 

Difference 
(filtered 
out) 

1.1  Duplicate filter.   
Values in seconds. 

‘dt_lastdiagcode’ == null |       
‘dt_lastdiagcode’ > 60 

429,529  67.5%  206,482 

1.2  ‘dt_lastdiagcode’ == null | 
‘dt_lastdiagcode’ > 5 

618,637  99.4%  17,374 

2  Simplest service   
track filter 

‘treinnummer’ != null  284,595  44.7%  351,416 

2.1.1  Service track filter     
with speed. Values     
in km/h. 

‘treinnummer’ != null |  ‘gps_speed’ > 30  299,236  47.0%  336,775 

2.1.2  ‘treinnummer’ != null |  ‘gps_speed’ > 25  300,119  47.2%  335,892 

2.1.3  ‘treinnummer’ != null | ‘gps_speed’ > 20  301,208  47.4%  334,803 

2.1.4  ‘treinnummer’ != null | ‘gps_speed’ > 15  302,570  47.6%  333,441 

2.1.5  ‘treinnummer’ != null | ‘gps_speed’ > 10  304,364  47.9%  331,647 

2.1.6  ‘treinnummer’ != null | ‘gps_speed’ > 5  307,075  48.3%  328,936 

2.1.7  ‘treinnummer’ != null | ‘gps_speed’ > 0  523,811  82.4%  112,200 

2.2.1  Service track filter     
with gap ’30 min.’       
Values in seconds. 

‘treinnummer’ != null | (‘tijd_nadrp’) +           
(‘tijd_voordrp’) <= 1800) 

316,562  49.8%  319,449 

2.2.2  Service track filter     
with 10 minutes after       
ride and 30 minutes       
before ride. Values     
in seconds. 

‘treinnummer’ != null | (‘tijd_nadrp’) <=           
600 | (‘tijd_voordrp’) <= 1800 

353,217  55.5%  282,794 

3  Corrupted filter   ‘date_time_deact’ != null  627,875  98.7%  8,136 

  Corrupted filter of     
which RTM 

‘date_time_deact’ != null &         
‘rolling_stock_number’ is RTM 

632,993  99.5%  3,018 

X  1 + 2.1.1 + 2.2.2 + 3  See 1, 2.1, 2.2 and 3  211,435  33.2%  424,576 
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Since the DuplicateFilter is a vital part of the filter system, having insight into the percentage deleted of                                   
each filter in combination with the DuplicateFilter is important. Therefore, all the previously mentioned                           
filters can be seen in the table below, where the number of records left, percentage left and amount of                                     
records filtered out by the combination of the DuplicateFilter and the filter itself is written out. 
 
The simplest ServiceTrackFilter in combination with the DuplicateFilter only preserves 27.9% of the                         
records. As stated previously, this filter is quite rough. 
When adding the minimum speed of more than 30 km/h, a lot more records are preserved: 29.4%. This                                   
gradually increases to 30.3% at more than 5 km/h. Once again, the minimum speed of more than 0 gives a                                       
huge spike due to inaccuracies. 
The filter for corrupted data in combination with the DuplicateFilter filters just a bit more than the                                 
DuplicateFilter on its own, 66.3% and 67.5% respectively. 

Table 3: Filter influence on data in combination with the DuplicateFilter. The amount of records filtered out 

by each of the filters in combination with the DuplicateFilter is indicated in this table, both relative and 

absolute. 

 

Filter influence with the duplicate filter also applied (order independent). 
ID  Name filter  Description of records left  Records 

left 
Percentage 
left 

Difference 
(filtered 
out) 

2  Simplest service   
track filter 

‘treinnummer’ != null  177,277  27.9%  458,734 

2.1.1  Service track filter     
with speed. Values     
in km/h. 

‘treinnummer’ != null |  ‘gps_speed’ > 30  187,077  29.4%  448,934 

2.1.2  ‘treinnummer’ != null | ‘gps_speed’ > 25  187,637  29.5%  448,374 

2.1.3  ‘treinnummer’ != null | ‘gps_speed’ > 20  188,305  29.6%  447,706 

2.1.4  ‘treinnummer’ != null | ‘gps_speed’ > 15  189,186  29,7%  446,825 

2.1.5  ‘treinnummer’ != null | ‘gps_speed’ > 10  190,454  29.9%  445,557 

2.1.6  ‘treinnummer’ != null | ‘gps_speed’ > 5  192,409  30,3%  443,602 

2.1.7  ‘treinnummer’ != null | ‘gps_speed’ > 0  337,856  53.1%  298,155 

2.2.1  (see below)         

2.2.2  (see below)         

3  Corrupted filter   ‘date_time_deact’ != null  421,566  66.3%  214,445 

X  (see below)         
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For the ServiceTrackFilter with the time before and after the maintenance sessions, the order of applying                               
the filters matter. This is explained in the DuplicateFilter section and Figures 5 and 6. 
When applying the DuplicateFilter first, the filter that keeps the records with ‘treinnummer’ null and having                               
a less than a 30-minute gap between two trips maintains 31.9% of the records. While accounting for 10                                   
minutes before and 30 minutes after a trip, this percentage rises to 36.4%. 
When applying the DuplicateFilter after, these numbers are 33.4% and 37.9% respectively. 
 
When using the most important filters, i.e. DuplicateFilter, ServiceTrackFilter with a minimum speed of more                             
than 30 km/h, the ServiceTrackFilter with 10 minutes after a trip and 30 minutes before a trip and the filter                                       
for corrupted data, where the DuplicateFilter is applied first, the percentage of records maintained is 33.2%. 
When applying the DuplicateFilter after, this number is 37.7%. This is also the setup that is used in the                                     
program. This setup is used, since it does not filter out many useful records, but still filters out 37.7% of the                                         
records. When using a DuplicateFilter with a threshold of 5 seconds, this percentage is 48.5%. 

Table 4: Filter influence on data in combination with the DuplicateFilter applied first. The amount of 

records filtered out by each of the filters in combination with the DuplicateFilter (applied first)  is indicated 

in this table, both relative and absolute. 

Filter influence with the duplicate filter applied first (order dependent). 

ID  Name filter  Description of records left  Records 
left 

Percentage 
left 

Difference 
(filtered 
out) 

2.2.1  Service track filter     
with gap ’30 min.’       
Values in seconds. 

‘treinnummer’ != null | (‘tijd_nadrp’) +           
(‘tijd_voordrp’) <= 1800) 

202,659  31.9%  433,352 

2.2.2  Service track filter     
with 10 minutes after       
ride and 30 minutes       
before ride. Values     
in seconds. 

‘treinnummer’ != null | (‘tijd_nadrp’) <=           
600 | (‘tijd_voordrp’) <= 1800 

231,628  36.4%  404,383 

X  1 + 2.1.1 + 2.2.2 + 3  See 1, 2.1.1, 2.2.2 and 3  211,435  33.2%  424,576 
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Table 5: Filter influence on data in combination with the DuplicateFilter applied last. The amount of 

records filtered out by each of the filters in combination with the DuplicateFilter (applied last)  is indicated 

in this table, both relative and absolute. 

Filter influence with the duplicate filter applied last (order dependent). 
 

ID  Name filter  Description of records left  Records 
left 

Percentage 
left 

Difference 
(filtered 
out) 

2.2.1  Service track filter     
with gap ’30 min.’       
Values in seconds. 

‘treinnummer’ != null | (‘tijd_nadrp’) +           
(‘tijd_voordrp’) <= 1800) 

212,401  33.4%  423,610 

2.2.2  Service track filter     
with 5 minutes after       
ride and 30 minutes       
before ride. Values     
in seconds. 

‘treinnummer’ != null | (‘tijd_nadrp’) <=           
600 | (‘tijd_voordrp’) <= 1800 

241,176  37.9%  394,835 

X  1 + 2.1.1 + 2.2.2 + 3  See 1, 2.1.1, 2.2.2 and 3  240,082  37.7%  395,929 

 

The data can be used for further discussions on the filters, which should be held by the NS as they have                                         
the related engineering knowledge required. As can be seen from the results, the number of records left                                 
after applying all essential filters is close to one-third of all records. From this, the NS could discuss if this is                                         
a good result or not. Possibly too much is filtered out, while on the other hand a lot of data might be                                           
irrelevant or even useless. This data should not be used for verifying the integrity of the filters. What can be                                       
concluded is that with the filters, that are now assumed to be working and relevant, two-thirds of all records                                     
are filtered out.  

Collaborative filtering 

To get a certain sense of how important found patterns are, a system was introduced to recommend the                                   

user which track section or trend to look at. This recommendation system used the technology called                               

‘Collaborative Filtering’ or CF in short. The importance of a pattern suggestion is relevant for providing the                                 

end-user with a quick insight into what data is relevant to look at. From a system-engineering point of view,                                     

CF also tests the flexibility of the system and shows that it is indeed capable of extension, as it uses a                                         

different way of analyzing than the Counting- and FP-Growth analysis. The two types of analysis use the                                 

analysis engine, whereas CF uses a different post-processing module. 

 

Normally, CF is applied for recommender systems for human recommender systems, like the Amazon                           

webshop or the Netflix movie recommendation system. In these cases, the recommendation system is                           

based on the rating of users for the products or movies. Take, for example, the case of Netflix, where                                     

multiple users watch movies and have rated the movies they have watched. Each of these ratings can then                                   

be used to determine which movies they may also like, based on the ratings of others. These prediction                                   

rating for these users will be based on the similarity of ratings between other users that already have                                   

watched the movie that will be predicted. A small example of how these ratings may look like in a matrix                                       

representation is given below. 
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Table 6: an example of User-Item Collaborative Filtering as can be used for a Netflix movie 

recommendation system. Each of the values represents a user rating for a movie. 

  Movies 

Terminator  The 
Godfather 

Fight Club  Gladiator  Saving 
Private Ryan 

 
 
 
 
Users 
 

John  5  2  1  4  5 

Susie  2  5      3 

Mona  2    2  4  2 

Ann    2       

Tyrone  5  1    5   

In this example, a User-Item CF filtering is represented as a matrix where each filled-in value for a user Ux                                       

and movie My is a rating given by the user for that movie. All blanks in the matrix need to be filled in using                                               

the CF algorithm in order to give recommendations for the users. A high-prediction value for a movie                                 

means that the user is likely to enjoy watching the movie. For example, a rating for user Tyrone and movie                                       

Saving Private Ryan can be predicted by finding the similar users. 

To verify the algorithm, all data is split into a training set and a test set. The training set is used for finding                                             

the right latent factors, while the test set is used to verify if the latent factors work as expected. For the test                                           

set, some ratings are removed and predicted again. The difference between the prediction and the actual                               

rating is the error rate. The predictions are made in such a way that the error rate, or in our case the Root                                             

Mean Squared Error (RMSE) is minimized for the test set. The RMSE is defined as ,                               √∑
 

 
N

(prediction − actual)2

 

where is the number of predicted ratings in the test set.N  

The system used in our application works differently than the recommender systems used for the earlier                               

mentioned examples, like Amazon and Netflix. According to Leskovec, Rajaraman & Ullman (2011, p.                           

309-310), Collaborative Filtering is used for 1. product recommendations (e.g. Amazon), 2. Movie                         

recommendations (e.g. Netflix), or 3. News articles (e.g. identify articles of interest based on earlier read                               

articles). 

To transform this system to work with the track sections and trends, we had to find a rating system in our                                         

application. This application uses the frequencies of trends as a replacement of the ratings. These                             

frequencies are defined as the number of rides contributing to the individual trend. This means that a                                 

single train unit with two rides contributing to the trend adds two points to the rating (or frequency). The                                     

above example in table 6 can be transformed to the track section to trend recommendation system by                                 

substituting the users with track sections and the movies with the distinct trends. The same example, but                                 

transformed, can be found in table 7. 
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Table 7:  an example of Track section-Pattern Collaborative Filtering for a pattern recommendation 

system. Each value represents the frequency of train rides for a trend on a track section. 

  Error code pattern 

["HSP020","
HSP022"] 

REM234  KLM638  DVR090  ["LSP673", 
"LSP682"] 

 
 
 
Track 
sections 
 

Nvp-Rvbr  5  2  1  4  5 

Dvnk-Vkbr  2  5      3 

Gw-Hrmk  2    2  4  2 

Brdl-Hr    2       

Dta-Rsw  5  1    5   

In the above example, again the same ratings are used but this time they are the rating formed from the                                       

actual frequency of trains on a track section for a single trend. The blank fields can be filled in based on the                                           

frequencies found on track sections. With this is assumed that track sections may act similar to each other                                   

and, therefore, might lead to the same behavioral patterns for their trends. The blank field for track section                                   

Dta-Rsw and error code pattern ["LSP673","LSP682”] filled in will mean that the value given in that cell                                 

represents the expected number of train rides on the track section for that trend.  

Overestimation 

Also important to note for the algorithm is that more crowded track sections, like stations, are more likely to                                     

be recommended as important tracks to look at. These track sections are likely to be recommended as                                 

their predicted frequencies are higher than other less crowded track sections. This behavior could lead to                               

some ‘important’ track sections not to be recommended as important while their trend is in fact important.                                 

However, it also has desired behavior, as more crowded track sections are also the track sections with the                                   

highest priority of being fixed when a location-specific problem is located. Location-specific problems in                           

crowded track sections affect more trains than less crowded track sections and, therefore, their economic                             

impact could be higher. 

 

To still minimize this effect a little but also to minimize overestimation, the training data is filtered for                                   

outliers. For now, training data entries are considered an outlier if the frequency has a value higher than                                   

three standard deviations from the mean. It is calculated as: , where is the                    ata.f ilter(| f  | tddev)d − f < 3 * s     f      

frequency, is the mean of all frequencies, and is the standard deviation of all frequencies. The  f                 tddevs                

filter method keeps all data that suffices the given formula, i.e. all values above three times the standard                                   

deviation is removed. 
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Ensemble method 

To make some predictions more accurate overall, a simple ensemble method using the average of all                               

predictions is applied. Although the test sets showed a much better RMSE, still the strong assumption is                                 

made that this actually improves the predictions. For the ensemble method to work “A necessary and                               

sufficient condition for an ensemble of classifiers [a single prediction] to be more accurate than any of its                                   

individual members is if the classifiers are accurate and diverse” (Dietterich, 2000; Hansen & Salamon,                             

1990). However, for the assumption, the former (diverse) can be easily be done, as the average is                                 

sometimes higher but also lower than the CF prediction. Which means that both predictions make different                               

errors on the same new data point (Dietterich, 2000). Whereas for the accuracy, the classifier must perform                                 

better than a random guess (Dietterich, 2000). Still, there is much room for improvement, as the average                                 

classifier is dependent on the CF classifier. 

Discussion 

The use of CF for recommending trends for track sections is very experimental. As mentioned earlier by                                 

Leskovec et al. (2011, p. 309-310), the applications of CF is based on user behavior, preference and item                                   

and user similarity. In our application, the system is merely based on track section behavior and track                                 

similarity. The track sections do not have preferences if assumed that a preference defined as “a greater                                 

liking for one alternative over another or others” in this case means an aware decision of choosing a trend                                     6

over another trend. 

Due to the fact that there are no users involved in the recommendation system, it is assumed that the                                     

human factor is not key to the CF algorithm. This assumption should be safe, as there are still ratings                                     

generated for the track sections. However, if many of the trends are only on one track section and not on                                       

any others, the matrix might become too sparse. Although the algorithm is optimized for sparse matrices,                               

its performance can be badly influenced when the matrix does not have enough entries for it to generate                                   

predictions. This problem becomes bigger when there are also not enough trends found. In these cases, it                                 

might be better to not recommend to the user at all, as the prediction rating would be overfitting to the few                                         

samples given. In the current implementation of the program, if there are not enough training data, no                                 

recommendations are given. Also, if there RMSE is too high to give an accurate prediction, it will also be                                     

skipped. Too high is as default defined with an RMSE of 20.0 but a lower value might be desirable. 

To further verify the validity of the algorithm, verification data is required. This can be generated by using                                   

the application and saving the found error patterns, that were identified as location-specific problems.                           

Verification could also be implemented from the same post-processing system, as the CF algorithm, which                             

also emphasizes the challenge that was put in the post-processing system and the required expandability                             

of the system. 

 

The post-processing and thereby the CF was introduced after the initial system was implemented. To verify                               

our system design for its expandability, the post-processing was introduced. This showed that the system                             

6 https://en.oxforddictionaries.com/definition/preference  
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could be expanded in a clean and easy fashion, while it was also consistent with other components of the                                     

system. More on this will be elaborated in the ‘Evaluation’ chapter on the system design.  

Counting analysis 

The Counting Analysis makes use of simple counting of error codes and finally relatively compares the                               

occurrences of the error codes with different track sections. The simplicity of the algorithm may also be                                 

seen as the strength of the algorithm. The speed performance is high, while it is still able to find many                                       

possible error patterns for different locations. Its simplicity also makes it a robust and reliable algorithm,                               

which is good for the developers when exploring the unknown domain as a benchmark. The simplicity,                               

which in terms comes with traceability and trustworthiness, makes it easier for the end-user to trust the                                 

results that 'the new analysis system' provides.  

To make sure more crowded track sections are not always seen as more likely to have an error pattern, the                                       

error codes are also relatively compared with the number of trains passing the track section. The data of                                   

the passing trains is gathered from a different data source than the diagnostic error codes. To be able to                                     

give found patterns more prioritization, the delay paired with the error pattern is calculated. This data also                                 

comes from a different data source. The different data sources used different type formats, column names,                               

and sometimes even different definitions, which emphasizes the challenge of data inconsistency. With the                           

implementation of the Counting Analysis, the system proofs that it is able to use multiple data sources in                                   

analyses. Furthermore, both this counting analysis and the above-mentioned FP-Growth analysis have the                         

same signature and parent class. This shows the extensibility of the framework built into the system. 

Power BI and PySpark computation 

During the early execution phase of the scope, a decision has been made regarding the storage of the                                   

patterns found by the counting analysis in the database and how this method of storing these patterns                                 

would impact the performance of the application. Some of the attributes of count trends rely on                               

summarized data collected from individual diagnostic error rows. One example of such a property is the                               

amount of individual diagnostic rows that are related to a railway section for a given time frame.  

 

A static time frame for each trend was chosen, such that the number of occurrences would not change by                                     

adjusting the time frame. The main motivation for such a static time frame was the performance of Power                                   

BI, as opposed to PySpark; PySpark is able to collect the summarized attributes for count patterns faster                                 

than Power BI is. Also, with the plans to increase the number of diagnostic error rows reported by the train                                       

sensors of the NS Power BI could easily turn into a bottleneck in terms of performance, perhaps to the                                     

point of it being hard to use. Additionally, PySpark can more easily be used to apply complex filters to                                     

create the conditions for which the summarized attributes should be collected, this would make this a more                                 

flexible option. For example, wanting to compare consecutive winters can be more easily configured from                             

Pyspark’s side than Power BI’s side.  

Half-way the project, it was discovered that the performance of Power BI was fast enough to deliver                                 

summarized attributes of the Counting Analysis from corresponding diagnose rows in less than a minute,                             
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which is acceptable. This discovery was discussed within the team. After some discussion, the decision                             

was made to stick to our initial choice of a static time frame for each found pattern, but to also include the                                           

possibility to use Power BI to compute summarized attributes with a dynamic time frame. 

This decision was made for several reasons, some similar to the motivation of the initial choice. The                                 

flexibility in filter application was as strong of an argument as before. The performance of Power BI was still                                     

taken into consideration, as performance guarantees are hard to predict as the NS may want to increase                                 

their rate of data collection. The system is created such that it combines PySpark attributes with Power BI                                   

attributes, where the removal of the user interface does not impact the PySpark attributes. With the                               

implementation of both, we think to have made a choice that can most likely support future demand and                                   

provide useful information. 

Additional motivation came from the impact changes would have to our system. The system was built in                                 

such a way, that it best supports static attribute collection and changing mid-way would likely cause a lot of                                     

difficulties, more than it is worth. The same results, provided by the dynamic attributes of Power BI, can be                                     

obtained by, for example, defining the time frame beforehand. As such, the scope was not adjusted based                                 

on this discovery.  

Centralized location of interaction 

Initially, the design included one central user interface (UI) through which the end-users could change                             

settings, initialize new analyses and apply filters: Power BI. Having a centralized environment is important                             

for effectively spreading knowledge throughout the company and providing a central framework from                         

which new types of analysis could be started, which prevents duplicate effort and saves on costs. 

Early on the discovery was made that Power BI does not allow for a connection between its interface and                                     

any other language, that is unless Power BI Embedded is used. However, given its pricing of                               7

approximately 5000 euro each month and available, cheaper solutions the Power BI Embedded solution is                             

a hard business case to defend. Moreover, in the current environment of the NS, direct connections with                                 

the cluster and Power BI would require a connection between two different,strongly separated                         

environments. 

It is not possible to create a user interface in Power BI to interact with the Hadoop cluster, because the                                       

cluster is a closed system. This means a user interface has to be created in a different environment, which                                     

still has to be understandable for the end users of the program. This adds to the challenge of creating an                                       

integrated system, divided over two applications. 

 

The UI was changed to have two separate interfaces: Power BI and a Jupyter Notebook. Power BI was still                                     

used for data visualization, as it does an excellent job in doing just that, but Jupyter Notebook was used to                                       

display a UI through which the end-users could schedule their analyses and specify the settings to use for                                   

those analyses. In order to make integrating any UI with the back-end, the Event Handler has been made.                                   

The Event Handler is further elaborated upon in the Class Diagram section above. This mitigates the                               

7 https://azure.microsoft.com/nl-nl/pricing/details/power-bi-embedded/ 
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problem of having to resort to two separate locations of interaction. 

 

Database Analyses Normalization 

Removing redundancy in the data, that was stored for the analyses, was a challenge when designing the                                 

database structure. Counting Analyses can have an overlap in time and as such they share occurrences of                                 

diagnostic error codes. The idea was to reduce the possible redundancy due to overlap. As a solution to                                   

this problem, linking tables were created where each pattern would store links. The links would have in                                 

one column the ‘trend_id’, identifying the pattern, and in the other column the reference to the                               

occurrence’s corresponding row: ‘record_id’. 

This worked well at the start of the project when the multi-user and multi-analysis context was not fully                                   

thought through. After allowing multiple users to store multiple analyses an extra condition constraint was                             

added, being that trend_ids could have multiple record_ids and record_ids could have multiple trend_ids.                           

This is a many-to-many relationship, which is not supported by Power BI. This would not be a problem in a                                       

more classical SQL oriented visualization tool, Power BI is DAX oriented. The solution was to merge the                                 

linking tables with the tables storing the patterns on ‘trend_id’ with an inner join. This caused redundancy                                 

which initially was hoped to be prevented. However, this can not be avoided when using Power BI. The                                   

initial way in which the data was stored does not include this redundancy. It is within Power BI that the                                       

redundancy is introduced, which allows this redundancy to be removed when using the data in another                               

environment than Power BI. 

 

The impact of this introduced redundancy is moderate. For each analysis there is approximately an                             

average of 350 patterns, each pattern has on average seven corresponding occurrences, see Figure 7 for                               

reference. This means the amount of diagnose rows that have to be stored increases by a factor six,                                   

resulting in an average 2100 additional rows per analysis. This is fairly limited, in term of data storage                                   

redundancy. The most significant part of the impact comes from Power BI having to do these joins. This                                   

currently takes a really long-time, for smaller joins it adds about 50 minutes of loading time, for larger join                                     

the time becomes significantly longer to the point of being unreasonable. This problem may be solved by                                 

doing the join within Pyspark, which removes the most significant part of the problem. 

 

 

Figure 7: Amount of analyses, corresponding patterns and corresponding occurrences. 
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Discussion 
In this section, the original problem description and chosen solutions which address the problem will be                               

discussed. The methodology influencing the process of the project, which influences the former two, and                             

the ethical evaluation, placing the project as a whole in a larger social-economic picture, are also                               

discussed. 

Problem approach 

This section explains how the original problem statement was changed in order to better address the                               

underlying problem and how this shift impacted the way the underlying problem was and will be able to be                                     

addressed. 

Problem statement comparison 

The original problem project description provided by the client (Appendix C) differs from the problem                             

description at the start of this report. Whereas the higher-level goal of the project remains the same, that is                                     

improving reliability and punctuality of trains. The description of what the NS said they needed and what                                 

was proposed they needed differs. This shift is characterized by moving from a short-term analysis tool to a                                   

long-term analysis tool and a system for making the analysis environment more centralized. The problem                             

description of this project also moves away from trying to give warnings or directly trying to observe the                                   

root of incidents, as this required engineering expertise specifically related to the kind of mechanical                             

engineering and context the NS uses. This knowledge was not present within the team, nor did it seem like                                     

something that should be included within the problem statement, as making a system that would support                               

new analysis/patterns would allow those with the expertise to move towards a more extensive system with                               

more potential that would be able to reveal some of the roots of the problems and building a new system                                       

relates more to the team’s area of expertise. As such, these choices were made in changing the problem                                   

statements. 

Validating the system 

Validating the usefulness of the analyses, and in terms validating the premise that the suggested system                               

would indeed be able to improve reliability and punctuality, is an important part for evaluating whether the                                 

system may be worth expanding upon. The created application is able to find some interesting error                               

patterns. Due to the lack of validation data, the knowledge of experts was needed on validating found error                                   

patterns. Ultimately, the error patterns should be verified with real examples of location-specific problems                           

and through practical examinations on the track sections themselves. During the final demo with the                             

end-users, multiple error code patterns were discovered and acknowledged as relevant and meaningful. A                           
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subset of interesting error code patterns can be found in table 8. Some of the found error patterns are                                     

explained, in order to specify their possible importance. 

Table 8: Subset of interesting error code patterns found during demo with experts. 

  Analysis Type  Track Section  Diagnostic Codes  Error description 

1  Fp-Growth  Classified  [HSP020, HSP022]  Power failure intervention. 

2  Counting  Classified  DIA031  Two operating cabins are being connected. 

3  Counting  Classified  ATB073  Change of cabins was not sufficiently           
carried out 

4  Counting  Classified  ATB034, ATB035,   
ATB032 

Signal in the rail is malformed  

5  Fp-Growth  Classified  [REM110, REM111]  Train operators are doing their break test,             
which is actually good behavior. 

The first error pattern is significant because the train probably went into a slip, which is very bad for the                                       

wheels. The error can be explained by the fact that this error is located at a bridge, which has its own                                         

reverse current system. If this system fails, it can result in a power failure intervention. The error was                                   

unknown for this location but with the information the program gave, it could immediately be identified as a                                   

problem. The reaction to this error is that the infrastructure of this point has to be improved. 

The second error pattern is important because it could cause delays. The train operator did something                               

wrong while connecting cabins. The reaction to this error is that this could be prevented by adapting the                                   

training the train operator gets. Trainers in the area of the error could be notified to give more attention to                                       

connecting cabins. Interesting to this pattern was that the pattern was only found for a certain track section                                   

(station) and not on other track sections. This means that the training should be adapted especially in that                                   

area. 

The fourth error pattern is interesting, as ATB032 was earlier expected to be location-specific by the NS.                                 

Now, more of a confirmation is added to this hypothesis. ATB034 and ATB035 are very similar diagnostic                                 

error codes and are also considered location-specific. All three are due to the infrastructure and can be                                 

fixed by ProRail. 

The fifth error pattern is also interesting, as it does not indicate something wrong, in contrary, it shows                                   

good behavior. Train operators are doing break tests on specific track sections, which is a standard                               

procedure which should be carried out. It is known that this procedure is not always carried out. It can now                                       

be confirmed that this location does it more consistently than other locations. This information could, for                               

example, be used to compliment the train operators on this track section for their behavior. 
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The most effective way of validating the system was to use the knowledge of the experts to determine                                   

whether the provided patterns would indeed lead to useful insights, other methods of validation were                             

limited.  

The primary reasons for limited methods of validation were a lack of traceable data to validate patterns                                 

with. The system is a new concept within the RTMA environment, which removes the positive of                               

benchmarking. Also, a lack of time did not allow further extension on creating validation data. The lack of                                   

traceable data means that it was not possible, within the current implementation of the system, to trace any                                   

measure of severity of a pattern, be it travel delay or customer satisfaction, back to patterns that were                                   

found. This was not possible as the system never focused on finding the cause of certain patterns, which is                                     

explained in the section above. If there was time for further validation, then it would be possible to keep                                     

track of whether location-specific problems would actually decrease. 

Requirements 

The following section is divided into three sections: ‘Design goals’, ‘System Design’ and ‘Scope’. The                             

‘Design goals’ section is an evaluation of the application as a whole that verifies whether the application                                 

conforms to the previously set design goals. The ‘System Design’ section evaluates the design of the                               

system, in particular the expansion possibilities. The ‘Scope’ section is a brief evaluation of the more                               

specific requirements of the system. As such, the project is validated at various levels of abstraction. 

Design goals 

The original research report formulated five design goals, which gave a broad overview of the                             

characteristics our final product should have. The design goals were: end-user satisfaction, a quick insight                             

into data, manageability, performance, and scalability. These design goals give a good idea of what the                               

product was/is to become and will thus give a good benchmark for a measure of project success. In this                                     

section, we will give our view on the design goals, if we think they were met, and how we think the design                                           

goals were met. 

End-user satisfaction 

In order to warrant these design goals, we held multiple demos with the client and two possible end-users.                                   

With the demos, the client could be informed of the progression but also could be used to test the                                     

relevance of the program. In the last and second last demo, actual results obtained from real data could be                                     

shown. These results could be validated with the expertise of the end-users. These demos showed that the                                 

program was able to find location-specific error patterns. From the enthusiastic reactions, we could                           

measure the relevance of the found patterns. From these reactions, we could conclude that for them the                                 

program is built to their satisfaction. Moreover, as the error patterns proposed by the system were                               

approved to their belief, the system seemed to operate to their expectations.  

40 



 

 

We also held one demo with a possible end-user who was not involved with the project from the beginning                                     

of the process. He was unaware of the project and could, with the demo, give his expectations from such a                                       

program. From this demo, different viewing points were given and it could be verified if the program fitted                                   

with his view. From his reactions, at that time, we could conclude that we were on track with his                                     

expectations. 

Quick insight into data 

To break down the problem into multiple levels, it could first be compared with simply giving a glance at                                     

the data in the database. This is clearly not a ‘quick insight’ and takes an employee of the NS much time to                                           

make a sensible statement. Also, making new individual scripts (outside this application) is not faster, as                               

these scripts require reproduced parts of the framework. By implementing components of the framework                           

provided by our application, it is easier to create new analyses, filters, and scripts. Components that could                                 

be (re)used are, amongst others, instantiation, integration, and inheritance of other classes. Also, using the                             

framework, each script follows the same conventions, which improves the consistency amongst all filters,                           

analyses, and post-processes. Hence, the framework has a huge advantage over individual scripts. 

Besides the scripts giving an insight in the data by finding the patterns, the Power BI integration                                 

even expands the insight. Power BI shows multiple types of patterns (e.g. Statistical patterns and                             

FP-Growth patterns) in the same environment. Furthermore, the Power BI interface gives an exact location                             

on a map to each error code or pattern found (where for the patterns the average of all records is used).                                         

With this map and the signature (e.g. error codes A with B) of the pattern found and the location on the                                         

map, the user can easily pinpoint the location and even in some cases in one glance pinpoint the actual                                     

cause. 

Manageability 

Manageability also was one of our five design goals. Throughout the development of the project, we made                                 

the project with this in mind. 

To further support the manageability, several documents for the user and system engineer were made. For                               

the user, there is a user guide. The user guide can be used for installation instructions and the first steps                                       

into the program. For the system engineer, two documents were created: the Systems engineering guide                             

and the UML.  

The former can be used for the explanation of components within the program, how these components                               

work, and how they can be expanded.  

The user guide can be used to inform the user about the first steps to undertake within the program. The                                       

guide also explains the functioning of the program, which allows the user to also understand the behavior                                 

of the application. The user guide is not added to this document, to prevent the leakage of classified                                   

information. The Systems engineering guide is added as appendix L. 
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Performance and scalability 

For the program, performance is an important aspect. This is closely related to scalability, since having                               

enough performance allows for the scalability to be high as well. According to the NS, the minimal desired                                   

analysis timespan should cover a day, week, month, half a year, and possibly a year or longer. With the                                     

current implementation of the system, the system can make analyses of a timespan covering at least one                                 

and a half year. This means that the goals of a year analysis (or longer) were reached. 

Regarding speed performance, the system is able to process analyses with a timespan of a year                               

within an hour during quiet hours of the cluster. Through a scheduled system, the NS can schedule the                                   

analyses during these quiet hours. The speed performance is highly dependent on the server. Whenever                             

there are more scripts running, the performance can significantly be reduced. Therefore, no strong                           

guarantees on the speed performance can be given. However, using the scheduled system and                           

reasonable speeds during an average usage capacity on the server, the performance of the program can                               

be considered sufficient. Also, in the recommendations below, a recommendation is made, in order to                             

reach higher speed performances in the future. Below, a table describes some of the measurements of                               

different runs. These values can be used to get an indication of the speed of the system. However, it                                     

should be noted that the performance of the program is highly dependent on the cluster and, therefore,                                 

different results can be expected, as mentioned previously. 

Table 9: Different measurements of runs with the application, where the days are varying. The execution 

time (in minutes and seconds) varies on the number of records, the content analyzed, and the 

performance of the cluster. 

Run  Days  Execution time (MM:SS) 

1  365  47:26 

2  31  20:12 

3  7  9:02 

 

System Design 

Analysis and PostProcessor 

In this section, both the analyses and post-process classes will be discussed for their system design. All                                 

classes involved in both the processes will be elaborated on how they should be extended. These two                                 

processes (and the filter process) will, after the delivery, most likely be subject to changes. In this section,                                   

first, the different classes in each of the processes are explained and secondly how each of the                                 

components can be expanded is explained. 

Both the analyses and post-process components were designed with future extension in mind. Also, both                             

are very similar to each other. The difference between both is that all the analyses must be finished before                                     
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the post-processing can be started and, furthermore, the results of the analyses is used for the                               

post-processes. For the analyses, there are two main components: the AnalysisEngine and the Analysis                           

components. The former can be seen as the master, while the latter can be seen as the slave. The                                     

AnalysisEngine is responsible for initiating all Analysis and making sure they are all executed. Also,                             

whenever an analysis is divided into sub-analyses, the engine makes sure all sub-analyses are temporarily                             

written and eventually are all written together to a final state in the database. An analysis with such a                                     

sub-analyses system is the FP-Growth analysis, where each track section is a sub-analysis. 

For an analysis to be initiated and called, it must follow the contract of an Analysis class. This contract                                     

defines several methods that should be extended with functionality specified for the analysis. Similarly, all                             

post-processes must follow the contract defined in the Analysis class. See the Systems engineering guide                             

Appendix L for more information on the contract methods. Each class in the same module or a module                                   

imported into the analysis_engine module is automatically instantiated and executed. A developer does                         

not have to do more than to focus on the analysis itself. For the post-processes, the same system is                                     

applied. Whenever a developer created a new class that extends the PostProcess class, it is immediately                               

picked up by the PostProcessor, instantiated, and executed. 

Scope 

The degree to which the scope was satisfied will be evaluated here. The scope was translated into a                                   

MoSCoW list during the research phase. Most of the items in the Must, Should and Could section were able                                     

to be implemented. Exceptions on which scope items were changed are formulated in the scope changes                               

(Appendix B). In hindsight, the initial scope was a bit thin with respect to the amount of time its                                     

implementation ended up taking and was, therefore, extended with more features. The size of the scope                               

and the schedule is further discussed under Methodology in the schedule section below. 

SIG feedback 
 

The feedback the system got from SIG regarding code quality was very positive. The code scored 4.2                                 

stars, which means the code is above average maintainable. The tips they gave were to decrease the unit                                   

size, add more tests, and keep up the good work until the end of the project. The full feedback can be read                                           

(in Dutch) in Appendix H: SIG feedback.  

The feedback was addressed by maintaining the code quality at the time by keeping thorough peer                               

reviewing each others code and, as they suggested, the unit size was decreased by splitting methods.                               

Also, more tests were added. By making the unit sizes smaller, testing was made easier. Furthermore, it                                 

makes the code more readable, which is essential when the NS takes over the responsibility of the code.                                   

As mentioned earlier in the challenges, there was no option for a coverage tool within the NS environment.                                   

An exact indication of line or branch coverage is thus unknown. 
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Methodology 

During the project, Scrum was the software development methodology of choice. Two characteristics of                           

Agile Development that were particularly emphasized on were customer collaboration and responding to                         8

change. Customer collaboration was needed in order to make sure the types of analysis that were selected                                 

for implementation were actually useful for the end-users. This relates directly to the design goal of                               

end-user satisfaction. It was also needed to involve the end-users and those who are ultimately going to                                 

maintain the system in the process, making it easier to hand over the system. Responding to change was                                   

needed because the project was developed within an unknown domain which leaves any design or set of                                 

choices prone to known unknowns and unknown unknowns. 

Communication 

During the project, we met at the offices of the NS for, on average, three times each week, this was our                                         

main means of communication between the team members and other parties. Secondary tools of                           

communication were Skype, electronic mails, phone calls, Whatsapp and GitHub. Documents related to the                           

project were stored on a shared drive and backlogs were maintained on Trello. 

Working together at a central location, that is the offices of the NS, has proven to be valuable for                                     

communication. It allowed us to align our ideas and goals for the project better, brought us closer to the                                     

people that were needed to make sense of the unknown domain and it offered the opportunity for                                 

personally interacting with each other, which as a whole makes the project a lot more enjoyable. We                                 

discovered that working at a central location three times a week made us work significantly faster, even to                                   

the point that it makes the approximate 2.5 hours travel time each day easily worth it. It is worth noting that                                         

travel time in the train is not time that is strictly lost, as exchanging ideas or writing some code is still                                         

possible to a certain extent. 

 

Communication with the coach and the client was done in a very similar manner as communication within                                 

the team. The coach, fortunately, spends time at the NS once a week, which made us able to meet him                                       

there for a meeting. Some additional communication regarding scope additions and minor questions were                           

done by email. The client’s representative was often present at the NS, this made it possible to be in direct,                                       

quick contact with her. Same goes for most NS related staff that are mentioned in this report. This made                                     

customer collaboration a lot easier. More formal documents were sent by email. The feedback on those                               

documents was discussed at the office. Small questions or updates about the data were communicated by                               

approaching one another at the office. Small talk and other interesting ideas were shared with during lunch                                 

breaks and lunch walks in Utrecht. 

8 http://agilemanifesto.org/ 

44 



 

 

Division of labor 

Sprints of, usually, one week were used, for which at the start backlog items were formulated. No formal                                   

sprint-reviews were had, due to being in close contact with each other. When formulating the backlog                               

items and adding them to Trello, the scope and initial planning, as formulated in the research report, were                                   

frequently taken into consideration. This made for a better sense of control of the scope and schedule.                                 

Within the backlog items of each sprint, tickets were labeled with a priority and basic dependencies of                                 

tickets were taken into account, such that they would unlikely block each other. When formulating the                               

tickets we tried to subdivide the tasks for a week into corresponding sub-tickets, such that the features that                                   

have to be implemented would be sufficiently specific. 

 

After creating the high-level design of the system the responsibility for some key components was                             

assigned to each team member. This was based on which member favored what components. These                             

responsibilities were most significant during the first sprint, however, they defined the general area of                             

expertise each member would come to develop. These areas of expertise had some overlap, such that pair                                 

programming could be applied when needed. What these areas of expertise were, is shown in the key                                 

contributions in Appendix I: Info sheet. The contributions of each team member to each component can be                                 

found in Appendix K: Individual contributions.  

 

In distributing the labor for each sprint, we mostly guessed the amount of work that was needed for a ticket                                       

and assigned members with the required knowledge to these tickets, such that everybody would have an                               

equal amount of work. When tickets took longer than expected they were either postponed or the help of                                   

another team member was asked. Everybody put in a significant amount of effort and worked equal                               

amounts as a team. 

Regarding work-effectivity; in the NS environment, there was no option for Git integration. Therefore, files                             

had to be uploaded manually to GitHub. This way of working was not ideal, as it put a lot of additional work                                           

and effort into the project. However, it was the only way of having version control in the environment of the                                       

NS. There are plans for the NS to convert the environment, where the new environment does allow Git                                   

integration. This was, however, too late for this project. 

 

This approach of distributing knowledge and labor worked well and would not be subject to change had                                 

the exact same project to be done again. The key elements for the success of this approach were the                                     

partially overlapping areas of expertise and the usage of a Scrum board on Trello with sufficiently specific                                 

tickets. Git integration is a factor that could be improved upon, which would have a significant impact. 

Schedule 

In about week 6 of the project, most requirements were implemented or, less often, discarded. These                               

requirements include the MoSCoW list and initial scope, as described in Appendix M. With three weeks                               

remaining the decision was made to formulate new elements to add to our scope, these are described in                                   

Appendix B. The initial planning had some room reserved to explore these additions because the project                               
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functioned in an unknown domain. The general schedule of the project was thus well planned and                               

maintained. Reaching intermediate deadlines for deliverables was always possible without the loss of hair.   

 

The Scrum methodology, with the two aforementioned characteristics emphasized, was fit for the purpose                           

of this project. It directly corresponded with a suitable approach for dealing with an unknown domain while                                 

having a focus on end-user satisfaction. Communication, division of labor, and maintaining the schedule                           

were three aspects that went well within the unique setting of the project. As such, the Scrum methodology                                   

fit the project well and its implementation and execution also went particularly well. 

Ethical Evaluation 

The system will have a real-world application and relevance, as such the ethical ramifications should be                               

considered. To estimate whether it would be the right thing to, the degree of achievement of the goals of                                     

the NS has to be compared to the potential disadvantages such a system brings. The goal of the                                   

maintenance and development department of the NS is to achieve higher punctuality and reliability while                             

balancing the costs. These are not considered unethical by themselves, as they are in the interest of the                                   

public good by being traveler oriented or by trying to reduce the government spending needed for the NS.                                   

The ethical considerations below primarily consider epistemic topics, confirmation bias and obscuring the                         

source, and a social-economic topic, which is elaborated upon in the section job replacement. 

Confirmation Bias 

When the end-users, or any group of users, use the system they may try to validate their suspicions by                                     

means of the data the system provides. This resembles behavior related to confirmation bias, which is                               

described as ‘the tendency to search for, interpret, favor, and recall information in a way that confirms one's                                   

preexisting beliefs or hypotheses’ (Plous, 1993). The system may well be used in a similar fashion; in order                                   

to validate the suspicions they previously had, rather than exploring the provided data in order to attain                                 

new insights. In fact, during some of the demo’s they gave trends credit because they recognized it from                                   

their suspicion, rather than recognizing the trend from the data. However, they also gave trends credit                               

because the data lead them to believe so. 

If confirmation bias turns out to be a significant effect for this system, it may very well be detrimental for the                                         

NS. For example, if users only address the trends they previously believed in, this may lead to some                                   

regions in the Netherlands being under-maintained. Similarly, users may also be more inclined to look for                               

trends in the areas that areas that are relevant for them, as they travel through these areas, this may also                                       

lead to under-maintained regions. This is typical evidence of our judgments being affected by self-interest                             

(Sezer, Gino & Bazerman, 2015). These under-maintained regions can be subject to more train delays,                             

which would have a negative effect on the general quality of living. 

 

A way to mitigate this effect would be to gain the users’ trust with respect to the indicated trends that do                                         

not yet have extra support because the users know them beforehand. This means that the indicate trends                                 
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really do have to have a ground in reality. As to ‘the user only looking for trends that are relevant to them’;                                           

all regions are relevant to them, as it is directly related to how well they perform their job. 

Job replacement 

If the system performs well, it will be easier to find problems and it will be faster to fix them. As an example:                                             

currently, whenever there is a problem, someone has to analyze the problem and conclude what the                               

possible impact of the supposed problem can be. This has to be done without clearly presented data that                                   

can help in concluding the possible severity. If the program is able to help the end-user to pinpoint                                   

problems with more precision than before, it is possible that the investigation process beforehand is                             

shortened. This would mean that there are fewer man-hours needed for tracking problems and, therefore,                             

fewer jobs might be needed. This could lead to possibly fewer jobs being available for the, mostly, lower                                   

educated workers. 

 

How technology may influence future employment has been researched by Frey C. B. and Osborne M. A                                 

(Frey, C. B., & Osborne, M. A., 2017). They describe a similar phenomenon as discussed in the alinea above.                                     

In the conclusions they imply that “as technology races ahead, low-skill workers will reallocate to tasks that                                 

are non-susceptible to computerisation – i.e., tasks requiring creative and social intelligence”. Such a shift                             

occur within the NS, because of this system and systems alike. 

Obscuring the source 

While the new system could bring great potential for solving problems faster, it also poses a new problem.                                   

Whenever some error pattern is recognized as a potential problem, in many cases someone on the field                                 

should go to the location to fix the problem. It could be the case that the engineer could not find any                                         

problems, irrelevant if there was a problem or not. In such a case, it is simpler for the people involved to                                         

blame the system, due to the automation of the system. This fits with the view of Ramaswamy & Joshi                                     

(2009), as “automation simplifies unethical behavior by obscuring its source, e.g. people blaming                         

automation for mistakes, delays, inefficiency, and other weaknesses (It’s not me; it’s the dumb computer).”  

 

Also, if the person was sent, this person is likely from ProRail or any other third party organization. If the                                       

program was, in fact, wrong, then the question is also raised of who is liable and accountable for the                                     

damage caused. The program and findings were issued by the NS. However, there were no problems                               

found. It would then be the question if the program was wrong or the engineer at the specific location. NS                                       

could insist that their system was not wrong, while ProRail could insist that there was no problem and they                                     

were thus falsely sent to the location. Would it come to a judicial issue for the accountability, then the focus                                       

should be on civil law, “whereas, in criminal law, the accountability for bad AI behavior is typically imposed                                   

on individuals who voluntarily commit a wrong prohibited by law, in the field of civil law we should further                                     

distinguish between contracts and torts.” (Pagallo, 2017). For such cases, it will be hard to find a judicial                                   

outcome, as it is still unknown if there was actually no problem or if the problem was simply missed.                                     

Presumably, there are already contracts made concerning similar issues. However, these scenarios are not                           

totally preventable and should, therefore, not be ignored. Hence, the users should also keep in mind that                                 

falsely identifying could bring unethical consequences. 
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From the confirmation bias, we found that there is a possibility of unethical acting, whenever a problem is                                   

ignored on specific locations in the Netherlands, possibly without the user being aware of it. In the                                 

obscurity of the source, it was found that through falsely identifying problems, also unethical issues could                               

be imposed. This creates a scenario, where the user could end up in a decision between three options:                                   

ignore the pattern, falsely identify the pattern as a problem, or truthfully identify the pattern as a problem.                                   

However, ignoring a pattern is not unethical by definition; it is unethical if certain regions would                               

(unknowingly and) repeatedly be ignored. Both ignoring patterns and falsely identifying patterns as                         

problems are unethical, whenever the program was wrong or the user. If the program is right in the first                                     

place this should already be prevented. If patterns are rightfully identified, then the decision might even                               

have an ethical consequence. Solving infrastructural problems could lead to fewer delays, which could on                             

its turn improve the living conditions of the passengers. Hence, the user should not be scared to use the                                     

program unethically and should rather try to cohere ethics with the standard workflow. 

Handing over the system 

As the system that was made is an entirely new system and two of the design goals were manageability                                     

and scalability, it is important to hand over the system to existing engineer within the NS environment. This                                   

way the framework the system offers can be used optimally and be extended upon. I. Kalsbeek and N.                                   

Oosterhof, from the maintenance and development department, who will take over the system, were                           

informed. They were both well introduced to the system, by means of extensive documentation, personal                             

meetings, and keeping them informed throughout the project. The documentation includes                     

well-commented code and the RTMA - Systems engineering guide. I. Kalsbeek, being the coach, was                             

naturally well informed throughout the project. We met with Nick as well on several occasions. The                               

end-users, T. van Haperen and M. Schulte, were also informed about who will be continuing development                               

at the end of this part of the project. 

After the two engineers have decided the code is fit for real use, they will hand it over to the DNA                                         

department within the NS, which is specialized in data analytics. This department will further maintain and                               

extend the code. They will eventually be responsible for the system to be updated and maintained. 

Future approach 

During the project, some decisions were made that could have been done differently or features that could                                 

have been improved on. Some of these will be outlined below, whereas these future suggestions are                               

feedback on the process and can be used for new projects in the future. 

One of the smaller problems we encountered was about the naming of columns in databases. Some of the                                   

database tables generated using the analysis system are not always consistent in the naming of columns.                               

These columns could have been named differently if these names were agreed upon on beforehand. At                               

the start, it was agreed upon, which information was required for the UI to be loaded but it was not aligned                                         
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which names the columns should get. The different names did not arise problems, as aliases can be used                                   

for different namings. However, it would have made life easier. 

Also, during the project, different tools were needed for which sometimes permissions were required                           

within the NS environment. An example is the coverage.py module, used for coverage testing within                             

Python. This module was not available within the permissions that were granted to our accounts. After                               

some effort to gain these permissions, eventually, no definite answer was given. In future projects, it would,                                 

therefore, be a lesson to start earlier with gathering the tools that are required. During this project, the                                   

coverage.py tool could only be executed on our own machines, outside the NS environment. 

Furthermore, regarding the division of components in the system, some modules might still have been                             

moved. The analyses components are now still in the main folder, while they should have been moved to a                                     

new package for analyses. Due to time constraints, moving these modules was postponed and eventually                             

never done. It could, therefore, still be a recommendation to move the modules regarding analyses to a                                 

new package. 

Reflection 

The BEP project is an interesting and informative process. Different to previous projects, this project gives                               

full responsibility to the students. The usage of version control systems (like Git) were not checked, which                                 

gave freedom on one hand but the urge to check yourself on the other hand. The project also allows                                     

students to learn from the experience of bigger companies, which is something that should be learned                               

from practice.  

Regarding SIG, the feedback was sufficient. However, it would have been better if the code integration tool                                 

BetterCodeHub could also have been used for this project. During this project, a new language had to be                                   

learned. Therefore, to know the guidelines of SIG, the tool BetterCodeHub would have helped us to follow                                 

their quality guidelines. In this case, the guidelines for Java were used, whereas it seemed that the                                 

guidelines for Python were (almost) similar. 

All in all, we do believe we made the right product for the NS and for the TU Delft. It was a challenging                                             

project and we have seen results from the system, that seemed to be valid location-specific problems.                               

Especially due to its accuracy, it was even possible to pinpoint problems to their location within meters.                                 

This accuracy will help save time for repairs and in that way save on costs. 

Conclusion 

The system that was designed is the first manageable, scalable, and high-performance system for running                             

varying types of analyses, data filters, and post processors with a running database connection, which is                               

open for end-user interaction and customization. The choice to implement such a system appears to                             

promise potential for the NS to extend the system in a more complete tool, which can be used by the                                       
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varying groups of end-users as a centralized location of knowledge. 

 

The requirements, that were to fulfill the design and promise of the system, were generally well                               

implemented. Even some extra features were added to the scope. The quality of the code that was                                 

delivered scored very well, also in terms of maintainability, which is relevant to a system that should be                                   

able to be maintained well.  

The Scrum methodology was used throughout the project, which influenced the process and project                           

success. Communication between team members and the client was strong, which enabled better                         

alignment of thoughts through the development of the system. The division of labor and schedule of the                                 

project was managed well. The team as a whole put in significant effort in bringing the software                                 

development cycle successfully to a close. The quality of the process of this project was experienced as a                                   

highlight by the team. 

 

With the newly implemented system, it is important that the user uses the program with care. From the                                   

ethical evaluation, it was found that ignoring patterns (unintentionally) in the same region could lead to                               

underrepresented areas in the Netherlands. Furthermore, jobs might be replaced with the program, if the                             

search process for problems is reduced compared to current track investigations. At last, faulty decisions                             

should not be obscured by the source; the user might make a wrong decision and blame the program. 

At the moment the system is not suited to be used by the end-users directly, because the system should                                     

be integrated into one application with UI and analyses in the same environment. With the current NS                                 

environment, this was not possible. This problem will be solved in the future, when the environment of the                                   

NS has changed and this system is taken over by the NS. 

From the outcomes of the system and the reactions of experts on the presumably location-specific                             

problems, it can be concluded that the system is able to find location-specific problems. These problems                               

are based on patterns found using statistics and patterns of code combinations found using an FP-Growth                               

algorithm. 

The system that was built is the first manageable, scalable, and high-performance system which will be the                                 

stepping stone towards a more effective analytics environment. This analytics environment will in turn help                             

the NS improve its reliability and punctuality, thus successfully addressing the original problem. 

Recommendations 

Each project has goals that should be reached, while there are also ideas and suggestions that could be                                   

met in the future after the project has finished. The future ideas and suggestions, for this project, are                                   

outlined in this section. Most of these ideas were not implemented, as there were other features with a                                   

higher priority. In this section are only feature suggestions that could be of direct importance for the NS or                                     

this project. In Appendix B, more feature suggestions are given, which are more for brainstorming                             

purposes. 
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General direction 

In broad terms, three things need to happen in order to make the system directly usable by the end-users.                                     

For one, the data currently used in the analysis is not perfect. When the integrity and the amount of                                     

available data are improved, end-users will be able to discover more meaningful patterns. Secondly,                           

support for multiple train types ought to be added. Currently, only the VIRM series is supported, which                                 

limits the completeness of the overview the system is supposed to provide to the end-users. Finally, the                                 

system as it is should be more integrable with the current tools the end-users use, which it is currently not.                                       

No concrete recommendation is written for this, as the specific knowledge needed, for integrating the                             

analytics system with the other tools the end-users use, is not present within the project team. Nor should                                   

this knowledge be present. The final point can be addressed throughout the process, as sketched out in                                 

the 'Handing over the product' section. 

Uniqueness analysis_id 

Every distinct run in the system gets a new analysis_id. The problem with the current assignment of this                                   

analysis_id is that it is not always guaranteed to be unique. At the end of the project, it was found that                                         

there is a time-interval of around six seconds in which the uniqueness of an analysis_id cannot be                                 

guaranteed. This should be prevented, as these runs would corrupt each other. Afterward, we should have                               

made this analysis_id user dependent (e.g. analysis_id “user-1” instead of “1”). Another option could have                             

been to make the database table, in which the different runs are stored and checked for their uniqueness,                                   

transactional to ensure each transaction to be unique. 

Email reporting 

In the current system, there is a small class that was added with the intention to add an emailing system to                                         

the application. This system could possibly be used to notify the user of their analysis being finished. This                                   

could become handy whenever a bigger analysis was started which could run for more than an hour. Also,                                   

the emailing system could be used to summarize the findings of the program, which could make it easier to                                     

share results with colleagues. 

The class that was introduced for this mailing system is currently only the framework for it. It does not have                                       

any mail protocols built-in. Moreover, to enable messaging over the servers of the NS environment,                             

permissions must be granted to the application. 

Availability of Data 

Currently, the application bases its assumptions for patterns merely on errors sent by trains. In the future, it                                   

might be desirable to also include sensor data with the error, to learn more about conditions of sensors in                                     

combination with the errors and locations. It could be the case, where certain sensors seem to be more                                   

sensitive on specific track sections but also the influence of the weather on the sensors could be                                 

integrated with the analyses. This could enable the application to provide assumptions dependent on the                             

weather. An example could be: “on sunny days, track section X has more problems with sensor Y, which                                   
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leads to error code Z”.  

Also, a correction with the weather could be applied, whereas some sensors might be overreacting when,                               

for example, the temperature outside is higher than a certain threshold. These measurements by the                             

seconds could then be corrected with the temperature of the specific timestamp. 

Database problems 

Many database tables seem to be incomplete or corrupted to some extent. The table containing diagnose                               

data, for example, has duplicate records. However, this is not the main problem; there are records with an                                   

equal record_id (the identifier) but an unequal row. This means that there are two, probably, distinct                               

records with the same record_id. Another possibility could be that two of the same records somehow got                                 

different values due to, for example, lost details during the transaction. 

Some of the database tables were introduced with all columns with the same type. Each of the columns in                                     

these tables is a String type. The problem with this solution is that any analysis done on these databases                                     

have to either introduce some computation overhead to convert the data types, or the tables are copied                                 

and converted to their respective types. Both solutions have a major drawback, the former introduces extra                               

computational cost, while the latter introduces memory waste. If the database tables would have been                             

converted from the start, there would only have been a single computational overhead for the initial                               

conversion and no further computational costs for any analysis done afterward. 

Many tables in the databases are not partitioned. This means that there are possibilities for improvement in                                 

speed and efficiency of use in resources. For example, the table used in our application                             

default.trends_diagnose_enriched could possibly be partitioned on columns track_sections or date_time                   

(best performances are expected for the column track_sections for our application). Also, the tables                           

generated by our application are currently not partitioned and may be partitioned on the analysis_id, which                               

is the unique identifier for different runs with the application. Better partitioning could help the application                               

run significantly faster. 

 

Finally, the join needed to reduce the loading times within Power BI, as described in the section 'Database                                   

Analyses Normalization', should be moved to a PySpark operation as a part of the standard analyses flow. 

Multiple train types 

Currently, the system is only designed for the VIRM train type but should still be easy to extend to different                                       

train types. Different trains also have different behavior, so if the system should run with more trains, it                                   

might be desirable to have a post-process that focuses on finding, for example, statistics about the                               

presence of train types within error patterns. For example, it could be that a certain pattern is mostly                                   

concerning the SLT train type, while the VIRM is not affected by it. 

Whenever the system is expanded with more train types, the programmer should also be careful with the                                 

meaning of error codes. It could be the case that a certain train type gives the same error but for different                                         

sensor thresholds. While the ERTMS (the European Rail Traffic Management System) is also not fully                             
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implemented in all trains, there might even be a possibility for trains to give a similar error code with a                                       

different definition. 

Analyze specified intervals in consecutive years 

It would be useful to be able to analyze specified intervals in consecutive years. Seasonal error patterns                                 

can get clear that way. It can be for example that the infrastructure at some places causes more errors in                                       

the winter when it is cold or more errors in the fall when leaves start covering the tracks. With this                                       

knowledge, you can track down the location where these season errors happen and try to prevent them                                 

next season.  
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Appendices 
Appendix A: Glossary 

Diagnostic error code: A diagnostic error code is a code, e.g. ATB105, that is thrown when sensors detect                                   

deviant behavior in the train system(s) they belong to. 

Maintenance facility: A kind of maintenance location for trains, where trains go for longer types of                               

maintenance. There are four maintenance locations in the Netherlands. 

OCCR: Operationeel Controle Centrum Rail (English: Operational Control Centrum Rail) is a control                         

centrum, functioning at an operational level, for preventing problems and addressing them if they occur. 

RTM: Acronym for 'Real Time Monitoring', trains with RTM have a live connection to the database and thus                                   

provide the most up-to-date data. 

RTMA: Real-time management analytics system for the application of data analytics in the NS. 

RTMO: Real-time management operation system used by the OCCR. 

Service station: A kind of maintenance location for trains, where trains go for shorter, often less severe,                                 

types of maintenance. These locations are common. 

Timetable point (Dutch: dienstregelpunt): A timetable point is a primary area that forms a continuous                             

limited part of the railway network. The timetable point fulfills the function of setting up and recording the                                   

timetable. Examples of timetable points are stations and bridges. 

Track section (Dutch: baanvak): The area between two timetable points on a railroad track. Different track                               

sections may have different lengths. 

VIRM: Acronym for 'Verlengd InterRegio Materieel', a train series that is relatively new which supports an                               

RTM connection.   
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Appendix B: Scope change 

In about week 6 of the project most of the elements described in the MoSCoW method and scope were                                     

implemented or, less often, discarded. With three weeks remaining the decision was made to formulate                             

new elements to add to our scope. The scope additions were chosen such that they show the adaptability                                   

of the system and allow easier validation of indicated trends by means of indicating the delay in a given                                     

trend. The latter was chosen as a complementary feature to the currently existing types of analysis; seeing                                 

whether the facts that are pointed out are significant is important, in terms of the proof of concept and the                                       

quick insight into data aspect. Adaptability would be shown by showing the ease with which new features                                 

can be added and the ease with which different sources of data can be integrated. 

Scope Additions 

Implemented 

These scope additions are actually implemented. 

 
Display delay next to the trends 

The delay paired with a trend is one measure of the severity of a trend. The delay meant here is the                                         

amount of time (minutes) a train arrived later at a given location. The end-users can use this in order to                                       

validate the severity of trends better. This addition was chosen, because, as explained above, it helps                               

validating the trends found by the implemented analyses. 

Remove trends 

The trends which are indicated as significant by the system should be able to be removed from the                                   

analysis by the user. Trends may be insignificant, because the trends have either been addressed or                               

because they are not of any significance in terms of travel-delay or other measures of significance. This                                 

feature should help the users stay focused on the information that is significant. 

Post processing by Collaborative Filtering 

The Collaborative Filtering algorithm is used for finding similarities between the trends found on track                             

sections and the algorithm tries to guess for some trends what their frequency might become in the future                                   

for a track section. 

Not implemented 

Given we could spend a limited amount of time on this project and it created an entirely new system, there                                       

were a number of ideas that were thought of but were never implemented. These ideas will be described                                   

here, such that they can be picked up and implemented later. 
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Interface for adding any type of time-series data 

Since the diagnostic error codes indicating deviant behavior are thrown over time they inherently have a                               

time component to them, as such these diagnostic codes can be enriched with any other time-series data.                                 

For example, the thrown codes can be enriched with the weather data. This could allow the user to see                                     

whether certain codes are thrown more often during colder weather. Traveler satisfaction per day is                             

another example.  

Highlights for track sections 

In order to gain easier insight as to what stands out for a certain track section, significant observations can                                     

be added to track sections as a kind of highlight. Such a highlight may be that the track-section                                   

participated in a strong FP-Growth pattern or that the weather was often below freezing point when a                                 

certain diagnostic code was thrown. 

Currently, the post-processor of the system summarizes the results of all analyses. In this post-processor,                             

the highlights may be determined by looking over the meta-characteristics. This looking over the                           

meta-characteristic could be done by specifying a new type of post-processor. 

 

N-gram analysis 

A type of analysis that could be added to the analyses would be the N-Gram analysis. This type of analysis                                       

would allow the users to gain insight into contiguous patterns that occur. For example, if ATB105-REM012                               

often occur after each other, then this pattern would be picked up by this type of analysis.  

 

Regarding implementation, this could be another analysis class which is another child of the Analysis class.                               

For tokenizing the sequences of diagnostic error codes into n-gram tuples PySpark’s tokenizer can be                             

used. PySpark provides an out-of-the-box n-gram tokenizer in the standard MLib library . After the                           9

sequences have been tokenized per track section, one could check, with a frequency algorithm of                             

preference, which n-gram tokens frequently occur for a track-section. After writing a selection of n-gram                             

tokens to the database this analysis can be added to Power BI interface, which would provide additional                                 

insight for the end-users. Considering the possible memory constraints, it is recommended to tokenize the                             

sequences of diagnostic error codes per track section and storing the result after every track section,                               

similar to the FP-Growth algorithm. 

Neural networks 

A deep neural network could be used on top of certain analysis types to learn correlations between error                                   

codes and deviant behavior. Deviant behavior surrounding trains could, for example, be traveler complaints                           

or the number of minutes a train is delayed. These correlations between error codes and deviant behavior                                 

can be used to indicate the relevance of patterns with respect to a measure of deviant behavior. For                                   

example, using the 2-gram model, if during train rides the tuple ATB105-REM012 have a high correlation                               

9 https://spark.apache.org/docs/2.2.0/ml-features.html#n-gram 
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with the number of minutes a train is delayed, then the neural network may indicate this. As such, patterns                                     

could have a certain degree of autonomous validation with respect to the relevance of an indicated                               

pattern.  

A specific use-case for such a neural network could be to provide a multi-layer perceptron (MLP) with                                 

enriched n-gram tuples, in order to predict how relevant the tuple and its features were for different                                 

measures of deviant behavior. Figure 8 below visualizes what the design of such a network may look like.                                   

For the input n-gram tuples enriched with the activation time and severity class feature are used. These                                 

features are currently present in the diagnose table. This may look like: [(ATB105, B, 2018-05-03 18:30:15),                               

(TRP098, B, 2018-05-03 18:32:15), (REM098, B, 2018-05-03 18:32:25) ], i.e. a list of tuples with (diagnostic                               

report code, severity, activation time). Any amount of features could be chosen to enrich the tuples. For the                                   

output various measures of deviant behavior can be used as the predicting target. For example, with the                                 

target being the number of minutes of delay that was caused on a track section the neural network would                                     

learn to associate the input tuples with the delay that occurred.  

 

Additionally, on top of these measures another classifier could be trained in order to indicate a (meta)                                 

measure of the significance of a pattern, which could be presented to the end-user. This classifier would                                 

have to be trained by end-users, as they can determine whether certain measures of deviant behavior are                                 

significant or not when combined. This would mean the classifier is not autonomously trained. Regarding a                               

possible implementation, Pyspark provides various classification and regression utilities which can be                       10

used in order to create the neural network. 

10 https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#classification 
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Figure 8: Neural network architecture 

 

Errors in specified intervals for consecutive years 

Trends may be specific for a certain moment of the year, consecutive winters or holidays may deliver                                 

interesting results when compared. It is known that the weather could have influence on the performances                               

of trains. During hot days, different errors might be sent than snowy or rainy days. Being able to verify and                                       

identify these problems is wanted, as it may be possible to identify the problems and take precautionary                                 

actions. 

 

Discarded/Changed from Scope 

The user shall be able to receive an automatically scheduled analysis report of a user-specified time                               

interval. 

Changed: Users can schedule analyses, but they will not receive reports based on it. The reports have                                 

been omitted, as they do not add enough value to the product. Especially considering similar reports can                                 

be obtained by opening the scheduled analysis in Power BI.  

59 

https://www.draw.io/?scale=2#G1niS67lxTVZKbximDbNjC4HYsY7N4cXsp


 

 

Receive an automatically scheduled analysis report of the last 24 hours that will be generated daily 

Similar motivation as the item above. 

Export to CSV 

Power BI supports this feature. 

Display an error indicating no trends were found: 

Displaying errors indicating whether no trends were found, no connection with the database was possible                             

or the features in the data are changed were partially done by Power BI and when it is not it would not be                                             

of any use to display to the user. 
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Appendix C: Original project description 

This is a copy of the original project description as provided by the client through BepSys.  

Problem definition 

One of the important factors for customers satisfaction of the Dutch Railways (NS) is the reliability and                                 

punctuality of trains. Malfunctioning of the train affects train punctuality and can be due to failure of the                                   

train itself or due to infrastructure that affects train hardware. For instance, a tilted track can lead to                                   

non-closing doors at the station under some conditions, which means that the train cannot depart. Another                               

example is a disrupted ATB signal, which leads to immediate braking of the train. NS intensively uses the                                   

tracks, some trains travel around 1500 km a day, in total NS has approximately 650 trains (around 3000                                   

coaches). Therefore, NS is often first to notice anomalies or inconsistencies in the tracks. 

For NS it is very important to have insights in these kind of location-specific incidents. When something is                                   

detected, actions can be taken to prevent future incidents. This will improve train punctuality, but also will                                 

reduce unnecessary work for mechanics, since some faults are actually location specific instead of train                             

specific; if a mechanic is unaware of this interaction with the infrastructure, fault finding in the maintenance                                 

shop may be impossible. 

What we have - Current situation 

Nowadays, location-specific incidents are only noticed by aware employees, who are noticing reoccurring                         

events. However, data of hardware incidents together with their location and time is continuously available                             

in a database. This data can be used to support assumptions and to pinpoint incidents in real time. Also,                                     

incident calls by train drivers together with the measured delays and their time and location are available.                                 

However, since trains generate a lot of data, smart visualisation and analyses are necessary to notice these                                 

kinds of anomalies. 

What we need - The project 

Concrete challenges for the software product: 

● Dashboard: Visualize collected data to detect (new) patterns, e.g. based on train type or time                             

window 

● Automatic detection of “patterns”, including a warning system 

● Adjust patterns or add new patterns to the automatic detection system 

● Real-time connection with database 

● Monitor the monitor: warning system if data collection fails 

The dashboard should support the following types of users: 

● the reliability engineers who need to take action on incidents 24 hours/day 
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● analysts who aim to identify root causes of incidents and support the reliability engineers 

What we offer 

● Freedom and responsibility from day one 

● A monthly internship compensation of approximately 500,- per person (25,- per working day) 

● Our Utrecht office, for approximately 3 days a week, which is inside Utrecht Central station 

Other relevant information 

● Some group members should speak Dutch 

● TU Coach: Mathijs de Weerdt 

● Client: Inge Kalsbeek 

Nederlandse Spoorwegen (NS) 

Every day, NS transports more than 1.1 million train passengers. We are their connection between home                               

and work, between family and friends and all of the other people in their lives. The train is still the only                                         

mode of transport that can take passengers to the heart of the city centre unhindered, in a sustainable and                                     

safe manner. The train has been a unique way to get from place to place for more than 175 years, and that                                           

is a source of pride for more than 30,000 NS employees. On average, NS has performed much better over                                     

the past few years, but not on every route and not for every passenger. So to us, 'average' is not good                                         

enough. Our ambition for the next few years is to turn our best performance from the recent past into the                                       

new standard. In order to achieve that goal, we must improve our performance on the main rail network,                                   

including HSL and the international train service that runs on that network.  
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Appendix D: UML Class diagram 

Below the UML is given as separate components in the complete framework. For a full UML diagram, see                                   

the external file UML.html. 

 

Figure 9: UML class diagram of the EventHandler and Writers 
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Figure 10: UML class diagram of the Analyses 
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Figure 11: UML class diagram of the Post Processor 
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Figure 12: UML class diagram of the Filters 
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Appendix E: Jupyter UI application flow diagram 

 

Figure 13: Application flow upon launching the Jupyter UI. 
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Figure 14: Front-end application flow and user-interaction 
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Figure 15: Back-end application flow 
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Appendix F: Jupyter user interface 

 
Figure 16: Jupyter UI starting screen. 
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Figure 17: Jupyter UI ‘Created jobs’ tab. 

 

Figure 18: Jupyter UI ‘Remove trends’ tab. 
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Appendix G: Power BI user interface 

 

 

Figure 19: Top-level Counting Analysis visualization 
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Figure 20: Detailed Track Section point of view  

 

Figure 21: Detailed Error Code point of view  
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Figure 22: Top-level FP-Growth Analysis visualization 

 

Figure 23: Detailed Code Combinations point of view 
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Figure 24: Database tables and relationships in Power BI. 
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Appendix H: SIG Feedback 

[First feedback, 12-06-2018] 

“De code van het systeem scoort 4.2 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code                               

bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door een lagere score voor Unit                             

Size. 

Op dit moment is de score dusdanig hoog dat we geen concrete aanbevelingen voor verdere verbetering                               

hebben, hulde! Wel is het zaak om ervoor te zorgen dat jullie dit niveau tijdens het vervolg van het project                                       

vast weten te houden, en al helemaal op het moment dat de deadline in zicht komt. 

De aanwezigheid van testcode is in ieder geval veelbelovend. De hoeveelheid tests blijft nog wel wat                               

achter bij de hoeveelheid productiecode, hopelijk lukt het nog om dat tijdens het vervolg van het project te                                   

laten stijgen. 

Over het algemeen scoort de code dus bovengemiddeld, hopelijk lukt het om dit niveau te behouden                               

tijdens de rest van de ontwikkelfase.”   
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Appendix I: Info sheet 

 

Info Sheet - Analyzing location-specific patterns in train data 
Client organisation: Nederlandse Spoorwegen (NS) Final presentation: 03-07-2018 (16:30 - 17:30) 

 

Description 
The main challenge of this project was to give insight into location-specific problems of trains.                             
Location-specific problems are problems that are not caused by the train, but by the infrastructure or                               
human fault at that specific location. When such insight is provided, the NS is able to tackle the problems                                     
and thereby improving punctuality and reliability of their trains. During the research phase, we learned                             
which frameworks, programs, and algorithms could assist us in finding location-specific error code patterns.                           
The used techniques were PySpark, Power BI, Jupyter and FP-Growth Frequent Pattern Mining, which can                             
all be used within the existing big data environment of the NS.   

This insight is given by creating an application which analyses error code messages from trains and tries to                                   
find patterns in the error codes on specific locations. With the system, the NS is able to verify and create                                       
new hypotheses on possible problematic locations. Challenges that come with this are the unknown                           
domain of trains, the lacking of validation data, using the existing software environment of the NS, and                                 
dealing with large amounts of data. The output of analyses is verified by close collaboration with field                                 
experts.  

The Scrum methodology was used throughout the project. Communication between team members and                         
the client was strong, which enabled better alignment of thoughts through the development of the system.                               
The system has been handed over to the client and will be further developed and put into use. Given                                     
recommendations, such as implementing multiple train types and partitioning the results in the database,                           
will be evaluated and implemented if seen necessary by the client.  

Members of the project team 
Henk Grent - Key contributions:  

- Implementation of the Blacklist filter. 
- Front-end and middle layer for interacting with the back-end, creating analysis jobs and storing 

settings. 
- Designing database structure suitable for analysis specific querying and Power BI visualization.  

Mark Haakman - Key contributions:  
- Preprocessing input data by gathering data from different sources and removing irrelevant records. 
- Creating database structure to store large amounts of data in an efficient and understandable way. 
- The simple but powerful analysis which counts error codes per location and their paired delay. 

Frenk van Mil - Key contributions:  
- Post-processing of analyses results with a prediction model using Collaborative Filtering. 
- Implementation of the FP-Growth Frequent Pattern Mining algorithm on the data. 
- The core implementation of the analysis and filter engines. 

Sander Waij - Key contributions:  
- Implementation of the FP-Growth Frequent Pattern Mining algorithm on the data. 
- Handle the reads and writes to the database in a coherent manner. 
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- Optimizing memory usage throughout the project. 
 
Client: I. Kalsbeek, Maintenance Development Engineer, Nederlandse Spoorwegen 
Coach: M. de Weerdt, Algorithmics Group, EEMCS, TU Delft 
Contact Person: F. van Mil, superdeboeren@hotmail.com 
 

The final report for this project can be found at: http://repository.tudelft.nl 
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Appendix J: Executive summary 

 

Analyzing location-specific patterns in train data 
Executive Summary 

 

A system was created for giving insight into location-specific error patterns in train data. Location-specific                             

problems are problems that are not caused by the train, but by the infrastructure or human fault at that                                     

specific location. This is an entirely new system within the analytics environment of the NS using big-data                                 

analysis in order to find location-specific patterns. It also is the first system within the analytics environment                                 

that attempts to make a more centralized environment for long-term, user-friendly data analysis. 

 

The system is designed to be a manageable, scalable and high-performance system for running varying                             

types of analyses, data filters, and post processors with a running database connection, which is open for                                 

end-user interaction and customization. The design of the system ought to make it easier to implement                               

new types of analyses, filters, and post-processors and make it easier to visualize the results of the                                 

analyses. It also provides an attractive user interface (UI), which allows the user to run analyses, customize                                 

analysis settings/parameters and a separate UI for data visualization (Power BI). The system comes with                             

some implemented analyses, filters, and post-processors.  

 

Objective 

The objective is to create an application that can be integrated within the current software environment of                                 

the NS, in order to gain insight into location-specific error code trends to prevent future breakdowns and                                 

faults. The target demographic consists of two end-users: the Reliability Engineer and the Fleet Analyst. 

Relevance and added value 

A long-term goal for the maintenance and development department of the NS is to use data generated by                                   

trains to improve punctuality and reliability of the trains while balancing the costs of train maintenance.                               

Punctuality and reliability will lead to better customer satisfaction, which includes the ordinary traveler.                           

Being able to detect location-specific observations helps with addressing infrastructure issues, which will                         

both prevent future breakdowns/delays and reduce costs due to unnecessarily sending trains through                         

maintenance to fix problems that were not related to the train. Other applications, such as getting an                                 

insight of which mistakes are often made for a certain location by human follow and add value in a similar                                       

manner. 

Technologies 

For big data processing Hive and Pyspark were run on the NS’ cluster. Data was also stored in the HIVE 

environment. For the system engineering part, Python was used to implement the designed architecture. 

The visualization was done using Power BI desktop. 

 

 

79 



 

 

Follow up 

Considerable time was taken to hand over the system to two employees of the maintenance and 

development department, they will decide what to do with the system based on the in the final report 

mentioned recommendations. Ultimately they will hand it over to the DNA production environment. 

Extensive documentation for a system-engineer and end-users has been added. The DNA will further 

extend the program and make it into one integrated system. 

Executed by:  

Henk Grent, TU Delft, h.a.grent@student.tudelft.nl  

Mark Haakman, TU Delft, m.p.a.haakman@student.tudelft.nl  

Frenk van Mil, TU Delft, f.c.j.vanmil@student.tudelft.nl  

Sander Waij, TU Delft, s.waij@student.tudelft.nl   

Client: 

Inge Kalsbeek, NS Maintenance Development, inge.kalsbeek@ns.nl 

Coach: Mathijs de Weerdt, TU-Delft, M.M.deWeerdt@tudelft.nl 
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Appendix K: Individual contributions 
Table 10: Significant individual contributions made to components (marked with “x”) 

Component  Henk Grent  Mark Haakman  Frenk van Mil  Sander Waij 

Filters      x  x 

Post processing      x   

Jupyter UI  x       

UI event handling  x       

Job scheduling  x       

FP-growth analysis      x  x 

Counting analysis    x     

Analysis Engine    x  x  x 

Database connector    x  x  x 

Power BI  x       

Generating input 
data from raw data 

  x     

   

81 



 

 

 
 

Appendix L: Systems engineering guide 

Introduction 

This document serves as a guide for the system engineer which will maintain this application to give him 

insight into how the application works. 

1. Application flow 

How to start the application in the front-end is explained in the User Guide document. When the user starts 

an analysis, an AnalysisEngine is created. The AnalysisEngine first applies every filter specified by the user. 

This is done by calling its FilterEngine. The FilterEngine reads the settings for the filters and instantiates the 

filters using a decorator pattern. When the filters are applied on the input data, the AnalysisEngine starts 

running the different analyses one by one. When an Analysis is finished, it returns a Spark DataFrame with 

found trends. These trends are converted to the format used in the database and thereafter written to the 

database. The database now contains the result of the analysis and the application terminates.  

2. Input data for the application 

The main input to the application is the table with diagnose data from trains. This table is enriched in the 

Jupyter notebook Create enriched diagnose table.ipynb. From the ‘materieelbewegingen’ table, the 

diagnose table is enriched with data about where the train was when it throwed the diagnostic code. The 

most important column added here is the track_section column. The diagnose table is further enriched 

with the amount of delay in minutes paired with each diagnose entry. The delay data is fetched from an csv 

handed to us. How each diagnose entry is linked to a delay (with zero of more minutes), can be found in 

the notebook file.  

Another, smaller, input to the application is the table with amount of trains on each track section in one 

week, with the normal timetable. This table is generated in the Trains per track section - avg of 10 

weeks.ipynb notebook file. This data is used to calculate the relative occurences of some error trends. 

3. Analyses 

There are currently two types of analysis, which can be found in the analyses.py module. This chapter will 

covers each analysis and also explains how to add more analyses. 

3.1.1 CountingAnalysis 

In the counting analysis, every diagnostic code on each track section will be counted. This gives insight 

into track sections where a lot of error codes are thrown. To be able to give the list of found trends some 

prioritization, multiple informative column are also added.  
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● train_amount: The amount of distinct rolling_stock_numbers on this track section which has 

thrown this diagnostic code. 

● occurrences: The amount this diagnostic code is thrown in total on this track section. 

● rel_occurrences: Occurrences amount divided by the total amount of trains on this track section. 

● delay_minutes: The delay in minutes paired with this trend. 

3.1.2 FpGrowthAnalysis (Pattern Mining) 

In the FpGrowthAnalysis, all diagnostic codes on each track are mined for patterns following the FP-Growth 

Frequent Pattern Mining (FPM) algorithm . For the implementation of the algorithm, the PySpark 11

implementation of FPM is used   of the Spark version 2.2.0. 12 13

3.2 Adding more analyses 

To add a new analysis, only a new class must be created in the analyses.py module. For this class three 

required methods must be specified for optimal behavior. The AnalysisEngine will immediately detect new 

analyses and instantiate them. The system does not allow priority execution, as each analysis is expected 

to be fully independent of other analyses. 

All analyses are executed after all filters are applied (see 4. Filters) and before the post process is executed 

(see 5. Post processing). 

All new analyses should at least follow the contract of the below given code snippet. 

Analysis - Code Snippet #1 analyses.py 

class NewAnalysis(Analysis): 

  

    @property 

    def is_finished(self): 
        return finished  # boolean indicating the analysis has finished. 

 

    def execute(self, data_frame): 

        return result  #resulting data frame. 

 

    def convert_to_db_tables(self, data_frame, analysis_id): 

        return tables #A list with tuples containing the location and DataFrame of the data 

 to write to the database. 

11 Han, J., Pei, J. & Yin, Y. (2000). Mining Frequent Patterns without Candidate Generation. Proceedings of 
the 2000 ACM SIGMOD International Conference on Management of Data, 1-12. doi: 
10.1145/335191.335372 
12 http://spark.apache.org/docs/2.2.0/api/python/_modules/pyspark/ml/fpm.html 
13 https://spark.apache.org/docs/2.3.0/ml-frequent-pattern-mining.html  
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Optionally, one of the other methods of Analysis can be overridden. These methods are designed to be 

general for different analyses but different behavior might be desired. 

4. Filters 

Currently, the application has the following filters, which can be viewed in the filters.py module: 

● DuplicateFilter: Filters duplicates (i.e. excessive errors that are created for the same problem) out 

of the data. 

● ServiceTrackFilter: Filters out the error codes it expects to be triggered during maintenance. 

● TimeFrameFilter: Filters out all data that comes before the given start date and data that comes 

after the given end date. 

● SeverityFilter: Filters out diagnose codes for all the severities not specified by the user. 

● BlacklistFilter: Filters out all the data belonging to a blacklisted trends specified by the user. 

Adding more filters 

To add a new filter, create a new class in the filters.py module which extends the FilterDecorator class. You 

have to overwrite the __init__ and filter method from FilterDecorator. In the  __init__ method, the filter 

attributes can be set, the filter method gets an input Data Frame, removes rows from it by using a filter and 

returns the filtered Data Frame. You also have to instantiate the filter in the filter.filters.FilterEngine class. 

To make the filters configurable, the filter must be registered in the filter.filters.json. Furthermore, in the 

filter.filters.FilterEngine class __init__ function the filter must be configured as desired. All settings for filters 

are read in JSON format. 

All new filters should at least follow the contract of the below given code snippet. 

Filter - Code Snippet #1 filters.py 

class NewFilter(FilterDecorator): 

  

    def filter(self, data_frame): 

        return filtered_data_frame  # data frame with filtered data. 

5. Post processing 

Post processing is the process after all analyses have finished. The post process is meant to process the 

found trends. A possible example could be to post process the trends for statistics, e.g. ‘how many trends 

were on each track section?’ Another possible post process, implemented in the program, is the 

Collaborative Filtering algorithm (abbr. CF). The CF algorithm is used for finding similarities between the 

trends found on track sections and the algorithm tries to guess for some trends what their frequency might 

become in the future for a track section. 

The above example and all future post processes are instantiated by the PostProcessor. Just like the 
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analyses, all post processes are automatically instantiated after the coding guidelines have been followed 

(see below). Each new post process is a child of the PostProcess class in the postprocessing.py module. 

Post processes support multiple results, as all results are returned as tuples of undefined sizes. 

All new post processes should at least follow the contract of the below given code snippet. 

PostProcess - Code Snippet #1 postprocessing.py 

class NewPostProcess(PostProcess): 

  

    def execute(self, data_frame): 

        return tuple(data_frame) # tuple of the resulting [0,n] data frames. 

 

    @property 

    def database_names(self): 
        return [“path.to.database”] # List of two paths; the read and the write database. 

6. User Interface in Jupyter 

The UI.ipynb file contains the User Interface of the application and should be started by the user to run the 

application. This notebook file works by adding a Jupyter event listener to every button, menu and text 

field. When a button is pressed, the event listener will be triggered and executes a specified function. Most 

of the events will be passed to the EventHandler class, which handles the event by for example starting an 

analysis or changing the settings.json with the new settings. 

Data flow 

When the UI is started a number of events happen and some objects are created in the background. Their 

interaction is visualized by the UI Data flow diagram in Appendix A. Upon launch, the first object that is 

created is a JobListener. The JobListener has an AnalysesQueue object and the AnalysisQueue object has 

an AnalysisEngine. The JobListener will periodically read the analysis_jobs.json file and checks whether 

new jobs were added. If a new job was added, then the listener will add it to the queue of the 

AnalysesQueue which will one by one execute the jobs that are in its queue. The queue is a type of priority 

queue, although the priority flag is currently not used. Upon the execution of a job, first the settings 

attribute of the job is loaded to the filters.json file and then the AnalysisEngine’s execute method is called, 

which will load the filters.json’s content into its filter engine and finally run the job in the HIVE/Spark 

environment. Upon the initiation of the AnalysisEngine a Spark and HIVE context are created, which is why 

the UI takes some additional time to load before being ready for execution. 

Start analysis 

Using the start analysis button the user can start an analysis. When this button is pressed,  a job will be 

created. This job is an item in the analysis_jobs.json file, with a number of attributes. The settings, as 

specified by the user through the UI, will be loaded from the settings.json file and are passed as an 
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attribute of such a job. The execution time of the analysis (exec_time), given as a valid date time string, and 

the amount of hours until the next execution of the given job (exec_time_dt) are other attributes. If 

exec_time_dt is set to 0, then the job will only execute once and it will be executed and finished directly. 

A job in analysis_json will look like this: 

{ 
    "grenth0": { 
        "exec_time": "2018-06-13 17:19:33.984094", 
        "exec_time_dt": 5, 
        "repeating": true, 
        "settings": { 
            "date_time": "2018-07-01 00:00:00", 
            "date_time_deact": "2018-07-30 00:00:00", 
            "duplicate_threshold_sec": 59, 
            "exec_time": "2018-06-13 17:19:33.984094", 
            "exec_time_dt": 5, 
            "remove_duplicates": true, 
            "rtm_only": true, 
            "service_track_filter": true, 
            "severities": [ 
                "A", 
                "B" 
            ], 
            "train_types": [ 
                "VIRM" 
            ] 
        }, 
        "status": "Not executed." 
    } 
} 

Stop Analysis 

The stop analysis button will stop the analysis at the next possible moment. No hard interrupts are chosen, 
because this may cause IO errors when interacting with the database. However, hard interrupts are 
possible by resetting the kernel. The next possible moment is the next safe moment, which is after a full 
step of a type of analysis. What a step is depends on type of analysis, as such the CountingTrend can only 
be stopped after being (basically) fully finished. This is because the majority of what that type of analysis 
does is contained in one big aggregate function. On the other hand, FpGrowthTrend can be stopped after 
the analysis of each track section. 
 

7. Trend visualisation in Power BI 

Power BI has been chosen as the main tool for data visualisation. The connection with the database is 

established using the HortonWorks ODBC 64-bit connector, as described in the the manual Introductie - 

Tools DTA omgeving (lite versie) in the section Power BI (Hive). 
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The data from the production environment is used as it is stored in their corresponding tables, without the 

transforming or inferring data in Power BI. The used tables, and how they relate to each other, can be seen 

in the relationships tab. 

Visualizing Data 

In Power BI the data provided by executing analyses can generally be found in the default.trends_x tables. 

Data stored in these tables can be found in numerous ways. The following section explains some core 

elements which are useful for making different visualisations. An example can be found in the repository: 

main.pbix. 
 

Record ID linking 

Linking tables exist which link the trends to their corresponding, individual diagnostic error code rows in 

the database. This database, containing the diagnostic rows, is default.trends_diagnose_enriched. This 

can be used to add drill through functionality, which visualizes the corresponding rows. It can also be used 

to count the amount of corresponding rows in the top level view by counting the distinct record_id’s 

alongside trend_id’s. 

 

Aggregate values 

Power BI can also aggregate any of the diagnostic error codes’ columns. The average GPS speed for all 

diagnostic rows belonging to a trend is an example of this. It is worth noting that this negatively impacts 

performance, as such a number of such aggregate values are provided in a trend’s row. Aggregate values 

are also called summarized values. 

8. Tests 

To run the tests, execute ‘python3 -m pytest tests/’ in a terminal in the main folder of the application.  

Dependencies 

Below is a list dependencies the application is build on. The list may be incomplete. Note that the lists 

contains the versions that were used for the development of the application. The application may not be 

restricted to these versions. It is not recommended to use a version lower than specified in table 1, higher 

versions can be used if backward compatibility is guaranteed or not required. Versions indicated with an 

asterisk are strict requirements. Versions below the strict requirements are guaranteed to break the 

program. 

Table 1: Application dependencies for the application. Versions specified as ‘<default>’ are the versions 

supported as default in the NS environment. 

Dependency  Version 

Python  3.5 
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PySpark (Spark)  2.2.0* 

Power BI  <default> 
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Appendix M: Research Report 

Bachelor Project 2018 
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Executive summary 

An application will be created giving insight into location-specific errors. For the interface, Power BI will be                                 

used. PySpark in the Jupyter environment will be used based on a Hive database for data storage and data                                     

processing. Simple statistic trends and FP-growth Sequential Pattern Mining enable the application to find                           

trends in the error data. This application shall be developed over a period of 10 weeks. The final application                                     

will be delivered on 22-06-2018. 
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Introduction 

This research report contains the problem statement and possible approaches to solve it. One approach                             

will be chosen, with proper motivation. Thereafter, different solutions for frameworks and algorithms will be                             

researched. Furthermore, use cases and requirements will be created and the minimal viable product will                             

be defined. At last, the initial release plan will be outlined. 

Problem statement 

Equipping trains with sensors, and collecting (real-time) data has proven to be useful for the NS, in order to                                     

be able to detect and respond to problems faster. A long term goal for the maintenance engineering                                 

department of the NS is to use data generated by trains to improve punctuality and reliability of the trains                                     

while balancing the costs of train maintenance. A faster response time helps with improving punctuality                             

and reliability.  

Employees of the maintenance and development department have to make the trade-off between                         

premature maintenance sessions and failures due to a lack of maintenance check-ups. Premature                         

maintenance sessions cost money and put more stress on the service stations. Train failures result in extra                                 

costs and are detrimental to the punctuality and reliability. Premature maintenance thus should be done as                               

few times as possible, whereas failures which could be prevented with a maintenance session are to be                                 

minimized as well. These are two contradicting goals for which achieving the optimal balance is a goal. 

 

At the moment, there is no system implemented that allows for the detection of location-specific error code                                 
trends, whilst there is data that could possibly indicate the existence of location-specific problems. As a                               
result, it is hard to detect which problems structurally occur or suddenly arise on given railway sections.                                 
Trends are being found, although they are now mostly based on human notice. Moreover, the data sent by                                   
trains is currently not used for location-specific analysis, which implies that there is still a lot of room for                                     
trends to be found. This project will be one of the first steps toward location-specific analysis. Additionally,                                 
it is hard to know whether the errors are caused by the train itself or the tracks it is using, this results in                                             
unnecessary maintenance check-ups and delayed repairs to the tracks. It could now be the case that a                                 
train appears to be causing troubles, although the track it was riding on initially caused it. Being able to find                                       
such trends would contribute to achieving the long-term goal of improving punctuality and reliability.                           
Additionally, being able to detect location-specific errors allows the NS to trace problems back to the                               
tracks/infrastructure and not the trains. This would prevent unnecessary and costly maintenance sessions. 
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Objective 
The objective is to create an application that can be integrated within the current software environment of                                 
the NS, in order to gain insight into location-specific error code trends to prevent future breakdowns and                                 
faults. The target demographic consists out of two end-users: the reliability engineer and the fleet analyst. 
 

End users 

In this chapter, the end users of the applications are defined as our contact and the function of the given                                       

end user. 

Reliability Engineer 
Who: T. van Haperen 
Function: The function of the Reliability Engineer (RE) is to monitor the reliability of an assigned train type.                                   
His task is, among others, to ensure the reliability and safety of the trains, within a given budget. He has to                                         
make sure the performance goals are made. To achieve this, he wants to find recurring problems and solve                                   
them in order to protect his fleet or improve its performance. Not all these problems can or should be                                     
solved, which means that he has to make a decision if he wants to solve them. Some problems might not                                       
be worth the money or time to fix.  

A possible reaction to a problem he finds is giving additional instructions to for example                             
mechanical engineers or adapt the training the train operator gets. He can also communicate the errors                               
with the railway operator ProRail with results he found, so they can fix the problem. 
 
 

Fleet Analyst (Vlootanalist) 
Who: M. Schulte 
Function: The function of the fleet analyst (FA) is to look at problems that are going on right now,                                     
determine where and in which train or area those problems occur and delegates this problem to the task                                   
force in the OCCR. When a problem occurs due to the interface between the track and the train, this can                                       
also be communicated with the OCCR, so the train itself is not unnecessary inspected. 
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Current system 
Nowadays, location-specific incidents are only noticed by aware employees, who are 
noticing recurring events. Data of hardware is available though, provided by the Real-Time Monitoring                           
system, which will be explained in this chapter. 

RTMO / RTMA 
Real-Time Monitoring Operations (RTMO) is an integrated environment with a visual interface used for by                             
the operations side of the NS. This environment was once outsourced to be developed by another                               
company. RTMO is primarily used by the Fleet Analyst to see what problems are going on at the moment                                     
and connects those problems to actions for the OCCR taskforce. RTMO uses data from the last                               
maintenance session, which is, on average, up to 3 months ago. 

Real-Time monitoring Analytics (RTMA) is a concept used in the data analytics environment. This                           
environment has no universally used platform/API, nor does it have a universally used way of displaying                               
data. RTMA is primarily used by the Reliability Engineer and other technical analysts. RTMA contains all                               
available data fetched from sensors in trains and is not time-bound.  

Available data 

Currently, the VIRM series of trains are equipped with up to 4500 sensors and 200 data-points are stored                                   
in the database. The computer inside the train will generate diagnostic codes based on data from these                                 
sensors. These diagnostic data can have different severities, ranging from “door opened” to “emergency                           
break activated because of a crippled signal”. This diagnostic data is sent to the database of the NS and                                     
available for the application which will be created. This is the data which can be used to discover                                   
location-based error trends. Some attributes are not useful, because they, for example, are always equal to                               
NULL. The useful columns of the RTM database table can be seen in Table 1.  

Table 1: Overview of useful columns from the RTM data send by trains. 

Datatable: train_maintenance_rtm.diagnose 

Column name  Description  Example 

gps_speed  The speed of the train measured by             
the GPS sensor km/h 

0.12485 

gps_valid  Can the GPS data can be considered             
valid? 

true 

class  The severity of the diagnostic code  A 

date_time_act  The activation time of the event           
triggering the diagnostic code 

2016-03-23T00:59:13 

date_time_deact  The deactivation time of the event           
triggering the diagnostic code 

2016-03-23T01:03:13 

diagnostic_report_code  The diagnostic code  REM234 
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diagnostic_report_description  Description of the code  Remkraan niet in A. in niet           
bed.cabine 

latitude  The latitude read by the GPS sensor  52.593149 

longitude  The longitude read by the GPS           
sensor 

6.156789 

rolling_stock_name  The type of train  VIRM 

rolling_stock _number  The number of the train  8637 

Furthermore, a database is available which contains data stating where each train should have been at a                                 
specific point in time and where it actually was. Together with the timestamp of a diagnostic error gathered                                   
from the RTM database, this data can be used to track down its timetable point (“dienstregelpunt”) during                                 
the error. The useful columns of this database table can be seen in Table 2.  

Table 2: Overview of useful columns from the database containing the movement of the trains.  

Datatable: default.materieelbewegingen 

Column name  Description  Example 

treinnummer  A number unique for the ride that             
day. 
English translation: train number. 

702227 

dienstregelpunt  A point which divides the track into             
multiple sections. 
English translation: timetable point. 

Abr 

uitvoeringstijd  The actual timestamp the train was           
at the timetable point. 
English translation: execution time. 

2017-05-02T06:03:00 

rijkarakteristiek  Indicates what the function of the           
train was. For example IC for           
operating as an intercity, driving         
people around and LM for a train             
without passengers in it. 
English translation: driving     
characteristics. 

IC 

materieelnummer  The number of the physical train           
itself. 
English translation: rolling stock       
number. 

8715 

To get more information on the situation of the location of an error or trend found, the table                                   
‘dienstregelpunten_with_gpslocation_and_fullname’ gives insight of the surrounding of the GPS                 
coordinates given. The table shows the type of the area (e.g. a bridge or station) and a respective                                   
description of the timetable point (e.g. ‘bridge over the Arne’). The important information from this table can                                 
be seen in Table 3. 
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Table 3: Overview of useful columns from the database containing the description of the area of gps locations and the 
respective names of the timetable points. 

Datatable: default.dienstregelpunten_with_gpslocation_and_fullname_kopie04052018 

Column name  Description  Example 

dienstregelpunt  A point which divides the track into             
multiple sections.  
English translation: timetable point. 

Abr 

gebiedtype  The type of the area shortly           
describing the situation of the         
location. 
English translation: area type. 

STATION 

Naam  The description of the timetable         
point. 
English translation: Name. 

Brug over de Arne 

 

Available tools at NS 

Big data processing 

The following tools are currently available: Apache Hadoop, Hive, Mahout, Pig, Zookeeper, and Spark.                           
These tools are currently being used by the NS. These tools could also be useful to use as our solution to                                         
the problem will probably depend on processing a big amount of data. 

Visualization 

For visualization NS primarily uses Microsoft Power BI. As quoted from the front page of the Power BI site :                                     14

“Power BI is a suite of business analytics tools that deliver insights throughout your organization. Connect                               
to hundreds of data sources, simplify data prep, and drive ad hoc analysis. Produce beautiful reports, then                                 
publish them for your organization to consume on the web and across mobile devices.” This tool is used by                                     
RE’s and data analysts to display their data. Other data visualization techniques for the RTMA environment                               
are incoherent, usually various Python libraries or textual interfaces such as Excel. 
   

14 https://powerbi.microsoft.com/en-us/ 
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Vision 

In this chapter, the long term vision of the maintenance and development department of the NS will be                                   

outlined. In the interest of time, we can not implement the entire vision, so not all elements described in the                                       

below can be included in this project. 

In an ideal system, the train itself would publish an interface displaying what kind of problems there are and                                     

what could be done. This system gives a notification if a system within the train shows deviant behavior.                                   

The users can interact with this system by indicating what kind of behaviour is normal and what kind of                                     

behaviour should be classified as deviant, as such the system will learn. The feedback will be at different                                   

levels: operational and strategic. Such a system, using pattern recognition based on user-feedback and                           

objective, statistical analysis will be a robust and extensive method for analyzing train data. 

On an operational level engineers will get a clear indication of which part of the system of a train is                                       

malfunctioning and what steps can be taken to solve this. Engineers would also have an accessible method                                 

of indicating whether the provided plan was effective for solving this problem and whether the system that                                 

was indicated to be malfunctioning was indeed malfunctioning. Regarding raw sensor data, engineers shall                           

haven an interface to analyze patterns in raw sensor data and specify what conditions lead to the triggering                                   

of a diagnostic error code, in order to enrich the information the system can provide at an strategic level.                                     

This would also make it easier to identify what triggers are missing, and index what sensors need to be                                     

added or what conditions need to be identified by the means of raw sensor data. 

On a strategic level the interface indicates if train malfunctions are due to the infrastructure. The                               

system gives the user enough information about where and why the malfunctions happen. That way, the                               

user could either go to the infrastructure manager and let him fix the problem or he could adapt the                                     

training the train operator gets for that part of the infrastructure. The information displayed shall help the                                 

users, functioning at a strategic level, find trends in the data and help backing up claims with numbers.                                   

Furthermore, the train could indicate the estimated time it can still be operational before maintenance is                               

really needed and adjust train maintenance schedule accordingly. Also, information about the most likely                           

financial/quality of service implications of taking certain actions can be given, in order to guide users in                                 

making choices within the business case.  

Regarding maintenance and expanding this integrated system, ideally computer engineers would have one                         

centralized environment in which the code is maintained. Components could be added and changed at                             

one level of analysis, e.g. the raw sensor layer, without having to change the implementation of the layers                                   

above. At each level of analysis, end-users would perform their analysis in a centralized environment                             

through a uniform interface. 

Below the design goals are defined, which are defined as such that they will cover most of the needs in the                                         

vision. How these design goals are implemented in our application is described in the chapter ‘Different                               

approaches’, where different types of approaches are defined and compared. 
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Design goals 

In this chapter, the design goals of the application are defined. These design goals are a broad overview of                                     

what should be included in the application, in order to satisfy most needs defined in the vision. For each of                                       

the design goals, a short name defining the goal and a description are given. 

1. End-user satisfaction: The final product should satisfy the long term goal of the NS and should aid                                 
the end-users in helping them achieve this long term goal. Customer collaboration should be                           
valued in order to achieve this design goal. 

2. A quick insight into data: Error trends should be visible in one eyesight by summarizing the data.                                 
Further information regarding each trend should also be easily accessible. 

3. Manageability: The application will be made using techniques easily integrable by the NS,                         
additionally the code-base should be able to be maintained well. Independent layers of analysis, as                             
described in the vision, would warrant this design goal. 

4. Performance: The application should not overload the server. Users should be able to obtain the                             
results to their queries in a reasonable time, with respect to the complexity/size of the query. 

5. Scalability: Given collecting data has proven to be useful for the NS, plans for increasing the                               
amount of collected data have been made. In order to accommodate for this increase in collected                               
data the application should be scalable. 

Different approaches 

In this chapter, different approaches will be discussed which will solve the problem statement. 

Approach 1: Offline analysis 

The first approach to address the problem is providing a searchable overview of error trends, which is                                 
generated by data from past diagnostic data. An analysis is activated by the user and the analysis                                 
terminates after the results are found. This type of analysis will focus more on finding complex correlations                                 
in the already existing data and extensively being able to search the existing dataset. This allows the user                                   
to modify the fleet or talk to the infrastructure owners, with relevant data as proof. 

This approach can use either the table- or the map interface, as discussed in the section ‘considerations’                                 
below. 

Advantages: No live connection with the database has to be maintained. Additionally, no listener for the                               
data stream has to be made which makes the application more lightweight in terms of server load and                                   
computational power. Implementing this approach will allow users to inspect diagnostic errors, which is not                             
possible right now. This way, the reliability of the train fleet can be increased in the long term. An                                     
approximation of real-time can be simulated by taking a timeframe covering the last few minutes (e.g. the                                 
last 2 minutes) of data. This near real-time approach can still find trends in the last few minutes, which                                     
comes close to the time required for a train operator to report problems in his/her train. This means that the                                       
problem of neglection of reporting problems by train operators can be partly solved through automatic                             
reporting. Besides, some of the trends in the last few minutes might not be detected by the human eye at                                       
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first glance, which means that some already caused problems might only become visible the train operator                               
in the coming few minutes, which means that the system could be faster than physical detection. 
 
Disadvantages: Using this approach, problems occurring right now with the train fleet will not be detected.                               
Therefore, this approach will not improve the train punctuality in the short term.  

Approach 2: Real-time analysis 

The second approach to address the problem is providing an application which monitors the active fleet                               
and notifies the user of currently occurring error trends. The program runs continuously until the user fully                                 
closes the application. This type of analysis will focus more on indicating when boundary conditions for                               
trends are met and notifying the end-users of the trend. 
With this design the focus will be on being able to link the live data to current trends using recent data, so                                           
the problem can be fixed immediately. Currently, when there is a failure in a train, which causes the train to                                       
have unwanted behavior, then the train operator first has to report this to the helpdesk. The time between                                   
the occurrence of the failure, the report to the helpdesk and the action could be reduced by introducing a                                     
real-time detection. A problem with the current system is that some operators do not report all their                                 
problems anymore, as they occur too often or they already found a workaround to temporarily fix them.                                 
This, however, means that some problems are not detected and can therefore never be solved. 

This approach can use either the table- or the map interface, as discussed in the section ‘considerations’                                 
below. 

Advantages: The real-time approach has the advantage of being able to see the trends at the moment of                                   
happening. This means that when a trend of errors is found, there can be a direct action on the event. This                                         
saves a phone call to the helpdesk, which could have only been done when the train operator had time                                     
(and was therefore often done late, if at all), and solves the negligence in reporting occurring problems. 

Disadvantages: The disadvantages of the real-time approach is that the data on which trends can be                               
focused on is restricted to a smaller set, than the data of an offline analysis. In the real-time                                   
implementation, a shifting time frame is used, which delimits the data that can be looked at. Because of the                                     
speed of data flowing in, this frame can be expected to be significantly smaller than the timeframe possible                                   
for offline analysis. Additionally, a listener is needed to query the database which makes for a constant load                                   
on the server and the computers running the program. 
Furthermore, in order to be able to have a real-time application, it is required to also have the data                                     
available in real-time. This is currently not the case for all tables. Some tables, like the                               
‘materieelbewegingen’ are only updated once a day. Alternatively to this table, the geofencing can be                             
used , as this is real-time, but the accuracy might be lost. Geofencing will probably improve over time,                                   
which means that in the future this problem might become irrelevant. 

Feedback 
During the plenary session on April 30, we retrieved feedback regarding the two approaches from the RE                                 
and the FA. Both of them voted in favor of the offline approach, which is also our preferred approach. The                                       
main reasons for choosing the offline approach were a delay in workforce response time and the lack of                                   
long-term analysis tools. 

Regarding the delay in the workforce, the FA said that ‘it can take hours for the workforce to be                                     
present on the location of the problem, as such getting the detection of trends by the minute is not as                                       
useful’. This real-time analysis is also not something that caters towards the wishes of the RE, as he does                                     
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the long-term analysis. Furthermore, a long-term location-specific analysis tool for the RE does not exist in a                                 
well-rounded form. As such, opting for an initially long-term focused offline analysis is the best solution for                                 
both end-users. 

Conclusion 
As a team, we preferred the offline option as well because the implementation of offline analysis is                                 
theoretically easier and it appears to add the most value to the NS as any such long-term analysis tool is                                       
not implemented. Also, considering the long-term goal of the NS, implementing the offline version,                           
long-term focused solution first would help engineers with balancing maintenance costs better and help                           
prevent train delays due to, for example, detected infrastructural problems. The latter would improve                           
punctuality, the former would be achieved because the problems can be traced back to the infrastructure                               
better, thus preventing unnecessary maintenance sessions. The considerations can be read in more detail                           
in the advantages and disadvantages above. 

Considerations 

Table vs. map interface 
The first interface consists out of a table, of which the rows represent error trends and can be clicked to                                       
reveal further information. The error trends are ranked in prevalence and severity. The second interface                             
consists out of a map, which visualizes the locations of the error trends. These trends appear as pins on the                                       
map and can be clicked to reveal further information. 

 

Table interface  Map interface 

+ Can display more information without         
making the interface really cluttered. 

+ Easier to implement: time can be used to               
create better analysis tools. 

+ Can be ordered on certain properties. 
 

+ Provides a clearer overview regarding         
where on the map trends occur 

+ Visually aesthetic 
+ Visual connections are easier to make.           

This allows for easier detection of           
geographically close trends. 

 

- Geographically close trends are not         
immediately obvious 

- Number of columns before squeezing text           
is limited without horizontal scroll.         
Horizontal scroll limits the amount of data             
a user can see at once. 
 

- Can get cluttered when a lot of information               
has to be displayed 

- The NS does not have a coherent system               
for displaying specific railway locations on           
a map. Until the NS has one integrated               
system for displaying geographical data, it           
may not be worth creating our own             
full-fletched interface. 

 
Independent of both implementations, filters can be applied to configure the analyses. These filters are                             
predefined filters in which the user can change the values. For example, a timeframe filter can be applied,                                   
where the user can change the start and end time. 
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Feedback 
These two approaches were discussed with the end users of this program, which are the RE and the FA, on                                       
the plenary session of April 30. The map interface is the approach that is appreciated the most, both by the                                       
FA and the RE. 

The reason for the FA to prefer the map interface over the table interface is that the map interface                                     
provides the most information in the least amount of time, while a table interface is too complicated to                                   
easily extract information from it. For this reason, a map is ideal, as it gives a good overview. A table will,                                         
however, be used as a means of providing detailed information on the error. This enables the FA to order                                     
the data such that it has the most benefit for him. 
The reason for the RE to prefer the map interface over the table interface is that the RE needs to know                                         
which timetable points have problems, which are much easier visible on a map than in a table. With                                   
information on the timetable points, he can decide which problems need to be addressed. 
 
Conclusion 
As a team, we are convinced that the map interface is the optimal way of visualizing the problems. Since                                     
the way this will be implemented is just a simple map with points at the coordinates of the most important                                       
errors, this will not add too much complexity, while still providing a lot of clarity in the visualization of the                                       
locations of the errors. A map will provide the users with a quick overview of the location of the errors, and                                         
in that way easily outclasses the table interface. To get the right information on the map, users could                                   
configure their filters by setting their filters to their desired values. We still think it is better to have a table                                         
next to the map, as the map can get cluttered when there are many trends. The table also provides more                                       
information. Not all information will be provided in tables, as this would only add noise to the screen. The                                     
information that will be provided in tables will be mostly covering an overview of all trends found. 

Query the data 
The user shall be able to search for specific error codes and areas. These searches will filter the data,                                     
which makes the user able to focus on more specific subsets of data. The user shall be able to indicate a                                         
time-frame which he wants to analyze. Additionally, the user shall be able to analyze the data-set with more                                   
complex queries. These queries can be implemented with two different sub-approaches: 

● Query search: The user could search in the data by using search queries. These queries will be                                 

similar to business rules used in the current RTMO system. An example query could be:                             
“error_code = ATB3103 AND location = Amsterdam”. Here the italic components are variable                         
components, which can be edited by the user. The bold operators (i.e. ‘=’ and ‘AND’) can be                                 
chosen from a list of standard operators. This list of operators could consist of the following values:                                 
=, ≠, <, >, ≤, ≥, AND and OR. For the error codes, there will be an extra option to search for the error                                               
type, i.e. the first three letters of an error. In the example, this would be ‘ATB’. The variable                                   
components could consist of names of table columns in the database and their respective values.  

● Script search: The user could search in the data by using script search. This scripting could be                                 
done using Python, as the client has a preference for this language. The working for this would be                                   
that the user would make a filter in python on the data. This filter could add data-points from a                                     
dataset to the query result if the specific conditions specified by the user are met. The filter can be                                     
seen in Algorithm 1 and the specification of specific conditions can be seen in Algorithm 2. 
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Algorithm 1: Background algorithm. 

Input: the set of data D[d1,d2,..,dn]. 
Output: the set of filtered data. 
Description: background algorithm used to call the custom algorithm of the user. 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 

Foreach di ∈ D: 
    If custom_filter(di) then   
       Continue; 
    Else 
       D - {di};   
    End  
End 
Return D; 

 
// The function custom_filter/1 can be changed by the user. 
// Do nothing. Keep di in D. 
 
// Remove di from D. 
 
 

 

Algorithm 2: Example custom algorithm made by a user. 

Input: data point d from the set of data. 
Output: true if the error has code ATB3101 and was sent by a VIRM, else false. 
Description: boolean indicating if data point should be filtered kept or not (true=keep, false=filter out). 

1: 
2: 
3: 
4: 
5: 

If d.getName() ≠ “ATB3101” then 
    Return false; 
Else 
    Return d.getTrainType() = “VIRM”; 
End  

// Filter out all error codes that are not ATB3101. 
// ‘false’ means filter out. 
 
// Only keep trains with the type ‘VIRM’. 

Both of the implementations can query the data and save these queried results. These results can be                                 
shared by the users on the database itself, or possibly by email using a subscriber system. The program                                   
could then send an analysis report to the subscribers of the query. Daily queries (i.e. queries that are                                   
executed daily) can have a fixed subscriber list and a fixed configuration of filters. These can be saved in a                                       
settings file. 

Conclusion 
As a team, we chose to decide the query search alternative based on the advantages and drawbacks of                                   
both implementations. The implementation of the script search requires all users to be able to program in                                 
Python or at the very least understand Python. We can, however, not guarantee that all users are able to do                                       
so. Also, the chances of getting unexpected results increase with the use of script searches. For example, a                                   
user can make an error in a script, which leads to an infinite loop. It could be the case that the user waits                                             
for hours on a result and expects the program to give a result. The program, however, never gives a result                                       
based on the fact that it is still searching for the impossible. 

With query search, the program is easier to understand because of multiple reasons. First, no                             
upfront knowledge of a language is needed apart from the working of each of the operators (see                                 
definition). Also, current applications in the NS environment also use a similar query search. The RTMO tool                                 
uses a query based search for business rules. Furthermore, the problem of infinite loops is solved by                                 
restricting the users to only search using the given operators. These operators can be translated to SQL                                 
queries. These SQL queries will then be evaluated, where unsolvable queries are detected by the SQL                               
evaluator and will get an empty result. 
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The client asked for a query option for known trends, to verify that the trends can be traced back in the                                         
data. This option, however, will be a low priority for our application. Tracing back such trends can be done                                     
with external scripts if the option is not added. It is more important to have the option to query the trends in                                           
the first place. 
 

Multi user context 
As more people will want to make an analysis at the same time, there should be some solution to make this                                         

possible. In the current NS environment, each developer has its own partition in the cluster. For this                                 

application, there are two options. 

First, create a multi-user context within the program, where each of the users gets assigned its own                                 

partition within the application. The application then has to prioritize analyses per person and parallelize                             

different analyses. The advantage is that users do not require all permissions that the program is required                                 

to have, as only one central permission is needed. However, it introduces an extra complexity, which is not                                   

entirely in the interest of this project. 

Second, the NS environment can schedule multiple instances of the application in the cluster. Here, each                               

user of the application uses its own instance of the application. The advantage of this is that the NS server                                       

does the job prioritization, parallelization, and scheduling, which makes our application less complex and                           

gives us the possibility to keep our focus on the trend finding. The drawback is that the users need the                                       

required permissions for the program, in order to do an analysis. 

 
Conclusion 
As a team, we chose the scheduling using the NS environment, where multiple instances of the application                                 

are called in the cluster, as it makes sure we can keep our focus on what the project is mostly about:                                         

finding trends. In the future, it could still be possible to add a multi-user context by changing the job                                     

scheduling of the application. Each analysis could get its own thread assigned by the application. Another                               

problem that is avoided in this way is the danger of unauthorized personnel using the application, as we do                                     

not have the required knowledge of the permission system within the NS.   
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Scope 

In this chapter, functionalities will be defined as ‘in scope’, or ‘out of scope’. Functionalities in scope, we                                   

definitely want to tackle in this project. Functionalities ‘out of scope’ will not be implemented in the current                                   

project. 

In scope 
Analyze diagnostic data of the past and indicate location-specific errors with specified settings with the                             
push of a button:  
There is a big difference between the analysis of data that is already saved in the database and data that                                       
flows in each second. By analyzing only the data that is already in the database within a timespan x to y                                         
(where x < y), then a near real-time analysis can be done by taking, for example, a timespan of y equal to                                           
the current time and x one minute into the past. 

This would allow the reliability engineer to gain insight into location-specific error trends and do                             
research on them. After this, the RE can decide to for example modify each train or get in contact with                                       
ProRail to point them to the location which causes errors. By analyzing the data of the past, trends can be                                       
found and used for future prevention. As mentioned, a near real-time analysis can be simulated by picking                                 
a close to current time analysis. In this way, the application can come close to a monitoring system but still                                       
functions as an analytics program. The program is, therefore, part of RTMA and not RTMO. This was also                                   
the desired functionality of the client. 
 
Autonomous trend suggestions that indicate atomic/simple statistical findings: 
There is a lot of available data and a lot of possible correlations to evaluate. In order to allow the users to                                           
focus on finding strong correlations, it is useful to indicate the current statistical outliers. This will be done                                   
by the autonomous trend suggestions. By this, an RE could be pointed only at the errors that have the                                     
highest likelihood of being a trend and is, therefore, a possible location-specific error. This aligns with the                                 
design goal of quick insight into data. The simple statistical findings can be placed next to some more                                   
complex analysis to gain a deeper insight of the actual trends found in the data. It is, for example, important                                       
to know how many times errors occurred in order to know their possible impact. 
 
Find location-specific trends on the basis of diagnostic codes generated by trains: 
The trends will be found on the premise of diagnostic codes because this is a level of abstraction that                                     
allows us to observe trends without focussing on the technical analysis of the trends too much. This is in                                     
line with the higher-level analysis required by the RE and fleet analyst. The trends will be focused on their                                     
location of occurrence, as the focus should not lie on general occurrences of trends. The assignment of the                                   
client was specifically focused on location-specific trends. 
 
Order error codes per location dependent on the time of generation: 
When analyzing the data in order to see trends arise, it is important to be able to only take error codes of                                           
one location. When finding that multiple instances of the same problem occur on the same location                               
frequently, there is a high probability that the trains and the location do not go well together. Therefore,                                   
with this idea, a lot of information can be found in a short period of time. This aligns with the design goal of                                             
quick insight into the data. 
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View all found location-specific errors on a map, with approximated indications: 
Having the location-specific errors visible on a map will give an overview of the location of the errors. This                                     
may be useful for figuring out connections between errors. A meeting with the end user has pointed out                                   
that they will probably not take the effort to look into a table, because they experienced that table based                                     
ways of displaying information tend to be overwhelming. Additionally, both the RE and FA thought that a                                 
map would provide faster insight as to where the trend occurs because a map works better with their                                   
intuition. This, therefore, aligns with the design goal of quick insight into the data. 
 
Displaying additional information alongside the map: 
In order to gain insight into the data, additional data needs to be presented in an interface. The additional                                     
data will comprise of what the end-users indicate they need. This data will be displayed using different                                 
levels of abstraction/summarization. The display of this additional data/information aligns with the design                         
goal of quick insight into the data. Displaying this data will give the client the opportunity to check for the                                       
validity of the trends found. This additional data is also required if a trend is valid. When a trend is found                                         
and identified as a real problem, then the additional data needs to be sent to ProRail in order to allow them                                         
to fix the problem at the specified location. The information can help them to identify the problem at the                                     
location. 
 
Filter out false positives generated by service tracks: 
Trains generate a lot of diagnostic codes when they are under maintenance. If these diagnostic codes are                                 
not filtered out, the application will certainly show a lot of error trends at for example service locations. The                                     
end user is not interested in this data. 

Noted should be, however, that recognizing diagnostic data generated by trains under                       
maintenance is an entire research project on its own. NS employees have struggled with this problem                               
earlier. Therefore, we will only implement this to the extent possible by implementing techniques given to                               
us by the client. The need for this filter becomes obvious if imagined that if a trend is found there is a                                           
chance that someone of ProRail will go the location of the trend to fix the railway. If there is no problem to                                           
be found, then the money spent on the technician is wasted. Also, users could get the idea the application                                     
does not work properly and lose faith in the tool. 
 
Filter out noise caused by quick consecutive error codes: 
Multiple errors can be consecutively sent by a train, even though they are caused by the same defect and                                     
are basically indicating the same problem. This could be caused by multiple reasons but the information                               
that needs to be retrieved from this is that there is only one problem causing the errors. This means that all                                         
the same errors in the same short timespan (in seconds) are squashed to one single error. 

It could be the case that if no such filter is implemented, that some errors appear to be more                                     
severe due to its frequency. It would then be possible that one train sent most of the errors, of which all                                         
were caused by the same problem. By using a filter, only the problems are compared for their frequency of                                     
occurring. It might still be possible that not all of the double errors can be filtered out, as the line between                                         
sent double and two problems is blurry. It could be the case that a problem happened multiple times in a                                       
short time period without being a duplicate. 
 
Display the severity of trends retrieved from the error severity (class): 
This allows the RE to determine whether trends are worth looking at: is addressing the trend worth a                                   
business case? It can also be useful for the fleet analyst, in order to determine what priority things have in                                       
what is going on at that moment. Furthermore, it is likely a relatively easy functionality to implement,                                 
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because diagnostic codes have a severity level themselves. Giving the users an indication of what the                               
priority is, aligns with the design goal of quick insight into the data. 
 
Schedule the analysis to run automatically at a specified interval: 
The RE wants to have a report/analysis every given interval, based on his specific use case of the system.                                     
By automatically generating a result at the start of a given period, the RE does not have to start the analysis                                         
and does not have to wait for it to finish. This improves the product, according to the design goal of                                       
manageability, where the user does not have to take additional actions to still get a result each period (e.g.                                     
day). It was desired by the client to get notified of results, to minimize their actions required. 

Not in scope 
Other train series than the VIRM: 
Each train has a different data structure. Due to the time constraint of ten weeks on the project, it is better                                         
to focus on one type of train and save time. The VIRM is the train series which has the most trains with an                                             
active data connection driving around and the employees currently working at the NS know the data this                                 
train type generates the best. The focus will be on the VIRM, in order to be able to use the knowledge of                                           
the employees. It was also the client’s desire to focus on one train only to save time and spend the most                                         
time possible on finding the actual trends. 

To still make it possible for the future to implement different train series, we will make sure that the                                     
data tables and their respective columns are not hardcoded into our application. In this way, a programmer                                 
could simply add more train series by indicating the required tables and columns for the new train serie.                                   
One should notice that location-specific errors can be train serie dependent. This means that, for example,                               
there might be a situation in which the VIRM train serie has no troubles with a non-leveled rail, whilst the                                       
SLT does have troubles. Therefore, a distinct analysis between these different train types might be needed.                               
This could in the implementation of this application be made possible by adapting the current train serie                                 
filter to the desired train serie. In other words, in the current version, the data will be filtered for VIRM trains.                                         
By adapting this filter to different train type, like the SLT, then the data can focus on this train specifically.                                       
Also should be noticed that location-specific errors can be train serie independent and therefore the filter                               
for train series must be disabled. This can be done by simply disabling this filter. The application will be                                     
written as such, that the filter can be empty (i.e. what goes in, comes out). 
 
Editing existing data in the database: 
Editing the database requires precautionary measurements to prevent dangerous changes to the database                         
from happening. For our application, edits to existing data can only be done if the data originated from our                                     
application. Meaning that only result data that is written to the database by our application can be affected                                   
and data generated by other applications or by the trains will be treated as read-only. This also means that                                     
appends can be done to create temporary or permanent files on the database. Temporary files can be                                 
cached to generate faster results, while permanent files can be the results of analyses. 
 
Creating new error codes with the application: 
Error codes and diagnostic codes are created by the train manufactures. There are options for creating                               
new error codes but knowledge on the necessity of creating those is required. This knowledge is missing.                                 
Also, the trends found by the application can be displayed in the application itself and do not require to be                                       
defined as a new error code. Note that this does not say that result can be saved to the database, it only                                           
implies that existent data generated by trains is not edited. 

To still make the application useful in the future, the ability to create these new codes should be                                   
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possible. Our program will allow an addition of this feature by not having any error codes hardcoded. This                                   
way, the analysis will not fail due to the problem not recognizing an error code. 
 
Use raw sensor data (like temperature) for detecting error trends: 
In order to be able to make such assumptions on the basis of the data, major knowledge about the raw                                       
sensor data is required. We do not have the required knowledge of the raw data or time to acquire such                                       
knowledge, to be able to implement this feature. The diagnostic codes the train generates when specific                               
sensor values are beyond certain values will be used. In this way, we can use the knowledge of the train                                       
manufacturer to detect interesting sensor data. 

For future expansion, it might be a good idea to have these raw sensor data available as extra                                   
information with which a correlation between the sensor data and error codes can be found. This                               
correlation can be found using the earlier mentioned Pattern Mining method. For each sensor, the                             
application would then find the k-most frequent items per error code. This method would be very                               
expensive to execute and, therefore, would not be possible/desirable with the current implementation. The                           
client suggested to ignore sensor data, also because of the complexity of the sensor data and the required                                   
knowledge for them. As a team, we also thought it would be better to first focus on the error codes                                       
themselves before diving into the more complex trends. We, therefore, ignore the raw sensor data and also                                 
do not add possibilities for future implementation of raw sensor data. 

Arguably, it might even be more desirable to implement this Pattern Mining for raw sensor data                               
inside the train computers, as these trends may even be train dependent (not even train serie dependent).                                 
This, however, does not directly enable a comparison of raw sensor data trends between trains (but does                                 
not make it impossible; findings of a train can be saved and compared externally). Further thoughts and                                 
research are interesting for the global vision of NS but lie outside of this research and should for now be                                       
ignored. 
 
Analyze real-time diagnostic data and indicate on what conditions error trends are found: 
Real-time diagnostic data can be beneficial for the errors that need fast responses to prevent huge                               
damages. It is, however, a big feature that requires a lot of time and attention. This may not be worth it.  

After discussing this approach, both the RE and FA indicated that day-by-day analysis would be a                               
good place to start and that long-term analysis was more important. A day-by-day analysis is considered as                                 
good enough because there’s a delay in finding the problem and getting the team on the work floor to                                     
address the problem. As such, real-time error detection will not be beneficial.  
Additionally, a system for detecting long-term problems is currently not present in the NS environment,                             
whereas the RTMO environment provides a kind of up to date analysis. As such the offline long-term                                 
approach is more valuable. 
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Literature Research 

Research questions 

In the literature research section, an answer to the following questions is given to the extent possible, in                                   

order to establish specific design-choices in the final approach and to help formulate the functionality in                               

our MoSCoW list and the minimal viable product. 

(Q1) What environments are currently being used by the NS, and how are they used to find trends? 

(Q2) Which visualization techniques for displaying trends on a map exist? 
 
(Q3) What frameworks exist for fetching big amounts of data from the database, with a small delay? 
(Q3.1) How can that framework be used in order to maintain our performance design goal? 

(Q4) How can trends be established per location?  
(Q4.1) How can trends be established autonomously?  
 
(Q5) How can the data be filtered for noise and false positives? 

Solutions 

For the different solutions, we consider possible answers to the research questions, which are referenced                             

accordingly. The answers to the research questions, which are based on the frameworks/techniques and                           

algorithms analysis below, determine what a specific approach looks like. All questions mentioned in the                             

section above will be answered in this section., 

(Q1) Environments 

Q1 is already answered in the section ‘Current System’. 

(Q2) Visualization: 

Microsoft Power BI 

As stated in the Current System chapter, the NS now primarily uses Microsoft Power BI for data                                 

visualization for reports and dashboards. Therefore, this option should at least be considered. An example                             

of how Power BI can be used to display location-specific data can be seen in figure 1. In this figure, points                                         

are plotted on the map, where a box next to the track reported an error. Some data filters can be applied                                         

within the shown interface, such as selecting a timestamp or site name. 
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Power BI is a suite of analytics tools to analyze data and share insights in an attractive manner. The data                                       

behind the dashboard can also easily be looked into from the interface. It features data imports from                                 

hundreds of data sources, including Excel sheets and databases such as the Haas HIVE database, which                               15 16

is used by the NS to store RTM data. It provides a lot of built-in visuals to give insight into the data including                                             

tables, graphs, charts, and maps. 

 

Figure 1: Example of Power BI interface used by NS 

Other data visualization tools 

Other visualization tools which will also satisfy our needs exist, such as Tableau Desktop or Watson                               17

Analytics . However, these need (expensive) commercial licenses to use them. The NS is, understandably,                           18

not willing to buy these licenses if they have another software solution themselves right now. Besides the                                 

extra costs, these tools do not add any functionality on top of Power Bi which would be needed for the                                       

application. Power BI has enough functionalities for our application. 

Creating our own interface 

It is also a possibility to create a custom visualization interface using frameworks. The best solution, in that                                   

case, would be to build a web interface displaying the found trends. That way, existing visualization                               

frameworks which can plot data on maps can be used such as D3.js , Leaflet , or geoplotlib . This is                                   19 20 21

15 https://products.office.com/nl-nl/excel 
16 http://hive.apache.org/ 
17 https://www.tableau.com/products/desktop 
18 https://www.ibm.com/watson-analytics 
19 https://d3js.org/ 
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however not our preference, because we did a similar thing in the Context Project course of our Bachelor.                                   

It is also more interesting for the client if we put more effort in finding trends rather than displaying trends.                                       

Furthermore, it is desired by the client to have all tools in the same interface. Because of these reasons,                                     

this solution will not be chosen.  

(Q3) Database: 

Big Data Frameworks 

Jupyter is an open source notebook the analysts at the NS use to write code, analyze datasets and build                                     

various machine learning models. Jupyter is integrated into the NS Big Data domain and supports various                               

programming languages, including Python. The NS Big Data domain includes the following frameworks:                         

Apache Beeswax (Hive UI), Apache Hive, Apache Pig, HCatalog, Apache Spark.  

All previously mentioned frameworks are related to the use of the MapReduce paradigm (Dean,                           

Ghemawat. 2008). This makes all frameworks suitable achieving the performance design goal. The former                           

four are integrated within the HUE environment and make use of Apache Hadoop as the underlying                               

framework. They also make use of the HDFS as their filesystem and use MapReduce to obtain the results                                   

for queries. Apache Spark, in its PySpark form, is accessed through Jupyter, needs to use a distributed file                                   

system, and uses its own implementation for cluster computations, different than MapReduce. Because of                           

the latter PySpark generally is 10-100 times faster than the MapReduce implementation Hadoop uses                           

(Williams, 2017; The Apache Software Foundation, 2018). Regarding the level of abstraction, the former four                             

are generally higher level programming frameworks. 

In choosing the framework to use for the final product, the manageability design goal appears to be the                                   

most significant, which would lead to the usage of PySpark as primary Big Data framework. Manageability                               

is warranted by choosing for PySpark as the current analysts at the NS use Python and this framework. The                                     

performance design goal is also warranted this way, as Spark has better performance than any of the                                 

Hadoop alternatives. Furthermore, besides performance and manageability Hadoop oriented frameworks                   

and Spark based frameworks appear to be virtually similar regarding functionality.  

 

(Q4) Trend detection: 

In the following section different possible algorithms are explained and checked for their usability in the                               

application.  

Statistical Analysis 
Considering the repetition of events as a trend in the data, statistical analysis would be able to provide us                                     
with such trends by e.g. counting how often an error code occurs. The available data can be searched and                                     
data about various features can be collected in order to provide us with information about trends in the                                   
dataset. 

20 http://leafletjs.com/ 
21 https://github.com/andrea-cuttone/geoplotlib  
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As a basis for finding statistical trends in the data, Simple Statistical Trend (SST) analysis would be a place                                     
to start. Simple means that the statistical information relies on one atomic feature, e.g.                           
diagnostic_report_code value, in combination with a time frame and location. As an example, given the                             
diagnostic_report_code (error code) ‘ATB032’ and a time frame ‘1 year ago - 2 weeks ago’ the                               
(hypothetical) Statistical Analysis Engine (SAE) will count the number of times ATB032 occurred for each                             
location and return the locations in order of frequency. Various relevant atomic features could be used in                                 
order to detect a number of SSTs. 

An advantage of this way of detecting trends is that it provides insight as to why trends are                                   
indicated as trends. That is, the count of certain features can be displayed to the user. Depending on the                                     
implementation of the SAE, further useful information such as histograms can also be given using Power BI.                                 
Such information can be of good use for the technical analysts. In its simple form, it is an easy, yet powerful                                         
system to build. 
 
A way to extend this SST system could be sequential pattern mining for item sets. This could be useful for a                                         
type of causal analysis of trends and could also enable the system to indicate complex trends for certain                                   
locations, as it could indicate what item-set frequently occurred. 

Sequential Pattern Mining 

Sequential pattern mining concerns finding statistically relevant patterns between different data examples,                       

where the values are sequentially delivered (Mabroukeh & Ezeife, 2010). In this technique, there is a                               

distinction between string mining and itemset mining. The first focuses on long strings of characters in                               

which one can search for a pattern within the string. The second focuses on discovering frequent itemsets                                 

and the order in which they appear. The latter seems to be more applicable in the situation of the trend                                       

system, where errors sent by a single train can be seen as a single itemset. 

An example in which you would want to use itemset mining, as described by Han, Cheng, Xin & Yan (2007),                                       

is when you want to find trends in shopping carts, where the customer who buys milk is more likely to also                                         

buy bread. Here the combination of milk and bread is a frequent itemset. When a customer buys a cell                                     

phone, then a charger and then a memory card, then this is a sequential frequent itemset (Han et al., 2007).                                       

The latter is what can be applied in the NS application. If first error A is thrown, then error B and then error                                             

C and this seems to happen more often, then there is a sequential frequent itemset possible for these error                                     

combinations. If this frequent itemset is confirmed to exist, then the occurrence of an error A can guarantee                                   

with a probability P that errors B and C will follow. 

 
Methodologies 
For the sequential pattern mining, we cover two different methodologies: Apriori and FP-growth. To find                             

the most suitable algorithm, we first have to distinguish the different methods from each other. 

Apriori works by observing a downward closure property, called apriori, among the most frequent                           

k-itemsets (Agrawal and Srikant, 1994). The idea behind this method is that an itemset can only be frequent                                   

if its sub-itemsets are also frequent. This means that the database can be scanned for frequent 1-itemsets,                                 

and using these itemsets generate candidate frequent 2-itemsets and check and obtain by scanning the                             

database again if these itemsets are frequent. This process can be iterated until there are no combinations                                 

of itemsets are possible with size k. The Apriori technique can be used to find frequently combined error                                   
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codes but may generate performance issues when executed on the full database with a range of, for                                 

example, a year. In such a case the number of combinations can become significantly large. In such a case                                     

there are for each k, (n-1)k/2 possible combinations, where n is the number of unique values. Note that                                   

there are no double values in sets and, therefore, no combinations with two of the same elements are                                   

possible and only half of the combinations are unique. 

The second methodology, FP-growth, differs from the Apriori method in the second step. Unlike Apriori,                             

FP-growth uses a suffix tree structure to encode the objects in the dataset, without explicitly generating a                                 

candidate set (Han, Pei & Yin, 2000). Normally, generating a candidate set can be an expensive task. After                                   

the second step, frequent itemsets can be obtained from the FP-tree. 

The Spark library has an implementation of the FP-growth algorithm , with parallel capabilities, proposed                           22

by Li, Wang, Zhang, Zhang & Chang (2008). This library makes sure that when the algorithm is executed on                                     

a cluster, it will be more efficiently solved. The application will eventually run on the clusters of the NS. As                                       

the FP-growth algorithm can be parallelized, as well as it does not need an expensive candidate selection,                                 

it is more suitable than Apriori for our application. In this way, faster results can be obtained. 

Defining sets 
All of the definitions above assume that there are sets of items. In the case of the database of the NS, there                                           

are tables with errors generated by the trains. These errors should, therefore, be clustered in some way to                                   

form sets, which can then be checked for the presence of frequently occurring combinations of items. For                                 

creating these sets, there are different options. Itemsets could be defined as errors in the same timetable                                 

(i.e. the same train between stations A and B), errors generated on the same railway section, or errors                                   

generated in the same timespan of t seconds (where t can for now be an arbitrary integer). The second                                     

option, errors generated in the same railway section, seems to be more relevant. Errors generated in the                                 

same timetable are too broad to be pointed as location-specific, they would be more likely to be timetable                                   

specific or specific on the train. The size of the sets of errors generated in the same timespan of t seconds                                         

would depend on the speed of the train (as faster traveling trains cover a longer distance in the same time)                                       

and the question remains for choosing the right value of t. Railway sections enable the application to focus                                   

on trends only specific to a location (railway sections) but at the same time does not require it to learn a                                         

value t . Learning this t would require validation data, which is currently not available (yet). Still, this t could                                     

be interesting for future work, when this application has generated enough data to function as validation                               

data, where t can be minimized as such that the location-specific trends can be narrowed down to smaller                                   

sections of the railway. 

For now, the best choice is to cluster all items (errors) in the same set based on the railway section they                                         

were sent on. 

Sequential Pattern Mining seems to be useful for our application, as it enables the application to find                                 

combinations of errors that are frequent dependent on their location. It could be the case that some                                 

combinations are logical to be frequent, these can be filtered out by comparing the frequent itemsets of                                 

different locations. Both the Reliability Engineer or Fleet Analyst can decide if these combinations are                             

logical. Sometimes they will have to check this with their third parties to be sure. If, for example, most                                     

locations seem to have the same frequent itemset, then this itemset is likely not to be a location-specific                                   

22 https://spark.apache.org/docs/2.3.0/mllib-frequent-pattern-mining.html 
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trend. There is a high likelihood that it is a general trend. Still, these kind of trends can be useful, as general                                           

trends are also important to the interest of the NS. Frequent itemsets can after being identified, be coupled                                   

with optional delays of the train. If there was a delay, it might be caused by the occurrence of the frequent                                         

itemset in the timetable. Coupling with the delay is only possible when the delay is known to the system at                                       

the time of the analysis. The drawback of the use of Sequential Pattern Mining is that the trends must be                                       

frequent and thus less frequent combinations might be missed. To find these more infrequent                           

combinations, different approaches might be desired. 

Neural Networks 

Trends may be identified/classified by the comparison of many factors, neural networks offer a way of                               

classifying multidimensional data by means of relevant feature extraction, on the basis of seeing examples,                             

in the case of supervised learning (Ojha, 2017). NS has an extensive dataset containing many meaningful                               

features (section: available data), which is useful for machine learning tasks in general. In this dataset, there                                 

are no examples of trends, which makes the application of supervised neural networks challenging. Trends                             

have an additional feature, which is their chronological dependency. Recurrent neural networks (RNNs)                         

have the capability to capture such (long-term) chronological dependencies (Boden, 2002) which can be                           

used for time series prediction (Cai, 2007). 

Considering the purpose of our system, time series prediction is not something that is needed. The                               

purpose is to find existing trends, that already happened, not to predict trends that may happen. However,                                 

theoretically one could use RNNs to assign a severity to a currently detected trend by estimating how likely                                   

the observed pattern results in more error codes. This would add some amount of value to indicating the                                   

severity of existing trends, especially those that recently occurred as the cause of the trend is more likely                                   

to be present still and they have a more likely chance to reoccur. Given this a priori knowledge of recently                                       

detected trends having a higher chance of happening again the value of RNNs once again limited.                               

Predicting how likely a trend is to reoccur would focus on the predictive power of RNNs, which is not in line                                         

with the scope of this product, and add limited value to indicating longer-term trends, especially                             

considering the time needed to implement and train RNNs. Furthermore, assuming RNNs would be able to                               

classify trends, they could fall short in being able to explain the reasoning for indicating a trend (Goodman,                                   

2017) and what factors lead to calling it a trend. This explanation is important for analysts to be able to                                       

address (the cause of) the trend. 

Primarily due to the scope of this project, using RNNs is not recommended, however there is potential                                 

when looking at the type of product described in the vision section above. Neural networks could be used                                   

to classify raw sensor data as diagnostic error codes. This may be done by using technical analysts to train                                     

a neural network which selects key features in the NS dataset in order to determine accurate boundary                                 

conditions for specific diagnostic error codes. This could save the technical analysts the time and effort of                                 

trying to determine what boundary conditions lead to what diagnostic error codes. As additional                           

functionality outside of the current scope, the RNNs ability to forecast trends could well be used in order to                                     

predict what problems may pop up in the near future, such that resources can be allocated more efficiently                                   

and punctuality can be increased due to faster reaction times. 
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(Q5) Data filtering: 
When visualizing the current errors, high frequencies are found in Onnen and Maastricht, among others.                             

The reason for this is that these two cities are places where trains can go for maintenance (“Locaties langs                                     

het spoor”, n.d.). In these service locations, the mechanics need to test whether certain sensors are                               

working and will thus trigger all kinds of errors. It is, however, not visible in the error codes whether these                                       

errors are made by the mechanics in the service locations or that these are legitimate errors. This makes it                                     

thus very hard to filter these false positives out of the database. The conditions to know whether the errors                                     

are legitimate are still unknown for NS. As mentioned in the scope section, finding out these conditions is                                   

an entire research project on its own. Only the conditions already given by NS will be used to filter. The                                       

quickest way of actually filtering these will be using the SQL WHERE query (“SQL for Beginners: Filtering                                 

Your Data”, n.d.). 

Another way that noise can occur is when the trains send out quick consecutive errors for the                                 

same problem. This noise needs to be filtered by merging records that represent the same problem into                                 

one. What needs to be determined is how much time or traveled distance needs to be in between two of                                       

the same error messages in order for it to be displayed as a separate error. For determining this, empirical                                     

research is needed. The exact duration has to be found when the program is in use. When using a long                                       

duration, multiple problems might be merged into one, which is a bad thing. However, when using a short                                   

duration, too many error codes may still be displayed. 

Conclusion to the research 

For the interface, Power BI will be used. For data-storage and data processing we will use Pyspark in the                                     

Jupyter environment based on a Hive database. For autonomous trends, we use statistical analysis for                             

finding the STTs in the data and FP-growth Sequential Pattern Mining to find frequent occurring                             

combinations of errors per railway section. For data filtering, the conditions for filtering maintenance errors                             

will be executed to the extent possible, only with what NS has provided us with. For filtering the multiple                                     

errors a train sends out for the same problem, empirical research is needed to determine the time or                                   

distance traveled between errors to merge them into one. 

   

114 



 

 

Use cases 
● As a user, I want to activate the analysis when I want to, in order to make an analysis when I want it                                             

and not put too much load on the servers. 

● As an FA, I want to get a report of a daily analysis sent to me each day, in order to always be                                             
up-to-date on the newest trends. 

● As an RE, I want to get a report of monthly analysis sent to me each month, in order to gain insight                                           
into current trends without having to think of activating the system. 

● As a user, I want to change the timeframe for analysis (i.e. analyze from time x until time y), in order                                         
to see trends of different time spans than daily or monthly. 

● As a user, I want to be able to filter the results of an analysis per location, in order to be able to                                             
gain insight into location-specific information. 

● As a user, I want to be able to filter the results of an analysis, in order to be able to gain insight into                                               
the information I think to be relevant. 

● As a user, I want to have trends that can be found in the data autonomously suggested to me, in                                       
order to gain insight into a reasonable amount of trends without having to scan through the data                                 
manually. 

● As a user, I want to be able to find trends based on the frequency of errors occurring together, in                                       
order to find which errors are correlated to each other. 

● As a user, I want to filter data from service tracks signals, in order to make my data more accurate                                       
for the analysis. 

● As a user, I want to filter data from repeating errors, in order to make my data more accurate for                                       
the analysis. 

● As a user, I want to see the trends visible on a map, in order to get a quick insight on the location                                             
of the trends. 

● As a user, I want to gain insight into more specific information related to the found trends, in order                                     
to verify the validity of the trends and be able to provide additional information to others (e.g.                                 
ProRail). 

● As a user, I want to click the trends visible on a map, in order to see the additional information                                       
about the trend. 

● As a user, I want to have my indicators on a map as accurate as possible, in order to send the GPS                                           
coordinates of my trends as accurate as possible to those who have to fix the problem on the                                   
pointed location (e.g. ProRail). 

● As a user, I want to have the application integrated into the software I am familiar with: Power BI, in                                       
order to have all my analysis tools in the same environment and visualize the results of my tools on                                     
the same map. 

● As a user, I want to get an indication of how severe a detected trend is based on the class of                                         
errors, in order to be able to prioritize my work better. 
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● As a user, I want to focus my application first on the VIRM train type, in order to verify that there are                                           
location-specific trends to be found which can later be ported to different train types. 

● As a developer, I want to keep in mind that there are more train types (and therefore not hardcode                                     
any train specific elements in my program), in order to make sure that the program could later be                                   
extended to support multiple train types. 

● As a developer, I want to save/cache the outcome of analyses, in order to prevent double analyses                                 
from happening and increase the performance of the application. 

● As a developer, I want my application to be written in Python in combination with PySpark, in order                                   
to use the same language as the people that will maintain the program and, therefore, increase the                                 
maintainability. 

● As a developer, I want a minimal tested line coverage of 75%, in order to have a slight assurance of                                       
my application to be of quality. 

● As a developer, I want to use version control, in order to be able to return to previous versions                                     
when needed. 

● As a developer, I want my code to be documented in English, in order to enable any developer to                                     
maintain the code without requiring the code maintainer to be Dutch. 

Requirements 
In this section, requirements will be explained and ranked according to the MoSCoW methodology. Using                             23

this methodology the software engineering tasks can clearly be prioritized and communicated to the client,                             
thereby also serving as an implicit contract. 

Must 

● The user shall be able to click a button to start the analysis. 
● The user shall be able to analyze the VIRM train type. 
● The user shall be able to adjust the analysis time frame. 
● The user shall be able to filter the results based on a specified location. 
● The user shall be provided trends based on the number of times an error reoccurs. 
● The user shall be able to see how many different trains a trend occurred for a given location. 
● The user shall be able to see the timeframe in which the trend occurred.  
● The user shall be provided trends based on the frequency of errors occurring together (k-frequent                             

itemsets) in the trains on the same location. 
● The user shall be able to see the locations of found trends on a map based on GPS coordinates. 
● The user shall be able to gather more information regarding a trend when clicking on the trend on                                   

the map. 
● The application shall be able to point diagnostic error codes to a railway section between two time                                 

table points where they were sent from. 
● The user shall be able to view the generated results in Power BI. 
● The user shall be able to receive an automatically scheduled analysis report of the last 24 hours,                                 

that will be generated daily. 

23 https://www.agilebusiness.org/content/moscow-prioritisation 
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● The application shall use the existing service track filter to filter out diagnostic codes send from                               
service tracks. 

● The application shall have a filter to filter out repeated diagnostic codes repeatedly send which                             
indicate the same problem. 

● The user shall be able to terminate an analysis process by pressing a terminate button. 
● The results of the analysis shall be stored in a database in order to be able to display them using                                       

Power BI. 

Should 

● The user shall be able to receive an automatically scheduled analysis report that summarizes the                             
month, that will be generated monthly. 

● The user shall be able to open a view in Power BI displaying individual errors that lead to the trend. 
● The user shall be able to share last found results through email. 
● The user shall be able to filter on the class of the errors. 
● The user shall be able to filter on the rolling stock names of errors. 
● The user shall be able to filter on the diagnostic report code of errors. 
● The user shall be able to filter on the rolling stock number of errors. 
● The user shall be able to filter on the frequency of errors following a specific trend on a specific                                     

location, i.e. show all trends that re-occurred more than x times. 
● The user shall be displayed the frequency relative to the amount of train traffic for a given location. 

Could 

● The user shall be able to receive an automatically scheduled analysis report of a user-specified                             
time interval. 

● The user shall be able to see the severity of trends calculated based on the severity of the error                                     
classes in the trends. 

● The user shall be able to filter on the severity of errors. 
● The user shall be able to disable repeated diagnostic error filtering. 
● The user shall be provided with a histogram displaying the number of occurrences of diagnostic                             

error codes over time for a specific location. 
● The user shall be able to see which diagnostic codes frequently occur for a location in a chart. 
● The user shall be able to find trends based on Machine Learning methods. 
● The application shall smoothen GPS coordinates based on a map matching algorithm. 
● The user shall be able to export the result to a CSV to enable the user to open the data from Excel. 
● The user shall be able to add his own hypothetic trends and shall be able to verify the hypothesis                                     

with the data. 
● The user shall be displayed an error indicating that no recent data was added. 
● The user shall be displayed an error indicating that no recent trends were found. 
● The user shall be displayed an error indicating that no connection with the database could be                               

established. 
● The user shall be displayed an error indicating that the data used for analysis has changed format                                 

in a way that leads to the system not working. 

Won’t 

● The user shall not be able to edit existing data from the application. 
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● The user shall not be able to get real-time analysis based on the incoming data. 
● The user shall not be able to analyze different train types. 
● The user shall not be able to use raw sensor data to find trends. 
● The user shall not be able to edit existing data generated by trains using the application. 

 
Definition of Done 
The minimum viable product is the most pared-down version of the product that can still be released. The                                   
vision of the product should be visible and the functionality should have enough value to the NS. The                                   
minimal viable product consists out of the musts in the MoSCoW method above. All functionality described                               
in the should and could are optionally done when the time allows it. The won’t functionalities are not                                   
implemented and may only be included in future recommendations. The definition of done is when we                               
implemented all the functionality in the must section. 
 
 
 
 

Initial Release Plan 
We plan to do a small release every week. This initial plan is to give a coarse idea of which features we                                           
want to implement in which release. 
 
Week 3: (07-05 - 13-05) 

● Get permissions to the required frameworks, databases and libraries. 
● Establish version control and scrum board software to use as a team. 
● Design high-level architecture and make corresponding UML. 
● Establish a connection between PySpark and the NS data warehouse. 
● Use PySpark to execute queries to obtain basic location-specific results 
● Start sequential pattern mining. 

 
 
Week 4: release 1.0 

● Store result fetched with Pyspark in a database. 
● Establish a connection between the database and Power BI 
● Preliminary design for the GUI in Power BI  
● Display some data in Power BI in a table and map. 
● Design more detailed architecture and make corresponding UML 
● Determine valuable statistics to gather and design how to collect and store these statistics. 
● Implement and improve sequential pattern mining algorithm. 

 
Week 5: (21-05 - 27-05) 

● Allow the user to interact through Power BI with the analysis. 
● Allow the user to click items on a map and show basic additional information. 
● Start filtering repeating diagnostic codes and service tracks. 
● Establish a system for scheduling an analysis. 

 
Week 6: release 2.0 
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● Improve filters for diagnostic codes and service tracks. 
● Implement a system for displaying information about individual errors that lead to the trend. 
● Implement filters on already processed data, as referred to in the should section in the MoSCoW 
● Implement a system for sharing an analysis. 
● Improve the way data is visualized on the map. 
● Explore the possibility of ML techniques. 

 
Week 7: (04-06 - 10-06) 

● Implement additional visualization techniques, such as histograms/graphs, for the information of                     
individual errors that lead to the trend. 

● Extend the valuable statistics with additional valuable statistics. 
● Implement system to indicate the severity of a trend. 

 
Week 8: (11-06 - 17-06) 
This week will be used as a buffer for the planning and could be used, if time allows, to implement some                                         
additional features. For example, the item explore the possibility of ML techniques in week 6 could require                                 
the existence of such a buffer. 
 
Week 9:  release 3.0 (final) 

● Optimize the implemented must  and should functionality. 
● Finish programming documentation. 
● Submit the final code to SIG (22-06-2018). 

 
Week 10: (25-06 - 01-07) 

● Finish final report (25-06-2018) 
● Prepare BEP presentation. 
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