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Abstract. Leading-edge rain erosion poses a significant challenge for the wind turbine industry due to its detri-
mental effects on structural integrity and annual energy production. Developing effective mitigation strategies
requires understanding the precipitation conditions driving erosion. The influence of the rain droplet diameter
on both the formation of erosion damage and erosion mitigation strategies has yet to be sufficiently understood.
This study proposes an enhanced damage model based on the impingement metric as used in the state of the art
but improved by including important and thus far neglected physical mechanisms such as the recently described
droplet slowdown and deformation effect. Several drop-size-dependent effects are identified within the dam-
age model. Subsequently, their significance for leading-edge erosion is established for the International Energy
Agency (IEA) 15 MW reference wind turbine, a site in the Netherlands and a commercial leading-edge coating.
Thereafter, the influence of the drop-size effects on the viability of the erosion-safe mode (ESM) is investigated.
The outcome is that drop-size effects strongly impact the erosion process and should not be neglected during
modeling. Large droplets are considerably more damaging than small droplets, even when normalized for water
volume. This directly influences the parameter space of erosion, such as the relevant droplet diameter range that
should be studied. The drop-size effects shift damage production to higher rain intensities. Roughly half of the
erosion damage is produced by only 10 % of rain events. When drop-size effects are excluded, this value shifts
to more than 20 %. Regarding the ESM, we found that it can be utilized up to twice as efficiently when drop-size
effects are adequately modeled. The findings highlight the criticality of drop-size effects in rain erosion modeling
for wind turbine blades, impacting lifetime predictions, ESM viability and the parameter space of leading-edge
erosion. This paper also provides a formal derivation of impingement and describes a method for finding optimal
ESM strategies.

1 Introduction

Leading-edge rain erosion is the process of material removal
from wind turbine blades by impact with rain droplets. Ero-
sion leads to roughening of the blade’s leading edge. Depend-
ing on the turbine and site conditions, an eroded blade might
need to be repaired frequently to avoid the progression of
damage deep into the structural layers of the blade. The blade
roughening disturbs the boundary layer and causes an earlier
transition from laminar to turbulent flow (Campobasso et al.,
2023). This can lead to a reduction in annual energy produc-
tion (AEP) in the range of up to several percent (Papi et al.,
2021; Campobasso et al., 2023; Castorrini et al., 2023; Bar-

fknecht et al., 2022). Due to the combination of maintenance
costs and performance loss, leading-edge rain erosion consti-
tutes a significant problem for wind farm operators.

As a reaction, numerous mitigation strategies have been
devised. Examples include protective tape (Traser et al.,
2019), soft shells (Mishnaevsky et al., 2021) and hard shells
(Mathew et al., 2022). The recently proposed erosion-safe
mode (ESM) represents an operational mitigation strategy
against erosion (Bech et al., 2018; Picard and Canal Vila,
2019). In ESM operation, the turbine’s rotational speed is
lowered during precipitation events to avoid erosion damage.
If carried out effectively, the ESM has the potential to fully

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



316 N. Barfknecht and D. von Terzi: Drop-size-dependent effects in leading-edge rain erosion

protect the turbine from erosion damage. However, limiting
the turbine’s rotational speed leads to a reduction in AEP and,
thus, performance loss as well. Barfknecht et al. (2022) have
shown that depending on the rain frequency and the site mean
wind speed, the ESM can lead to a lower AEP loss compared
to a mildly eroded blade (or an equipped blade protection
system that creates similar losses; see the recent results of
Bak et al., 2023).

Understanding the conditions that promote the develop-
ment of erosion is fundamental to developing and applying
any mitigation strategy, whether in the form of protective so-
lutions or operational adjustments. The parameter space of
erosion is vast: turbines have varying tip speeds, the wind
conditions differ according to the site and so does the pre-
cipitation. Rain is heterogeneous. It is composed of droplets
of varying diameters. The statistical distribution of the rain
droplets is described with a drop-size distribution, with typi-
cal choices being the Best or Marshall–Palmer distributions.
In practice, the drop-size distribution is site-dependent (Pryor
et al., 2022). Determining the erosivity of a rain event re-
quires knowledge about the drop-size distribution and the
erosion damage associated with every droplet diameter.

So far, there is still considerable uncertainty regarding how
the diameter influences the erosivity of droplets. It is also
unknown whether the implementation and viability of the
ESM might be affected by this lack of knowledge. Bech et al.
(2022) performed measurements on an erosion test rig. They
found that depending on the impact speed, either smaller or
larger diameters are more damaging. Verma et al. (2020) per-
formed numerical simulations in which a water droplet im-
pacts a composite target. They found that the maximum coat-
ing stress increases with the droplet size. Amirzadeh et al.
(2017) performed similar simulations but assumed that the
impact target was solid. In contrast to Verma et al. (2020),
they found that the maximum impact pressure is invari-
ant with the droplet diameter. In Barfknecht and von Terzi
(2023), it was shown that droplets in the proximity of wind
turbine blades are expected to slow down. Their analysis sug-
gests that large droplets are significantly more damaging than
small droplets.

The present study investigates the following two research
questions.

1. How does the drop size influence the erosivity?

2. Is a thorough understanding of drop-size effects impor-
tant for the design of the erosion-safe mode?

The term drop-size effect refers to physical processes
where the droplet diameter influences the erosivity, espe-
cially those effects that persist even when accounting for
droplet volume or mass. To answer these research questions,
a turbine, a site and a leading-edge material must be consid-
ered. In this study, a typical combination of these is chosen.
Therefore, some results might only pertain to this particular
combination. In this study, the International Energy Associa-

tion (IEA) 15 MW reference turbine is used (Gaertner et al.,
2020). Where applicable, results for the non-dimensional
blade span r/Rblade = 0.9 are shown. This location was cho-
sen based on the fact that leading-edge protection solutions
are generally applied on a length of 10 to 20 m when mea-
sured from the tip (Verma et al., 2021). The blade span of
the IEA 15 MW is approximately 120 m. The turbine was
assumed to be located at the coastal site De Kooy (Den
Helder) in the Netherlands at the coordinates 52°55′26.4" N,
4°46′48.0" E.

The paper is organized into two parts. Each part pertains
to one research question. Attached to this paper is an ex-
tensive appendix that develops and formalizes concepts that
are used in this study but are not directly linked to the re-
search questions. The first part starts in Sect. 2.1 by devel-
oping an erosion damage model based on the impingement
metric. Subsequently, in Sect. 2.2, the drop-size effects con-
tained in the model are identified, and their relevance is quan-
tified for each effect individually. In Sect. 2.3, the drop-size
effects are analyzed holistically and combined to find an an-
swer to the first research question. Section 2.4 synthesizes
the results in preparation for the second research question.
The second part, presented in Sect. 3, establishes the influ-
ence of drop-size effects on the implementation and viability
of the ESM. The conclusions of this paper are presented in
Sect. 4. Appendix A gives a formal derivation of the impinge-
ment damage metric. In Appendix B, the operational regime
of the ESM is defined together with a method to derive op-
timal ESM strategies. In Appendix C, the calculation of the
AEP and pitch angle is explained.

2 Drop-size-dependent effects

The methodology of this section consists of two main parts.
First, this study’s damage model is derived. It is used to cal-
culate the lifetime of the the blade under various operating
conditions. In the second part, the drop-size effects that are
contained within the damage model are identified and dis-
cussed.

2.1 Derivation of the damage model

2.1.1 Damage rule and metric

The damage model is built on the linear Palmgren–Miner
damage rule. The damage metric that is used is impinge-
ment H . It represents the water column that is caught by the
wind turbine’s blade during operation. One obtains

D = Train

∞∫
0

∞∫
0

360°∫
0°

∞∫
0

∂tHI,Vwind,θ,φ

Hallowed
dφdθdVwinddI, (1)

where D is the damage accumulated in 1 year of opera-
tion. Hallowed is the impingement that can be collected by the
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Figure 1. Erosion test-rig results and the drop-size-dependent damage law by Bech et al. (2022) that relate impact velocity to impingement.
The averaged law by Barfknecht and von Terzi (2023) is also given; note that the figure is a log–log plot.

blade before damage can be observed on the blade’s coating.
∂tHI,Vwind,θ,φ is the rate at which impingement is collected
during operation. ∂t is a shorthand notation for the opera-
tor ∂/∂t . A detailed derivation of impingement is given in
Appendix A1. Train is the duration of rain during a year and
is given by

Train = Tyearprain, (2)

where Tyear is the time in a year and prain is the probability of
rain at the wind turbine site. For De Kooy in the Netherlands,
prain= 6.7 % (KNMI, 2020).

The equation integrates over four statistically distributed
variables: the rain intensity I , the wind speed Vwind, the
blade’s rotational position θ and the rain droplet size φ. The
equation assumes an elastic behavior of the leading-edge ma-
terial. The lifetime in years is

L=
1
D
. (3)

In this study the continuous integrals were discretized and
integrated numerically using the trapezoidal rule. The dis-
cretization was performed carefully so that the results are
grid converged with respect to the significant digits.

2.1.2 Impingement until the end of incubation

The impingement that can be collected by the blade until the
end of the incubation period (allowed impingement) is mod-
eled using a power law.

Hallowed =
α

V
β

impact

, (4)

where α and β are two coefficients, and Vimpact is the water
droplet impact velocity with the blade. Here α is not an angle.

Instead of determining these parameters from, e.g., a semi-
empirical relation as used in the Springer model (Hoksbergen
et al., 2022), we choose to determine the parameters directly
from experimental data instead. Bech et al. (2022) performed
tests of a commercial polyurethane-based leading-edge coat-
ing in a rotating-arm test rig. The coating was subjected, in
independent tests, to four different droplet sizes of 0.76, 1.90,
2.38 and 3.50 mm. The 0.76 mm droplets were created by
spraying, leading to a variance in the diameter of the pro-
duced droplets. This is discussed in more detail in the origi-
nal reference. The test rig with its test specimen was stopped
at regular intervals, and new damage spots were recorded.
Most damage was observed directly at the leading edge. It
was, therefore, assumed that Eq. (4) gives the allowed im-
pingement for droplets colliding head-on. The resulting mea-
surements are shown as points in Fig. 1. From these, two
damage laws are derived.

Averaged law. The averaged law is obtained by fitting a
curve through the measurements of Bech et al. (2022). It was
first described in Barfknecht and von Terzi (2023). The re-
sulting curve is shown in Fig. 1. The averaged model serves
as a baseline for comparing the drop-size-dependent law. The
best-fit parameters are

α = 3.4860× 1020,β = 9.5774. (5)

Drop-size-dependent law. The drop-size-dependent law is
directly taken from Bech et al. (2022). It accounts for drop-
size-dependent performance differences in the coating by uti-
lizing a heuristic softsign function. It reads

H100 =
a1φ

1+ |1φ|
+ b, (6)
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with 1φ = φ−φ0, φ0= 2.3 mm, a =−17.1 and b = 21.7.
Further,

β =
a1φ

1+ |1φ|
+ b, (7)

with a =−3.1, b = 8.9 and φ0= 2.1 mm. φ needs to be sub-
stituted in millimeters. α is given by

α = 100βH100. (8)

Like the averaged law, it is visualized in Fig. 1.
It should be noted that the parameters of both laws depend

on the leading-edge material considered. Therefore, other
materials might behave differently, especially with respect to
the drop size. The authors of this study consider the results
from Bech et al. (2022) to be the best-available erosion test-
rig data set in the public domain and view them as a good
representation of the current state of the art.

2.1.3 Calculation of the accumulated impingement

The impingement rate is the last missing term in Eq. (1) that
needs to be defined. It is given by

∂tHI,Vwind,θ,φ =
Ifφ,plane

Vφ︸ ︷︷ ︸
T1

Vcollection︸ ︷︷ ︸
T2

fIfVwindfθ , (9)

where Vcollection is the speed at which rain is accumulated,
and Vφ is the droplet terminal fall velocity. Note that the di-
mension of ∂tHI,Vwind,θ,φ is [LT−1]. The derivation and ad-
ditional clarification of Eq. (9) is provided in Appendix A1.
T1 represents the volume of water per volume of air, and
T2 represents the swept line (volume) of air per unit of time.
It is dependent on four statistically distributed variables that
will be discussed in the following.

The first distribution fφ,plane should not be interpreted as
a time fraction but rather stems from the fact that at every
instant in time, a wide range of droplet sizes impact on the
blade. In particular, it describes the amount of water associ-
ated with every droplet diameter that passes through an imag-
inary plane in the air. In this study fφ,plane is derived using
the Best drop-size distribution (Best, 1950a). Best gives a
probability density function (PDF) that describes the water
mass associated with every droplet diameter in a volume of
air. It reads

fφ,air = 2.25
(

1
1.3I 0.232

)2.25

φ2.25−1e
−

(
φ0

1.3I0.232

)2.25

. (10)

Best’s distribution requires the rain intensity I to be given
in millimeters per hour, and the droplet diameter φ must be
substituted in millimeters. To convert the distribution into
fφ,plane, the following equation is used:

fφ,plane =
fφ,airVφ∫
∞

0 fφ,airVφdφ
. (11)

To find the rain intensity distribution fI, the hourly pre-
cipitation data of the automatic Royal Netherlands Meteoro-
logical Institute (KNMI) rain gauge station at De Kooy are
used. The data from the 10-year window ranging from 2011
to 2020 were used to find the coefficients of fI in the form
of a lognormal distribution. The formula for the lognormal
distribution reads

fI =
1

Iσ
√

2π
e
−

(lnI−µ)2

2σ2 . (12)

The coefficients were found using Matlab’s lognfit func-
tion. µ is the mean, and σ is the standard deviation. They
read σ = 0.9693 and µ=−0.1987 or µ=−15.29, depend-
ing on whether I is considered to be in millimeters per hour
or in meters per second.

The distribution of the wind was calculated using a
Weibull distribution. It reads

fwind =
k

c

(
Vwind

c

)k−1

e−(Vwind/c)k , (13)

where c is the scale parameter, and k is the shape parame-
ter. Both parameters were obtained for the De Kooy location
using the Dutch Offshore Wind Atlas at the height of 150 m
(DOWA, 2020). They read c= 10.5 ms−1 and k = 2.24. The
mean wind speed is Vmean= 9.2 ms−1.

Note that it is assumed that the wind speed and the rain
intensity are not statistically correlated. In general, this as-
sumption is not true as, e.g., shown in Letson et al. (2020). In
the 2011 to 2020 time frame, the De Kooy mean wind speed
at 10 m height above ground during rain was 6.80 ms−1,
whereas during dry conditions, the mean wind speed was
5.32 ms−1 (KNMI, 2020). However, for the purpose of this
study, this assumption is deemed to be acceptable. Results
for De Kooy that use actual wind and precipitation measure-
ments as inputs for the ESM are presented in Barfknecht and
von Terzi (2024).

The probability density function of the blade position fθ
is given by the equation

fθ =
1

360°
. (14)

During operation, the turbine spins continuously; hence
every blade position is equally likely to occur. It is also as-
sumed that during a standstill, the parking position is ran-
dom.

2.1.4 Calculation of the drop impact velocity

The key driver for the erosion damage is the impact velocity
Vimpact of the rain droplets. It is used in Eq. (4), where it has
a significant effect on the lifetime due to the size of the pa-
rameter β. Small variations in the calculated impact velocity
will yield very different Hallowed. Secondly, the closely re-
lated sibling Vcollection is used in Eq. (9) for the calculation of
the impingement rate ∂tHI,Vwind,θ,φ .

Wind Energ. Sci., 10, 315–346, 2025 https://doi.org/10.5194/wes-10-315-2025
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Figure 2. Velocity components and angle definitions that constitute Vimpact. (a) Rain droplet velocity components as seen by a blade section,
and (b) the definition of the angular blade position θ and its influence on the surface normal component of the terminal droplet velocity Vφ .

The following assumptions are made for the derivation of
the impact velocity.

– Rain droplets are advected with the local wind vector,
which is comprised of the wind speed and the wind tur-
bine’s induction factors.

– There are no wind veer, shear, turbulence and gust ef-
fects.

– The rotor plane is two-dimensional; i.e., there is no pre-
cone and blade bending.

– The blade is rigid.

– The leading edge from root to tip lies in a straight line.

– The droplet slowdown as described in Barfknecht and
von Terzi (2023) can be modeled as a one-dimensional
problem and the droplets follow a ballistic path. Other
assumptions regarding the slowdown effect made in the
same reference also apply.

The impact velocity is defined as

Vimpact = (V sec−V rain) ·nLE, (15)

where V sec is the velocity vector of the blade section. V rain is
the velocity vector of the rain (droplets). nLE is the surface
normal vector of the leading edge. Figure 2 visualizes all ve-
locity components that are considered in this study.

Using the velocity diagrams of Fig. 2, one obtains

V sec =

sinθVsec
cosθVsec

0

 (16)

and

V rain =

 −sinθVseca
′

−cosθVseca
′
−Vφ

−Vwind(1− a),

−V slowdown (17)

with

V slowdown = Vslowdown
−V rel

|V rel|
. (18)

Inserting into Eq. (15) yields

https://doi.org/10.5194/wes-10-315-2025 Wind Energ. Sci., 10, 315–346, 2025
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Vimpact =

 sinθVsec(1+ a′)
cosθVsec(1+ a′)+Vφ

Vwind(1− a)

 ·
sinθ cosϕ

cosθ cosϕ
sinϕ


︸ ︷︷ ︸

nLE

+Vslowdown
−V rel

|V rel|
·

sinθ cosϕ
cosθ cosϕ

sinϕ

 (19)

= Vsec(1+ a′)cosϕ+Vφ cosθ cosϕ

+Vwind(1− a) sinϕ−Vslowdown cosαφ . (20)

According to Fig. 2a, V rel is the relative droplet velocity
in the plane of the airfoil cross-section considered. In Ap-
pendix A2 it is shown that

Vcollection = Vsec(1+ a′)cosϕ+Vφ cosθ cosϕ

+Vwind(1− a) sinϕ; (21)

hence, the collection velocity is the impact velocity but with-
out the slowdown.

The first two terms in Eq. (20) represent the surface normal
component of the circumferential velocity. That is,

Vcircumferential = Vsec(1+ a′)+Vφ cosθ, (22)

with Vsec being the speed of the blade section. At the tip,
Vsec = Vtip. a′ is the radial (tangential) induction factor. In
contrast to common inflow velocity diagrams for wind tur-
bines, an extra term reading Vφ cosθ can be found in Eq. (22).
This term represents the velocity component due to the ter-
minal velocity of the rain droplet Vφ , as shown in Fig. 2b. It
is calculated with the relation from Best (1950b) and reads

Vφ = 9.32e0.0405h
(

1− e−(0.565φ)1.147
)
. (23)

It is shown in Fig. 3. h is the height above ground in kilo-
meters and φ the droplet diameter in millimeters. The height
is

h= hhub+ r cosθ, (24)

where hhub is the turbine’s hub height, and r is the position
along the blade span. At the tip, r becomes the blade length
Rblade, that is r = Rblade.

The third term of Eq. (20) represents the surface normal
component of the inflow velocity. It reads

Vinflow = Vwind(1− a), (25)

where Vwind is the wind velocity, and a is the axial induc-
tion factor. With the abovementioned assumptions in mind,
Vwind is constant throughout the entire rotor plane, and the
droplets will be advected perfectly with this velocity.

Figure 3. Terminal velocity for falling water droplets as a function
of the droplet diameter; values for h= 0 km, i.e., sea level.

The last term is the so-called slowdown velocity as de-
scribed in Barfknecht and von Terzi (2023). The veloc-
ity field of the airfoil interacts aerodynamically with the
rain droplets and, when seen from the airfoil, slows them
down, thus making them significantly less erosive. The slow-
down results from the velocity differential between the ve-
locity field of the blade and the rain droplet. This creates a
drag force, leading to a reduction in velocity. Approaching
droplets undergo deformation and can break up, as shown in
Fig. 4. The deformation and breakup heavily influence the
impact speed of the droplets.

Droplets that impact the leading edge can travel on either
a ballistic (in the direction of V rel) or a streamline trajectory.
The latter assumes that the rain droplets follow the flow per-
fectly, something that should be true for φ→ 0 mm. Droplets
with diameters of φ→∞mm should follow a ballistic tra-
jectory. This study assumes that the droplets follow a ballistic
trajectory. In Barfknecht and von Terzi (2023), it was shown
that droplets that follow a streamline trajectory experience
more slowdown. Hence, assuming a ballistic trajectory un-
derpredicts the slowdown of small droplets. As will be shown
in the remainder, this is a conservative assumption regarding
the conclusions of this work.

The slowdown velocity Vslowdown is obtained using the
methodology from Barfknecht and von Terzi (2023) where
an existing Lagrangian model was extended to accurately
predict the velocity of droplets in the vicinity of the lead-
ing edge of a wind turbine blade. Two equations of motion
are solved that describe the one-dimensional approach of the
rain droplets toward the blade:

m
d2x

dt2
= Fdrag, (26)

3
16
m

d2a

dt2
= Fσ +Fp, (27)

where Eq. (26) represents the deceleration of the droplet, and
Eq. (27) describes the droplet’s deformation from a spheroid

Wind Energ. Sci., 10, 315–346, 2025 https://doi.org/10.5194/wes-10-315-2025
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Figure 4. Ballistic and streamline trajectory of a droplet approaching an airfoil (at an angle αφ); ϕ is set to zero in this illustration. Far away
from the blade at station (I), droplets have a shape resembling a spheroid; as the droplets approach the leading edge, they deform (II) and
eventually break up into specific breakup patterns (III). The high-speed images are reproduced from Sor et al. (2019); the illustration itself is
taken from Barfknecht and von Terzi (2023).

to an oblate spheroid. The method cannot predict the ac-
tual (broken-up) droplet shape. However, the results in Bar-
fknecht and von Terzi (2023) showed that approximating the
droplet as an oblate spheroid is sufficient to accurately deter-
mine the slowdown.

The forces that are acting on the droplet are the drag
force Fdrag, the surface tension Fσ and the pressure force Fp.
Fp drives deformation, while Fσ counteracts droplet defor-
mation. Here, a is the semi-major axis of the oblate spheroid.
m is the droplet mass, and x is the droplet position along its
path.

The slowdown velocity is then calculated as

Vslowdown =

(
dx
dt

)
at impact

. (28)

The background velocity Vair field is calculated with

Vair

|V rel|
= 1−

1(
1+ 1x

Rc

)n , (29)

where 1x is the distance between the droplet and blade. At
r/Rblade = 0.9 the IEA 15 MW turbine has an aerodynamic
nose-radius Rc= 0.064 m and an exponent n= 1.097 (Bar-
fknecht and von Terzi, 2023). The reader is referred to Bar-
fknecht and von Terzi (2023) for a detailed description of the
slowdown model and how to implement it.

The angle ϕ is

ϕ = ϕpitch−ϕtwist, (30)

where ϕpitch is the pitch angle of the blade. The determination
of the pitch angle and the induction factors is described in
further detail in Appendix C. ϕtwist is the local twist angle.
At r/Rblade = 0.9, ϕtwist=−2.1°. Subsequently, cosαφ can
be calculated using

cosαφ =
V rel

|V rel|
·nLE

= cos
(

arctan
(

Vinflow

Vcircumferential

)
−ϕ

)
. (31)

It is important to note here that αφ , while similar, is not the
angle of attack of the blade element but should rather be con-
sidered the drop impact angle. It should also be mentioned
that depending on the application, it might be more conve-
nient to write Vimpact in its alternative form, that is

Vimpact = cosαφ

(√
V 2

inflow+V
2
circumferential−Vslowdown

)
, (32)

and concurrently

Vcollection = cosαφ
√
V 2

inflow+V
2
circumferential. (33)

In this study the impact velocity was determined for the
leading edge of the blade. It can also be determined for other
locations by adjusting the surface normal vector. This can be
desirable since, in practice, the point with the highest erosion
can lie slightly off the leading edge in the direction of the
stagnation point.

On a final note, the careful reader might argue that some
droplets get deflected and do not hit the blade and that this
aspect is missing. However, in practice, droplets only miss
the blade when they tend to follow a streamline trajectory
and when that streamline is located toward the top or bottom
of the airfoil; see the results of Sor et al. (2021).

Closely related is the concept of collection efficiency, as
is known from aircraft icing. For a streamtube, it is the ratio
of surface to free-stream water flux, as shown in Gent et al.
(2000). Two effects influence this ratio. Firstly, the stream-
tube can widen toward the airfoil. In the region of the leading
edge, the widening merely distributes the rain droplets onto
a larger blade area, reducing the surface water flux. Sor et al.
(2021) showed that at the leading edge, this reduction is on
the order of 10 % for the relevant droplet sizes. The effect be-
comes more pronounced as droplets become smaller. When
moving far away from the leading edge, the widening can,
indeed, become so large that some droplets start to miss the
blade. Secondly, the collection efficiency is comprised of the
reduction in surface water flux due to a non-orthogonal im-
pact with the airfoil’s leading edge. This aspect is modeled
in this study since (V sec−V rain) is projected onto nLE.
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It is important to realize that neglecting the streamtube
widening is a conservative assumption regarding the con-
clusions of this study. The assumptions lead to a higher sur-
face water flux and impingement for smaller droplets. Hence,
smaller droplets appear to be more erosive than they actually
are. This effect could be included in future works. It, how-
ever, necessitates at least Lagrangian particle simulations in
a two-dimensional domain, which is computationally costly.

2.2 Discussion of the drop-size effects in the damage
model

This section investigates which deductions can be made from
the equations within the previously derived damage model.
Different drop-size-dependent effects are derived from the
model and discussed. In particular, it is shown that due to the
drop-size-dependent effects, the damage model suggests the
following.

1. Large droplets are more damaging than small droplets.

2. Large droplets become more frequent as the rain inten-
sity increases.

3. As a consequence of the above, for equal amounts of
impingement, higher rain intensities are more damaging
than lower intensities.

At the core of these deductions is that Vimpact and Vcollection
are the key drivers for erosion. The damage components of
Eq. (1) are

∂tDI,Vwind,θ,φ =
∂tHI,Vwind,θ,φ

Hallowed
. (34)

Here it is important to realize that Vimpact is contained in
the denominator and Vcollection in the numerator, see Eqs. (4)
and (9). Substituting leads to

∂tDI,Vwind,θ,φ ∝ V
β

impactVcollection ≈ V
β+1
impact. (35)

This equation shows that a faster droplet is much more
damaging than a slower droplet. First, a high Vcollection leads
to a higher rate of impingement accumulation. This effect is
linear under the assumptions of this study. Secondly, a high
Vimpact leads to significantly less Hallowed due to the large
magnitude of β, which can be on the order of 10. This effect
is very severe and highly non-linear.

2.2.1 Influence of the rotation and terminal velocity on
the impact velocity

The terminal velocity of rain droplets causes an oscillation
in impact speed over one blade rotation. In Eq. (22), the
surface normal component of the droplet terminal velocity
is not constant over one blade rotation but is a function
of cosθ . The influence of θ on Vcircumferential is shown in
Fig. 5a. Vcircumferential is at a maximum at θ = 0°, i.e., when

the blade-section speed and the droplet’s terminal velocity
directly oppose each other. Correspondingly, Vcircumferential is
at a minimum at θ = 180°. Since the droplet terminal ve-
locity is a function of the droplet diameter, as shown in
Fig. 3, this effect becomes more pronounced as the droplet
diameter increases. It is noteworthy that the circumferen-
tial velocity averaged over one rotation is constant. How-
ever, due to the highly non-linear character of Eq. (35),
some impacts at a lower and some impacts at a higher im-
pact speed will, in total, yield higher damage. Figure 5b
plots the non-dimensional damage (Vcircumferential/Vsec)β+1

over one blade rotation. Here it is assumed that there are no
induction factors, Vslowdown = 0 and Vwind = 0. At θ = 90°
and θ = 270°, the surface normal component of the termi-
nal velocity is zero. Hence, the normalized damage is unity
since Vcircumferential = Vsec. The maximum damage is found
at θ = 0° and the minimum at θ = 180°, coinciding with the
locations of maximum and minimum Vcircumferential. The non-
dimensional average damage over one rotation as a function
of droplet diameter is shown in Fig. 5c. It reads

D(φ)=

360∫
0

fθ

(
Vcircumferential

Vsec

)β+1

dθ. (36)

The damage is 1.013 for a droplet of 0.5 mm and 1.260
for a droplet of 4.0 mm, so the 4 mm droplet creates about
24.4 % more damage. This shows that the effect is significant
and needs to be accounted for.

2.2.2 Influence of the rotation and terminal velocity on
the impact angle

The drop impact angle αφ varies with the blade position
because it depends on Vcircumferential; see Eq. (31). During
the upstroke of the blade, the term Vφ cosθ is positive and
decreases the angle αφ . During the downstroke, the sign
becomes negative and αφ increases. The variation in αφ
becomes stronger as the droplet diameter increases. αφ is
shown in Fig. 6a. It can be decomposed into

αφ = α+α(θ )′. (37)

The impact angle is, therefore, a combination of the classi-
cal angle of attack of the blade and an oscillating component
that is dependent on the angular blade position θ .

Equations (32) and (35) imply that

∂tDI,Vwind,θ,φ ∝ cos(αφ)β+1. (38)

This equation is shown in its non-dimensional form in
Fig. 6b. As before, the damage oscillates once over one sin-
gle rotation. On first glance, Fig. 6b appears to be similar
to Fig. 5b. During the upstroke, the damage production is
increased, whereas during the downstroke of the blade, the
damage is reduced. However, the magnitude of the effect
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Figure 5. Circumferential velocity and non-dimensional damage as a function of angular blade position for different droplet diameters; the
induction factors were neglected (β = 9.58; Vsec= 86.5 ms−1): (a) circumferential velocity, (b) non-dimensional damage and (c) average
damage over one blade rotation.

is very small, with the amplitude being only about 1.5 %
for a droplet of 4 mm in diameter. Calculating similarly
to Eq. (36), the averaged non-dimensional damage over
one rotation yields Fig. 6c. The damage is approximately
unity for a droplet of 0.5 mm and about 0.999 for a droplet
of 4.0 mm. Hence, a slight reduction in the damage can be
observed due to α′ being asymmetrical to the blade posi-
tion, i.e., for a droplet of 4 mm diameter α(0°)′=−0.54°
and α(180°)′= 0.66°. However, considering that the aver-
aged damage is near unity for all droplet diameters, one can
conclude that this effect is not significant and can be ne-
glected.

2.2.3 Drop-size-dependent damage law

The drop-size-dependent damage law of Bech et al. (2022)
suggests that the performance of a wind turbine coating
is dependent on the droplet diameter. The law is given by
Eqs. (6)–(8) and is plotted for four different droplet diameters
in Fig. 1. The spread in the curves for small and large droplets
closes with increasing impact speed. At about 116 ms−1, a

crossover point exists. At that point, droplets of 0.76 and
1.90 mm have the same Hallowed. Beyond that point, smaller
droplets become more damaging than larger droplets. As the
impact speed increases, the spread starts to grow again. For
diameters above approximately 2 mm, the crossover point is
delayed to higher speeds, where the exact location is depen-
dent on the particular diameter.

The drop-size dependency is shown in more detail in
Fig. 7. The figure shows the natural logarithm of Hallowed for
a combination of relevant droplet sizes and impact speeds.
The shape of the softsign function is clearly visible within the
contour plot. The allowed impingement drops sharply above
diameters of about 1 mm and continues with a steep decline
up to 3 mm, where it then starts to slowly become shallower
again. The drop-size effect is significant, which can be seen
by following a contour. A small droplet φ→ 0 mm has the
same allowed impingement at 85 ms−1 as a 4 mm droplet at
about 65.6 ms−1. When considering a constant impact speed
of 85 ms−1, a droplet φ→ 0 mm has an allowed impinge-
ment of 201 m, while a 4 mm droplet will already lead to
failure after 34 m of impingement.
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Figure 6. Impact angle and non-dimensional damage as a function of angular blade position for different droplet diameters; the induction
factors were neglected (β = 9.58, Vsec= 86.5 ms−1, Vwind= 9.2 ms−1, ϕtwist,r/Rblade=0.9=−2.10°, ϕpitch,9.2 m s−1 = 0°): (a) impact angle,
(b) non-dimensional damage and (c) average damage over one blade rotation.

Figure 7. Contour lines of ln(Hallowed) according to Eqs. (6)–(8)
for different droplet diameters and impact velocities. Contour levels
are spawned at φ→ 0 mm for impact velocities in 5 ms−1 incre-
ments.

α and β govern the drop-size dependency. As the droplet
diameter decreases, α increases, leading to a longer life-
time for small droplets at low impact speeds. Further, as
the droplet diameter decreases, β increases, resulting in
smaller droplets having a higher sensitivity (slope) with re-
spect to the impact velocity. Consequently,Hallowed for small
droplets starts high but decreases rapidly with increasing im-
pact speeds. In contrast, for large droplets,Hallowed is initially
lower but decreases more gradually. These differing behav-
iors cause the curves for small and large droplets to intersect.
The first crossover point occurs at approximately 116 ms−1,
which is above the typical impact speeds encountered in cur-
rent wind turbine applications. Therefore, under these condi-
tions, the damage law suggests that small droplets cause less
damage than larger ones.

2.2.4 Droplet slowdown

Rain droplets slow down when approaching the leading edge
of an airfoil, as shown in Fig. 8a. It can be seen that the
slowdown for droplets of 0.49 mm in diameter approaching
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Figure 8. Relative velocity before impact and non-dimensional impact velocity for droplets approaching the leading edge of an airfoil; plot is
reproduced from Barfknecht and von Terzi (2023); (a) relative velocity of 0.49 mm diameter droplets versus distance to the leading edge1x,
(b) non-dimensional impact velocity as a function of droplet diameter.

at 90 ms−1 is about 10 ms−1. The figure also shows that most
of the slowdown is taking place close to the leading edge. In
this particular case, most of the slowdown is happening at
a distance of less than 5 cm to the leading edge. The slow-
down is influenced by |Vrel| and the droplet size. As |Vrel|

increases, so does the slowdown velocity. This is shown in
Fig. 8a. Figure 8b shows that smaller droplets encounter sig-
nificantly more slowdown than larger ones.

The damage reduction due to the slowdown effect is vi-
sualized in Fig. 9. Due to the high sensitivity of the damage
law, a moderate slowdown of 5.5 ms−1 reduces the erosion
damage already by half. The figure also shows the damage
reduction that is associated with different droplet diameters.
The slowdown effect suggests a damage reduction of about
20 % for droplets of 4 mm. For droplets of 0.5 mm, a dam-
age reduction of 84 % is predicted. Hence, the slowdown is
highly drop-size-dependent and overall leads to a significant
reduction in the absolute erosion damage.

2.3 Composition of the total erosion damage

With the damage model described and the drop-size effects
identified, the total erosion damage can be calculated for the
considered sample site and turbine. Subsequently, it can be
decomposed into its components to quantify the influence
of the drop-size effects. The damage is decomposed with
respect to the droplet diameter, the angular position of the
blade, the wind speed and the rain intensity. Equation (1) can
be modified into

D(φ)= Train

∞∫
0

∞∫
0

360∫
0

∂tDI,Vwind,θ,φdθdVwinddI. (39)

Then D(φ) is normalized into fD(φ) so that

∞∫
0

fD(φ)dφ = 1. (40)

Similarly, fD(I ), fD(θ ) and fD(Vwind) can be found. By
normalizing D, influences of drop-size effects on the abso-
lute lifetime are excluded. This makes the comparison of
drop-size effects easier. fD(φ) represents a probability den-
sity function. Consequently, FD(φ)=

∫ φ
0 fD(φ′)dφ′ repre-

sents the cumulative distribution function (CDF). The de-
composition of the damage into its PDF and CDF is shown
for all four independent variables in Fig. 10.

Figure 10a shows the decomposition with respect to the
droplet diameter. It is important to note here that the fig-
ure shows the damage that is associated with the total water
volume comprised by all droplets of a particular diameter.
It does not show the damage for a single droplet. The fig-
ure shows that when drop-size effects are excluded, droplets
of around 1 mm contribute the most toward erosion dam-
age. Half of the total erosion damage is created by droplets
of 1.26 mm and below, and 97.0 % of the damage is created
by droplets up to a size of 3 mm. The inclusion of drop-size
effects causes a shift toward larger droplet diameters. The
droplet diameter contributing the most toward erosion dam-
age then becomes 1.67 mm. The probability density func-
tion with drop-size effects has a plateau region. Therefore, a
wider range of droplets becomes important for erosion. Half
of the erosion damage is created by droplets of 2.00 mm and
below. Droplets up to 3 mm in diameter create 84.8 % of the
erosion damage. Hence, droplets over 3 mm in diameter be-
come significant for erosion when drop-size effects are prop-
erly accounted for.

Figure 10b shows how the drop-size effects influence the
decomposition of the erosion damage with respect to the
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Figure 9. Non-dimensional damage due to the slowdown effect versus slowdown velocity (a) and droplet diameter (b): β = 9.58,
|V rel| = 86.5 ms−1, Rc= 0.064 m and n= 1.097.

Figure 10. Composition of the normalized erosion damage with respect to the four independent variables for the IEA 15 MW turbine located
at De Kooy: (a) rain droplet diameter, (b) rain intensity, (c) angular position of the blade and (d) wind speed.
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rain intensity. Similar to Fig. 10a, inclusion of the drop-size
effects shifts damage production to higher rain intensities.
Without drop-size effects, 50 % of the total damage is pro-
duced by rain intensities of 1.82 mmh−1 and below. With the
inclusion of the drop size, this value changes to 2.81 mmh−1.
The probability density functions show that the damage con-
tribution is reduced for precipitation events of approximately
2.2 mmh−1 and below, whereas above this value, the damage
contribution is increased.

The decomposition of the damage with respect to the
blade’s angular position is shown in Fig. 10c. Without any
drop-size effects, the damage production is constant for all
blade positions, and hence, the damage accumulates linearly
toward unity. When drop-size effects are included, one can
see that during the upstroke (−90°<θ < 90°; see Fig. 2b),
damage production is higher than during the downstroke
(90°<θ < 270°). The difference is significant. At θ = 0°, the
damage is about 3 times higher than at θ = 180°. Therefore,
most erosion damage is created during the upstroke of the
blade.

As shown in Fig. 10d, drop-size effects have a negligi-
ble influence on the decomposition with respect to the wind
speed. With drop-size effects, the variable load region con-
tributes slightly more toward the erosion damage.

Previously, in Fig. 10a, the damage associated with all
droplets of a particular size was shown. However, it is also
possible to compute the damage associated with a single
droplet. Firstly, one can calculate the damage per droplet nor-
malized by water mass. This excludes differences in erosion
damage due to small and large droplets having different vol-
umes. Secondly, the water volume can be added to obtain the
absolute damage for a single water droplet.

The normalized damage for a droplet of a particular diam-
eter is given by

D(φ)
H (φ)

=

∫
∞

0

∫
∞

0

∫ 360
0 ∂tDI,Vwind,θ,φdθdVwinddI∫

∞

0

∫
∞

0

∫ 360
0 ∂tHI,Vwind,θ,φdθdVwinddI

. (41)

This is equal to the damage that is created per 1 m im-
pingement of droplets of a particular size. Similarly, the ab-
solute damage accounting for differences in water volume is
given by

Volφ
D(φ)
H (φ)

=
D(φ)
nφ/dA

, (42)

where the relation is used such that H (φ)= nφVolφ/dA,
where Volφ is the volume of a droplet with diameter φ. nφ is
the number of droplets of a particular diameter and dA is
a surface element of the blade; see Appendix A1. Hence,
Eq. (42) is the damage created per droplet on a surface area
element dA.

The metrics of Eqs. (41) and (42) are shown in Fig. 11. It
is important to note that the numerical values of the curves
with and without drop-size effects cannot be directly com-
pared. The reason is that drop-size effects also influence the

absolute lifetime. This aspect is further discussed in Sect. 3
and, particularly, in Table 1. Hence, only the behavior of the
curves is of interest here.

In Fig. 11a, the damage caused by all drop sizes is con-
stant when drop-size-dependent effects are neglected. With
drop-size effects, one can see that large droplets produce sig-
nificantly more damage for the same amount of water. For
example, the damage produced by 4 mm droplets is about
14 times higher than that of 1 mm droplets, for equal amounts
of water. In Fig. 11b, the absolute damage for a single droplet
is given. Including the water volume significantly amplifies
the difference in damage production between a small and a
large droplet. Without drop-size effects, a 4 mm droplet is, as
expected, 64 times more damaging than a droplet of 1 mm in
diameter. If drop-size effects are included, this increases to
896 times.

2.4 Synthesis

The analysis presented in this section revealed that the fol-
lowing relevant drop-size-dependent effects are contained
within the assumed damage model.

– Rotation of the blade. Larger droplets have a higher ter-
minal velocity. This, averaged over one rotation, leads to
more damage due to the non-linear nature of the damage
model.

– The slowdown effect. Large droplets have less slowdown
than small droplets. Hence, large droplets have a higher
impact speed.

– Damage law. In the relevant impact-speed range for cur-
rent wind turbines, large droplets have a lower allowed
impingement.

From these effects, it was concluded that for the same im-
pingement, large rain droplets must be more damaging than
small droplets. The drop-size distribution of Eq. (11) is vi-
sualized in Fig. 12. It states that rain becomes comprised
of larger and larger droplets with increasing rain intensity.
Hence, for the same amount of impingement, higher-rain-
intensity events should create more erosion damage. The ero-
sion damage per meter impingement of a particular rain in-
tensity is given in Fig. 13. The formula for the damage is
analogous to Eq. (41). As before, the damage is not equal
for both curves. When no drop-size effects are included, the
erosiveness is constant across the rain intensities. It is note-
worthy that the value of D(I )/H (I )= 0.624× 10−3 m−1 is
equal to the one in Fig. 11a. Hence, when drop-size effects
are excluded, the normalized damage is invariant with respect
to the droplet diameter and rain intensity. As predicted, when
the drop-size effects are included, the erosiveness rapidly
increases with increasing rain intensity. This corroborates
statement three in Sect. 2.2. These findings directly influence
the operation of the ESM. This aspect is discussed in the next
section.
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Table 1. Summary showing the influence of the drop-size-dependent effects on the lifetime and percentage time a turbine needs to stop
(S-ESM) during precipitation to realize a particular lifetime extension (LX). Normalized lifetime is defined as L= L/LAll-off; results are for
the De Kooy site.

LX= 2 (%) LX= 5 (%) LX= 10 (%) L (–) Rotation Impact angle Damage law Slowdown

21.04 51.86 68.96 1.00 off off off off
20.42 51.06 68.25 0.92 on off off off
20.42 51.06 68.25 0.92 on on off off
15.61 45.14 63.23 1.13 off off on off
17.02 45.52 62.73 2.27 off off off on
10.65 35.04 52.87 2.03 on on on on

Figure 11. Normalized and absolute erosion damage for a single droplet at varying diameters for the IEA 15 MW turbine located at De Kooy:
(a) damage per meter impingement and (b) damage per droplet on area dA.

Figure 12. Best’s distribution for a plane as a function of droplet
diameter in millimeters for different rain intensities; the figure is
partly reproduced from Barfknecht and von Terzi (2023).

3 Influence of drop-size-dependent effects on ESM
operation

Drop-size effects cause a shift in erosion damage production
to higher rain intensities. As a consequence, the viability of
the ESM is affected. As Eq. (12) shows, high-rain-intensity
events are rare. With this in mind, it might be possible to
avoid a sizable portion of the erosion damage, at minimum
AEP loss, by operating in the ESM only during these rare but
highly damaging events. Such an ESM variant would then in-
crease its economic viability. In this section, first, the signif-
icance of the drop-size effects on the general ESM operation
is established. Then, the influence of the drop-size effects on
two optimal ESM designs is investigated. Some of the con-
cepts used in this section such as the operating regime of the
ESM and an optimal ESM strategy, as well as the detailed
derivations of the considered ESM variants, are discussed in
Appendix B.
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Figure 13. Normalized erosion damage per meter of impingement
at various rain intensities for the IEA 15 MW turbine located at
De Kooy.

Figure 14. Non-dimensional damage that can be avoided by stop-
ping the turbine (S-ESM) versus the X % of highest intensity rain
events (without drop-size effects). The dotted line for reference is
for equal contribution.

Figure 14 is created to understand which rain events are
causing damage. The data on the x axis are defined as

(1−FI(I )) · 100%=

1−

I∫
0

fI(I ′)dI ′

 · 100%. (43)

The graph should be interpreted in the following way:

– x axis – stopping the turbine during the X % highest-
rain-intensity events

– y axis – will save Y % of damage.

For example, fully stopping the turbine during the ≈ 21 %
highest-rain-intensity events will avoid 50 % of the total ero-
sion damage. In the following, fully stopping the turbine dur-
ing precipitation will be referred to as STOP-ESM or, in
short, S-ESM.

The figure shows that the damage follows a concave curve.
For better visualization, a 1 : 1 line is also given. From an
ESM perspective, it would be advantageous if the curve was
pulled in the direction of the arrow, i.e., make it more con-
cave. Most damage would then be created during a few heavy
rain events during the year.

A series of computations were performed to study the in-
fluence of the drop-size effects on the curve from Fig. 14.
First, the influence of the four drop-size-dependent effects
from Sect. 2.2 is quantified independently. Subsequently,
the effects are combined. Three distinct points on the curve
were chosen to represent the curve in a convenient and con-
densed format. They are the 50 %, 80 % and 90 % damage
avoidance points. These correspond to a lifetime extension
(LX= LESM/Lno ESM, L is the incubation time) by factors
of 2, 5 and 10. Table 1 shows the corresponding values of
Eq. (43) for these three reference points. The first row in the
table sets a benchmark with all drop-size-dependent effects
deactivated. The four independent simulations are as follows.

1. Rotation. On – Vcircumferential is calculated according
to Eq. (22); off – blade is fixed at θ = 90° thus
Vcircumferential = Vsec(1+a′). Note that the impact angle
is set to off; see next point and Table 1.

2. Impact angle. On – cosαφ is calculated with Eq. (22) in
Eq. (31); off – cosαφ is calculated with Vcircumferential =

Vsec(1+ a′) and, hence, cosαφ = cosα, where α is the
angle of attack.

3. Damage law. On – drop-size-dependent damage law
given by Eqs. (6)–(8); off – averaged damage law given
by Eq. (5).

4. Slowdown. On – Vslowdown is calculated; off –
Vslowdown = 0.

Without any drop-size effects, the damage model predicts
that turning off (S-ESM) the turbine during the 21.04 %
heaviest rain events will avoid 50 % of the total erosion
damage. Activating the rotation effect decreases this value
slightly to 20.42 %. The influence on the absolute lifetime is
stronger. Here, the normalized lifetime L is decreased from
1.00 to 0.92. As previously predicted in Sect. 2.2.2, impact
angle has no measurable influence on the results. A much
more significant impact can be observed from the drop-size-
dependent damage law and the slowdown effect. The dam-
age law and slowdown shift the values for the 50 % point
to 15.61 % and 17.02 %, respectively. When combined, the
50 % point is shifted to 10.65 %. An even larger influence can
be observed for the 80 % point, where the percentages change
from 51.86 % to 35.04 %. The All-Off and All-On cases are
plotted in Fig. 15. Compared to the all-off curve, the All-On
curve has shifted significantly to the upper-left corner of the
figure. When looking at the LX, one can see that at 50 % (x
axis), the lifetime increases from approximately a factor of 5
to a factor of 9, almost doubling.
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Figure 15. Curves showing the damage avoidance (a) and lifetime extension factor (b) against the X % of heaviest rain events; this is
equivalent to operating in an S-ESM.

It can be concluded that including drop-size effects within
the damage model strongly influences the absolute lifetime.
Additionally, the damage production is significantly shifted
to higher rain intensities. To illustrate this point further, as-
sume a turbine was to follow an ESM strategy of stopping
during precipitation events with the aim of reducing erosion
damage by 50 %. If the ESM design was based on a dam-
age model without drop-size effects, then it would stop dur-
ing approximately 21 % of all precipitation events. However,
with drop-size-dependent effects adequately taken into ac-
count, it would actually only be required to stop during the
10.65 % highest-rain-intensity events. As a consequence, the
ESM would overshoot on its intended LX at the cost of in-
creased AEP losses. Therefore, an ESM needs to be based on
an accurate prediction from an erosion damage model. Oth-
erwise, it is not possible to objectively determine which con-
ditions are erosive. If the damage model neglects drop-size
effects, the ESM strategy will be sub-optimal.

Compared to other strategies, the S-ESM can only provide
a minor increase in LX for a particular AEP loss. Methods
that gradually adjust the tip speed based on weather con-
ditions perform significantly better. Two options from this
group are the V-ESM and VI-ESM. The former regulates the
tip speed based on the wind speed Vwind, whereas the latter
additionally considers the rain intensity I . For an explanation
and derivation of both strategies, see Appendix B2.

The low performance of the S-ESM in comparison to the
V-ESM and VI-ESM becomes apparent when looking at their
Pareto fronts in Fig. 16a. A Pareto front represents the max-
imum LX that can be achieved for a particular AEP loss. In
the figure, all curves are normalized with the nominal erosion
lifetime in the absence of any ESM. Therefore, all curves
start at 0 % AEP loss and at an LX of unity. The S-ESM per-
forms poorly and can only provide a maximum LX of 2.5 for
an AEP loss of about 1 %. While the V-ESM and VI-ESM
perform much better, there are also striking performance dif-

ferences between them, where the latter is clearly superior.
For further details on the concept of the Pareto front of an
ESM, the reader should consult Appendix B1 and especially
Fig. B1.

Due to poor performance, the S-ESM represents merely
a theoretical strategy. In contrast, the V-ESM and VI-ESM
are much more suitable for practical implementation. The
question arises of how drop-size effects influence the perfor-
mance of the VI-ESM. Since it is based on the rain intensity,
it should profit from the more accurate relation between dam-
age accumulation and rain intensity. Figure 16a shows that
the VI-ESM performance as well is significantly increased
when drop-size effects are properly accounted for. This is
visible by the spread, i.e., the horizontal distance between the
Pareto fronts of the V-ESM and VI-ESM. The ESM strategies
with drop-size effects show a much wider spread.

Drop-size effects also influence the prediction of the abso-
lute lifetime. To remove this factor and to be able to better
compare the influence of the drop-size effects on the shape
of the Pareto fronts, a rescaling operation was performed.
For that purpose, the Pareto front of V-ESM without drop-
size effects was rescaled so that it became equal to the Pareto
front of V-ESM with drop-size effects. The scaling values
found were then applied to the Pareto front of the VI-ESM
without drop-size effects. For clarification, the rescaling of
the VI-ESM was performed with

LXVI-ESM, rescaled, all-off = LXVI-ESM, all-off

×
LXV-ESM, all-on

LXV-ESM, all-off
. (44)

The result is shown in Fig. 16b. It can be seen that both
V-ESM curves become identical. The horizontal spread be-
tween V-ESM and VI-ESM approximately doubles when
drop-size effects are taken into account. At 1 % AEP loss,
the V-ESM has an LX of about 7, while the VI-ESM without
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Figure 16. Pareto curves of lifetime extension as a function of the AEP loss (for more information on how to interpret this figure the reader
should consult Figs. B1 and B5 and their corresponding explanation in the text) for the IEA 15 MW turbine located at De Kooy: (a) lifetime
extension and (b) scaled lifetime extension.

Figure 17. Slice of the tip-speed surface of the VI-ESM mode at
1 % AEP loss as a function of rain intensity; the figure shows a slice
analogous to Fig. B4c that intersects the tip-speed control surface at
Vwind= 15 ms−1.

drop-size effects has a lifetime extension of 9.5. However,
when drop-size effects are properly modeled, the figure re-
veals that the VI-ESM can actually achieve an LX of 13.1.
Therefore, failing to properly account for drop-size effects
will make the VI-ESM look significantly worse, potentially
indicating that an ESM might not be feasible, while in reality
it may well be.

Figure 17 shows the influence of the drop-size effects on
the VI-ESM’s tip-speed surfaces, which is the tip speed as a
function of the wind speed and rain intensity, i.e., g(Vwind,I );
for reference, see Eq. (B5). The resulting surface for a target
AEP loss of 1 % was chosen. Only a slice through the sur-
face at Vwind= 15 ms−1 is shown. As expected, the curve of
the ESM without drop-size effects has a higher tip speed at
higher rain intensities (≈ 1–5 mmh−1). This is because with-

out drop-size effects in the damage model, the amount of
erosion these intensities cause is underpredicted. On the con-
trary, the curve of the ESM with drop-size effects reduces
the tip speed in this region up to the minimum tip speed. As
compensation, it retains the maximum tip speed a bit longer
at lower rain intensities.

4 Conclusions

In this study, an erosion damage model for wind turbines
was developed that is based on the impingement metric. Sev-
eral drop-size-dependent effects were shown to be included
within the proposed model. The importance of these effects
was demonstrated for the IEA 15 MW reference wind tur-
bine, a site in the Netherlands and a commercial leading-edge
coating. The sensitivity of the ESM design to the drop-size-
dependent effects was characterized. The two research ques-
tions posed in this study are detailed in the following subsec-
tions.

(1) How does the drop size influence the erosivity?

– Four drop-size effects were identified inside the dam-
age model developed. The two dominant effects are
the drop-size-dependent damage law from Bech et al.
(2022) and the slowdown effect from Barfknecht and
von Terzi (2023). It was found that large droplets are
significantly more damaging than small droplets, nor-
malized for water volume. It was also found that the
exclusion of drop-size effects leads to a severe underes-
timation in the projected erosion lifetime.

– The higher erosivity of large droplets can be attributed
to their higher impact velocity. Additionally, the damage
model from Bech et al. (2022) suggests that in the rel-

https://doi.org/10.5194/wes-10-315-2025 Wind Energ. Sci., 10, 315–346, 2025



332 N. Barfknecht and D. von Terzi: Drop-size-dependent effects in leading-edge rain erosion

evant impact-velocity range, the allowed impingement
reduces with an increase in droplet diameter.

– The parameter space of leading-edge erosion is affected
by drop-size effects. Without such effects, 50 % of dam-
age is created by droplets below 1.26 mm in diameter,
whereas with drop-size effects, this value is shifted to
2.00 mm. These effects need to be taken into account
when determining the relevant parameters for theoreti-
cal and experimental studies in erosion research.

(2) Is a thorough understanding of drop-size-related
effects important for the design of the erosion-safe mode?

– Drop-size effects push the damage production to higher
rain intensities. It was found that without drop-size ef-
fects, 50 % of the erosion damage is caused by ca. 21 %
of the highest-intensity rain events. However, with drop-
size effects, this value was roughly halved (10.65 %).

– The VI-ESM strategy is highly sensitive to drop-size ef-
fects. For the turbine and sample site considered, it was
found that the damage model indicated, for 1 % AEP
loss, an LX of 9.5 without drop-size effects. However,
with the proper modeling of the droplet behavior, it was
shown that the actual LX is 13.1.

To conclude, it is indeed very important for the design of
the ESM to use a damage model that includes drop-size ef-
fects properly. Failing in this respect will make the ESM ap-
pear to have worse performance than it actually does, or it
will lead to a suboptimal strategy that will suffer from over-
shoots in the targeted LX at the cost of significantly higher
AEP loss than intended.

The damage model used in this study requires a range
of parameters and sub-models. These can influence the out-
comes of this study. The largest uncertainty concerns the
drop-size dependency of the leading-edge material. Cur-
rently, to the authors’ best knowledge, Bech et al. (2022) pub-
lished the only study that independently tested a coating for
various drop sizes. The importance of the slowdown effect is
projected to grow in the future. The slowdown depends on
the aerodynamic nose radius Rc and the tip speed. Both are
expected to increase as wind turbine blades become larger.
For future work, performing a sensitivity study that explores
the influence of the parameters and sub-models that describe
the considered turbine, site and material is recommended.

Several other findings and conclusions were made as a
byproduct of this research. These are included in the ap-
pendix. It was shown that for impingement, the damage
scales according to ∝ V βimpactVcollection ≈ V

β+1
impact. Addition-

ally, the operational regime of the ESM was defined and a
method to find an optimal ESM strategy was proposed. In
particular, we conclude the following.

– The VI-ESM is substantially more powerful than the
V-ESM. Even without properly modeling drop-size ef-

fects, the VI-ESM can provide significantly more life
extension for the same AEP loss.

– The drop-size distribution fφ,plane is crucial. The drop-
size effects are only relevant because large droplets be-
come more frequent at higher rain intensities. For using
the ESM in the field, the drop-size distribution must re-
flect the actual conditions at the wind turbine site con-
sidered.

– The VI-ESM η-contours are not dependent on the rain
intensity and wind speed probability density functions.

Appendix A: The impingement collected by a wind
turbine blade

This appendix provides a formal derivation for the impinge-
ment collected by a blade. Impingement is the damage met-
ric used in this study’s damage model. Previous studies have
not shown such a derivation, leaving potential ambiguity in
how impingement should be computed (López et al., 2023;
Visbech et al., 2023). Additional clarification has become
necessary due to the introduction of the slowdown effect in
leading-edge erosion (Barfknecht and von Terzi, 2023). The
first part gives a general derivation of impingement and dis-
cusses several evaluation approaches. The second part de-
rives the formula for Vcollection.

A1 Derivation of the impingement equation and
evaluation approaches

Impingement is the amount of water that is collected by the
blade. The concept can be viewed in a more tangible way by
considering a bucket mounted to the leading edge of a wind
turbine blade. The water inside the bucket after a certain op-
erational time is the impingement. Two different impinge-
ment metrics can be defined: H (3) and H (1). The former rep-
resents the intercepted water volume and the later the inter-
cepted water column. In particular H (1)

=H (3)/dA, where
dA is an (infinitesimal) surface element of the blade. We
therefore find for the dimensions [H (1)

] = L and [H (3)
] =

L3.
The general form of impingement for a blade sweeping a

flow domain of air that contains rain is

H (3)
=

T∫
0

∂H (3)

∂t
dt, (A1)

where t is the time and ∂H (3)/∂t is the volume of water col-
lected per unit of time. From Fig. A1a one can see that

∂H (3)

∂t
=WVcollectiondA, (A2)

where Vcollection is the speed at which the flow domain is
swept by the blade. dA is an (infinitesimal) surface element
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Figure A1. Representation of the flow domain and control volume used to derive H (3). (a) Flow domain of air with rain (blue dots); it is
oriented at an arbitrary blade angle θ and is swept by a wind turbine blade section dA. The volume swept during dt is indicated in light gray.
(b) The control volume for the derivation of W ; rain enters at the top of the control volume and subsequently falls through the volume until
it reaches the lower boundary.

on the leading edge, and W is the volume of water (rain)
contained per volume of air. W can also be named the water
volume fraction. By definition,

W =
dVolwater

dVolair
. (A3)

To find W , we consider Fig. A1b. The volume of air is
given by

dVolair = dAdz= dxdydz. (A4)

The volume of water contained inside the control volume
can be calculated by first considering the control volume to
be empty. Water enters the volume via its top face. The time
is recorded when the water reaches the lower boundary. At
that time, the fluxes from the top and bottom face cancel each
other out. Hence,

dVolwater = IdAdtfall through. (A5)

I is the rain intensity, or interpreted differently, it is the
normalized surface flux of water (volume) in the dimension
[LT−1]. dtfall through is the fall-through time of the rain. From
Fig. A1b,

dtφ,fall through =
dz
Vφ
. (A6)

Vφ is the terminal velocity of the rain. However, as shown
in Fig. 3, the terminal velocity is a function of the droplet
diameter and is thus not universal. Hence, W is dependent
on φ. We need to find Wφ , the water volume fraction as a
function of the droplet diameter. For that, we consider the
rain intensity of every droplet diameter, which is

Iφ = fφ,planeI. (A7)

fφ,plane is the distribution of water (mass) through a plane
as a function of the drop diameter; see Eq. (11). Note that∫
∞

0 fφ,planedφ = 1. By combining Eqs. (A3)–(A7), we obtain

Wφ =
fφ,planeI

Vφ
. (A8)

Inserting this into Eq. (A2) yields

∂H
(3)
φ

∂t
=WφVcollectiondA=

fφ,planeI

Vφ
VcollectiondA. (A9)

Later it will be shown that Vcollection is also a function of
the droplet diameter. By integrating over the droplet diame-
ter, we obtain

∂tH
(3)
= dA

∞∫
0

fφ,planeI

Vφ
Vcollectiondφ, (A10)

or

∂tH
(1)
=

∞∫
0

fφ,planeI

Vφ
Vcollectiondφ. (A11)

For conciseness, we define ∂H/∂t = ∂tH . Finally,
H (1) and analogously H (3) can be obtained by

H (1)
=

T∫
0

∂tH
(1)dt, (A12)

where T is the time during which rain is collected. The full
version of Eq. (A11) is obtained by substituting Vcollection.
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It is determined in the next section. For the definition of
Vcollection, see Eq. (21). The equation becomes

∂tH
(1)(I,Vwind,θ )=

∞∫
0

fφ,planeI

Vφ

(
Vsec(1+ a′)

× cosϕ+Vφ cosθ cosϕ
+Vwind(1− a) sinϕ

)
dφ, (A13)

where the independent variables that change during turbine
operation are given in parenthesis. From this equation, sim-
plified versions can be derived. Noting that Vsec is signif-
icantly larger than all other summands and cosϕ ≈ 1, one
obtains

∂tH
(1)
≈ Vsec

∞∫
0

fφ,planeI

Vφ
dφ = Vsec

∞∫
0

Wφdφ

=WVsec. (A14)

For Vwind = 0, Vsec = 0, ϕ= 0° and a blade position of
θ = 0°, Eq. (A13) reduces to

∂tH
(1)
= I

∞∫
0

fφ,planedφ = I, (A15)

which is simply the rate of rain falling through an imaginary
plane, or expressed differently, the rate of rain caught by a
rain gauge located on the ground under ideal conditions.

Equation A12 requires continuous time integration over
∂tH

(1). However, it is too difficult or potentially even impos-
sible to calculate this definite integral. A solution approach
is to discretize this equation by

H (1)
=

N∑
i=1

(
∂tH

(1)(I (ti),Vwind(ti),θ (ti))
)
i
1Ti, (A16)

where 1Ti is a fixed time interval. However, for studies that
do not use discrete input data (like this one), it is more con-
venient to express the time integral probabilistically using
probability density functions. According to the law of large
numbers, the mean converges to the expected value, i.e.,

1
T

T∫
0

y(x(t))dt =

xU∫
xL

y(x)fxdx, (A17)

where y is a function. x(t) is variable depending on t , for
example, the rain intensity. fx is the PDF of x so that∫ xU
xL
fxdx = 1. Subscripts U and L indicate the upper and

lower bounds of integration. With this, one can rewrite
Eq. (A12) as

H (1)
=

T∫
0

∂tH
(1)(x1(t), . . .,xn(t))dt (A18)

= T

x1U∫
x1L

. . .

xNU∫
xNL

∂tH
(1)(x1, . . .,xn)fx1 . . .fxN dx1. . .dxN

= T

x1U∫
x1L

. . .

xNU∫
xNL

∂tH
(1)
x1,..,xN

(x1, . . .,xn)dx1. . .dxN .

Note that ∂tH
(1)(x1(t), . . .,xn(t)) 6= ∂tH (1)(x1, . . .,xn).

Additionally, the definition

∂tH
(1)
x (x)= ∂tH (1)(x)fx (A19)

is used. In this study, four integrals over the variables I ,
Vwind, θ and φ need to be evaluated. However, the integral
over φ is not directly visible in Eq. (A18) but is somewhat
hidden in Eq. (A13). Additionally, both equations have a sim-
ilar form, since they both integrate over at least one PDF. To
improve readability, we define, similar to Eq. (A9),

∂tH
(1)
φ (φ)= ∂tH (1)(φ)fφ,plane, (A20)

with

∂tH
(1)(φ)=

I

Vφ
Vcollection. (A21)

Notice that ∂tH (1)
6= ∂tH

(1)(φ). By transferring Eq. (A12)
into the probabilistic form, one obtains the equation for im-
pingement used in this study. It reads

H (1)
= T

∞∫
0

∞∫
0

360°∫
0°

∞∫
0

∂tHI,Vwind,θ,φ(I,Vwind,θ,φ)

× dφdθdVwinddI (A22)

= T

∞∫
0

∞∫
0

360°∫
0°

∞∫
0

∂tH (I,Vwind,θ,φ)fIfVwind

× fθfφ,planedφdθdVwinddI. (A23)

Substituting Eqs. (A21) and (21) leads to

H (1)
= T

∞∫
0

∞∫
0

360°∫
0°

∞∫
0

I

Vφ

(
Vsec(1+ a′)cosϕ

+Vφ cosθ cosϕ (A24)

+Vwind(1− a) sinϕ
)
fIfVwindfθfφ,plane

× dφdθdVwinddI. (A25)

This equation is similar to the Palmgren–Miner damage
rule from Eq. (1). In the main body of this study, the su-
perscript is omitted. For all practical purposes, the integrals,
once again, need to be evaluated numerically, for example
with a simple trapezoidal rule.
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When computing the impingement directly from time-
dependent meteorological data is required, it might be more
convenient to formulateH (1) in a hybrid continuous–discrete
form. The rain intensity I and the wind speed Vwind are usu-
ally readily available as discrete meteorological data sets.
Hence, I and Vwind are considered to be discrete and constant
over one time interval 1Ti . However, for θ and for φ, time-
dependent data sets are usually not available. For example,
it is unlikely that discrete measurements are taken multiple
times during one blade rotation. Hence, they should be con-
sidered continuous and instead described by their respective
probability density functions. As a result, one obtains

H (1)
=

N∑
i=1

 360°∫
0°

∞∫
0

∂tH
(1)
θ,φ(I (ti),Vwind(ti),θ,φ)dφdθ


i

×1Ti . (A26)

A2 Determination of Vcollection

In this section Vcollection is determined, which is slightly dif-
ferent from Vimpact. The correct determination is important
since any error linearly propagates into the accumulated im-
pingement.

Figure A2a shows a control volume that is fixed in space
(air) and contains rain. The volume is swept by a blade sec-
tion with area dA and speed V sec ·nLE. It is aligned with
the blade’s leading edge in such a way that nLE = u, where
dU = udA. F is the flux vector across the control volume’s
boundaries. The flux describes the rain that enters and leaves
the control volume. It is more convenient to map the problem
into the reference frame of the blade by defining the adjusted
fluxes F ′U and F ′D , yielding Fig. A2b.

For the mapped problem, one can write the continuity
equation of the control volume as

∂m

∂t
=

∫∫
S

F · dS, (A27)

where m is the mass of water inside the control volume, and
S is the surface vector of the control volume. ∂m/∂t is the net
rate of change of the mass inside the control volume.

∫∫
S
F ·

dS is the mass entering or leaving the control volume due to
the velocity of the rain field.

The surface integral over the boundary S is evaluated by
integrating over all four sides separately, that is∫∫
S

F · dS =

∫∫
R

FR · dR+

∫∫
L

FL · dL

+

∫∫
U

F ′U · dU +

∫∫
D

F ′D · dD. (A28)

It is assumed that for the length scale of the control vol-
ume, the rain field is constant; this implies that FR = FL =

const. The fluxes of the left and right faces are, therefore,
equal in magnitude and direction. The surface normals are,
however, opposite in sign; hence,

0=
∫∫
R

FR · dR+

∫∫
L

FL · dL. (A29)

Additionally, the bottom boundary is aligned and coinci-
dental with the blade’s leading edge, so that d =−nLE. Thus,
the boundary D can be considered the blade’s leading edge.
It follows that D is impermeable,∫∫
D

F ′D · dD = 0. (A30)

The surface integral becomes∫∫
S

F · dS =

∫∫
U

F ′U · dU . (A31)

Therefore, the net rate of change of mass inside the control
volume is
∂m

∂t
=

∫∫
U

F ′U · dU , (A32)

which can also be interpreted as the rate of mass that is in-
tercepted by the blade. By assuming incompressibility and
thus dividing by the density of water ρ, assuming that F ′U is
constant over the boundary patch and dividing by the surface
area |U |, one obtains

∂tH
(1)
=

1
ρ|U |

∫∫
U

F ′U · dU . (A33)

Due to the transformation of the problem, the modified
surface flux is

F ′U · dU = FU · dU −F sec · dA, (A34)

with

FU · dU =−ρ

 ∞∫
0

WφV waterdφ

 · dU (A35)

and

F sec · dA=−ρ

 ∞∫
0

Wφdφ

V sec ·nLEdA. (A36)

The minus signs are required so that mass entering the con-
trol volume is positive. Combining Eqs. (A33–A36) and us-
ing dU = dAu= dAnLE yield

∂tH
(1)
= −

 ∞∫
0

WφV waterdφ

 ·nLE

+

 ∞∫
0

Wφdφ

V sec ·nLE (A37)
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Figure A2. Control volume of air containing rain with a blade section oriented at an arbitrary blade angle θ . (a) The control volume fixed in
the air is swept by a wind turbine blade section dA; the volume swept during dt is indicated in light gray. (b) The control volume mapped to
the reference frame of the blade; the boundary D has become the leading edge of the blade.

=

∞∫
0

Wφ (V sec−V water) ·nLEdφ. (A38)

V sec is given by Eq. (16). V water can be determined using
Fig. 2, which yields

V water ·nLE =

[
−sinθVseca

′

−cosθVseca
′
−Vφ

−Vwind(1− a)

]
·

[
sinθ cosϕ
cosθ cosϕ

sinϕ

]
(A39)

= −
(
Vseca

′ cosϕ+Vφ cosθ cosϕ

+Vwind(1− a) sinϕ
)
. (A40)

Here, it is assumed that the rain droplets are advected with
the radial and axial induction factor, the wind speed, and the
terminal velocity. Inserting these into Eq. (A38) gives

∂tH
(1)
=

∞∫
0

Wφ

(
Vsec cosϕ+Vseca

′ cosϕ

+Vφ cosθ cosϕ+Vwind(1− a) sinϕ
)
dφdA. (A41)

Comparing with Eq. (A11), one obtains

∂tH
(1)
=

∞∫
0

WφVcollectiondφ, (A42)

with

Vcollection = Vsec(1+ a′)cosϕ+Vφ cosθ cosϕ

+Vwind(1− a) sinϕ. (A43)

In comparison to Vimpact, Vcollection does not contain
the slowdown velocity. It is possible to define V ′collection =

Vimpact. However, in that case,Wφ needs to be corrected. The

slowdown is a local phenomenon that occurs in the proxim-
ity of the leading edge on the length scale of the aerody-
namic nose radius Rc. It reduces the local velocity of the rain
droplets but, at the same time, increases the droplet concen-
tration per volume of air. When both factors are accounted
for, the flux remains unchanged. The correction for the case
V ′collection = Vimpact is

W ′φ =
Vcollection

Vcollection−Vslowdown cosαφ
. (A44)

The conclusion is, therefore, that the slowdown effect de-
creases the impact speed but does not influence the impinge-
ment accumulation rate.

Appendix B: Definition of the ESM operational
regime and method of finding an optimal ESM
strategy

This appendix aims to develop some of the concepts pertain-
ing to the ESM used in Sect. 3. In Appendix B1, the opera-
tional regime of the ESM is defined. Appendix B2 provides
a semi-analytical approach for finding an optimal ESM strat-
egy.

B1 Operational regime of the ESM

For a practical ESM design, it is not desirable to fully stop
the turbine (S-ESM), as the erosion damage savings come
at a large AEP penalty. This was shown in Fig. 16a. With
the high value of β in mind, a small reduction in the tip
speed can already greatly increase the erosion lifetime of the
blade, while maintaining a decent amount of power produc-
tion. Hence, a practical ESM strategy will attempt to miti-
gate erosion by only slightly but sufficiently reducing the tip
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speed of a turbine. To this end, it is useful to first understand
the operational regime of the ESM before a good strategy can
be chosen.

The concept of the ESM can be visualized in an {AEP loss,
lifetime extension (LX)} diagram. By reducing the tip speed
during precipitation events, a turbine operating in an ESM
trades AEP for an extension of its lifetime; i.e., the AEP de-
creases while the erosion lifetime increases. The regime in
which this trade takes place is visualized in Fig. B1. In this
figure, points A, B, C and D and their connecting curves form
an operational regime. The turbine can only operate within
this regime. Point A represents a turbine during normal op-
eration. This means no ESM is utilized during precipitation
events. Hence, the turbine experiences no AEP loss (a poten-
tial performance loss due to erosion is not considered here),
and as a result, the normalized lifetime is unity. The turbine
operates at point B when it spins at its minimum rotational
speed (5 rpm for the IEA 15 MW reference turbine) during all
precipitation events. It is important to note that point B im-
plies that there is perfect knowledge of the incoming precipi-
tation. Additionally, the turbine must also be able to react in-
finitely fast to changing precipitation conditions. The region
is closed by two highly undesirable operating points. Point C
represents the operation at the minimum turbine speed at all
times, including dry (no rain) conditions. As with point B,
point C offers the highest LX. However, this comes at the
cost of very high AEP losses because the turbine’s speed is
permanently reduced, effectively de-rating the turbine. The
turbine operates at point D when the wind turbine’s speed is
reduced to its minimum during dry events only but keeps its
nominal speed during precipitation events. Here, no increase
in lifetime is achieved. However, a large reduction in AEP is
realized, albeit somewhat lower than for point C.

Points A, B, C and D can also be interpreted with respect
to the quality of the weather forecast. Point B is realized with
a perfect forecast. Point C represents a forecast that indicates
precipitation at all times. Point D represents a perfectly in-
verted forecast, i.e., a forecast that indicates no rain when
it actually rains and indicates rain when it is actually dry.
Point A can be interpreted as a turbine that is controlled by a
weather forecast that never indicates precipitation.

It is straightforward to see that the best ESM is realized
when operating on the curve from point A to B, called AB.
It represents the Pareto front of an ESM strategy under the
assumption of perfect rain knowledge and instantaneous tur-
bine control. The front represents the highest-possible life-
time extension for a minimum of AEP loss. In practice, nei-
ther perfect knowledge of precipitation nor instantaneous tur-
bine control can be achieved. Any practical ESM implemen-
tation aims to operate as closely as possible to the Pareto
front under the practical limitations. The ESM becomes more
viable, i.e., more lifetime for a lower AEP loss, if a new
Pareto front can be found that is shifted in the direction of
the arrow in Fig. B1. The concept is similar to Fig. 14 and
similar conclusions hold.

B2 Method for designing an optimal ESM control
strategy

This section describes a semi-analytical approach that can
be used to find ESM control strategies that lead to optimal
Pareto fronts (see Fig. B1). The ESM strategies that have
been presented in the literature were, up to now, heuristic
(Barfknecht et al., 2022; Bech et al., 2018). Finding the op-
timal strategy has not yet been described in the literature.
Additionally, using the optimal strategy for investigating the
drop-size effects, ambiguity in the results concerning the
goodness of the Pareto front is eliminated. The approach
presented here is straightforward to implement and compu-
tationally light, requiring only a few seconds of wall-clock
time to compute.

An ESM strategy is a function determining how the tur-
bine operates under precipitation conditions with the aim to
maximize lifetime, i.e., to minimize the rain erosion damage,
and to minimize AEP loss. Understanding that every ESM
strategy leads to a unique Pareto front is important. Hence,
some strategies are more optimal than others. At the core is a
function that relates the turbine’s tip speed to environmental
variables. For example,

g(Vwind,I, . . .)=
{
gmin(Vwind)≤ Vtip ≤ gnormal

× (Vwind) for all (Vwind,I, . . .)
}
, (B1)

where gmin(Vwind)= Vtip, min is the minimum tip speed, and
gnormal(Vwind) is the normal piecewise-linear control function
of the turbine. Both are shown in Fig. B2 and span an opera-
tional regime colored in gray. An ESM strategy is a curve in
this regime. Theoretically, a turbine could spin over the en-
tire wind speed range at the maximum tip speed. However, it
will be shown in the following that this is not desirable.

Two straightforward ESM strategies can be derived called
the C-ESM and S-ESM. The C-ESM defines a constant upper
threshold C to the tip speed and applies this threshold to the
normal control curve when precipitation occurs. That is,

C-ESM=

{
gnormal(Vwind) if I = 0,

min(gnormal(Vwind),C) if I > 0.
(B2)

The S-ESM reduces the tip speed of the turbine to zero
(i.e., stopping it) when the rain intensity exceeds a particular
threshold Ith. That is,

S-ESM=

{
gnormal(Vwind) if I ≤ Ith,

0 if I > Ith.
(B3)

These methods are heuristic and, in general, do not rep-
resent an optimal ESM strategy. Optimal is defined as the
curve that provides the maximum lifetime extension for the
minimum AEP loss for a particular set of independent en-
vironmental variables (Vwind, I , . . . ). For example, the C-
ESM is an optimal strategy only when either C = Vtip, min
or C = Vtip, max.
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Figure B1. Operational regime of the ESM spanned by the AEP loss and the lifetime extension.

Figure B2. Operational tip-speed regime of the IEA 15 MW turbine as a function of the instantaneous wind speed.

The V-ESM, which only considers the wind speed, is the
first strategy that creates an entire optimal Pareto front. It is
defined as

V-ESM=

{
gnormal(Vwind) if I = 0,

gopt(Vwind) if I > 0,
(B4)

where gopt is the curve that leads to an optimal strategy. The
VI-ESM represents a more advanced strategy that also in-
cludes the rain intensity I as another environmental input.
The VI-ESM is defined as

VI-ESM=
{
gopt(Vwind,0)= gnormal(Vwind) if I = 0,
gopt(Vwind,I ) if I > 0.

(B5)

That is, when I = 0, the strategy follows the normal tip-
speed control curve. If other environmental conditions were
to significantly promote erosion, like ambient temperature,
UV radiation, etc., then more advanced strategies could be
considered.

The question is how to find the optimal curve gopt within
the operational regime. One could heuristically guess a func-
tion leading to a strategy such as the C-ESM, which is shown
as the blue curve in Fig. B2. Alternatively, one could con-
sider any other arbitrary function, such as the parabolic curve

depicted in orange. Subsequently, the coefficients of these
functions could be optimized. However, no function that is
guessed is guaranteed to lead to the optimal strategy. It is pos-
sible to use high-order polynomials. For a sufficiently high
order, these could approximate the optimal function closely.
However, optimizing for many coefficients is a non-trivial
task, especially when g is of a high order and a function of
many environmental variables.

Here, it is argued that an ESM strategy is optimal inside
the region spanned by gmin(Vwind) and gnormal(Vwind) when

gopt =
{
g(Vwind,I, . . .)

subject to minimize (|η(g(Vwind,I, . . .))−K|)
for all (Vwind,I, . . .)

}
, (B6)

where

η(g(Vwind,I, . . .))=
∂P
∂Vtip

∂(∂tD)
∂Vtip

=
∂P

∂(∂tD)
. (B7)

P (g(Vwind,I, . . .)), abbreviated as P , is the (instantaneous)
turbine power, and ∂tD(g(Vwind,I, . . .)), abbreviated as ∂tD,
is the damage accumulation rate. The choice of the vari-
ableK determines an operational tuple of {AEP loss, LX} on
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the Pareto front. By considering all possible values of K , the
entire Pareto front is obtained. It is important to note that this
method is only optimal with perfect knowledge of the precip-
itation and assumes that the turbine can react instantaneously
to changes in the independent environmental variables.

The method can also be described as follows: choose a
constantK and then determine the tip speeds for all indepen-
dent environmental variables (Vwind, I , . . . ) so that η =K .
Since the turbine has a lower and an upper speed limit given
by gmin(Vwind) and gnormal(Vwind), respectively, it is not al-
ways possible to satisfy η =K . For these cases, the tip speed
with the corresponding η closest to K should be chosen.

To understand why Eq. (B7) leads to the optimal ESM
strategy, one should consider Fig. B3c. The figure shows η
in the space spanned by Vwind and Vtip. As per Fig. B1, the
operation at the minimum tip speed during rain represents an
optimal strategy (see point B). However, while providing the
highest possible LX, this operational point also comes with
a large AEP penalty. In practice, another operational point
on the Pareto front is likely to be more desirable. To achieve
this, the tip speed must increase; however, this also increases
the erosion damage production. The aim must be to add the
highest growth in power for the smallest growth in damage.
This is achieved when starting from the minimum tip speed
and then increasing the tip speed for the independent vari-
ables (Vwind, I , . . . ) that have the highest ∂P/∂(∂tD). Since
the same value of η might be found for a variety of indepen-
dent values, contours of η exist. These are shown as black
lines in Fig. B3c. Therefore, to find an optimal ESM strat-
egy that satisfies a tuple constraint, one needs, starting from
the minimum tip speed, to continuously advance across the
η-levels in the direction of increasing tip speeds. This pro-
cess is stopped when the value of K is found that satisfies
the tuple constraint. A contour line thus represents an opti-
mal ESM control curve gopt(Vwind,I, . . .). The Pareto front is
formed when the tuples are recorded for every valid value of
K.

The approach of Eq. (B6) is valid because the values of η
in the region bound by the gmin and gnormal are strictly mono-
tonically decreasing with respect to an increasing tip speed
for a particular set of (Vwind, I , . . . ). There are no local mini-
ma/maxima or saddle points in the bound region. In the vari-
able load region, gnormal passes through the points of maxi-
mum power generation. Above this curve, the power produc-
tion decreases, even though the tip speed is increased. Hence,
above gnormal in the variable load region, the power decreases
and η becomes negative. Thus, the turbine produces less
power but more damage. This is an operational regime that is
clearly undesirable. The properties discussed are true for the
IEA 15 MW turbine and for turbines of similar design. Other
turbines might behave differently, and in this case, the ap-
proach might require modification. It is also noteworthy that
this approach only considers damage and AEP loss. The po-
tential influence of repair strategies and their associated costs
are not considered. Last but not least, it should be noted that

the pitch angle of the blade is precomputed and set accord-
ing to the method described in Appendix C. The pitch angle
is determined so that power production is optimized while at
the same time the maximum generator torque is respected.
However, since the pitch angle influences P and ∂tD, it is
also possible to consider it a free variable that can be op-
timized. Or said differently, an ESM could regulate the tip
speed and pitch angle to mitigate erosion. This route has not
been explored any further in this work.

In a practical implementation, the values of η can be pre-
computed on a large grid that is spanned by (Vwind, I , . . . )
and Vtip. Hence, for the V-ESM, η is an array of rank 2,
while for the VI-ESM, η becomes an array of rank 3. The
discretization of Vtip can far exceed the physical limits of
the turbine. Subsequently, an appropriate contour line of
η =K can be extracted that yields a temporary control curve
g′opt(Vwind,I, . . .). Subsequently, this curve can be clamped
with

gopt(Vwind,I, . . .)= clamp(g′opt(Vwind,I, . . .),

gmin(Vwind),gnormal(Vwind)), (B8)

where

clamp(x,xmin,xmax)=min(max(x,xmin),xmax) (B9)

is the clamping operator. The optimization of one value (K)
is required to satisfy a particular tuple. Solving this optimiza-
tion problem is trivial, e.g., by simply calculating all tuples
for all K . The computational cost of the proposed approach
is minimal and is similar to the C-ESM. The derivatives of
∂P/∂Vtip and ∂(∂tD)/∂Vtip can be computed using a simple
finite difference scheme. The magnitude of η might not al-
ways be convenient since P � ∂tD. The power production
is on the order of MW; hence P ≈ 106 to P ≈ 107, while the
order of the total damage accumulated per year is D ≈ 10−2

to D ≈ 100. Consequently, assuming the latter, the damage
production rate (in s−1) becomes ∂tD ≈ 10−8. Hence, for the
constituents of η, a considerable difference in magnitudes ex-
ists. Therefore, performing a rescaling operation can be ad-
vantageous. It is important to note that rescaling does not in-
fluence the resulting control curve gopt but is merely a ques-
tion of convenience in the actual implementation.

The damage rate calculation is dependent on the mode
considered. For the V-ESM, the damage rate reads

∂tDV-ESM(gopt(Vwind))=

∞∫
0

360°∫
0°

∞∫
0

∂tDI,θ,φdφdθdI. (B10)

For the VI-ESM, the damage rate becomes

∂tDVI-ESM(gopt(Vwind,I ))=

360°∫
0°

∞∫
0

∂tDθ,φdφdθ. (B11)
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Figure B3. Turbine power, erosion damage production rate and η as a function of Vwind and Vtip according to Eq. (B7). η was rescaled to a
range from 0 to 1, and the natural logarithm was applied to the values of (b) and (c) for improved visualization. The magenta piecewise-linear
curves indicate the minimum and maximum allowed speed of the turbine (see also Fig. B2), and all drop-size effects are activated for the
IEA 15 MW turbine located at De Kooy: (a) P (MW), (b) ln(∂tD) (s−1) and (c) ln(η).

When comparing Eqs. (B10) and (B11) with Eq. (1), one
can see that for every independent variable that drives the
ESM, the respective integral must be removed. Therefore,
the V-ESM depends on fI,fθ and fφ,plane, whereas the VI-
ESM depends on fθ and fφ,plane. Conversely, this shows that
the distribution of wind at a particular site does not influence
the V-ESM and VI-ESM η contours. Expanding on this, the
VI-ESM η contours are also independent of the rain inten-
sity distribution of the site. Both ESM strategies depend on
the drop-size distribution fφ,plane. In practice, fφ,plane varies
according to the site (Pryor et al., 2022). Hence, one can con-
clude that for an optimal ESM strategy, the site-specific drop-
size distribution should be taken into account.

The contours of the V-ESM’s power and damage accumu-
lation rate are shown in Fig. B3a and b. In the variable load
region, the isocontour lines of the damage accumulation rate
are almost flat. In the rated power region, the isocontour lines
start falling due to the interplay of the increasing wind speed
and pitch angle. The isocontour lines of P are flat in the rated
power region. This is due to the turbine being torque limited
in this region, and an increase in the power can only come
from an increase in the rotational speed (see Eq. C1). In the
variable load region, the power isocontour lines are almost
vertical, and hence the power changes rapidly with the tip
speed. For the numerical calculation of the derivatives, it is
important to use a sufficiently fine grid in this region. Ad-
ditionally, any interpolation scheme must have a sufficiently
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high continuity to avoid erroneous discontinuities in the con-
tour plot of η. The resulting ηV-ESM is visualized in Fig. B3c
for the operational space. It can be seen that η decreases with
increasing tip speed. Close to the minimum tip speed, η pre-
dicts that an increase in tip speed will yield a considerable
increase in power for only a moderate increase in damage
production. However, as the tip speed increases, due to the
high value of β, η reduces rapidly; this is a consequence of
the order of the damage and power terms. The damage scales
with the tip speed according to approximately β + 1, while
the power scales with about an order of 1. Therefore, in com-
parison, a change in the wind speed only marginally affects
power but greatly affects erosion damage production.

The extension of the V-ESM to the VI-ESM is straight-
forward. Instead of Eq. (B10), Eq. (B11) must be used. Fig-
ure B4a shows a resulting ESM strategy based on an arbitrary
value of K . For I = 0, i.e., no rain, the ESM strategy retains
the original control curve of the turbine. As the rain intensity
increases, the curve starts to fall in the direction of increasing
rain intensities. The fall is similar to a parabolic curve. In the
direction of Vwind, the VI-ESM strategy is similar to the V-
ESM strategy. Two slices through the volumetric data of η are
given in Fig. B4. The first slice, given in Fig. B4b, shows η
in the Vwind–Vtip plane. This slice is very similar to Fig. B3c.
Hence, the prior observations pertain to it. In Fig. B4c the
slice in the I–Vtip plane is given. One can see how the iso-
contours fall as the rain intensity increases. This aligns with
earlier observations that higher rain intensities produce much
more damage than lower rain intensities.

Figure B5 shows the resulting optimal Pareto fronts of
the V- and VI-ESM. As with any ESM strategy, the start and
end points of both modes are equal (see points A and B in
Fig. B1). In between these points, the VI-ESM can achieve
a significantly higher lifetime extension than the V-ESM
and can, therefore, be considered superior. For example, at
1 % AEP loss, the V-ESM provides a lifetime extension
of about 7, whereas the VI-ESM offers an extension of
about 13.1. The increase in performance comes with a shift
in shape. The V-ESM produces a convex curve, whereas the
graph of the VI-ESM is first convex and then becomes con-
cave toward the maximum lifetime extension. This change in
shape is associated with a shift in the Pareto front upwards
and to the left, thus in the favorable direction as indicated in
Fig. B1.

Heuristic reference ESM strategies are considered to sup-
port the claim of Eq. (B6). The V-ESM and VI-ESM are
tested against the heuristic C-ESM used in Barfknecht et al.
(2022). Additionally, two other strategies are considered. The
first is a more sophisticated rule where the control curve com-
prises two piecewise-linear line segments. For that, 1V =
Vwind−V15 is defined, where V15= 6.98 ms−1, which is the
wind speed at the end of IEA 15 MW’s minimum rotor speed

control region; see Gaertner et al. (2020). The equation reads

LV-ESM=
gnormal(Vwind) if I = 0,

clamp
(

min(C21V + 1,C1),1,
gnormal(Vwind)
gmin(Vwind)

)
gmin(Vwind) if I > 0.

(B12)

The second is an extension that adds a dependency on I .
This creates a rule consisting of three piecewise-linear
planes. It uses the definition1I = I−C4. The equation reads

LVLI-ESM= clamp
(

min(C31I +C21V + 1,C1),

1,
gnormal(Vwind)
gmin(Vwind)

)
gmin(Vwind). (B13)

For both equations, the coefficients C1, . . .,C4 are re-
quired. LV stands for linear with respect to Vwind. The
acronym LI stands for linear with respect to I . Matlab’s fmin-
con function was used to find the coefficients. A particular
target AEP loss was defined and then the coefficients that led
to the highest lifetime extension were selected. This resulted
in Fig. B6, which compares the performance of the V-ESM
and VI-ESM to the heuristic C-ESM, LV-ESM and LVLI-
ESM strategies. The figure plots the difference in lifetime
extension 1LX= LXoptimal−LXheuristic against the corre-
sponding AEP loss.

As shown in Fig. B6a, the C-ESM offers up to 0.8 less LX
in comparison to the V-ESM. The LV-ESM performs signif-
icantly better, performing almost as well as the V-ESM in
some parts. The good performance of the LV-ESM can be ex-
plained by its form of two piecewise-linear segments. These
allow for a close approximation of η’s ideal contour lines as
shown in Fig. B3c.

Figure B6b shows that the maximum deficit in LX of the
LVLI-ESM compared to the VI-ESM is about 0.8. The con-
tours of η in the direction of the rain intensity have the
shape of a falling parabolic curve; see, for example, Fig. B4c.
The linear approximation of the LVLI-ESM seems to deliver
good performance in this region. To conclude, it is shown
that the heuristic methods considered can, in some regions,
approach the performance of the optimum ESM but cannot
exceed its performance.

While heuristic methods can provide a reasonably good
approximation of the optimal solution, differences still ex-
ist. A 1LX= 0.8 is still significant considering that it is
merely the result of an offline optimization problem. A fur-
ther argument for the optimum ESM stems from the fol-
lowing anecdotal evidence: for the authors of this paper, the
implementation of the optimum ESM was quite straightfor-
ward. However, the optimization of the coefficients of the
LV-ESM and LVLI-ESM proved to be challenging. As stated,
the optimization was performed with Matlab’s fmincon func-
tion. Careful consideration had to be paid to the settings cho-
sen. Often, the results would not converge to the optimum
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Figure B4. Resultant VI-ESM control curve for a particular K according to Eq. (B6), as well as slices through the volumetric data of η as a
function of Vwind and I . In the slices, the magenta-colored curves represent the surface of panel (a); the natural logarithm was applied to η
for improved visualization, and all drop-size effects are activated for the IEA 15 MW turbine located at De Kooy: (a) gopt for an arbitrary
value ofK in Eq. (B6), black grid for visualization; (b) a slice through the volumetric data of η in the Vwind–Vtip plane (the black lines show
the isocontours of η) and (c) a slice through the volumetric data of η in the I–Vtip plane (the black lines show the isocontours of η).

set of coefficients. Overall, the optimization of the (worse-
performing) heuristic curves consumed significantly more
time from the authors and required more computational re-
sources.

Appendix C: Calculation of the AEP and pitch angle

The method to compute the turbine’s power is important for
the ESM and, as will be shown, is also important for the dam-
age calculation. It is, therefore, described here in more detail.
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Figure B5. Resulting Pareto fronts for the V-ESM and VI-ESM using the optimal approach from Eq. (B6); all drop-size effects are activated
for the IEA 15 MW turbine located at De Kooy.

Figure B6. Differences in lifetime extension between the optimal and heuristic ESM strategies for the IEA 15 MW turbine located at
De Kooy: (a) V-ESM as baseline and (b) VI-ESM as baseline.

The fundamental formula for the turbine power P is

P =Qω, (C1)

where Q and ω are the rotors’ torque and rotational speed,
respectively. A maximum generator torque Qmax that can-
not be exceeded exists. Therefore, at all times, the following
condition must hold:

Q≤Qmax. (C2)

For maximum power, Q should be maximized at all times
without exceedingQmax. The torque coefficient is found with

the following formula:

CQ(λ)={
M(λ) if M(λ)<

(
CQmax =

Qmax
qAR

)
,(

CQ(λ,ϕpitch)= CQmax

)
if M(λ)≥ CQmax ,

(C3)

where M(λ)=max(CQ(λ,ϕpitch)), and λ is the tip-speed ra-
tio. q is the dynamic pressure of the wind, A is the rotor disk
area and R is the rotor radius. ϕpitch is found by determining
where either CQ is maximum or CQ = CQmax . The resulting
pitch is used in the calculation of the damage; see Eqs. (20)
and (30). From the tip-speed ratio, the pitch angle and the
position along the blade, the corresponding local induction
factors can be found. This study assumes that the wind shear
exponent is zero. Hence, the Vwind is constant over the ro-
tor disk. If the wind shear exponent is included, it leads to
local changes in the tip-speed ratio and will make the local
induction factors a function of the blade angular position.

CCBlade, in conjunction with the IEA 15 MW’s yaml on-
tology file, was used to find the torque coefficient as a func-
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tion of the tip-speed ratio and the blade pitch angle (Ning,
2014). The induction factors are also given in the output of
CCBlade. The torque coefficient and pitch angle are plotted
in Fig. C1. The torque coefficient is decreased when the tur-
bine enters the rated power region. This is done by adjust-
ing the pitch angle so that the maximum generator torque is
not exceeded. The figure shows that pitch angles of over 30°
are encountered. Angles of this magnitude impact the dam-
age significantly; see Eqs. (30), (31) and (38). Therefore, the
pitch angle needs to be properly accounted for.

The resulting AEP can be calculated using

AEP= Tyear

∞∫
0

∞∫
0

PfIfwinddVwinddI. (C4)

For normal turbine control or for an ESM that is solely
controlled based on the wind speed, the integral (and corre-
sponding probability density function) over the rain intensity
can be omitted.

Figure C1. Contour plots of the torque coefficient and pitch angle as a function of wind speed and tip speed; the magenta curves enclose the
operational regime of the turbine for the IEA 15 MW turbine: (a) torque coefficient, CQ (–), and (b) pitch angle, ϕpitch (°).
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