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Summary

In studies of wind plant designs, wake dynamics are of great interests as wakes affect downstream turbine loading
that impacts wind plant efficiency. The Computational Fluid Dynamics (CFD) simulations of wind plants usually
choose the Large Eddy Simulation (LES) over Reynolds-averaged Navier-Stokes (RANS) simulation as the LES not
only captures the unsteady behaviour of turbine wakes but is also able to resolve turbulence of large scales. RANS
simulation, on the other hand, is limited to modelling of all scales of turbulence using empirically calibrated model
coefficients. The wind plant LES mean flow fields are therefore regarded as the ground truth, while the understanding
of high fidelity physics behind turbine wakes is sought after.

Recent development of the Tensor Basis (TB) machine learning (ML) framework in predicting turbulent fields of
simple flow cases has prompted the motivation to further develop such framework and apply it to the more complex
scenario of wind plant turbulent fields. In particular, Tensor Basis Decision Tree (TBDT) based models have been
chosen as the framework to study high fidelity wind plant turbulence anisotropy tensor fields. This is because of
the good learning generality of TBDT based models thanks to its embedded Galilean and rotational invariance; easy
interpretability to understand resolved mean flow field to turbulent field correlation; and high extendability to more
advanced model variants. Before employing the current TBDT framework on learning the wind plant LES mean flow
field, a reimplementation of it is done by rebasing the core functions of TBDT in the ML platform of scikit-learn that
increased its efficiency by 4 to 20 times. Furthermore, the ease of extending the TBDT to other more advanced model
variants in scikit-learn resulted in the creation of Tensor Basis Adaptive Boosting (TBAB) and Tensor Basis Gradient
Boosting (TBGB). An invariant feature set derived from a systematic approach has been used for this study to ensure
Galilean and rotation invariance. In addition, an extra invariant feature specific to wind plant simulation has been
introduced.

Upon training on the ground truth LES mean flow data of a one-turbine wind plant, the enhanced TBDT frame-
work was then put to test by predicting wind plants of varying one or more combinations of the surface roughness,
plant layout, and prescribed velocity at turbine hub height. The learning generality has granted the TBDT frame-
work the capability of reconstructing the blade tip free shear layers of unseen wind plant flow fields. Furthermore,
the TBDT framework was able to predict the correct size and orientation of turbine wakes under the aforementioned
varying conditions.

Subsequently, a steady-state wind plant solver solving the Reynolds-averaged Navier-Stokes governing equations
has been implemented to preform low fidelity but highly efficient wind plant simulations. On top of that, a data-
driven approach to turbulence modelling was introduced to the steady-state solver so that the turbulence anisotropy
tensor, originally modelled by the turbulence model, is now blended with the ground truth LES data with up to 100%
of injection. The steady-state solver with data-driven turbulence modelling resulted in more accurate turbulent
fields as well as turbine outputs over the traditional steady-state solver without data-driven augmentation, which
demonstrates the bright potential of ML in wind energy applications.
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Introduction

The wind energy market is rapidly expanding to become the main source of renewable energy as the Global Wind En-
ergy Council anticipates a cumulative wind power capacity growth rate of 11.2% in 2020 [27]. In studies of wind plant
and wind turbine designs, the wake dynamics of a turbine are of great interests as the wake affects turbine loading
and power extraction that ultimately has an impact on its efficiency [8]. Several modelling tools have been developed
to simulate turbine wakes in domains subjected to turbulent inflows that resemble the Atmospheric Boundary Layer
(ABL). In particular, high fidelity Computational Fluid Dynamics (CFD) methods such as the Large Eddy Simulation
(LES) have gained popularity over low fidelity methods like the Reynolds-averaged Navier-Stokes (RANS) simulation,
in the field of wind plant simulations. This is because the LES method is able to capture the unsteady nature of the
turbine wakes as well as the ABL [96]. Moreover, instead of modelling all turbulent scales using empirically found
model coefficients in the RANS simulations, the LES method, as the name suggests, resolves large turbulence scales
while only modelling the sub-grid scale turbulence that contains much lower kinetic energy and thereby less influ-
ence to the resolved flow field. This, however, comes at the cost of a higher computation demand [71] in the LES.
Furthermore, taking into account the fact that a discretised domain of wind plants are usually in the order of millions
of cells in order resolve the desired turbulence scales, the LES of wind plants demands tremendous computation re-
sources to complete.

Because of the high computation cost of LES, there have been continuous efforts in finding a balance between
accuracy and efficiency. An emerging research direction is taking advantage of novel, powerful machine learning
methods and augmenting the turbulence model of low fidelity CFD methods. Such a concept is known as data-
driven RANS simulations. The recent development of the tensor basis (TB) ML models [41, 52] have demonstrated
not only high prediction power for similar flow fields that the models have been trained on, but also high generality
to predict flow fields of varying conditions. This prompts the motivation to practice novel ML techniques on the
more complex wind plant flow fields with the hope of decode the physics behind turbine wakes of various wind
plant layouts.

Because of the unequal treatments to turbulent fields, the influence on turbine wakes and turbine outputs from
wind plants that undergo RANS simulation and LES remain to be concluded. Since the turbulent fields are subjected
to strong shearing due to velocity fluctuation, the LES turbulence anisotropy tensor field b; , also interpreted as the
non-dimensional turbulent shear stress, is the prime candidate for ML models to learn and is regarded as the ground
truth.

1.1. Research Question, Aim, & Objective
Turbulence modelling has always been the biggest challenge in CFD. Although data-driven turbulence modelling
has seen success in simple flow fields [51, 105], it is uncertain if such framework could assist RANS simulation of
wind plants to reach the accuracy of LES while maintaining its computational cost advantage. Therefore, the ML
models that are efficient, robust, and easy to interpret can yield the information required for a better understanding
of turbine wake physics. Furthermore, coupled with the data-driven CFD framework, the potential of highly efficient
yet accurate wind plant simulations of tomorrow can be explored.

The aim of this project is to bring together the recent data-driven turbulence modelling efforts and wind farm
CFD in ABL to find new means of fast and accurate wind plant simulations. Following sufficient literature review
on the CFD of wind plant flow fields as well as the ML in turbulence model augmentation, this research can be split



2 1. Introduction

into two steps. The first step is the ML of high fidelity turbulence anisotropy fields, followed by the application of
data-driven turbulence modelling in wind plant simulations as the second step. Therefore, the two main research
questions are:

Q1. To what extent can mean turbine wake anisotropy fields b; ; in atmospheric boundary layers (ABL) be represented
by machine learning (ML) of high fidelity mean flow fields?
Sql. What are the advantages and limitations of the chosen ML model(s) for this study?
Sq2. What wind plant specific features can contribute to the reconstruction of b; ;?

Sq3. What features in Ling et al. [52], Kaandorp [41], and Wu et al. [105] are appropriate and relevant for this
application?
Sq4. To what extent can a trained ML model be generalised to various ABL properties?

Sq5. To what extent can a trained ML model be generalised to various wind farm layout of multiple turbines?

Q2. To what extent can data-driven turbulence modelling assist Reynolds-averaged Navier-Stokes (RANS) simula-
tion of wind plants in the ABL?

Sq6. For solver stability, what is the optimal high fidelity data mapping and injection strategy from a trained
ML model to RANS simulation?

Sq7. How much is the computation cost saving, compared to Large Eddy Simulations (LES)?

To answer the research questions above, the following objectives have been established:
O1. Select and implement an efficient ML framework with high flow generality and result interpretability.

Sol. Verify and validate the chosen ML model(s) against proven ML methods on a simple flow case.

So2. Test the generality, interpretability, and efficiency of the chosen ML model(s).
02. Perform ML on mean resolved flow fields from Large Eddy Simulations (LES) of wind plants.

So3. Verify the convergence of LES statistical averaging of mean resolved flow fields.

So4. Identify and visualise ML predictions of relevant turbulence fields.
03. Implement the data-driven RANS framework on wind plant simulations

So5. Enable RANS capability of the current wind plant simulation solver.
So6. Map RANS flow fields to LES b; ; with the chosen ML model(s).
So7. Perform data-driven RANS of wind plants augmented with LES b; ;.

1.2. Thesis Structure

Figure 1.1 shows the flow chart of this thesis with the chapter numbers shown. As the foundation of this thesis,
Chapter 2 and Chapter 3 dive deep into the theory of CFD in wind energy and the review of recent ML techniques in
turbulence modelling respectively. The theories and foundation does not stop there, as some more relevant princi-
ples will be revisited in the next few chapters.

Chapter 4 lays out the detailed specification of the wind plant LES including an introduction to the wind plant
LES solver SOWFA. Chapter 5 elaborates on the implementation detail of the steady-state wind plant solver based
on SOWFA and using RANS governing equations. A data-driven approach for turbulence modelling is introduced in
the mean time. Chapter 6 talks about the enhancement and extension to the current TBDT ML framework. Subse-
quently, the enhanced TBDT framework is verified and validated in Chapter 7.

Chapter 8 is the first result chapter, where the ML result of the ground truth LES mean flow fields are pre-
sented. Then, in Chapter 9, the ML result of mapping the RANS flow fields to the ground truth mean LES turbulence
anisotropy field. Lastly, Chapter 11 marks the end of the outcome of this thesis by demonstrating the potential of
data-driven RANS presented in wind energy applications.

Finally, to conclude this thesis, Chapter 12 brings up the conclusions that answer the research questions Q1 and
Q2 and provides an outlook to future development directions for the topic of this thesis.
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Theory of Computational Fluid Dynamics in
Wind Energy

The journey of thesis starts here with the review of the principles behind this work — computational fluid dynamics
(CFD). The wind plant flow properties of this study can be summarised into the following two:

1. incompressible: no density variation in the flow field;
2. buoyant: buoyancy effect due to varying density at different altitude.

These two properties mentioned above seem contradictory —how does an incompressible flow account for buoy-
ancy effects? The answer lies in the Boussinesq buoyancy approximation and will be elaborated in Section 2.3. First,
the governing equations of a Computational Fluid Dynamics (CFD) simulation need to be defined. The governing
equations of an incompressible flow consists of the mass conservation in Equation (2.1) (also known as the continu-
ity equation),

V-u=0, 2.1)
or in tensor notation,
i _, 2.2)
ax,- o ’
and the momentum conservation in Equation (2.3),
ou; O(uju;) 190 0%u;
S G e T ’ 23)

ot 6x]' §i paxi +V6xj2'

The term ‘conservation’ refers to the balance of mass and momentum of the flow in a controlled volume fixed
in space. In fact, the conservation in a control volume does not merely limit to mass and momentum. Ferziger and
Peric [26] derived that the rate of change of random scalar 6 in this control volume conserved via diffusion and a sink
or source ¢ (if it exists),

+ -
ot (3Xj axj

00 0w;0) 9 ( ae)
0xj ik

(2.4)

where T is the thermal diffusivity (per unit mass) for 8. Pope [71] described Equation (2.4) as the conservation of
passive scalar as it has no effect on other flow properties e.g. p, u;, p, etc. In this study, this passive scalar 6 will be the
potential temperature as it is the key to simulating the buoyancy effects in incompressible flows via the Boussinesq
approximation in Section 2.3 later.

The mass conservation together with the conservation of momentum are called the Navier-Stokes (N-S) equa-
tions of motion. The N-S equations are deterministic, i.e. they provide an exact mathematical description of the
evolution of a fluid given an initial state. Turbulence, on the other hand, is random. One the culprit to the unpre-
dictability of turbulence flows is the NS equations’ sensitivity to initial conditions. Lorenz [54] found out the instabil-
ity of the Lorenz equations under a small departure of the initial conditions and lost predictability of the equations
despite them being deterministic. Later, Lorenz [55] illustrated that even with an incredibly small perturbation to
the initial conditions, the numerical solutions became less correlated longer into the simulation.
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With the computation resource limitation in mind, several CFD simulations approaches have been widely con-
sidered, namely Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), and Reynolds-averaged N-S (RANS)
simulation'. The three approaches differ in the proportion of the turbulent scales being solved using the N-S equa-
tions of motion:

* DNS: while it resolves all turbulent scales, it has been shown to be too expensive for this flow problem as well
as a wide range of industrial application.

* LES: instead of resolving all turbulent scales, it only resolve the large scale eddies while modelling the SGS
turbulence.

¢ RANS: Obtain the mean field and model all turbulent scales.

In the next section, the N-S equations will go through some transformation to arrive at the the filtered NS equa-
tions for the application of Large Eddy Simulations (LES) — a high fidelity CFD method. Alternatively, the N-S equa-
tions of motion can be averaged to arrive at the Reynolds-averaged N-S (RANS) equations in Section 2.2, for the
application of RANS simulations — a lower fidelity CFD method. Eventually, the solution to tackling incompressible
flows with buoyancy effects is explained in Section 2.3. As the CFD simulation of this study is done in the realm of
wind energy and more specifically the atmospheric boundary layer, two unique effects has to be taken into account
apart from the buoyancy effect. The two effects are the Coriolis forcing and the geostrophic balance and will be
explained in Section 2.4.

2.1. Large Eddy Simulation

To accomplish resolved- and modelled- turbulent spatial scale separation, alow-pass filter is implemented. Consider
a feature ¢, the high frequency part of the feature that is below a filter width A, ¢, is attenuated. On the other hand,
the low frequency part, ¢, is left untouched.

dx 1= Ppx 1+ ¢'x1). (2.5)
~——r —\—  ——

Total Resolved Sub-Filter

The spatial filtering process is defined in Equation (2.6) [74],

Px, 1) = f P&, 1)Gx—&)dE, (2.6)

where G is the convolution kernel. The filtered conservation of mass for incompressible flows is rather simple.

2.1.1. Filtered Incompressible Navier-Stokes Equations
Consider Equation (2.2) and apply the filtering to it,
5;; o0ii;

=—=0, 2.7
6x,- ax,- ( )

Analogously, applying the filter to the conservation of momentum in Equation (2.3) yields

o duiu)) 19p 0w
ou ity - p i
i =g ———+v—F, 2.8
ot ax] gl p axi Vasz ( )
_ a . ~ 2~
om  owiup . _10p O 2.9)

E Oxj & pdxi+vaxj2'

Equation (2.9) is not closed since it is impossible to know lfl\u’] that includes two non-filtered variables. A further
decomposition of L/L,\u/] can be done using Equation (2.5) into the resolved #; and an unresolved part,

Wit = (@ + ) (@ + uf) (2.10)

o~ T T
= U;lj +ﬂiuj+uiﬁj+uiuj. (2.11)
~——
Resolved Unresolved

LFor convenience, the terminology of ‘RANS simulation’ and ‘RANS’ are interchangeable in the remainder of this thesis.
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Due to the presence of the SES feature u, the last three terms in Equation (2.11) cannot be resolved. Therefore,
the unresolved part in Equation (2.11) is defined as the SFS stress tensor 7,

TN
‘L'l'jZIZi\/uj—ﬁiﬂj (2.12)
TN TN TN
= U + wpdlj + ujus, (2.13)

TN
where u; u;

part, TZ., is the anisotropic SFS stress tensor and

is the SFS Reynolds stress. Since the diagonal components of 7; ; account for normal stress, the deviatoric

1
T?jZT,‘j—ngk6,‘j. (2-14)

Lilly [49] approximated L:L,\ft/] as #i; itj and arrived at
Tij= Uil — ;. (2.15)

However, Leonard et al. [48] concluded that (Li,-\a/j — @i;ii}) is generally not negligible and proposed lumping the

difference, L;;, into Equation (2.13) while still following the definition of 7;; in Equation (2.15) since ﬁl\a/] in Equa-
tion (2.12) requires double filtering and Equation (2.15) does not. Let

Lij= Li\_/ljt] — i1l (2.16)
Cij=tju;+ Ui (2.17)
(2.18)

The decomposition of Lfl\u/] from Equation (2.11) becomes
L/t_i\JLtj=Lij+Cij+Rij+L~tiﬁj, (2.19)
and
Tiszij"'Cij"'Rij- (2.20)

which can be shown not Galilean invariant due to L;; and C;; [87]. To fulfil the Galilean invariance, Germano [31]
decomposed ii; iij from Equation (2.15) as

—~——

@ity = Ui+ ;- i + U (2.21)
=l,ztiftj+liilj’j+l;'iﬁj+l;/ilz’j, (2.22)
and arrived at new definitions for L;;, C;; and R;j,
= = =
Lij=d;uj—u;uj (2.23)
~ o~
C,’j=uiuj+uiuj—uiu’j—u’iuj (2.24)
T -
Rij:uiuj—u’iu’j. (2.25)

The significance of Equation (2.15) is that the unknown information in Lfl\u’] reduces to merely 7;;. Finally, sub-
stituting Equation (2.15) back in Equation (2.9), the filtered conservation of momentum becomes

oi; O(dl;ii; 10p w07y
Om; oty . 10p 07  OTij (2.26)
ot ax]' o 0x; asz ax]'

Unresolved

with 7;; left to be modelled to close the equation.
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2.1.2, Filtered Transport Equation of a General Scalar
Following the same analogy, the filtered transport equation of a general scalar can be derived. Assuming constant
thermal diffusivity I and a filter can be applied to the conservation of a scalar in Equation (2.4),

@4.6/(_’/7]‘_0/)—1"62_64."' (2.27)
ot Tox; o '
06 00 320

=T— +q, (2.28)

ot Tox; ok
J

with Lft;é unresolved as it is the filtered product of two unfiltered variables. Analogous to the decomposition in
Equation (2.11), let
w0 =10+, (2.29)
where q} is the SFS flux and needs to be modelled. Therefore, the filtered transportation equation of a general scalar
becomes
6—é+aijé—rﬁ—a—q}+ (2.30)
ot ox; T o o 7 '

with g = 0 if no sink or source exists and q;. to be modelled.

2.2, Reynolds-averaged Navier-Stokes Simulation
If a flow property, e.g. the velocity vector u, that is varying over time is decomposed into a mean component (u) and

a fluctuating component o’,
u=(u+u, (2.31)

in which (-) denotes the spatial or temporal averaging operation known as the Reynolds operator. Then RANS tries to
solve the transport equations derived specifically using the Reynolds-averaged flow quantities. Reynolds-averaged
transport equations can be derived in a similar manner as filtered transport equations and in fact, to a similar form.
Nonetheless, there is a main difference between the filter operator ~ and Reynolds operator (-), i.e., take a fluctuating
flow quantity u; as an example,

i #0 2.32)
(u;)=0. 2.33)

With this these two rules, the Reynolds-averaging operation of the N-S equations as well as other scalar transport
equations can be completed.

2.2.1. Reynolds-averaged Incompressible Navier-Stokes Equations
The averaging of the incompressible continuity equation in Equation (2.2) is simply

aui 0 (u,)
— ) )=—=0. 2.34
< 0x; > 0x; 239
Then, for the N-S momentum equation, applying the Reynolds-averaging operator on Equation (2.3) yields,
au;y O uiu; 10 0% (u;
<u1>+ < i ]>:gi__ <p>+V <u21> (2.35)
ot 0x;j p 0x; 0x;
And just like the case of filtering, a special treatment is needed for the nonlinear convective term l%g;)‘:ﬁ in Equa-

tion (2.35) as the correlation (u;u;) is unknown — only (u;) is known. To do this, u; in (u;u;) has to be decomposed
into the form as in Equation (2.31),

0 0 , ,
o (i) = 5 ((Cuiy + ) (Cuj) + 14f) ) (2.36)
6 ! ! ../
:_Oxj <(ui)<uj>+ul.<uj>+(ui)uj+ul.uj> (2.37)
a a Il
= _Gx]' (Cuid (uj)) + _6xj <uiuj>, (2.38)
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in which <u; u;> is called the Reynolds stress R;j [71] and only differs from the SFS stress tensor in Equation (2.13) by

the type of operation. Moreover, as <u; u;> is unresolved, it poses a closure problem and thus needs to be modelled.
Substituting Equation (2.38) back in the momentum equation in Equation (2.35), yields

Y 0wy (uj 0 *(u;)  ORjj
Otup O (w) _ _10{p) ) ORi (2.39)
ot axj p 0x; 6x]'2 0x]'
——
Modelled

2.2.2, Reynolds-averaged Transport Equation of a General Scalar
The Reynolds-averaged transport equation of a general scalar, say potential temperature 8, is done in a similar man-
ner as in the filtered Equation (2.30). By averaging Equation (2.4) over time,

00 0u;0)\ [/ 06°6
(2)+ (2 >_<ra_ﬁ>+<q>, 240
0(u;0 2
0  0{u;6) .0 o,

= (2.41)

. 2

ot 0x; 0x;

Since (u;0) from Equation (2.41) is unknown, the mean-fluctuation decomposition is done and
0 0 . , ,
6—xj<uj0>—a—xj<(<uj>+uj)((0)+9)>, (2.42)
—i<<u-><0)+u' (0)+(u~)9’+u’9’> (2.43)
= oy \H O r it Ol O '
d oq;
= i)<0 - 2.44
axj (<u]>< >)+6xj ( )
where

(uj0)=u;) 0 +4; (2.45)

and q} needs to be modelled. Substituting Equation (2.44) back into Equation (2.41) yields the Reynolds-averaged
transport equation of a general scalar,

a(u;) o 2 oq;
9@  0{u;)¢0) _ 0% %9;

_ , 2.46
ot 0x; dx? 0x; (2.46)

Compared to the filtered transport equation of a general scalar, Equation (2.30), the Reynolds-averaged counter-
part in Equation (2.46) only differs in the type of operation but with the same formulation.

2.3. The Boussinesq Buoyancy Approximation
Boussinesq proposed a relation that links potential temperature T to the pseudo compressible flow density to ac-
count for buoyancy in an incompressible formulation such that

(ﬂ) =1—(6_6°) (2.47)
PoJLES 0o

(ﬂ) =1—(<6>_9°), (2.48)
Po JraNs 6o

where py is called the buoyant density, pg and 6 are reference density and potential temperature respectively. This
leads to a change of the body force term g; in the filtered N-S momentum conservation Equation (2.26) and its
Reynolds-averaged counterpart Equation (2.39), as

g; 0l 7 i 0Tij
%+M:(ﬂ) 10 0 Ot (2.49)
ot 0x;j 00 J1Es pOx;  dx;° O0x;

0{u;y O (upd(u;j 10 % (u) OR:;

() 0(Cu) 1>)=(@) gL n <u21>_ i 2.50)
ot 0x; 0o Jrans p 0x; Ox; 0x;
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Now that a new variable 6 is introduced to the N-S equations, a third equation — the filtered or Reynolds-averaged
transport of 8, Equation (2.30) or Equation (2.46), needs to be supplied to close the problem, in addition to modelling
the SGS stress tensor 7;; or Reynolds stress R; ;.

2.4. The Coriolis Force & Geostrophic Balance

The Coriolis force is a pseudo force to correct the trajectory of a parcel of air moving from one latitude to another,
when in the Euler (earth) reference frame. A stationary (as in the earth’s reference frame) parcel of air at a latitude
would be moving at the same speed of the earth’s rotation, in the same direction of earth, i.e. west or east. The
velocity of this parcel consists of two components — the velocity perpendicular to earth’s radius vector at this latitude
V1 ; and the velocity parallel to earth’s radius vector V. However, with the addition of an extra velocity, the parcel
trajectory will be corrected the Coriolis force. Suppose the parcel is in the northern hemisphere and has attained an
extra velocity towards north due to a pressure gradient. The parcel will travel from latitude ¢y, to ¢y, where earth’s
radius as well as rotational speed decrease. The velocity this parcel possesses can be categorised in three— V, and Vj
as before; and the additional velocity towards north due to pressure gradient V. Since such parcel carries V; and Vj
of a higher radius than where it will have travelled to, the parcel becomes increasingly faster than earth’s rotational
speed at ¢p;. This causes the parcel to have a curved trajectory in the earth’s reference frame. Would the parcel,
still in north hemisphere, stay at the same latitude if it only gains an additional velocity towards east, Vg? Since the
centrifugal acceleration, i.e. gravity, is (almost) constant and is defined as

V2
g=—= 9.81m/s?, (2.51)

V= ,/(VL+VE)2+V”2, (2.52)

a higher V demands higher earth radius r to maintain g. To achieve this, the parcel has to travel south where r gets
larger. It is obvious that the parcel does not have to have an additional velocity in strictly north/south/east/west
direction to get deflected. Moreover, using the analogy above, it can be concluded that if a parcel is in the north-
ern hemisphere, it will be deflected to the right of its trajectory; while if it is in the southern hemisphere, it will be
deflected to the left of its trajectory. Churchfield et al. [12] defined the Coriolis force for the filtered momentum
equation as

where

Fco = —2¢€; 1 Qj iy, (2.53)

where €; i is the Levi-Civita symbol and

+1, if(i,j,k)is(1,2,3),(2,3,1),0r(3,1,2)
€ijk = -1, if(i,j,k)is@3,2,1),(1,3,2),0r(2,1,3) (2.54)
0, ifi=jorj=kork=i.

In addition, 7@ in Equation (2.53) is freely exchangeable with the Reynolds-averaged velocity vector (uy) due the
property of Reynolds averaging operator that (uk) = 0. Furthermore, Q; in Equation (2.53) is the rotation rate vector
defined as

0
Qj=w cos¢|, (2.55)
sin¢g

where o is the planetary rotation rate.

The geostrophic wind only works for zero-friction and if isobars are perfectly straight. This is usually the case for
the upper atmosphere. Despite this, the atmosphere outside the tropics are considered geostrophic. The geostrophic
balance is set at the turbine hub height zj,;, = 90 m.

2.5. Numerical Solution to Incompressible NS Equations

Consider the incompressible momentum conservation before imposing the continuity condition, its discretisation
can be written as
ou; op
p ot ! 0x; '

(2.56)
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where
6u,-uj + 5‘[1']'
6x]' 5x]'

Hi=gi—p (2.57)

and % represents discrete spatial derivative. To discretise the momentum equation temporally, take the explicit
Euler method for example, Equation (2.56) becomes

n
op ) 2.58)

n+1 n_ n
ou; —pu; —At(Hi - 51
where the n + 1 time step information is computed using information at time step n. Mass conservation can be

incorporated in the discrete momentum conservation by taking the divergence of Equation (2.58),

d op"
—|H"-
O0x; ( Loox; )

Sul™  Sul!

- =At
6x,- p 6xi

P . (2.59)

The mass conservation condition enforces the LHS of Equation (2.59) to vanish. Moreover, the divergence of %
1
in Equation (2.57) also vanishes, which leads to the discrete Poisson equation of p at time step n,

5)61'

o (op" (SH? 2.60

%)% (260
u! which satisfied the continuity equation Equation (2.2) at time step 7 is needed in order to solve p" from
Equation (2.60). Iteratively, u?“ can be derived from Equation (2.58) and becomes available to compute the next
pressure field, p"*! using Equation (2.60). On the other hand, if the implicit Euler temporal discretisation is applied,

Equation (2.56) is discretised as

6pn+1
pu?“—pu?:At(Hi”H—W). (2.61)
1
Consequently, the divergence of the momentum equation, Equation (2.60) becomes
5 (6 pn+1 SH'!
92 =—1 2.62
5x,‘ ( 5x,‘ ) 5xi ( )

which requires u?”, in the convective term of Hl.”“, to be known. This mandates p,4+; and u?” to be solved
simultaneously. Compared to explicit discretisation methods, implicit methods allow larger time steps to be used
without instability and are thus preferred when solving steady-state or slow-transient problems [26].

2.5.1. The SIMPLE, SIMPLEC, and SIMPLER Algorithm

The SIMPLE, SIMPLEC, and SIMPLER algorithm solve the implicitly discretised momentum equation in Equation (2.61),
and as mentioned above, iteratively. For a more general implicitly discretised momentum equation not limited to
the Euler method which is first-order, Equation (2.61) is rewritten as

Al n+l + Al n+l _ ~An+l _ 5pn+1 (2.63)
pupp + A U = Q) ox |’ '
i i P

where P is the index of the node of interest in a grid; / is the index of neighbouring nodes introduced by the higher-
order temporal discretisation methods. Additionally, compared to Equation (2.61), it can be noticed that p and At
are absorbed in A%; the second term in the LHS, as well as any non-pressure gradient terms at time step n + 1, are
integrated in Q,'}i“ as a source term. Equation (2.63) is non-linear again due to (u;u j)”” interactions in QZi”, and
A" if p depends on the unknown ulf'“ in compressible flows, thus can only be solved iteratively. Within a time step,
aforementioned iterations to approximate u?“ are referred to as outer iterations. Let m be the iteration counter, for
node P, an outer iteration of Equation (2.63) is

m-1
6”—) , (2.64)
P

Ui . mx uij  mx _ ~Am-1
Ap'uly + ) AUl =Qp —( o
1 1
where m* represents intermediate approximations known as inner iterations, during outer iteration m. This is be-
cause the final velocity solution at outer iteration 7 should depend on p”* other than p”*~! in Equation (2.64). This
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means that once p™ is known, u;", can be updated using Equation (2.64) as

o =Q$_1—21A?i”ﬁ*_L(6pm) =am*_L(6pm) 2.65)
LP Ayl Ay \ 0x; Jp LP 5xi )p’ ’

Non-pressure driven

The underlying problem now becomes finding p”. As demonstrated before, this is done by enforcing continuity.
Taking the divergence on both sides of Equation (2.65), it follows that

§ | p (6;9 ) 6(paj™)
0x;

6x, 0x;
from which p™ can be solved. The SIMPLE algorlthm uses the underlying method but instead of finding p™, a
pressure correction p’ is sought after as

) (2.66)
P

p=pm-pmL (2.67)
According to Equation (2.66), a correction of pressure leads to a correction of velocity, ', defined as

u'=ul—ul™. (2.68)

Equation (2.68) is equivalent to subtracting Equation (2.64) from Equation (2.65),

u;
IR S _L(‘s_p') P (5’”) (2.69)
Lp Azi "\ox;)p P 0x; ’
———

Non-pressure driven

that is solved by resolving p’ first. Following the preceding steps, enforcing continuity on Equation (2.69) results in
the Poisson equation of p/,

5 [ o (5p) S(pa"™) 8(pit)) 070

ox; | Al \6x; 5x; 5x; P'

Comparing Equation (2.70) to its predecessor, Equation (2.66), an extra term of 11; p appears, which is problem-
atic. This is due to the fact that the formulation of 11; p in Equation (2.69) involves the unknown u; ; as only m=*
but no m information is acquired at this stage. The approach of the SIMPLE algorithm is simply ignoring &’ while
introducing an under-relaxation factor, a, for p' [26] so that Equation (2.67) becomes

P

pm=p" tayp, O0<ap<l. (2.71)

Alternatively, &; , from Equation (2.70) can be approximated as a function of &; ,, other than ﬂ; ; as originally in
Equation (2.69) by A;" -weighted averaging of ul., ;- Such method is referred to as the SIMPLEC algorithm. Finally,
instead using both #' and p’ to evaluate u!" and p™, the SIMPLER algorithm avoids evaluations of p”* with p'.
Rather, p™ is computed via Equation (2.66), and uses the evaluated #}" in place of #;"*. The SIMPLE algorithm is
quite robust to coarse grids but exhibits low convergence rate. Although constructed a time-stepping procedure, the
SIMPLE algorithm is inefficient for unsteady problems ([26], [63]).

2.5.2. The PISO and PIMPLE Algorithm

A third treatment to i} ; p is the inclusion of a second level correction within the SIMPLE framework. The second
level correction kicks in when the first inner iteration 1% of the SIMPLE algorithm completes. At such a stage, Equa-
tion (2.69) has just finished and, for each P in the grid, u/ ; p has become available. The second level correction creates
anew correction of the velocity, u P, by replicating Equation (2.69),

_ 1 (6
=t~ () 2

Since for every P in the grid, u; p is known after the first inner iteration 1%, i, ;. p 0f 1x can, albeit too late for 1 *,
be computed via its relation to u 1n Equation (2.69). Then, following the framework of the SIMPLE algorithm, p
needs to be resolved by enforcmg the continuity condition on Equation (2.72). This leads to

L(ép”) Spu!
Azi 0x; p

0

6x,-

6(pit;)
6xl-

) (2.73)

Xi

P P
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with u;’ p ignored. The PIMPLE algorithm is an algorithm that combines both SIMPLE and PISO algorithm. The
aim of the PIMPLE algorithm is to enable a more efficient transient solver by allowing the Courant number much
larger than 1 that would not have been possible in the PISO algorithm alone. The PIMPLE algorithm utilises an
outer corrector that corresponds to the SIMPLE part of the algorithm and an inner corrector called the PRIME iter-
ation. Moukalled et al. [67] provides a clear description of not only the PIMPLE algorithm but also other algorithms
mentioned above, should the reader learn more about numerical solutions to the N-S equations.

2.6. Turbine Modelling

There are multiple low fidelity methods to simulate wind turbines for low computation costs. These methods save
computation expanse by not resolving the blade geometry. Rather, lines, or surfaces of collocation points are used to
cast blade forces. Shen et al. [79] proposed the Actuator Surface Model for 2D flow problems that replaces the blades
with sheets of vorticity sources. Of more interest is the Actuator Line Method and Actuator Disk Method that apply
in 3D flows.

2.6.1. The Actuator Line Model

The Actuator Line Model (ALM), first proposed by Serensen and Shen [84], is a way to calculate the lift and drag
distribution of a turbine efficiently without the necessity to model the blades. Such low-fidelity method is especially
attractive to wind farm CFD simulations as modelling the turbines in a wind farm would results in exponential in-
crease in computation effort than its already high cost. To begin with, the blades of a turbine, considered as lines,
are discretised into several line segments. Through sampling, the free stream velocity and the angle of attack at each
segment is obtained and the resulting lift and drag of each segment are then evaluated using a lift and drag coeffi-
cient table that corresponds to the airfoil of each segment. Next, the evaluated segmented lift and drag forces are
projected back to the flow as an extra body force term in the momentum equation. Since the ALM does not model
the blades, flow features such as BL and flow separation are not captured. Moreover, due to the segmented line
simplification, the evaluated lift and drag forces are point forces which are not physical. To solve the problem of
singularity, smoothing functions such as Gaussian projection distribute the lift and drag forces in 3D to smooth out
the force from a point to an area. Serensen and Shen [84] defined the Gaussian function as
R

gx) = We (2.74)
where € controls the width of the Gaussian distribution and is constant along an AL; e%ﬁ = gmax is the peak of the
distribution; and |x — Xg| is the distance between a coordinate x and the coordinate where the Gaussian is centered,
Xo. The Full Width at Tenth of Maximum (FWTM) for Equation (2.74) is

FWTM(e) =2VIn10e, (2.75)

which determines the width of the Gaussian distribution for all g = % 8&max- Figure 2.1 illustrates the force distribu-
tion via Gaussian function g smoothing where a larger g corresponds to a larger force density.

(a) View from upstream (b) View from the side

Figure 2.1: Example of an ALM with Gaussian function g smoothing [15]. Observe the isotropy of the smoothing and the overlap of internal
distributions

Depending on the width control €, the Gaussian distribution of neighbouring AL elements can interfere and
thus create distribution overlaps. This is not a bad thing as, ideally, the resultant force distribution should resemble
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that of a real blade. The key to realistic blade force field recreation lies in tuning the only control parameter of the
Gaussian function, €. Studies have been ongoing to find a standard on which the optimal ¢ can be determined.
Martinez-Tossas et al. [60] concluded that the optimum € can be related to 14% - 25% of the chord length c. Although
the conclusion comes from Joukowski airfoils, Martinez-Tossas et al. [60] reckoned the optimal € of other airfoils
to lie within the same range. Nonetheless, the mesh cell size along and across the actuator line also plays a role in
determining the optimal €. In Equation (2.75), the width of 90% of a Gaussian (thus force) distribution has been
defined. If the cell size is larger than FWTM(e), then having a point force or distributed force on this cell would not
make much of a difference (in fact, only 10% overlap from each of the adjacent force distribution along the AL) as the
resultant force is a body force on it. Moreover, rotor blades come with varying ¢ according to rotor radius, while € in
the ALM stays constant. This makes it unreliable to find €,pimal based on chord length. After experimenting € based
on multiples of the AL element length Ar, Troldborg [93] discovered that € = 2A yields a balance between oscillation
reduction and moderate smoothness on the axial interference factor along an AL, given that the cells size A = Ar.
Churchfield et al. [15] suggested that € = 0.035D based on power prediction of high Aspect Ratio rotors.

Theoretical analysis from Martinez-Tossas et al. [60] show that, in absence of drag, sampling at the center of
the Gaussian distribution provides sampling velocity equal to free stream velocity. And in the presence of drag, a
velocity correction involving the Gaussian smoothing width € is necessary for sampling at the center of the Gaussian
distribution,

Ue (X0, Yo)

Uoo=1

— 1l ¢’ (2.76)
47 de
where 1, (xo, yo) is the velocity due to drag body force, sampled at the center of the Gaussian distribution (xg, yo); ¢4
is the local drag coefficient; and c is the local chord length.
The Advanced Actuator Line Model (AALM) improves the ALM in two aspects, namely the force projection and

the sampling velocity.

Nonisotropic Force Projection
The increased cost of computation of AALM comes from the fact that smaller cell size needs to be defined along the
direction of the blade thickness in order to resolve the contribution from the ¢; term.

Integral Velocity Sampling

The sampling velocity of ALM depends on the local velocity of each AL element, which can be non-smooth and
sensitive to the sampling location. To overcome this problem, Churchfield et al. [15] proposed an integral velocity
sampling that does not just depend on the local velocity of a point but area-integrated local velocity weighted by the
Gaussian function g. The significance of such modification is that the direction of the sampled free stream velocity
U, does not have to be the same of the local velocity u sampled at a point (typically the control point of the AL
element), instead, its direction is now the weighted average direction of all u along the contour of an airfoil.

2.6.2. The Actuator Disk Model

The Actuator Disk Model (ADM) can be viewed as a even more simplified version of the ALM, in the sense that the
rotor has been replaced by a disk. Naturally, the ADM loses the ability to identify instantaneous blade location and
rotation information as well the instantaneous force properties. Nevertheless, since RANS simulation does not seek
instantaneous results, the ADM is widely used by it. Troldborg et al. [94] compared ALM and ADM and found that
the discrepancy between the two in mean velocity fields are minimal.

2.7. Turbulence Modelling

Turbulence is a property of the flow, i.e. a property of the motion of fluids. It can be characterised by six observable
properties [76]: irregular in space and time; rotational; highly diffusive; three dimensional; unpredictable; coexis-
tence of different eddy scales; and dissipative.

1. Irregular in space and time. The random fluctuations mandate the use of statistical analysis.

2. Rotational. Swirling eddies or vortices result in vorticity fluctuations and different eddies sizes result in non-
linear equations of motion.

3. Highly diffusive. The transfer of mass, momentum, energy and other transport quantities are enhanced.

4. Three dimensional.
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5. Unpredictable. Turbulent flows are very sensitive to initial conditions (IC) and boundary conditions (BC) and
develop into totally different trajectories even in small perturbation of IC and/or BC.

6. Coexistence of different eddy scales. Large eddies carry smaller ones in space while having a longer life time.

7. Dissipative. When a vortex is stretched by the strain rate field induced by vortices of larger scales, work is done
by the strain rate field to realize such stretch. This leads to the an energy cascade process as energy is extracted
from large to small scales. Ultimately, the smallest scales dissipate kinetic energy into heat due to molecular
viscosity.

2.7.1. Turbulence Length Scale

The turbulence kinetic energy cascade process is initialised by the largest eddies that interact with the mean flow as
their characteristic length scales are of the same order of magnitude. With this in mind, vortex stretching during the
energy cascade process results in anisotropy of the vortices as the initial stretching usually has a preferred direction
induced by the mean flow. However, for very high Reynolds number Re, as the energy cascade progresses from large
to small eddies, the smallest scales would lose the information about anisotropy and thus are considered locally
isotropic [57]. As such, the only information preserved in the smallest scales would be the rate of energy they receive
equalling the rate that dissipates via molecular viscosity. Therefore, Kolmogorov’s first hypothesis of similarity Kol-
mogorov [45] dictates that, the smallest scales should only depend on the energy dissipation rate per unit mass € and
kinematic viscosity v. This yields the Kolmogorov scales [104],

n= el t=wleV?, u=welt (2.77)

with 1) being the length scale; T being the time scale; and u being the velocity scale. Since € has the unit of m?/s3, e
can be approximated as

e 20 (2.78)

in which the subscript ‘0’ represent the largest scale eddies. Equation (2.77) and Equation (2.78) lead to following
approximation.

oo
lO UO
O (2.79)
TI Vi
33

b Ul (2.80)
n oy

I

0 _Rei, (2.81)
n

a ratio between the largest and smallest turbulence length scale was found. To capture all dynamics in a turbulent
flow, a CFD grid needs to be fine enough to capture the smallest scale 7. This means for an eddy of scale  should be
covered by n grid points, with 7 typically 3 to 5. With this in mind, for each direction of a domain of length scale I,
the required number of grid points is

lo 3
N = 7~ nRexs. (2.82)

n

Since turbulence is 3D, the total number grid points to accurate capture all turbulence scales is then
3 3 9
N = (nRef) = nRef. (2.83)
For a typical Atmospheric Boundary Layer (ABL) flow field,
Uy ~10m/s, Iy ~ 10°m, v ~107° m?/s.

Take the typically minimum value, 3, for n, Equation (2.83) with these values yields

Re~10° (2.84)
N ~ 1.6e21. (2.85)
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2.7.2. Turbulence Model in Reynolds-averaged Navier-Stokes Simulation

The closure problem of turbulence is that as higher moments are taken, more unknowns populate due to the non-
linearity of the convective term of the NS momentum equation. Almost all turbulence models rely on one of the
two concepts proposed by Boussinesq (1877) and Prandtl (1925) respectively, namely the eddy-viscosity approxima-
tion and the mixing length theory. Boussinesq’s eddy-viscosity approximation links the Reynolds stress tensor with
the (mean) strain rate tensor and its coefficient, turbulent eddy-viscosity v7. In Prandtl’s mixing length hypothe-
sis, Prandtl assumed analogy between molecular momentum transport and turbulent momentum transport and,
moreover, postulated that the velocity of ‘turbulent mixing’ vix can be related to the product of the mixing length

Imix and the mean velocity gradient perpendicular to the flow direction I‘fi—g{ [, which is intuitive dimensionally. As a

result, Prandtl’s mixing length theory describes the kinematic eddy viscosity v as a function of /njx and |(fi_§/] |. The
drawbacks of Iix are, first, Inix is only a function of the layer thickness 6 in a free shear flow which is an invalid
assumption for flows near solid boundaries; and second, /yix is an unknown a priori and varies with flow cases. As
a remedy to the first drawback, Driest [18] introduced a damping function to the formulation of /. In addition,
Clauser [16] modified the eddy viscosity in the defect layer, vr,, as a function of the streamwise velocity magnitude
U, at the edge of the defect layer and its displacement thickness @. The Cebeci-Smith model [81] took account of
the damping function, vr,, and the intermittency between the laminar and turbulent flow transition and concluded
with a 2D two-layer model - one for the inner layer and one for the outer, defect, layer. The Cebeci-Smith model
is significantly faster than previous eddy-viscosity formulations and achieved good results for incompressible tur-
bulent BL flows [81]. Furthermore, the Baldwin-Lomax model [1] formulated another two-layer model but for 3D
flows and removed the necessity of edge parameters of the BL for v7,. The Baldwin-Lomax model performed better
on separated flow modelling compared to the Cebeci-Smith model although neither is reliable [104]. Nonetheless,
since the Baldwin-Lomax model employs the magnitude of the vorticity vector, its outer-layer formulation fails when
a flow has non-vanishing vorticity outside the BL, e.g. slender bodies at an angle of attack [30].

Algebraic models

This class is also referred to as zero-equation models since no additional transport equations are being solved. Al-
gebraic models are the simplest turbulence models that employ the Boussinesq eddy-viscosity approximation and
apply Prandtl’s mixing length theory to obtain the eddy-viscosity v itself. However, they suffer from incomplete-
ness, i.e. the model coefficients for different flows are unknown a priori.

One-equation models

This class retains the Boussinesq eddy-viscosity approximation. An additional transport equation is supplemented,
typically a PDE of turbulent kinetic energy (TKE) k or vr. Models supplemented with the PDE of k are incomplete
since it relies on a turbulence length scale [ to close the dissipation term ¢ of the k equation. With this in mind,
Prandtl’s one-equation model approximates € by a closure coefficient Cp and ! [104]. The advantage of Prandtl’s
one-equation model over algebraic models is the number of closure coefficient is only two. Baldwin and Barth [2]
proposed a complete (as in no flow property information needed for coefficient determination) model derived from
the two-equation k-¢ model and avoided the need of /. This is done by solving the transport equation for turbulent
Reynolds number Ry and describing e by the spatial derivative of vr. Nevertheless, such formulation means, in a
uniform flow where the spatial derivative of v becomes 0, there is no dissipation as € becomes 0, which can lead to
non-physical diffusion [104]. Moreover, the Baldwin-Barth model is very sensitive to the eddy viscosity v of the free
stream [75]. Spalart and Allmaras [85] later presented a model that revolved around solving the transport equation
of a modified turbulent eddy viscosity, ¥. ¥ is defined to equal v in the log layer and behaves linearly near the wall.
Similar to the Baldwin-Barth model, this model also suffers from no viscous dissipation in uniform flows. Despite
the Spalart-Allmaras (SA) model’s weakness in simulating jet-like free shear flows, it outperforms the Baldwin-Barth
model in most flow cases [104].

Two-equation models

This class of models are complete and based on Boussinesq’s eddy-viscosity approximation once again. Kolmogorov
first proposed the k-w model, with w defined as the frequency at which the dissipation of the turbulent energy occurs
[104]. Numerous variants of the k-w model have been developed over the last seven decades, most notably by Wilcox.
In the Wilcox’s 2006 k-w model, a cross diffusion has been added to the w transport equation to reduce the model’s
sensitivity to w in the free stream. Additionally, vt is defined as the ratio between k and @, with @, known as the
stress-limiter, scaled with the magnitude of the mean strain-rate tensor S;; when S;; is large. This was found to
greatly improve non-equilibrium flow predictions when v would otherwise grow too large [36]. Furthermore, the
Wilcox 2006 k-w model has been proved to excel at attached BL, backward-facing steps, and incompressible flows
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with mild separation; and improves on free shear flows thanks to the inclusion of the cross diffusion [102]. The k-€
model is another popular two-equation model. Recalling that € in the PDE of k needs to be closed, the k-e model
aims to solve the transport equation of € which is done by taking the moment of the NS momentum equation. vr
naturally becomes a ratio of k? to € instead of k to w as in the k-w models. Unfortunately, the PDE of € contains
way more unknown double and triple correlations of the velocity fluctuation. To worsen the situation, a study of
low Re flows Mansour et al. [59] showed that some terms of €, although negligible away from the wall, can become
increasingly important near it. With many versions of the model exist, the version by Launder and Sharma [47] is
referred to as the standard. In the Launder-Sharma model, the triple correlations of the original PDE of ¢ have been
removed and consequently several closure coefficients have been introduced. Nevertheless, the standard k-¢ model
has the inadequacy when modelling flow with adverse pressure gradients [34, 103]. Yakhot and Orszag progressed
from the standard k-e model by employing the renormalisation group (RNG) theory and arrived at the RNG k-¢
model [106]. Besides the k-w and k-¢ models, Rotta proposed a k-k! model in which both k and the product k!
are formulated by the two-point spatial correlation of velocity with no apparent advantage over other formulations
[104]. Smith [82] underlined three advantages of the k! transport equation over e. First, kI represents the large eddy
scales — in line with the integral length scale two-equation models are formulated for; while € obviously represents
the smallest scales instead — where most of the dissipation actually occur. Secondly, k! equation is easy to solve
numerically. Last but not least, it is easier to use with wall functions. Lately, a modified k-k! model was proposed by
Smith that improves jet flow predictions [83].

Governing Equations for Two-equation Models
Let the Reynolds stress tensor R;; be

Rij = (uju)). (2.86)
The Wilcox [104] k-w model:
ok ok o u;) . 0 ( *k) ok
— +(uj)=—=—-R;; -fko+—||lv+o —|— 2.87
ot <u]>6xj Y 0x;j p ke 0x;j vre w ) 0x; ( )
G
ow ow w 0—(u;) 5 0q 0k Ow 0 ( k) ow
— +{Uujy—=a—R;j ———— — +— +o—|—|, 2.88
ar ) oy R TP e T V) o (2.88)
G
Vi=—, (D:max{w,Cl,-m Y ”}, Ciim=-—=. (2.89)
) B* 8
The standard k-e¢ model:
%+<u~>%——R--M—e+— v+vila )%] (2.90)
ot ax; T T ox; ox; CO ox | '
G
% upy 2, Cg, 02t €, (v+v/0)£] 2.91)
ot M ox; T T ax; T %k ax; "0k ] ‘
G
Using the eddy-viscosity hypothesis,
0{u;)y 0 ui))\ ou;
G=v, |24, () | ot (2.92)
ax]' dxi ax]'
ve=Cuk?le, (2.93)
where the default closure coefficients are
Ce1=1.44, Cepp=1.92, Cu=0.09, or=10, o.=1.3. (2.94)

As can be seen, as both k-w model as well as k-¢ model revolves around solving the eddy viscosity v; iteratively,
the work flow of the two-equation models e.g. the k-e model, in a CFD simulation is illustrated in Figure 2.2.
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Figure 2.2: The work flow of part of the solver where the eddy viscosity is involved

2.7.3. The One-equation Model in Large Eddy Simulation
Define filtered strain-rate tensor S; »

< 1(01@ daj)
Sij==|=—+ . (2.95)

Yo\ ox 1 0x;
Under the assumption that the turbulent Reynolds stress is proportional to the gradients of the mean velocity,
the deviatoric part of the stress tensor, D, or 7,3, is

Tij=-2vrSij, (2.96)
where v is the Sub-Grid Scale (SGS) eddy-viscoisty. Dimensionally,
vr ~ Ul.

Recall the filtered N-S equation,

ou; OGuj)  op 1 0%w 07y
A P, M T g 2.97)
ot ox;j O0x; Re dx; 0x;
——
Filtered SGS
The viscous stress term can be derived into a relation with §; j, beginning with

10%a; 1 0 (au,-) 2.98)
Re 0x; ReOx; \0x; ’

! 0 (al_ti +(3L_tj al_tj) 2.99)
" Redx; \0x; 0x; 0x;) ’
Then, substitute Equation (2.95) in Equation (2.99),
1 0% 20S;; 1 8 (04
——— = — [ (2.100)
Re 0x; Re 0x; Redx;\0dx;
_ 0
20S;; 1 0 (0uy
=— - (2.101)
Re 0x; Reodx;\dx;
2 0S;
z (2.102)
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Analogously, the SGS stress term in Equation (2.97) can also be related to S; I

6171']' 3 _ZO(VTS,']')

2.103
ax]' ax]‘ ( )
Combining both stress terms yields

1% _ 0ty _ 2 95y ,00rSi) (2.104)

Re dx; 0x; Re 0x; 0x;
22 ( +1)5'] (2.105)

=2—||vr+—]Sii|- .
0x; T Re) Y

If Equation (2.105) were to be rewritten in dimensional form, in which % is replaced with the kinematic viscosity
v, as 26%]_ (v +W)§; j |, then the eddy-viscosity can be interpreted as an addition to the molecular viscosity. In high

Re flows, i.e. % — 0 in Equation (2.105), the the eddy-viscosity v7 becomes dominant and provides almost all of the
energy dissipation.
Since dimensionally.
ve~Ul,

Deardorff [17] assumed v, to be proportional to the square root of the SGS turbulence intensity Isgs, or the SGS

TKE, ksgs,
Vi~V ks(;sl.

Deardorff [17] then defined v as
vy = C1V kscsl, (2.106)

where C; = 0.1 is the ‘Deardorff coefficient’. The The transport equation of ksgs is given as

0/63(;3 aaj kSGS 613 0 akSGS
=-— +2v;S;iSii—Dr—+ —2v - 2.107
ot 0x;j e "oz 0x;j ! 0x;j ( )
In Equation (2.107), the numbered terms correspond to the following meanings:
I. Convection II. Shear produc- III. Buoyancy IV. Diffusion V. Dissipation.

tion

2.7.4. Beyond the Boussinesq Eddy-Viscosity Approximation

Models such stress-transport models avoid the Boussinesq’s approximation of R; ;. Rather, the transport equation of
R;j is approximated directly. Despite the fact that the Boussinesq Eddy-viscosity approximation plays an important
role in both RANS and LES sub-grid scale turbulence modelling, its drawbacks have been widely recognised. Brad-
shaw discovered that flows more complex than simple shear layers are subjected to extra rates of strain that result
in a change of the Reynolds stress tensor R;; in the order of ten times the change of what it should be [6]. Imagine
an infinitesimal fluid volume goes through dilatation, R;; will fail since the terms in the principle axis of R;j, which
is responsible for the normal stress, equals %k and does not reflect such dilatation. A fix to such approximation is
simply assuming more terms follow the original simple linear stress strain relation. To proceed one step further,
algebraic stress models (ASM) are derived to approximate the transport equation of R;; [73]. The approximated R; ;
equation is implicit, i.e. R;; as a variable appears on both sides of the equation. Gatski and Speziale [29] obtained
an explicit relation for anisotropy part of R;;, b;j, in terms of the mean velocity gradients and regarded such model
as the explicit ASM (EASM). Both the implicit ASM and EASM have the problem that the model can fail to converge
in complex turbulent flows, unless the mean strain rate S;; is small [29]. Therefore, the coefficients of the approxi-
mated explicit b;; equation are regularised in EASM. The ASM and EASM models demonstrated good predictability
in rotating and curved flows [80]. The Lag model is another attempt to correct the over simplified stress-strain rela-
tion, by supplementing a third transport equation of vr on top of the two-equation models. v thereby goes to the
equilibrium state of itself, f, in time. Compared to the SA and SST models, the Lag model excels at predicting flow
separations [68].
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2.8. Invariance Properties
In this section, the invariance properties are given a detailed look as they form an important basis for the working
principle of the machine learning model to be introduced in the next chapter.

2.8.1. Galilean Invariance
The equations are invariant to constant velocity translations,

x=x+Vt+b, f=t¢, (2.108)

where “ represents the translated frame of reference; V and b are arbitrary uniform vector fields in space and con-
stant in time. For flow physics, there are three important Galilean transformations between the base reference frame
and the translated reference frame, namely [87]

a=u+V (2.109)
0 _9 (2.110)

afc,- axi

0 0 0

&:5_ la_xl (2.111)

The first two relations in Equation (2.109) and Equation (2.110) are straightforward as the partial derivative of the
additional constant V is 0. To prove Equation (2.111), take the derivative of X w.r.t. f.
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In order to derive the more general relation in Equation (2.111), derive Equation (2.113) w.r.t. X;:
4 (a’%")— 0 (ax"+v-) (2.114)
ok \ai ) oax;\at ') ‘
Orders of the derivation can be switched freely in Equation (2.114), thus
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hence Equation (2.111). With this in mind, it can be shown that the original NS equations are Galilean invariant and
the Galilean invariance of the filtered NS equations is achieved by the preservation of such invariance during the
filtering [74]. Moreover, Sagaut [74] stated that a sufficient condition for the preservation of Galilean invariance is
that the filter kernel G appears as a function of (x—¢&). The velocity fluctuation is also Galilean invariant although the
unfiltered total velocity is not.

2.8.2. Time Invariance
The equations are invariant to constant time translations. Since there is no spatial change, spatial properties remains
unaltered, and

t=t+1, X=x G=u (2.119)

For spatial filters, as described in previously, the filtered NS equations are automatically time invariant, irrespec-
tive of the filter used.



2.8. Invariance Properties 21

2.8.3. Rotation Invariance
Under roational transformation of the reference frame, the following relations apply:

i=t, X=Ax, G=Au, (2.120)
where A is a rotation matrix with properties [74]
ATA=AAT =1, |A|=1. (2.121)

Furthermore, it is important to notice that Galilean invariance does not imply rotation invariance since, for rota-
tion invariance,

x-Vi+b=Ax, onlyifA=I-tVx !+bx! (2.122)
u+V=Au, onlyifA=I+Vu! (2.123)

To fulfil both Equation (2.122) and Equation (2.123), A has to be time and location dependent, and
Vu '+ vx !l -bx ! =0. (2.124)

Finally, it is obvious to see that for flow under rotation transformation as described in Equation (2.120), while
spatial derivative of the first order a% is Galilean invariant, it is not rotation invariant. In the case of rotation trans-
formation of a rank-2 tensor e.g. S;j, the following rule applies:

Sij=ApiAqiSpqgr (2.125)
or in matrix notation,
S=AsAT. (2.126)

2.8.4. Invariant Modelling
Tensor invariants are in the form rank-0 tensors, i.e. scalars [72]. For a rank-1 tensor A;, i.e. a vector, it is obvious
that the only invariant is the magnitude of such vector, I,

I=1Al (2.127)

For a real nD rank-2 tensor A;j, the eigenvalues A, which are invariants (think of principal stresses) [72], are
obtained via the characteristic equation,
|A;j— A8 =0. (2.128)

Following Equation (2.128), there will be 7 solutions of A and the characteristic polynomial of A can be formu-
lated as

A= AT A2+ (=D, =0, (2.129)

where (the summation convention does not apply for Greek indices)

J1=)_ Aga (2.130)
a
Aga Aaﬁ
J2= , l<sa<pfs<n (2.131)
;ﬁ Apa App
< Aaa Aaﬂ Aocy
Js= ) |Apa App Apy|, l<a<pf<ys<n (2.132)
©PY|Aya  Ayp Ay
(2.133)
In,n>3 = Al (2.134)

Since A in Equation (2.129) is invariant, J; is also invariant and is called the principal invariant [56]. The solution
of J, from Equation (2.130) to Equation (2.134) seems rather complicated. Fortunately, J, can be simplified by
derivations from the principal frame of A; ;, €. In the principal frame, [A; ], is only an n x n diagonal matrix housing
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the values of A" [43]. Physically, if A; j is a stress tensor, then [A; ;] is transformed to only exhibit normal, invariant,
principal stresses. With [A; ], the same characteristic polynomial in Equation (2.129) results in [76]

J=Y AW (2.135)
i
Jo=Y AR (2.136)
i7]
{ J3= Z A(i)/l(j)/l(k) (2.137)
i#j#k
: (2.138)
Jansz =AM2A@ A0, (2.139)

Equaling Equation (2.135) to Equation (2.130), it can be noted that the sum of all possible A" equals A;;. Further-
more, the Cayley-Hamilton theorem states that any rank-2 tensor A;; also satisfies its own characteristic equation in
Equation (2.128) and thereby its characteristic polynomial in Equation (2.129),

(Aip)" =AD" + L (Ai)" 72 =+ (=) T8 =0. (2.140)

This implies that if the invariants e.g. A" or J, is known, A; j can be derived via Equation (2.140). Moreover,
(A;j)" can be expressed in a linear combination of (Al-j)"‘l, (Al-j)”‘z, .., 0;j. In fact, for a 3D rank-2 tensor, the
linear combination to represent (A; j)”'">3 can be as small as merely (A; j)z, Aj;j,and §;; because, by multiplying A;
m times on both sides of Equation (2.140), (A,-j)2+m can always be broken down to (Aij)z, Ajj,and 6ij with invariant
coefficients (not necessarily the same J,, as before). Lastly, from Equation (2.130) to Equation (2.134), it follows that
the traces of the successive powers of A;; are invariants as well, taking the first three for instance,

I=A;;=tr(A), Il= AijAji = tr(AZ), 11 = AijAjkAki = tr(Ag). (2.141)

2.8.5. A More General Effective-viscosity Hypothesis
Recall the Boussinesq isotropic-viscosity assumption that relates the Reynolds stress R;j with strain rate tensor S;,

2
Rij=3kdij = pettSij» (2.142)
where k is TKE, the anisotropy tensor b; ; is then represented as
Rij 2
bij= =L - 351 (2.143)

Dimensionally, if the anisotropy tensor b;; were to relate to the strain rate tensor S;; that is a function of velocity
gradients g—;‘;, atleast two scaling parameters are necessary. The macro turbulence time scale 7; = k/¢ is independent
of the mean velocity field [56]. The scaling parameters must have ‘mean flow field independence’ since the macro
turbulence time scale 7; = k/¢ is independent of the mean velocity field [56]. Such consideration leads the flow
being inhomogeneous where transport of b;; occurs. Pope [70] made the assumption that in high Re flows, Pope
[70] claimed that in nearly homogeneous flows where local effects dominate Reynolds stress transport, an effective-
viscosity hypothesis could prove to be adequate representing the Reynolds stresses. Using the Cayley-Hamilton
theory, Pope [70] derived an expression of b;; consisted of 10 tensor bases Ti’}? and five scalar invariants A1;,

10
bij= Y T{1"(Sij,Qipg"™ (M As), (2.144)
m=1

where Q;; is the rotation rate tensor, and g(”” are functions of A. Ten Tl.(]’.") are defined as

TW =5, T® = 0°S+SQ? - gl tr(SQ?),

T =50 —lns, 17 = 080? - 0%SQ,

T® =§% - Sl (%), T® = sQs? - sQs, (2.145)
@ _ g2 _ %I-tr (@), TO — 02§? + 202 — gl.tr (s20?),

T = 08%$?Q, 119 = 0820% - 0*S?Q.
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Additionally, five A; that constitutes ten g\ are given as
M=u(S?), A=u(Q¥), Az=t(SP), As=tr(Q%S), As=tr(Q*S?). (2.146)

As both Tl.(]'?” and A; are functions of S;; and Q;; which are moreover functions of %, simply knowing % ofa
) ]
location can lead to b;; ofit.

2.9. Realizability Conditions & Visualisation
In the case of b;}, it is important to realize that b;; is a symmetric anisotropic tensor so that b;; = 0 and b;; = bj;.
With this in mind, the invariants in Equation (2.141) becomes

°=0, I°=b;jbjy;, HI°=b;bjxby;, fori#j#k. (2.147)

I1Y is a measure of how anisotropic the turbulent field is. To find out the physical meaning of III?, according to
Equation (2.134), the third principal invariant J3 is

J3=1b;jl = 2b12b13b2s. (2.148)
Additionally, from Equation (2.147), it follows that I is simplified to
1P = 6b12b13 b33, (2.149)
hence
|
3= §HI . (2.150)

The condition in Equation (2.150) should also apply to the b;; in the principal frame, [b;;], due the invariant
nature of J3 and IIIP. Tt can be easily derived that when considering [b; ],

J3=MA2A3, HIF=A3+A3+A3, (2.151)

and from Equation (2.150),

1
Mzds =2 AT+ A3 +13). (2.152)
The fact that
S A=bhii=0 (2.153)
i
can be extended to

M+ A2 +23)° = A3+ A3 + A3 + 641 AaAs + f(A1,A2,43) = 0. (2.154)

Substitute Equation (2.153) and its further implication that AP = A3 = —A; — A, in Equation (2.154),
IIrf = —3&112(11 +/12). (2.155)

Therefore, III® approaches the maximal if b; j has A approaching an upper bound of %, and approaches the min-
imal if b;; has A approaching a lower bound of —%, as can be seen in Figure 2.3.

(a) View 1 (b) View 2

Figure 2.3: The third invariant of b; j, III b, reaches the maximal as a A approaches the upper bound, and reaches the minimal as a A approaches
the lower bound
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2.9.1. Visualisation of Turbulence Realisability

By plotting III® vs. II°, Lumley and Newman [58] first introduced the invariant visualisation of b; j known as the
Lumley triangle, in order to characterize the anisotropy state of the turbulence. Using the underlining information
of A, the componentality of a turbulence field can be represented in such a plot [33]. An example of the Lumley
triangle is shown in Figure 2.4 (a) as the lines bounded by x; ., X2, and x3. that are known as the limiting turbulence
states. The subscript -, stands for componentality. The turbulence componentality states on the border lines of the
Lumley triangle are categorised and explained as the following:

1 1]T.

1c : one-component turbulence when A; = [%, -3 73]

1c-2c¢ : two-component turbulence when 1; + A3 = % and Ay = —%;

2c¢ : axisymmetric two-component turbulence when A; = [é, %, —%] As A1 = Ay, the turbulence in two directions
are of equal strength;

2c - 3¢ : axisymmetric contraction when —% <A1 <0and0< Ay =123 < %. The turbulence is contracting equally in
two directions;

3c :isotropic turbulence when A; = 0. The turbulence exists in all three directions of equal strength;

3c - 1c : axisymmetric expansion when 0 < 1; < % and —é < A2 = A3 < 0. Similar to the axisymmetric contraction of
turbulence but the turbulence is in equal expansion of two directions instead.

An unique state not on the border of the Lumley triangle is the plane-strain turbulence, as seen in the dashed
line of Figure 2.4 (a). Plane-strain turbulence exists when at least one of 1; is 0.

(a) Lumley triangle mapping the turbulence anisotropy invariant non-linearly (b) Barycentric triangle mapping the turbulence anisotropy invariant linearly

Figure 2.4: Turbulence anisotropy invariant maps [22] outlining the turbulence states of the turbulent channel flow DNS data along a
wall-normal profile retrieved from Hoyas and Jiménez [35]. The dashed line indicates the plane-strain limit.

As can be seen from the curvatures of the borders in the Lumley triangle, the plot shows the turbulence anisotropy
invariants non-linearly. For a positive-definite symmetric 3D rank-2 tensor A;, it is possible to compute the linear,
planar, and spherical shape factors from its eigenvalue A’i‘ [4].

AA A AA A AR

med med min min
Cin=—""—", Cpn=2 , Csph =3 , 2.156
lin A pln \;; sph A ( )

which has a sum of 1 since the sum of the eigenvalues equals the trace of A;;. On the other hand, for a positive-
definite anti-symmetric 3D rank-2 tensor b; ; with eigenvalues A;, the shape factors can be computed via [3]

Clin = Amax — Amed> Cpln =2 (Amed — Amin) Csph = 3Amin +1, (2.157)
which also have a sum of 1 due to the addition of ‘1’ to ¢spp. To have a linear representation of the anisotropy

invariants, Banerjee et al. [3] then proposed a reshape of the Lumley triangle to a equilateral triangle called the
barycentric map. This is done by creating the coordinates in the barycentric map as a linear combination of cjin, Cpin,
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and Csph defined in Equation (2.157) with the limiting states’ coordinate typically located at (0, 1), (0, 0), and (\/ié, \/Tg)
forx)., X2, and x3. respectively [22]:

1
Xpary = Clin + ECsph (2.158)
V3
Ybary = > sph- (2.159)

This choice of the limiting state’s coordinates effectively eliminated the need of ¢p1,. An example of the barycen-
tric map can be seen in Figure 2.4 (b). Equation (2.157) can also create coordinates outside the boundaries of the
barycentric map in Figure 2.4 (b), if b;; and thereby A;; happens to be not positive semi-definite. To prove all coor-
dinates that ly within and including the barycentric map boundaries are positive semi-definite, take the shear stress
tensor 7;; that should be realisable for example. If the rank-2 tensor 7;; is positive semi-definite, i.e. realizable, then
the following three inequalities hold (the summation convention does not apply for Greek indices) [99]:

Taa =0 (2.160)
|Tap| < \/TaaTpp (2.161)
det(Tqp) = 0. (2.162)

Equation (2.160) ensures the turbulent kinetic energy k is non-negative, while a negative k is ill-defined in k-
equation turbulence models [99]. Furthermore, Theorem 2.3 of Chapter 3 of Stewart [89] states that a Hermitian
matrix is positive (semi-)definite if and only if its eigenvalues are positive (non-negative), while Hermitian matrices
include real symmetric matrices such as the Reynolds stress. A realizable R;; puts constraints on the values range
of R;; as well as its non-dimensional anisotropic formulation, b; ;. Recall the formulation of R;; and b;; from Equa-
tion (2.142) and Equation (2.143) respectively,

Rij= <u; u}> (2.163)
Rij 1
bz‘j=2—lk]—§5i1- (2.164)

According to Equation (2.160), Ryq = 0. Since R;; = 2k,
0< Ryq <2k. (2.165)

Then, from Equation (2.161), for the off-diagonal components of R;,

| Rup| < max(\/RaaRpp), a# . (2.166)

It can be easily found that the maximum of /RoaRpp is achieved when |Ryq| = [Rgpl = k. Therefore,

~k<Rgp<k, a#p. (2.167)
With these in mind,
in (R 11
min (bgg) = W—g =2 (2.168)
max(Rgq) 1 2
max (baq) = T‘m -3°3 (2.169)
) .
min (R 1
min(baﬁ)z#z—i, a#p (2.170)
max (R 1
max (bgp) = % =5 a#p. (2.171)

Note that the —% term only applied to the diagonal components of b; ;, thus disappeared in Equation (2.170) and
Equation (2.171).

The bound of the eigenvalues A of R;; and b; ; come from an analogous deduction. First, A = 0 for any realizable
symmetric matrix [89]. Secondly, A has the property that, for a nD rank-2 tensor 7,

n

Y AW =1y (2.172)
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As such, in the case of R,

0<A(R;j) <2k, (2.173)
while for b; j, using Equation (2.143),
1 2
—gsa(bij)sg. (2.174)

Because of Equation (2.173) and Equation (2.174), it should become clear that A (b; ;) located in the Lumley tri-
angle as well as the barycentric map are all realizable as the corresponding A (R; j) are all non-negative — implying
positive (semi-)definiteness.

In LES, the non-negativeness of the filter G as a function of (x— &) is a sufficient and necessary condition for the
realizability of the SFS stress tensor 7;, i.e.

Gx-¢)=0. (2.175)

To prove Equation (2.175), let G(x— &) = 0 be true for a domain Q, apply the spatial filtering in Equation (2.6) to
the filtered terms in Equation (2.15),

Tij(X) = U105 (%) — (%) 7 (%) (2.176)
= Ul (%) — (%) 1 (%) — 11 (%) 11 (%) + 1% (X) {1 () 2.177)

=LG(x—£)ui(£)uj(«s)d«f—ai(x)fQG(x—z)u,-(z)df
) fQ Gx— &)1 (€)dE + ;0 1 (X) fQ Gx—&)dE (2.178)
=fQG(x—£) (ui (&) — ;X)) (uj(&) — @1j(x)) d€, (2.179)

which, if G > 0, is a Gram 3 x 3 matrix of inner products that is positive semi-definite [99] and obviously positive
semi-definite if G = 0. To show that G(x — &) = 0 is a necessary condition for 7; j to be positive semi-definite, let V be
a subdomain of Q where G(x— &) < 0. Moreover, suppose

w (&) =0 ifé¢V, (2.180)

then Equation (2.176) is rewritten as
7110 = (%) — (i %)% < @5 (%) = fv Gx—&) (1 (&) dE <0, (2.181)

which contradicts the condition in Equation (2.160). Thus, G(x—¢&) = 0 is a sufficient and necessary condition for the
rank 2 tensor 7;; to be positive semi-definite. Due to this condition, the sharp spectral filter does not yield positive
semi-definiteness to 7;;.

In RANS, for Reynolds stress R;; = (u; u}), the inequality requirements in Equation (2.160) and Equation (2.161)
reduce to [78]

Ri1 =0 (2.182)
Ri1Ryy— R, >0 (2.183)
det(Rgyp) = 0. (2.184)

2.9.2. Barycentric Maps with an Extended Turbulence State Representation

Since the barycentric map achieved linear representation of all possible turbulence anisotropy invariants by using
a equilateral triangle, an augmented visualisation can be done upon the barycentric map. This augmented visu-
alisation is the colour mapping of the realisable barycentric map coordinates, i.e. coordinate on and within the
boundaries of the barycentric map. Such colour mapping of the barycentric map has been adopted by, to name a
few, Emory et al. [23], Tracey et al. [91], and Kaandorp [41] that greatly improves the comparison and interpretation
of the same turbulence fields under various fidelities. This is because, displayed as an example in Figure 2.5 (a), the
original turbulence state visualisation is only available if locations of a flow field are directly plotted on the barycen-
tric map which can be quite messy. While assigning red-green-blue (RGB) colours to each realisable coordinate of
the barycentric map, each location of the same flow field can be classified by an RGB colour unique to a realisable
turbulence state, as shown in Figure 2.5 (b) and (c).
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(a) Original barycentric map displaying the flow field (b) RGB barycentric look-up map (c) Flow field displaying realisable turbulence states

Figure 2.5: Comparison of the original and an RGB augmented barycentric look-up map used by Kaandorp [41] on the square duct DNS data
from Pinelli et al. [69]

The relation between the shape factors ciin, ¢pin, and cspn and the RGB colour space is shown in Equation (2.185)

R 1 0 0
G| = Cic |0 +coc | 1| + ¢3¢ |01, (2.185)
B 0 0 1
where
Cic = (C* + Coffset)ceXp ’ i = 1)27 3) (2.186)

with the subscript -, referring to -jin, “pin, "spn for i =1, 2, 3 respectively, according to Equation (2.157). Furthermore,
Coffset and Cexp are optional parameters proposed by Emory and Iaccarino [22] to improve the visualisation of the
inter-component turbulence states. To illustrate their effect, refer to Figure 2.6. In Figure 2.6 (a), a generic RGB
colour mapping is done to the barycentric map by removing cyffser and setting cexp to 1. The colours of the limiting
states Xi., Xp¢, and X3, are especially prominent. However, the inter-component states that more likely to occur in
a flow field have less vivid colour variation and is hard to distinguish in detail. On the other hand, by setting coffset
to 0.65 and cexp to 5 in Figure 2.6 (b), as recommended by Emory and Iaccarino [22], more colour variations are
illustrated outside the three corners of the barycentric map.

(a) Default RGB with more emphasis in limiting states, cyffser = 0, Cexp = 1 (b) Adopted RGB with more emphasis in inter-component states, cytset = 0.65,

Cexp =5

Figure 2.6: Barycentric map filled with RGB colours

Therefore, compared to both the default RGB in and that used by Kaandorp [41] in Figure 2.5 (b), the adopted RGB
puts more emphasis on inter-component turbulence states by giving wider RGB spectrum to non-limiting states. As
a trade-off, out-of-bound RGB values (> 1 in the normalised RGB range) can occur during the plotting of the adopted
RGB and will have to be bounded to 1 during plotting. Because of this, limiting states at X, Xo., and X3, are not
distinguishable from a state very close to any of them.






Review of Machine Learning & Turbulence
Modelling Augmentation

In this chapter, a very brief review of the machine learning (ML) models and their utilisation in turbulence modelling
is given. The chapter will first go through a selected list of machine learning models that are relevant to this thesis.
Then, several ML preprocess and post-processing techniques are discussed. Eventually, the novel ML frameworks
applied to CFD is explained and is an important basis of the work in this thesis. Note that through out this chapter,
tensor notation is not used.

3.1. Supervised Machine Learning Method

In supervised ML methods, only two ML models will be discussed here, namely neural networks, and decision tree
based models. Furthermore, since alarge portion of the ML work in this thesis is done in scikiz-learn, awell optimised
ML package in Python, many terminology and information here are given w.r.t. the implementation in scikit-learn.

3.1.1. Neural Networks

Neural Networks (NN) is consisted of neurons and layers (Figure 3.1). The layers include an input layer, multiple
hidden layers and an output layer. As can be seen in Figure 3.2, the input features x; are represented by a linear
combination with individual weights w;. At the output, the linear combination goes through an ‘activation’ function,
typically can be a linear function, a logistic function, or hyperbolic tangent.

Figure 3.1: Neural Network architecture

29
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Figure 3.2: Simplified schematic of NN

3.1.2. Decision Tree

A Decision Tree (DT) has a the goal to partition data based on the target values. In DT, such task is done through the
form of branching of a tree. The root is the starting point where all samples of all features are considered and as the
‘tree branches’ spread out at each node, samples with identical target value will be grouped together until either the
max depth of the tree max_depth or the minimum number of samples required to splita nodemin_samples_split
is reached. The splitting mechanism of DT in scikit-learn is as follows:

1. At a node i, for each candidate split 6(}j, t,;) consisting of a feature j and split threshold ¢,,, partition the
samples into subsets Q¢ f; and Qy;gp;

2. Calculate the impurity G(Qyery, Qright,0) by calculating either Mean Absolute Error (MAE) or Mean Squared
Error (MSE) of the target values of Qe r; and Qyjgn¢

3. Choose 8*(j*, t,,) that minimizes the impurity G(Qefs, Qright,0)
4. Split the node with the best feature j* as well the best threshold ¢;,, to split
5. Repeat untilmax_depth ormin_samples_split criterion is reached.

It has to be emphasised that the MSE and MAE regression criteria do not evaluate the errors between the pre-
dicted target value and the ground truth. Rather, the difference between the ground truth mean of and each individ-
ual ground truth of Q¢ f; and Q;gp;. For node m, to calculate the regression criteria of a split set Qe ¢ Or Qyigpy,)

1 _

MAE(Xpng) = —— Y Ying, = Vg, @3.1)
mq iEmQ
1 _

MSE(Xng) = —— 3 (Ymg, = Ymg)%, (3.2)
mq iemQ

where Np,, is the number of samples in Qe Or Q;igpn, at node m, and YmQ is the mean of Yy, of Qjef; OF Qrighs-
Such regression criteria are effective at collecting sets of samples that have target values as identical as possible. As a
stand-alone estimator, the hyper-parameter of DT is typically justmin_samples_split that has a default of 2.

3.1.3. Bagging of Decision Trees
Both Bagging Decision Trees (Bagging DT) and Random Forest (RF) utilize the base estimator called the Decision
Trees (DT).

Bagging DT is a meta-estimator that uses DT the base estimator. Moreover, the fact that it is called a meta-
estimator means that it uses a number of DT, n_estimators, to train just one model. To do this, the same number,
n_estimators, of bootstrap training sets are created from the original training data. The samples in the bootstrap
training sets are drawn with replacement. Therefore, each bootstrap training set has the same size as the original
training data. In addition, CV is not necessary and the training data is also used for testing. Nonetheless, the training
data for theses methods are still capped at 80% of all data for consistency in benchmarking. As a result of bootstrap
training sets and meta-estimators, the Bagging DT learns the problem from a ‘different perspective’ during the learn-
ing of each base DT and the variance of the prediction should be reduced. In addition, oob_score is used instead of
the default score attribute is called when scoring the base estimator by taking advantage of the out-of-bag samples.
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Furthermore, the oob_prediction_ is also available to predict the out-of-bag samples from the training data set as
if they are test data. The hyper-parameters of the Bagging DT is inherited from DT. This means that in order to per-
form Bagging DT, its base estimator DT needs to go through GS first to determine the optimalmin_samples_split.
Therefore, it is not necessary to perform GS on the Bagging DT once the best min_samples_split is found for its
base estimator DT.

RF not only uses DT as the base estimator but also modifies the mechanism of the default DT. That is, the split
mechanism is slightly altered to favour randomness. At a node, instead of using the best split among all features,
only a random subset of all features is used to find the best split. Moreover, instead of using the same full set of
training data to train each DT, RF utilizes bootstrap samples, i.e. random sampling with replacement to enhance
randomness. Such data sampling strategy eliminates the need for a separate test set for validation since the valida-
tion can be done via samples that were not picked up by the bootstrap samples, i.e. out-of-bag (oob) samples. The
oob validation scheme implements oob_score_ and oob_prediction_ in RF and Extreme RE In the end, the aver-
age of the training of every DT is used as the final model. Extreme RF goes even a step further into randomness by
using a random splitting threshold for each subsampled feature and the best of these randomly generated threshold
is picked as the splitting rule. This is to further reduce variance with a slight increase of bias.

3.1.4. Boosting of Decision Trees

The boosting methods intend to construct a strong ML model by fitting a set of weak learners in a sequential man-
ner. Since the weak learner are train one by one sequentially, each fitting is called a ‘boost’. The number of boost,
Npoost, 1S thus the number of weak learners, n_estimators. The weak learners such as a shallow DT that predicts
merely better than random guessing will be trained and boosted one by one until a strong prediction is achieved.
The advantage of using weak learners aggregation over one strong learner is that it could achieve similar prediction
power while being computationally inexpensive. On top of that, the fact that DT can be used for boosting means a
complex model can be learned as well. However, due to the sequential boosting mechanism, parallel computation
is difficult to be applied here.

Adaptive Boosting (AdaBoost) boosts the model by adjusting sample weights sample_weight for each weak learner
[19]. The adjustment is done so that the more emphasis is put on samples which did not get predicted well in the pre-
vious boost. Nevertheless, more boosts does not necessarily corresponds to better performance. sample_weight
starts from 1 such that every sample has the same impact initially. In each boost, bootstrap samples are used as
the training set for each corresponding weak learner. Furthermore, sample_wight is assigned to each sample by
predicting on the full training set after each fitting on the bootstrap training set. This implies if, in the next boost,
the sample that gets picked up through bootstrapping will receive their corresponding weight that is not necessarily
updated in previous boost. This, like RF and Extreme RE ensures randomness every boost that reduces variance of
the prediction. With this in mind, although AdaBoost utilizes bootstrap data like in Bagging DT and RE it is impossi-
ble to implement oob estimate since the full training data needs to be predicted to update sample_weight for each
sample. Therefore, nested CV should be used for AdaBoost to prevent over-fitting. In addition, there is an early-stop
mechanism implemented by scikit-learn. Early stop is triggered when one of the three condition fulfills:

 ith sample weight p; <0
* perfect fit reached
* averaged loss L > 0.5.

The third condition is possible due to both L; and p; are in the range of [0, 1].

Gradient Boosted Decision Trees (GBDT), as the name suggests, is also a boosting method that implements DT
as the weak learner. Furthermore, GBRT is additive after each boost, i.e. the model is enhanced after each boost.
Hence more boosts lead to a stronger learner, unlike AdaBoost. For GBRT, it was found that max_leaf_nodes = k
gives comparable results to max_depth = k - 1 but is significantly faster to train at the expense of a slightly higher
training error. At each boost, a subsample set is drawn from the training data without replacement for fitting, thus
the GBRT scheme used for this problem is a Stochastic Gradient Boosting scheme. scikit-learn suggests to use CV
instead of oob estimates unless CV is too time consuming, contrary to Bagging DT, RF and Extreme RE

The additive model of TBGB F(X) is defined as the summation of each learner h, up to a total of P learners or
boosts, and

P
Fx)=) yphp), (3.3)
p=1
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where x is the feature set of a sample. Strictly speaking, the feature set of a sample should be denoted by a vector
x containing possibly multiple features. Nevertheless, the dimension of the feature space is of no use for the expla-
nation of the GBDT algorithm. Therefore, x is used, assuming only one feature of a sample is given for simplicity.
The meaning and functionality of y, will be revealed in a bit. First, the idea of GBDT is that by using additive DT as
boosts, each subsequent pth boost using the DT h, tries to minimise the loss specified by the chosen loss function.
In this way, the growing GBDT should be closer and closer to the truth. Therefore, the objective function for the pth
DTis

n
= arg min Y. L(ye, Fn1 (x) + hxp)). (3.4)
k=1

Equation (3.4) is solved using the steepest gradient descent method. In a gradient descent, there are two param-
eter that defines the steepest direction (or gradient) and step size of the descent. The steepest direction at the pth
boost is determined by the negative gradient of the chosen loss function and thus &, is responsible for the steepest

gradient defined as
% OL(yk, Fp-1(xp)
hy==) — (3.5)
k=1 an—l (xk)
Consequently, y, would be accounted for the step size of the descent at the pth boost and is determined via line
search:

n
yp=argmin Y L(yk Fp(x0)), 3.6)
k=1

meaning finding a step size such that, when fitting the DT k), defined in Equation (3.5), leads to the least error.
There are several options for the loss function in scikit-learn, including LS, least absolute deviation (LAD), Huber,
and quantile. Attention is paid to the LS and Huber loss function due to their popularity in the scope of this thesis.
First, if the loss function is LS, defined in GBDT as

1 2
Lis= > (k= Fp(xi))”, 3.7
for sample k at the pth boost. Then its corresponding negative steepest gradient is
OLis(yk, Fp(xi)
- =y - Fp(xp), (3.8)

dF, (xp)

conveniently being simply the residual of the truth y; from the cumulative prediction up until boost p. The initial
prediction of Fy(xy) is typically set to the mean of y for all samples in the learner. For the LAD loss which is defined
as

Liap = |ye = Fp(xp)] 3.9
taking the negative derivative of Equation (3.9) yields

_ OLiap (yx, Fp (x))
3F, (x0)

= sign (yx — Fp(xx)). (3.10)

When it comes to the Huber loss that is a combination of the LS loss when the absolute difference | Vi — Fp(xk)|
is no larger than a threshold 6, for the pth learner and the LAD loss when that difference is larger than §,, Equa-
tion (3.11) is defined instead [32],

_ OLuuber(Yir Fp (i) {yk — Fp(xp), if |k — Fp(x)| <6, 3.11)

OF, (xr) | 8psign (yk— Fp(x), if |ye —Fplxp)| > 6,

in which 6,, is the ath-quantile of |yk —Fp(xg) |

3.1.5. Multi-output Regression Criterion

A lot of the loss functions outlined above are used in single-output scenarios. In this section, the multi-output re-
gression criterion e.g. MSE used for DT based models are derived, which lays a crucial foundation for the DT based
ML models implemented in this thesis in Chapter 6. For a single-output/dimension (D) regression, let squared error
(SE) be

n
SEin =Y. (yi— )" (3.12)
i
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then the mean squared error (MSE) for n samples is defined as

n
MSEip=—) (yi- JA’i)zr (3.13)
i

S|

in which y; is the ground truth value of sample i while y; is the predicted value of sample i. If y is m-dimensional,
then the MSE,;,p is simply the average of MSE; p in each dimension j of y;; and is defined as

1Z21& Y
MSEpn =—3 =3 (vij = Jij)"- (3.14)
m5 nG
If y in Equation (3.13) and Equation (3.14) is replaced with j = % - 21 vi, the mean value of all samples in a dimen-
sion, then the equation for variance o is derived,
2 _1¢ 2
aip =2 (yi-7) 3.15)
4
1Z 9
=2 (vi-2pyi+7°) (3.16)
i
1 2
= Z Vi ZyZyz+Zy (3.17)
1 2_ o2
L i 2 3.18
. Zy y (3.18)

Using the simplification from Equation (3.18), variance of muti-dimensional y is then
2 1&a [l o
ng:E; ;Zj:yij_yj ) (3.19)

3.2, Machine Learning Preprocess & Postprocess Techniques
In this section, several common ML pre- and post-processing techniques are discussed here as most of them are also
used in the upcoming work of this thesis.

3.2.1. Feature Subset Selection

The objective of a feature selection process is finding the smallest subset of features while achieving maximum pre-
diction power. It becomes obvious that although exhaustive search of all subsets of the features will accomplish such
objective, the size of such search is 2" where V is the number of features. As alternatives, it is more efficient to ei-
ther rely on heuristic search of the feature space (called wrapper) or filtering based on statistical properties. There
is also feature selection via RF by building shallow trees. The features having the lowest perceived importance are
discarded.

3.2.2. Training & Test Input Scaling & Standardisation

As mentioned before, most ML estimators work the best with centred data with unit variance although it has to
be noted that tree based models are not affected by scaling and standardisation as they perform binary classifica-
tion. There are three common data scalers, namely StandardScaler, RobustScaler, and QuantileTransformer.
The StandardScaler is the default standardisation of the data. It removes the mean of the data and scale them to
unit variance. The mean and standard deviation information of the training data X;,4;, are stored to be used on
Xtest using the transform method. Since the whole data is considered for scaling, the outliers will also be consid-
ered when scaling. This makes StandardScaler not robust to outliers. To solve this problem, the concept of the
RobustScaler was brought up. It removes the median of the data to diminish the impact of the outliers. Moreover,
when performing the scaling, it uses Interquartile Range (IQR) between the first quartile and the third quartile to ex-
clude the outliers. Therefore, RobustScaler is more robust to outliers than the StandardScaler. When scaling the
unseen data, the median and IQR of the training data are stored and transformed on the unseen data. Lastly, the
option of the QuantileTransformer is considered for ML methods that benefits from a more uniform data sam-
ple distribution after transformation. The QuantileTransformer supports transformation into either a uniform
or normal distribution. For a uniform QuantileTransformer, it applies a non-linear transformation such that the
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probability density function of each feature will be mapped to a uniform distribution. A more uniform sample space
could be helpful for k-Nearest/Radius Neighbors estimator where a fixed amount/radius of neighbors are chosen
regardless of real distance between each of them.

For tree based models that only relies on binary classification, input scaling and standardisation are not neces-

sary.

3.2.3. Model Evaluation Metric
During GS of a training, to find the best hyper-parameters of an estimator, evaluation metrics are needed to gauge
how good the training is. The metric can be gauged either on the training data or the test data. The former may lead
to over-fitting while the later might not be representative if the size of the test data is too small or too concentrated
at in a parameter space. Therefore, when calculating the evaluation metric on the training set, the method of Cross-
Validation is used which will be elaborated in the next section. The metric in scikit-learn’s GSCV method is provided
through the scoring argument. Moreover, one can implement custom metrics by using the scorer method.

The default scoring scheme for most estimators is R2, or the coefficient of determination. Let Y,,.q4 and Y be the
collection of all predictions and ground truths, the definition for R2 is [39]

Nsum 3_1
R2=1 Licg - Ypredi)z

Nsam 671 7
T - )2

) (3.20)

where Y is the mean of all ground truths Y. The range for R2 is (—oo, 1] and higher is better. Variance of the predic-
tions is defined as

Nsampie—1 T\ 2
Y2 (Yprea, = Y)
Var(Ypred) _ Zi=0 pre ]

(3.21)
Nsumple

3.2.4. Out-of-bag Estimate

Out-of-bag (oob) estimate is a concept that pairs with the bootstrap samples. Once the samples are drawn with
replacement, the samples that were not drawn are called the oob samples. ML estimators that implement boot-
strapping can group the oob samples as a test set and perform the oob estimate. It is stated that oob can be shown
to be almost equivalent to leave-one-out-CV, but without the computational burden [39].

3.2.5. Hyper-parameter Grid Search

Since every estimator has a number of hyper-parameters, the performance of the trained model will also depend on
finding the best hyper-parameter combinations. Therefore, the Grid Search (GS) technique is employed to find the
best estimator configuration while training the model on the this configuration. The default GS algorithm in scikit-
learnis simply through exhaustive search, called GSCV. ‘CV’ stands for Cross-Validation and thus GSCV is a combined
training strategy of GS and CV. CV will be elaborated in the next section. There are also other options available such as
RandomizedSearchCV that can sample a given number of candidates from a hyper-parameter space with a specified
distribution. Alternatively, the users can implement their own GS grid by using the ParameterGrid method. Since
the GS computation workload of this problem is rather small (between a few minutes to a few hours), the exhaustive
GS is implemented to cover the full hyper-parameter grid while providing an overview of how the estimator performs
under different settings.

3.2.6. Cross-validation
Cross-Validation (CV) is a method to prevent over-fitting of a specific training data. The trained model is overfitting

a training data if the prediction of said model shows a drastic accuracy drop. The idea of CV is that instead of only
Nford—1
Nfold
of the training data, the trained estimator is then validated on the remaining ﬁ of the training data. Repeating this

[

having one data set for testing, the training data can also be partitioned into several ‘folds’. While training on

procedure for n,;4 times, each with a different fold for validation, the best estimator hyper-parameter combination
is found when the averaged GS metric all repetitions is the highest. This is also called leave-one-out-CV. Lastly, if CV
is done on the training data set that has a separate set for testing, then this is called nested CV.

3.3. Machine Learning in Turbulence Modelling
Marusic et al. [61] used feature extraction to efficiently store experimental or numerical simulation data by iden-
tifying when and where ‘meaningful’ events are taking place. Then Marusic et al. [61] used data mining to find
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correlation between the flow pattern and its underlying mechanisms.

Figure 3.3: Schematic of an efficient simulation data extraction and data-mining assisted flow visualisation [61]

Duraisamy et al. [20] implemented ML of the SA turbulence model to the case of a non-equilibrium turbulent BL.
They first considered an inverse problem approach by introducing a spatial-temporal function a(x, ¢) as a coefficient
of the destruction term D of the SA model. For given scalar or vector data Gy, a|Gy is then inferred from an LS
Bayesian inversion. The reason of adding a coefficient a instead of an offset to the transport equation of the SA
model is that the optimisation problem is well-conditioned. This inversion approach is a descriptive model since
a(x, t) is inferred from the known quantities at locations x and time ¢ only and does not have the power to predict
future quantities or a different domain geometry. In order to have a predictive model, it remains to convert a(x, f)
to a(q), where q are the (preferably) non-dimensional input features derived from the mean-field variables and are
available during the predictive solution process. After hill-climbing feature selection on q, Duraisamy et al. [20]
chose feed-forward NN and GP as the ML methods.

Wang et al. [100] calculated the Reynolds stress discrepancy field A7, (x) between the RANS-predicted flow and
high-fidelity data. Then, a regression function, f, : q — A1, where q is the mean flow features from RANS simulation,
is constructed via ML.

3.3.1. Tensor Basis Machine Learning

An import property of the NS formulations is that the formulations are Galilean-invariant — meaning they are not
affected by coordinate translation. Motivations:

1. Galilean invariance: invariance under constant translation of reference frames is an essential prerequisite of
conventional turbulence modelling [86];

2. rotational invariance: invariance under rotation of reference frames, along with the Galilean invariance, is
desirable for learning the underlying physics of a flow problem and has led to improvement of MLs prediction
power [51, 52].

Ling et al. [52] proposed a deep NN with embedded Galilean invariance called Tensor Basis Neural Networks
(TBNN) that performed better than generic NN. To do this, the general eddy viscosity model derived by Pope [70]
was used that formulates the anisotropic Reynolds stress tensor b;; in a polynomial of 10 tensor bases Ti(]'.") and five
scalar invariants 1. The essentially linked b; j to asingle quantity of the flow, the velocity gradient. Therefore, with
velocity gradients as a Galilean-invariant input, the TBNN attempts to reconstruct the polynomial of the general

eddy viscosity model that matches the output b; ;. The architecture of TBNN is shown in Figure 3.4.



36 3. Review of Machine Learning & Turbulence Modelling Augmentation

Figure 3.4: The TBNN architecture from Ling et al. [52]

Following the same concept, Kaandorp [41] achieved high prediction power using a random forest instead of NN,
called Tensor Basis Random Forest (TBRF) and demonstrated marginal improvement over TBNN. At every split of
each tree, the tensor basis coefficients g are fitted to find the lowest combined MSE of left and right branch, with the
objective function
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in which 7 is the sample index; b, is the ground truth of sample n from LES/DNS; and g(’") and g('") represent the
ten tensor basis coefficients of the left - and right “ g’ split after LS fit respectively.
Adapting from Equation (3.14), the MSE criteria for anisotropy tensor b of a sample k would be

1 & .
MSErg=—_ [[br—bg|", (3.23)
=1
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for each sample with 10 tensor basis T and the learnt set of 10 tensor basis coefficient g of the node each sample falls
in. The Frobenius norm exists in Equation (3.23) to reduce mD output to 1D. In the TBDT algorithm of Kaandorp
[41], for a node of n samples after a candidate split, the linear system of Equation (3.25) will be solved for g:
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As can be seen from Equation (3.26), a reduction operation is performed which results in a loss of information
and for a node of n samples, g of it is solved with

=(i T,{iTk)_l(i T,{ibk), 3.27)

=1 k=1 k=1 k=1

known as the least-squares solution.
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3.3.2. Large Eddy Simulation

Data-driven turbulence modelling has also been applied to LES by augmenting the SGS stress modelling. Durieux
[21] considered using Artificial Neural Network, with the variational multi-scale formulation to learn variable con-
stants of Shakib’s T as well as 7 directly. Both achieved lower simulation error than the best performing simulation
error from Shakib’s 7. However, it was unstable that resulted in many failed simulations. Gamahara and Hattori [28]
used ANN to turbulent channel flow’s SGS stress that yielded better results than the Smagorinsky model. Kurian [46]
again used ANN to predict turbulent wall-bounded flows and found that although the ANN based SGS model failed
in cases with high nonlinearity, it performed superior than algebraic SGS models under steady forcing. Vollant et al.
[98] imposed to a functional form to model the SGS scalars and used ANN to learn the coefficients from the DNS
database. King et al. [44] proposed an autonomic SGS closure that performed better than the dynamic Smagorin-
sky model. Maulik and San [62] used a single-layer ANN for the deconvolution of flows in LES, without any a priori
information of the filter.

3.3.3. Reynolds-averaged Navier-Stokes Simulation

Processing and analysis of turbulence flow data date back as early as 2001, when Marusic et al. [61] selected useful
data using feature extraction in order to save data storage and analysed it via data mining techniques to identify
burst events of a Mach 4 turbulent BL. A year later, in 2002, Milano and Koumoutsakos [64] trained nonlinear Neural
Networks (NN) with the tanh activation function on DNS data to reconstruct turbulent flow near a wall and achieved
higher prediction power compared the flow reconstructed by proper orthogonal decomposition, at a slightly higher
computation cost.

In recent years, much progress has been made on data-driven techniques to learn and reconstruct turbulence.
Iungo et al. [38] applied the data-driven concept to investigate an optimal mixing length model for a wind turbine
in laminar flows by embedding experimental data into the RANS numerical scheme for calibration. The calibrated
mixing length model yielded a good agreement between the data-driven RANS simulation and LES. Duraisamy et
al. [20] improved flow prediction of a bypass transition BL problem using NN and Gaussian Process (GP). The de-
ficiency of the turbulence model was first identified via inverse modelling and inferred as functional formed. Next,
NN and GP were employed to fit the functional and injected into simulations with corrected functional forms. Ling
and Templeton [50] investigated ML algorithms e.g. support vector machine, Adaboost decision trees, and random
forests in the context of evaluating RANS turbulence modelling uncertainty and discovered that some features are
generalised so that it is possible to predict flows different from the flows that were trained on. Traycey et al. [92] were
the first to investigate ML representation of the turbulence modelling closure terms. A wide variety of 2D and 3D
flow were successfully predicted using a NN model representation of the Spalart-Allmaras model.

Kaandorp [41] developed a ‘continuity solver’ that injects the ML b;; into the turbulence production rate and the
shear stress momentum source in a blended scheme. The work flow is illustrated in Figure 3.5.

Wu et al. [105] demonstrated a systemic approach in choosing the input features for the ML of turbulence mod-
elling. Furthermore, a framework in which the Reynolds stress is decomposed into linear and nonlinear terms and
learned respectively using DNS data. The reason is that linear and nonlinear terms play different roles in turbulence
flow and and that ML methods can better distinguish and learn the two terms after decomposition.

Figure 3.5: Flow diagram of TBRF from Kaandorp [41]

3.4. Training Features

The foundation of many ML methods for turbulence modelling is based on the decomposition of the anisotropic
Reynolds stress b; ; as

10
bij(Sij Qi)=Y g0 T, (3.28)
k=1
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where T l(]k) is the tensor basis and g(k) is its coefficient. Moreover, T;; is a function of S;; and Q;;. This suggests that

the functional form of the Reynolds stress 7 as
Tij=T;ij(Sij Q). (3.29)

However, Wu et al. [105] argued that using S;; and Q;; only neglects the effect of adverse pressure gradient in
turbulent flows. As such, Vp is included to contribute to the functional form of 7. Furthermore, as S;; and Q;; are
both functions of Vi, it means that 7 at any location x only depends on Vii(x), which is only valid when neither
convection nor diffusion of turbulence happen [56]. Therefore, Wu et al. [105] also takes into account of the TKE
gradient Vk and finally Wu et al. [105] also acknowledged that some features in Wang et al. [100] as well as Ling
and Templeton [50] are not Galilean invariant. The same statement applies to some of the training features used by
Kaandorp [41]. As such, it becomes important to verify the Galilean and rotational invariance of the model as well as
features used for this project.

The raw inputs @ that constitutes the invariant features used for this study are shown in Table 3.1. These raw
inputs are Galilean invariant themselves because of the invariance property of spatial gradients in Equation (2.110).
The non-dimensionalisation factors f§ make the raw inputs of Table 3.1 dimensionless and is more robust to flow
cases of varying dimensions. Wu et al. [105] non-dimensionalised a with Equation (3.30),

a

, (3.30)
lal +1pl

Q=
such that the non-dimensionalised raw inputs & are also normalised within the range of [-1, 1]. However, as men-
tioned in Section 3.2.2, input scaling and standardisation are not necessary for DT based models. Therefore, the
default non-dimensionalisation in Equation (3.31) is used instead without normalisation:

a=2 (3.31)
5 .

Table 3.1: Non-dimensionalised raw inputs for the invariant features used for this study, derived from Wu et al. [105] and Kaandorp [41]

Raw input « Description Non-dimensionalisation factor
S Strain-rate tensor :
Q Rotation-rate tensor i
Vp Pressure gradient pluVu|
i -
Vk TKE gradient /i

The non-dimensonalisation factors 8 used in this study are all local quantities and are adapted from Ling and
Templeton [50] and Wu et al. [105] but with the following differences:

1. ©: Wu et al. [105] used || Q] while the same factor used to non-dimensionalise S is used to be consistent with
the factor used by Kaandorp [41];

2. Vp: letting D/ Dt be the total or material derivative in the Lagrangian reference frame, Wu et al. [105] used
p |Du/Dt| but with the steady-state assumption of the flow field,

0

D“—%Z/ u (3.32)

Dt~ Ot ox :
L (3.33)
T U ox] ’

the factor simplifies to p [uVu| instead.

The non-dimensionalisation factors in Table 3.1 are all Galilean invariant [105]. In particular, to demonstrate that
uVu is also Galilean invariant, assume the mean steady-state velocity at location x and time ¢ in a moving reference
frame of constant velocity C is u* and

uwx)=ux-CH+C, (3.34)
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where x* is the perceived location of x in the moving reference frame and

x* =x-Ct. (3.35)

Then DD—“: in the moving reference frame can be derived using Equation (2.111):

Du* Ou* o ou* (3.36)
= u .
Dt ot ox*
L [ L ] (3.37)
=|— — u .
ot ox* ox*
L (3.38)
S ot ox* ‘
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= s 3.39
0x 0x ¢ )
substituting Equation (3.39) into Equation (3.38) yields
ou* ot ou* Ou +u6u (3.40)
ot ox* ot  ox '
Taking into account that steady-state assumption here so that
ou* (x*,t=const) d[ux-Ct,t=const)+C]
- -0, (3.41)
ot ot
Equation (3.40) becomes
Lou" uau (3.42)
ox*  ox’ '

which completes the proof of the Galilean invariance of uvu.

Table 3.2 shows the total invariant features derived from the aforementioned four mean flow properties, namely
Sij,» Qij, Vp, and Vk, where Ap and Ay, are the antisymmetric tensor associated with Vp, and Vk. In order to arrive
at scalar features, the trace of the derived invariant bases are used. This feature set is called FS1 for this study.
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Table 3.2: Invariant features FS1 by taking the trace of the invariant bases. The **’ sign means the cyclic permutation of anti-symmetric tensors of
such term is also included.

Feature index | Raw inputs Invariant bases
SZ S3.
1-6 S, Q 92;

028, 0282, 028082

2.
A%
2 2Q2 A2 2.
AZS, AZS?, A2SAS%;
QA;;
QALS, QA;S?, Q%A S*, Q2A;S% %, Q2SA;S% =

7-19 S, QA

2.
A3
AZS, A5S?, AZSA,S%;
20-32 S, Q,A, A
QAp;

QA,S, QA,S?, Q%A,S*, Q?A,8% %, Q*SA,S? *

AxAp;

AkA,S, AkA,S?, A2A S, A2A,S% x, A2SA 87 *;
33-47 S, QA A, k k k
QALAp;

QAA,S, QA,AS, QALA,S?, QA,AS?, QASA,S?

Table 3.3 shows the feature set FS2.1 that are supplementary to FS1 in Table 3.2.

Table 3.3: Supplementary invariant features FS2.1 from Wu et al. [105]

‘ Raw input « ‘ Non-dimensionalisation factor

Feature index Description
48 (Closest) wall distance based Re min(% ) 2) -
49 Turbulence intensity k vISI
50 Turbulent time scale k 1
to mean strain time scale € ISl

Choosing the invariant tensorial bases guarantees rotational invariance as they are all scalars. In addition, with
the proven Galilean invariance of each input and its corresponding non-dimensionalisation factor, the input features
of this study are both rotational as well as Galilean invariant. Nonetheless, it has to be noted that FS1 and FS2.1 are

not reflection invariant [105].

Iwu et al. [105] ordered Ap in front of Ay such that features like feature 33: A; A, were originally ApAy. This results in a different feature value as
matrix multiplication is incommutable. Nevertheless, since the there is no specific order for A, and Ay, such feature variation should not have

an impact on the invariance properties.



Wind Plant Large Eddy Simulation
Specifications

In this chapter, the wind plant LES methodology and setup will be elaborated. The chapter is broken-down mainly
into three parts. The first is the work flow and governing equations tailored to the wind plant LES solver. In the
second, some preliminary flow field and plots coming from the so-called ‘LES precursor’ will be presented. Finally,
the simulation case specification will be outlined.

4.1. Work Flow

The wind plant LES solver is called SOWFA which is a solver developed by the National Renewable Energy Labora-
tory (NREL). Like most other LES solver, SOWFA employs the typical two-step simulation procedure. The procedure
is described in Figure 4.1. The first step is a precursor simulation of the ABL, whose sole purpose is to generate in-
stantaneous inflow conditions over time and for the actual wind plant simulation following it. By looping through
the precursor flow domain over and over using the cyclic boundary condition (BC), the LES precursor can be imag-
ined to be an (almost) infinitely long domain. In this way, the wind plant simulation flow domain is truly stochastic,
unsteady, and turbulent, just like what real ABL is.

precursor atmospheric
boundary layer simulation inflow boundary wind plant simulation
data planes

Figure 4.1: Work flow of SOWFA wind plant simulation by Churchfield et al. [13]

The two-step LES procedure is elaborated by the two flows shown in Figure 4.2. The two flows outline the pipeline
of an LES simulation for the purpose of LES precursor and wind plant simulation respectively. In the case of this
study, not only is the inflow planes saved, but the momentum source and instantaneous flow field are also saved.
For the momentum source due to geostrophic wind balancing, a time series is saved and interpolated during the
wind plant simulation. As for the instantaneous flow field, only the fields at the starting time of the wind plant LES
is needed as the initial fields.

41
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Cyclic inflow/ Mesh Field initialisation SOWFA LES

Base mesh creation "
outflowBC decomposition precursor

LES instantaneous LES instantaneous LES instantaneous
momentum source inflow profile flow field

Inflow/Outflow BC Meshirhementil SOWFA wind plant
update BES

Mesh reconstruction Mean LES flow field

Mesh refinement 2

Figure 4.2: Work flow chart of SOWFA LES precursor and thereafter SOWFA wind plant LES

4.2, Special Treatment to the Pressure Gradient

In LES of ABL, following the standard buoyant filtered N-S equations in Equation (2.49), let * denote a filtered quan-
tity, the filtered incompressible N-S equations with Coriolis forcing, background driving pressure, buoyancy, and
turbine forcing projection are

9ui _g @.1
ax,- o '
da;  Ofi; opP 105, 990 1 dpp 1
—+ = —2€;3 Q3 1) - - =2 - —gmx—+—f] 4.2)
ot ox;j 0x; po Ox; 0x;  po 0x; po
~—— —— ~—— —
Coriolis Modified pressure Driving pressure  Shear Buoyancy

where pP is a modified, filtered, density-normalised pressure without the hydrostatic (buoyancy term) and horizon-
tal mean (driving pressure term) component. With the superscript - denoting the deviatoric term of a tensor, O‘Z.
is then the combination of both viscous and SFS/SGS shear stress tensor that needs to be partially modelled. More-
over, with the divergence of filtered viscous stress (both shear and normal) tensor in Equation (2.49) being vaa—% i;,

and that of the SFS scale being aixjr ijs UZ. is therefore

0
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Furthermore, as the last two terms of the RHS of Equation (4.4) together also constitute a deviatoric component of
the SFS stress tensor 7, TZ. can beused and Equation (4.4) simplifies to Equation (4.5), while the normal component

of 7;; is lumped in the modified pressure variable pP of Equation (4.2).
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The horizontal mean driving pressure gradient %aixi% in Equation (4.2) is to maintain the wind speed and di-
rection at a reference height due to geostrophic wind assumption that balances the Coriolis force at aforementioned
height [13]. The forcing in Equation (4.2) is the projected force from an ADM or ALM. In the typical case where grav-
itational acceleration is in the third axis only, g3 and x3 has been used instead of g; and x;. Furthermore, as the
buoyancy term in Equation (4.2) applies the Boussinesq’s approximation from Equation (2.47) which is a function of
potential temperature 8. Therefore, in order to derive the buoyancy term in Equation (4.2), an extra transport equa-
tion of 6 is needed. Recall filtered transport equation of a general scalar in Equation (2.30), the filtered transport
equation of 8 with source g is then

060 0u;0 _razé 0q; "
or " ox; T ox? w7 “.0

where q} is the SFS surface temperature flux vector thus needs to be modelled. Furthermore, in case where no
dynamic turbulence model is used, all ‘SES’ properties becomes equivalent to ‘Subgrid-Scale (SGS)’. The standard

pressure term —%% of the N-S buoyant momentum conservation in Equation (2.49) can be decomposed into a
1
horizontal mean component _aixi (%), where - denotes values at reference height and - denotes spatial (horizon-

. . . . o [pk . . . . .
tal in this case) averaging; a hydrostatic pressure component ~ax; (E gix j), and a deviatoric density-normalised

_p .
pressure component —%. The idea is to distinguish _aix,» (%) that specifically acts as the geostrophic pressure
gradient at a prescribed reference height and can be input as sources from the SOWFA LES precursor. The filtered

density-normalised static pressure p—po is then
ﬁ EO Pk ~D
—=—+—gixj+ , (4.7)
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Moreover, the normal component of the SFS shear stress in Equation (4.3) needs to be lumped in the modified
pressure variable p”, Equation (4.8) becomes

1
_Tkkﬁij. (4.9)

As aresult, Ti; becomes a “don’t care” while P is solved instead with the appropriate numerical scheme. From
Equation (4.9), it becomes obvious that p” is the density-normalised deviation in filtered static pressure j from its
horizontal mean p, at reference height and the hydrostatic pressure %g jxj. Ignoring the additional %T kk0ij of the

pressure variable p” in Equation (4.9) for the moment, spatially deriving each component of Equation (4.7) yields

the form ready to substitute — % % in the standard buoyant N-S momentum conservation Equation (2.49),
1
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Combined with the gravity term %gi also from the standard buoyant N-S momentum conservation in Equa-
tion (2.49), the pressure related terms shown on the RHS of Equation (4.2) can be derived as
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Eventually, adding the previously omitted %T kkd;j back into the modified pressure variable, the modified for-
mulation of the pressure gradient in the momentum conservation is now derived. Compared to the standard im-
plementation of , using 5" instead makes pressure much less sensitive with height and can be more numerically
stable [12]. Lastly, the final term % fl.T of Equation (4.2) is the body force exerted by ADM/ALM turbine models.

4.3. Atmospheric Boundary Layer Precursor Simulation
In this section, the ABL precursor flow conditions are explained in detail. Following the simulations, the precursor
results of empty ABL domains are presented and verified against the results from the developers of SOWFA [12, 13].

4.3.1. Atmosphere Conditions

ABL stability, surface roughness height, and wind speed together fully cover the variation of ABL conditions in all
tested cases. In other words, the three aforementioned parameters are the only ABL related variables in the test ma-
trix. Before showing the test matrix in Table 4.1, several essential ABL properties choices will be discussed. First of
all, in all test cases, the neutral ABL stability (hereby denoted by ‘N’) is considered since, with almost not temper-
ature variation along the altitude, it is the most stable to simulate, moderate computation cost [11], and have well
documented simulations results for verification and comparison [12, 13]. Two surface roughness height z, values
are simulated, namely low roughness where zy = 0.001 m (denoted by ‘L), a typical offshore condition; and high
roughness where zy = 0.2 m (denoted by ‘H’), a typical onshore condition [90]. These are the same values used by
Churchfield et al. [13], again, for easy result verification. At a reference height of z,.f = 90 m, a desired wind speed is
specified to be Uy = 8 m/s with a direction of 240°, pointing south-west (or x — y) for most cases and is regarded as
the baseline. As wind speed is part of the test matrix, U.f = 10 m/s for one case (denoted by ‘HiSpeed’). Such angle
is chosen since Churchfield et al. [13] has discovered that if wind direction is defined to be parallel to the domain
border e.g. 270°, pointing east, then elongated streamwise turbulent structures will form, especially in the unstable
cases, become ‘stuck’ and continue to cycle through the domain along lines of roughly constant y. Moreover, it will
berevealed in Section 4.4.3 that z.e will coincide with the hub height zy,y,, of the chosen turbine for this thesis. There-
fore, the term ‘reference height’ and ‘hub height’ are interchangeable and Uyef = Upyp- As the ABL stability of choice
is neutral, a vertically constant potential temperature 8 profile is expected, being 300 K. Nonetheless, from 700 m
to 800 m exists the capping inversion layer as z; = 750 m, where a potential temperature gradient %9 is prescribed
so that 6 = 300 K at z = 700 m while 8 = 308K at z = 800 m. Above the capping inversion layer of 800 m, another
gradient is prescribed so that %9 =0.003 K/m. The above mentioned potential temperature profile is similar to that
used by Moeng and Sullivan [65] when simulating neutrally stratified ABL. Additionally, again, due to neutral ABL
stability condition, the fluctuating surface temperature flux q a1 = 0 K'm/s; while if unstable ABL stability were to be
simulated, q, ., > 0 K-m/s and if stable ABL stability, q| , < 0 K-m/s. Earth latitude v of the wind plant location is set
to 45° for all cases, same as in [13]. Bearing in mind that ¢ is used for the calculation of earth planetary rotation rate
vector € in Equation (2.55), ¢ will affect the Coriolis forcing term in Equation (4.2). Lastly, molecular viscosity v is
le-5 m?/s. To summarize, Table 4.1 lists the ABL conditions for cases simulated in this thesis. Using the ABL stability,
surface roughness, and wind speed abbreviation mentioned above, three combinations have been formed, namely
‘N-L, ‘N-L, and ‘N-H-HiSpeed'. Moreover, as temperature plays a particular and essential role in ABL simulations,
potential temperature related prescriptions are outlined in Table 4.2 and are the same for all test cases.

Table 4.1: ABL properties w.r.t. case code

Case code Urer [m/s] | Wind direction | zef[m] | zg [m] | z; [m] q"N a1 Km/s]
N-L 8 0.001
N-H 240°/Southwest 90 0.2 750 0
N-H-HiSpeed 10 '
Table 4.2: Potential temperature 0 prescription for all cases
6 below 0 above % below % above

inversion layer [K] | inversion layer [K] | jpyersion layer [K/m] | inversion layer [K/m]

300 \ 308 \ 0 0.003
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4.3.2. Inflow Profiles
Upon successful simulation of the three ABL precursors denoted by N-H, N-L, and N-H-HiSpeed, the saved inflow
profiles are presented in this section.

Figure 4.3 presents the time-averaged inflow velocity profiles broken-down into the horizontal magnitude and a
vertical component. As can be seen, the boundary layer (BL) development closely matches the results obtained by
Churchfield et al. [13] up until 0.4 z/ z; for the N-H precursor, with z; being the inversion layer centre height of 750 m.
For the N-L precursor, the profiles are better matched until z/z; = 0.6. The reason for the discrepancy could be due
to the different turbulence model used — Smagorinsky model by Churchfield et al. [13] and k-equation eddy-viscosity
model in this thesis. Comparing ‘H’ cases to the ‘L’ case, smaller surface roughness led to a steeper BL development
as the obstruction near the planetary surface is less and thus smaller wall shear stress to stop the horizontal velocity
development with altitude.

(a) N-H: 29 =0.2m, Uy =8 m/s (b) N-H-HiSpeed: zp = 0.2 m, Uy =10 m/s (c) N-L: 29 =0.001 m, Uy =8 m/s

Figure 4.3: (U) inflow profile averaged over 18,000 s - 22,000 s of simulation time for the west and south domain patch. The blue shade
represents the swept area of the turbine

Figure 4.4 plots the inflow profile of the time-averaged potential temperature for the three ABL precursor cases.
The first thing to notice is the constant value of the temperature below 0.9 z/z;. This is exactly what the profile of
a neutral atmospheric stability should look like. Additionally, the potential temperature experienced a steady linear
increase over the height of the inversion layer. Overall, the shape of the potential temperature profile does not change
much from the initial prescribed profile. This means the potential temperature transport equation of the solver was
not of importance for the low altitudes.

(a) N-H: 29 =0.2m, Uy =8 m/s (b) N-H-HiSpeed: zp = 0.2 m, Uy =10 m/s (c) N-L: 29 =0.001 m, Uy =8 m/s

Figure 4.4: (#) inflow profile averaged over 18,000 s - 22,000 s of simulation time for the west and south domain patch

The last profile to present and verify is the time-averaged turbulence intensity profile for the three LES precursor
cases. Comparing between the N-H and N-H-HiSpeed case, the intensity magnitudes are very identical along the
altitude. Furthermore the slope of the turbulence intensity development for all three cases are almost the same,
showing that the surface roughness does not impact the flow domain as a whole. However, higher values of the
turbulence intensity near the ground can be observed for the N-L case. This is followed by a slightly faster decline of
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the turbulence intensity right at the lower part of the blue shade — the lower part of the rotor swept area. It is unknown
why the turbulence intensity of the ‘L’ surface roughness case would be higher near the ground. Nevertheless, the
values corresponds to those of Churchfield et al. [13] rather well, implicating such results are expected.

(a) N-H: 29 =0.2m, Up =8 m/s (b) N-H-HiSpeed: zp = 0.2 m, Uy =10 m/s (c) N-L: 29 =0.001 m, Uy =8 m/s

Figure 4.5: Turbulence intensity (I) inflow profile averaged over 18,000 s - 22,000 s of physical simulation time for the west and south domain
patch

4.3.3. Instantaneous Flow Field

In this section, some instantaneous flow field visualisations are presented. As the LES precursor is just a preparation
step for the wind plant LES, the visualised flow fields are empty.

Horizontal Velocity Magnitude

Figure 4.6 shows the horizontal velocity magnitude slices at three different heights: ground, hub height, and 1 turbine
diameter D above hub height. Due to lower obstruction near the surface, the N-L case has a higher speed near the
ground while the other two cases quickly caught up and showed greater fluctuations at the other two heights.

(a) N-H LES (b) N-H-HiSpeed LES (c) N-LLES

Figure 4.6: Uhor at 20,000 s (N-H LES) and 18,000 s of physical simulation time

Vertical Velocity
Coupled with Figure 4.6, Figure 4.7 shows the instantaneous vertical velocity slices at the three aforementioned
heights. As the N-H-HiSpeed has the highest prescribed velocity at hub height, its vertical velocity fluctuation is

also the largest. On the contrary, the N-L case has the lowest magnitude as well as fluctuation due to lower surface
roughness. The vertical velocity at the ground is exactly 0 m/s due to the impermeability condition.
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(a) N-H LES (b) N-H-HiSpeed LES (c) N-LLES

Figure 4.7: @i at 20,000 s (N-H LES) and 18,000 s of physical simulation time

Velocity Fluctuation Isosurface

Figure 4.8 plots the isosurface of both the streamwise (-1.25 m/s) and vertical (1 m/s) velocity fluctuations for the
three LES precursors. The same type of figure is done in [13] thus another verification can be performed. The trend of
the isosurfaces follow what [13] has discovered. Moreover, similar to the observations above, higher surface rough-
ness and higher prescribed velocity at hub height both contributed to the increment of velocity fluctuations, imply-
ing a more turbulent flow field.

(a) ABL-N-L at 18,000 s (b) ABL-N-H at 20,000 s (c) ABL-N-H-HiSpeed at 18,000 s

Figure 4.8: Isosurface of the streamwise (blue, -1.25 m/s) and vertical (red, 1 m/s) instantaneous veloci~ty fluctuation of three LES precursors
below 500 m of altitude that is outlined by the box. The background composes of a horizontal plane of 8 at 20 m and a vertical slice of it at the
northern border.

Energy Spectrum

The last type result to be presented is the energy spectrum. [13] has done the exactly same plots and therefore
another verification can be under way. Figure 4.10 plots the horizontal component of the planar energy spectrum
Eq; + E», of the LES precursors, that from Churchfield et al. [13] and the Kolmogorov -5/3 line. It has be noted that
the Kolmogorov -5/3 line’s location is only a rough estimate and the ‘-5/3’ slope is of more importance. As can be
seen, the LES precursor’s spectrum shape basically matches the result of [13] and with a slight shift downward. This
suggests the result from the LES precursors are a little less turbulent as the turbulence of them contain less kinetic
energy. When comparing between ‘H’ and ‘L’ surface roughness, it can be noticed that the ‘L’ case contain less
turbulent kinetic energy as expected.
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(a) ABL-N-H (b) ABL-N-H-HiSpeed (c) ABL-N-L
Figure 4.9: Horizontal component of planar energy spectrum at hub height at 20,000 s simulation time for ABL-N-H and 18,000 for

ABL-N-H-HiSpeed and ABL-N-L

Figure 4.10 presents the energy spectrum for the vertical component of the planar energy spectrum. The same
down shift of the LES precursors is observed. And again, lower surface roughness leads less energy contained in
turbulent flows.

(a) ABL-N-H (b) ABL-N-H-HiSpeed (c) ABL-N-L

Figure 4.10: Vertical component of planar energy spectrum and at hub height at 20,000 s simulation time for ABL-N-H and 18,000 for
ABL-N-H-HiSpeed and ABL-N-L
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4.4. Wind Plant Case Setup

After finalising the periodic simulation of LES precursors, the wind plant LES can now undertake. In this section, the
wind plane LES case setup will be described.

Figure 4.11 outlines the simulation strategy of the SOWFA wind plant LES. As mentioned before, the LES precur-
sor case N-H will run the first 20,000 s of physical simulation time as preparation, taking into account several large
eddy turnover time cycles. At 20,000, the inflow data and momentum source storage begins. For the statistical aver-
aging for mean flow quantities, the first 500 s of physical simulation time is discarded which corresponds to roughly
one cycle of the flow entering from the inlet and exiting the domain. The N-L and N-H-HiSpeed case will run for the
first 18,000 s physical simulation time before saving the flow data because it was deemed not necessary to run the
precursor as long as 20,000 s.

Record inflow profile and
momentum source

SOWFA LES
precursor

18,000 - 20,000 s

SOWFA wind plant
LES

Time-averaging

Figure 4.11: Simulation strategy of SOWFA LES test cases

4.4.1. Wind Plant Layout

With x axis pointing east, y axis pointing north, and z axis pointing perpendicular to and above the planetary sur-
face, the simulation domain of all wind plants considered in this thesis is 3,000 m x 3,000 m x 1,000 m in x, y, z
directions respectively. This is not only the default domain size of all test cases but also the minimum recommended
by Churchfield et al. [15] in order to capture very large scale turbulence structures as well as to sufficiently develop
the ABL. Moreover, all test cases have a flat terrain surface. This means the mesh of such domain can be made uni-
form and structured. As such, a mesh grid of 300 x 300 x 100 is chosen as the base mesh for all test cases, yielding
a cubic mesh cell size of 10 m. The base mesh is used during the ABL precursor runs where no turbine model ex-
ists and thereby no mesh refinement required. On the other hand, when performing wind plant simulations after
the precursor runs, refinements of mesh are done via dividing the base mesh by in designated zone and twice. This
ensures mesh smoothness to some extent, compared to refining the base mesh to a very refined mesh through only
one transition. With this in mind, it becomes clear that during the first refinement, the cell size of the refined region
halved from 10 m base cell size to 5 m. Next, during the second refinement in an even smaller region of interest, the
cell size further reduces to 2.5 m. Using the ABLTerrainSolver instead of ABLSolver precursor, it is possible to
have non-flat terrain surface that in turn results in non-uniform mesh even before any mesh refinement, although
the inflow and outflow BC can not be cyclic anymore.
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(a) Cases denoted by ‘OneTurbine’ (b) Cases denoted by ‘ParallelTurbines’

(c) Cases denoted by ‘SequentialTurbines’

Figure 4.12: Wind plant layout top view for three configurations involving one or two turbines. Darker shade means more finer mesh in that
region. The darkest region is the second refinement zone.

Table 4.3 summarises all wind plant LES case specifications. As can be seen there are five cases here. In fact, there
are six cases in total, with the sixth being a N-L-ParallelTurbines specification but with turbine yaw. Since yaw angle
is not relevant for this summary, the sixth case is not shown.
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Table 4.3: SOWFA wind plant LES configuration

Wind plant layout H OneTurbine ‘ ParallelTurbines ‘ SequentialTurbines
LES precursor N-H \ N-H \ N-H-HiSpeed \ N-L \ N-L
Turbine model ALM

Start time 20,000 s \ 18,000 s
Duration 5,000s
Averaging duration 4,500 s
Time step 0.035s
Mesh size 16,267,281 24,873,382 23,084,294
Domain size 3,000 m x 3,000 m x 1,000 m
Solver windPlantSolver
Turbulence model k-equation eddy-viscosity model

4.4.2. Wall Shear Stress Approximation

The planetary surface is covered with usually high surface roughness elements. As the fist cell centre height of the

LES precursor and the wind plant simulation can be as high as 5 m, it renders the effort to resolve the BL inner

structures including the log-law region, the buffer layer, and the viscous sublayer very unrealistic. Wall shear stress

models provided in OpenFOAM is a good alternative to approximate the shear stress near the surface but only for

the dimensionless wall distance y* within the range of [30, 300] by calculating
. YU

y v’

(4.14)

where y is the distance from the first cell centre to the wall; and u. is the friction velocity parallel to the wall. This
requirement is due to the fact that wall models try to approximate the log-law region of the wall that lies in the
aforementioned y* range. For a N-H ABL case from Churchfield et al. [13], the following values are used to estimate
its y™*:

v=1e-5m?/s, (4.15)

u, =0.5m/s, y=>5m/s,

then the resultant y* = 250,000, way higher than the range of [30, 300] in which the wall models are designed for. In
turn, y needs to be 0.006 m for y* to drop to the upper limit of 300. Despite that van Hooff et al. [95] and Blocken
et al. [5] has demonstrated successful employment of standard wall functions for ABL CFD simulations without loss
of accuracy of mean flow fields even though y* goes as high as 15,000, SOWFA opted to incorporate the wall shear
stress model from Schumann [77]. Let O‘g. be the wall shear stress tensor and let the index ‘1’, ‘2, and ‘3’ denote
the streamwise, spanwise, and wall-normal direction respectively. Using the eddy-viscosity hypothesis, it is already
known that 03. can be related to the strain-rate tensor and

0 ==V (4.16)

ou; Ouj
D i7"
1 Vt(aijraxi)'

As only the wall-normal (x3) component of the velocity gradient, g—ﬁg is of significance at the wall, whatever com-
ponent that does not have the index ‘3’ is thus 0:

5 0 0 013,wall
O all = 0 0 023,wall (4.17)
O13,wall  023,wall 0

The Schumann [77] model is an algebraic wall-stress model in LES that approximates 013 wall, and 023 wan as [66]

o Uy —(Uy2)

013,wall = — U, 1 (4.18)
(@1 12)% + (01/2)%)?
D172 —(D1/2)
O23,wall = — U5 , (4.19)

((Gi1/2)? + (51y2)?)
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in which the subscript -1/, refers to the first cell centre from the wall. Equation (4.18) and Equation (4.19) indicate

that 0'2. wall 18 dependent on u, when, on the other hand, u. is also dependent on the time-averaging of o ;3 wan using

Equation (4.20)

1/2
ui = ((0-13,wall>2 + <023,wall>2) . (4.20)

D

Since <0 ; j> is not known, u, is approximated via the rough wall log law in Equation (4.21),

[N

(/2% + (D1/2)%)

Uy

:llni +f(), (4.21)
K 20

where the surface roughness zy comes into play. Besides, L is the Obuhkov length while f(L) is an atmospheric
stability related function [24].

4.4.3. Turbine Model

The wind turbine of choice is the NREL 5-MW reference turbine, specifically designed for modelling studies and used
by Churchfield et al. [13]. The three bladed turbine and its blade airfoil profiles are depicted in Figure 4.13. As can be
seen, including the two cylinder cross-sections, the blade of NREL 5-MW reference turbine has eight distinct airfoil
profiles.

(a) Isometric view by Liu et al. [53] (b) Balde (not to scale) airfoil profiles by Fernandez-Gamiz et al. [25]

Figure 4.13: NREL 5-MW reference turbine geometric characteristics

Additionally, NREL 5-MW reference turbine’s key specifications are listed in Table 4.4.

Table 4.4: NREL 5-MW reference turbine specification [40]

Diameter D [m] | Number of blade [-] | Rotation rate [RPM] | Hub height zp,, [m] | Tilt angle © [°]
126 3 9.1552 90 5

The turbine yaw angle y is not entailed in Table 4.4 as it is part of the test matrix thus dependent on test case,
which will be elaborated in Section 4.4.1. NREL 5-MW reference turbine’s specification including its detailed blade
data is stored in a dictionary under constant/turbineProperties directory of a case.
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4.4.4. Boundary Conditions
The boundary conditions (BC) of every case specified in Table 4.3 are the same. Therefore a universal summary of
the BC of each relevant flow quantity is shown in Table 4.5.

Table 4.5: Boundary conditions of the LES precursor and wind plant LES

Boundary H Lower ‘ Upper ‘ West ‘ South ‘ East ‘ North
a ABL wall function ‘ Slip
pP Fixed flux pressure
LES precursor 0 ‘3—2 =0 ‘3—‘2 =0.03 Cyclic
ol Schumann 0
kscs Oksss =
A 0
a ABL wall function Slip Time-varying inflow g—g =0 g—g =0
pP Fixed flux pressure % =0 % =0
Wind plant LES 0 g =0 g =0.03 | Time-varying inflow g =0 g—i =0
0£a1] Schumann 0
ksGs % =0 Time-varying inflow a]z}% =0 a%‘“ 0
Yival 0

For LES precursors, it is obvious that the inlet and outlet patches will have a cyclic BC, i.e. what comes out of the
outlet patch will be fed into the inlet patch. In this case, ‘west’ and ‘south’ patch are the inlet patches while ‘east’ and
‘north’ patch are the outlet patches. Strictly speaking, if a positive vertical component of velocity i, exists due to
buoyancy, the ‘upper’ patch can be regarded as an outlet too. Nonetheless, the BC for ‘upper’ patch is kept the same
as used by Churchfield et al. [13] for consistency, being slip BC.

In the wind plant LES cases, the outlet BC for velocity needs to be paid more attention. Since reverse flow back
into the domain means violation of total mass conservation of the domain, a special BC is applied in OpenFOAM,
namely inletOutlet, defined in Equation (4.22) and Equation (4.23) where x, is the direction normal to outlet
patches ‘east’ and ‘north’. Such BC dictates zero gradient for the outflow patches ‘east’ and ‘north’ if no reverse flow
exists and 0 if reverse flow as 0 achieves the least change to a reverse flow where i; < 0.

o -

— =0, iy, >0 (4.22)
0Xxq
=0, iy, <0. 4.23)

All other necessary flow fields not listed in Table 4.5 such as ksgs and vsgs have ‘calculated’ BC, i.e. inferred
from other fields. Moreover, the wall function used in Table 4.5 such as the ABL wall function for the filtered velocity
and the Schumann wall model for the wall shear stress are all from the default BC recommended by Churchfield [11].
Having said that, the next chapter provides a more detailed look of their implementation and why they are set as the
BC.
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4.5, Wind Farm Simulation Solver

As the last section for the specification of the SOWFA wind plant LES, the solver algorithm outlined in this section is
used as a build-up for the upcoming implementation of a steady-state twin algorithm, in the next chapter.

Given the governing equations of momentum and temperature transport in Equation (4.2) and Equation (4.6),

the pseudo code of windPlantSolver is shown in Algorithm 1.

Algorithm 1: windPlantSolver

1

0 N g wN
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11
12

13
14
15

16
17
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24

25
26

27
28

29
30

31

32
33

34
35
36
37

Data: a, ﬁD ,0, ksas, KsGs, VsSGs, agan, q"Nau field. Inflow profile of @1, 0, ksgs, €sgs from ABLSolver.
Instananeous momentum and temperature sources from ABLSolver.
Result: instanenous as well as converged time-averaged flow fields above, additional Q, @, {kresolved), {€sGs?

<u;. u;>, (u'0"), (68'0") field, turbine related outputs.

begin

read geographical information;

read and/or initialize input and result fields;

read @ and 6 sources;

calculate initial Courant number and At;

create additional time-averaged flow fields;

check for cell flux balance and verbose;

update BC in case of internal field mesh change during case setup;

/* PIMPLE scheme */
while end physical simulation time not reached do

update V- and V-0 blending divergence scheme;

update Corant number and At;

/* SIMPLE iteration */
while number of outer corrections not reached do
compute Coriolis force;

/* Predictors */
solve incompressible momentum equation with @ source for intermediate @*;
solve incompressible 6 transport equation with 6 source for 8*;

/* ﬁD , @, and O corrector; PRIME iteration if loop iteration > 1 */
while number of inner corrections not reached do

compute pP from @t*;

update @ from @* and p?;

correct incompressible A transport equation with 8 source for 6;

update a*;

check flux continuity error;
interpolate @ and 6 sources to current time;

/* One-equation eddy-viscosity model */
solve ksgs transport equation with @ and 0 for ksgs and vsas;
/* ALM/ADM turbine model */

compute turbine blade force vector field and project them as f in momentum equation;

update o2 |

compute (@), (6), (p"), (u't'), (W'0"), (0'0"), (kresolvea), (ksGs), and (escs), etc.;
compute Q and ®;

,and q/

oy &t ground boundary;

if output time step reached then
| output field result;

else
| continue;
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Compared to the vanilla bouyantBoussinesqPimpleSolver of OpenFOAM, the most notable changes are
e direct source term inclusion in the momentum and temperature transport equations in line 17 and 18;
* turbine model implementation and direct body force inclusion in line 30;

* dynamic linear-upwind blended scheme for the convective terms of the momentum and temperature trans-
port equation in line 11;

e surface shear stress T?j and temperature flux ; computation in line 31;

+ 0 corrector step in line 23.

In particular, the additional correction of @ in line 23 of Algorithm 1 is because the initial solution in line 18 is merely
a predictor step as p° from the previous time step and thereby @* are used. In the corrector step in line 23, @ of
the current time step is used to solve the temperature transport equation for  [37]. Moreover, since the pseudo
algorithm presented in Algorithm 1 that is quite identical to the actual source code, the source code of Algorithm 1
will not be presented separately in this thesis.






Implementation of the Reynolds-averaged
Wind Plant Solver

As discussed in Chapter 4, SOWFA simulations consist of the utilisation of ABLSolver as precursor, followed by
windPlantSolver as the actual wind plant LES. As RANS is performing steady-state simulation and the transient
behaviours are of no importance, RANS simulations are significantly faster than LES at the cost of fidelity. The biggest
discrepancy between mean flow result from RANS and that from higher-fidelity methods e.g. LES and DNS is the
representation of the small turbulence scales. Both RANS and LES employ turbulence models to represent such
scale although LES usually has the upper hand by resolving a more refined mesh grid, i.e. modelling a smaller scale
range than RANS. As SOWFA LES has been performed on various wind plant layouts illustrated in Figure 4.12, the
goal of this chapter is to implement RANS solver based on the current SOWFA LES framework, and, as a step further,
realise the injection of time-averaged high fidelity turbulence anisotropy tensor (b; 1s) from the previous LES into
SOWFA RANS in order to improve the turbulence model used in RANS.

Technically, both the LES precursor, ABLSolver as well as the actual wind farm LES solver, windPlantSolver,
can be adapted to RANS. Having said that, only RANS implementation of windPlantSolver is done in the scope
of this project. This means the inflow boundary data as well as sources from LES precursor ABLSolver are being
used for RANS windPlantSolver simulations. The adaptation of the SOWFA LES solver windPlantSolver to RANS
bares with the principle:

Achieve RANS implementation of SOWFA windPlantSo lver with as few modifications as possible.

With this in mind, the following areas of change need to be considered and will be elaborated:

 Steady-state solver * Boundary conditions & wall model

¢ Data-driven turbulence model ¢ Numerical scheme & solution control.

The turbine model of choice for steady-state simulations are naturally the ADM instead of ALM as transient
behaviours are not of interest. The parameter of the ADM are attempted to be configured comparably with the ALM
in the previous chapter. For instance, the number of actuator disk segment is set to 40 that is the same as in the
number of blade segments in one blade of ALM. In addition, the Gaussian smoothing coefficient of the disk forces
are also set to be twice the cell size. Lastly, similar to the treatment of other flow quantities transferred from the LES
fields, the source term to the geostrophic balance used in the momentum equation has been averaged to a mean
vector for the entire duration of RANS iterations.

5.1. Reynolds-averaging the Governing Equations

In Section 2.3, it has already been demonstrated that filtering operation ~ and Reynolds averaging operation (-) on the
N-S equations with Boussinesq’s buoyancy approximation are very identical. In this context, the Reynolds operator
refers specifically to temporal averaging while - refers to horizontal averaging. Recall the filtered governing equations
of mass, momentum for SOWFA operating in LES mode, from Equation (4.1) to Equation (4.6), by swapping the
filter operation done in Equation (4.1) as well as Equation (4.2) with the Reynolds averaging operator, the governing

57
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equations of RANS in ABL is identical to its former filtered form in Equation (4.1) and Equation (4.2) with only one
exception: the SFS stress tensor 7;; in Equation (4.4) becomes the Reynolds stress tensor R; j,

D
601’1':_ i(a<ui>)+aRij_laRkk5ij 5.1)
ax]‘ ax]‘ ax]' 6x]' 3 ax]' ’ )

Analogous to the filtered version in Equation (4.4), as the last two terms of Equation (5.1) constitute the deviatoric
component of the Reynolds stress tensor R; j, Rl.[;. can be used instead and Equation (5.1) simplifies to

D D
%% _ i(a<“i>)+ 7 (5.2)
ax]' ax]' 6x]' 6x]' ) ’
Modelled

With theses in mind, the Reynolds-averaged incompressible N-S equations for SOWFA are derived as Equa-
tion (5.3) and Equation (5.4) respectively, incorporating Coriolis forcing, background driving pressure gradient, buoy-
ancy, and turbine forcing projection:

o{u;)
— =0, 5.3
ox; (5.3)
own O w) oy 0w xalp) 90 a dpk 1
ot 0x; T rBkESs ATk 0x; o 0x; 0x; pogs 3 ox; po’t’ ’
—— —— ~—— — , ——
Coriolis Modified pressure Driving pressure  Shear Buoyancy

in which, following the same analogy of " Equation (4.8), { p)D is the deviatoric density-normalised pressure com-
ponent with the diagonal components of R;; lumped in (see Section 4.2), and

1
<p>D:@—@—&gjxj+§Rkk6ij- (5.5)

Po Po  Po
Furthermore, recall the filtered driving pressure gradient aix,»% in SOWFA LES momentum conservation Equa-

tion (4.2) is the driving pressure gradient averaged horizontally at reference height, a%i( po) will be the horizontal
mean of % (po) at reference height as well. It has been elaborated in Section 4.3 that 0%% in filtered momentum
conservation Equation (4.2) is supplied from the saved results of the ABLSolver precursor. Therefore, for RANS im-

plementation of SOWFA windPlantSolver, aixl( Po) in Reynolds-averaged momentum conservation Equation (5.4)
can be supplied by one of the two methods:

1. time-averaged g—@ from completed LES ABL precursor runs using ABLSolver;

2. % from ABLSolver runs modified for RANS.

Option 1 has been chosen over option 2 as %% is available from completed ABLSolver runs and option 1 requires
an extra RANS implementation ABLSolver. Nonetheless, option 1 necessitates the assumption that py = po, i.e.
static pressure at reference height is representative of the truth, so that

9o =<@>=6<p°> (5.6)
6xi 6xl~ ax,- ’ '
thanks to the fact that temporal and spatial averaging operator {-) and * are commutable with derivatives [71]. As
a result, substituting the background driving pressure gradient with Equation (5.6), momentum conservation in
Equation (5.4) becomes
o)  O(%un(uj)) _

= —2€:21.Q _
a1 3% €i3kQs (ug) ox; o0

axi

ap)’ 1 /ap\ 99 1 o 1
<p> . Po 1] X Pk +_fiT (5.7)
Po
N————
LES ABLSolver
Last but not least, the Reynolds-averaged transport equation of 6 inherits from Equation (4.6) and only differs in
the type of field operation,
0(0) 0{u;)0y 8%y 9d;
O 0(uj)®) _0*®) %9

5.8
ot 6x]' ax? ax]' (5.8)
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5.2, Data-driven k-e¢ Turbulence Model

In this section, the data-driven functionality of the wind plant RANS solver is explained. The turbulence model of
choice is the k-¢ model due to its popularity in the field of ABL simulations. As a eddy-viscosity model, the k-¢ model
with data-driven augmentation will still revolve around the eddy viscosity, as illustrated in Figure 5.1, but now with
the additional mission of improving the accuracy of the eddy viscosity. And as can be seen, the solution lies in the
injection of high fidelity mean turbulence anisotropy tensor b and is elaborated.

Eddy viscosity

Turbulent shear Turbulence
stress production rate

Momentum " : i TKE transport
equation BUREITE (o1t EENEUER equation

Turbulence model

Figure 5.1: The flow chart of part of the solver where the eddy viscosity is involved. In the data-driven approach, an additional input of a higher
accuracy (LES) turbulence anisotropy tensor is injected

The goal is to improve the prediction of the unresolved shear stress, in this case the Reynolds stress R;;. More
specifically, the turbulence anisotropy tensor b;; of R;; is different between RANS and an LES / ML predictions. As
such, it is essential to identify and subsequently separate the anisotropy component of R;; during RANS so that
the b;; from RANS can be substituted from higher fidelity ones from LES/ML. The rearrangement of R;; of RANS is
shown in Equation (5.9)

2 1
R;jRANS = gkRANS —2vTS;jRaANS = 2kRANS (bij,RANS + §5ij) . (5.9)

~

Solver default

It goes without saying that and improved R; ; can be achieved by swapping the b; ; from RANS with the ones from
LES / ML predictions. Therefore,

L ~ 1
R;j = 2krans (bij+§5ij), (5.10)

where R; j indicates the improved field due to a mix of LES/ML and RANS b;; since full substitution of b;; is hard to
accomplish according to Kaandorp [41] whom only managed to achieve around 70% substitution; and b; j indicates
the high fidelity source from either LES or ML predictions. Comparing Equation (5.10) with solver’s default definition
of R;j in Equation (5.9), it can be observed that k from both implementation comes from RANS and the only changes
happen between the eddy-viscosity term and the anisotropy so that

—2v7Sijrans ~ 2kransbi;. (5.11)

Therefore, the improvement of R;; lies in substituting wherever the eddy-viscosity approximation is applied in
the solver with a higher fidelity b; ; from LES / ML predictions. Taking into account of the mixed combination of the
LHS and the RHS of Equation (5.11), the formulation of R;; becomes

2 .
Rij = 3 krans +(1-¢) (—2v7Sijrans) + € (2kransbij), (5.12)



60 5. Implementation of the Reynolds-averaged Wind Plant Solver

in which ¢ is the mixing ratio with 100% being full substitution of the eddy-viscosity hypothesis. ¢ at the ith SIMPLE

iteration is defined as
. [ (ti— 1)
¢i =min ” $max Emax | » (5.13)

mix

where f; is the current SIMPLE iteration number; £ is the start iteration number for b; ; mixing; ¢ max is the maximum
mixing ratio permitted; and i is the total number of iterations for mixing. Through Equation (5.13), the user is able
to manipulate three settings:

1. startiteration of the b;; mixing; 3. cap of the mixing ratio ¢, typically below 1.

2. rate of LES/ML b;j injection;

The implementation of Equation (5.12) as well as Equation (5.13) can be seen in Appendix B.1. Upon inspect-
ing the governing equations from momentum conservation in Equation (5.7), potential temperature transport in
Equation (5.8), TKE transport in Equation (2.90), and turbulence dissipation rate transport in Equation (2.91), the
following two terms utilises the eddy-viscosity hypothesis:

1. turbulence production rate G in the k and € transport equation;

oo P,
2. shear stress momentum source — - in the momentum equation.
j

5.2.1. Turbulence Production Rate
The formulation of G has been given in Equation (2.92) and is shown here again,

G=2VT(SijSij)=2VTSijui,j- (5.14)
Solver default
Following Equation (5.11) and inject b; j into Equation (5.14) yields the improved turbulence production rate G,

0u; RANS

G =[-8 (2vrSijrans) + & (~2kransbi)] x,
j

(5.15)

The implementation of Equation (5.15) can be found in Appendix B.3.

5.2.2. Shear Stress Momentum Source

For simplicity, the subscript ‘gans’ is dropped as only b; j comes from LES / ML prediction. Let the effective kine-
matic viscosity be
Veff =V +VT, (5.16)

then the shear stress (both laminar and turbulent) momentum source is

D
V0P =~V egVu) - V- [(veff vuT) ] (5.17)
Solver default
1 1
=-V- (vVu +vva)l - gvI -tr (Vu)) -V (VTVu+ vy (V)T - 5vTI Str(Vuw |. (5.18)
I: laminar 1I: tu;t:ulent

where —V - (v Vu) of Equation (5.17) is implicitly solved known as the finite volume method (FVM) in OpenFOAM.
The laminar term of Equation (5.18) is left as it is. The turbulent term of Equation (5.18) is modified to include the
b;j from LES / ML predictions:

1 1
-V. vTVu+vT(Vu)T—§vT1~tr(Vu) = —V~(ZVTS)+V~(§VTI-U'(VU)). (5.19)

~ " )
-~ -~

II: turbulent I v
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Term IV of Equation (5.19) is left as it is, and substitute Equation (5.11) into term III:

~V-@2vyS) = —V-[(1-&) (2vyS) +& (—-2kb)]. (5.20)

~ ~
-

1T \%

Summing up term [, V, and IV yields

-V-gP=-v. vVu+v(Vu)T—%vI-tr(Vu) —V-[(l—f)(ZvTS)]—V-[é(—zkf))]+V-(%VTI-tr(Vu)). (5.21)

. A A

~~ g

I: laminar VI VII v

v

Throughout testing, it has been discovered that term VI of Equation (5.21) has to be made partially implicit for
the solver to be stable, meaning that

-V [1-H@vrS)= -V -[1-& (vrVw] - V- [(1-&) (vr (V) T)], (5.22)

J \

VI VIII: FVM X

mimicking the formulation in Equation (5.17). Finally, the improved shear stress momentum source with LES/ML
b; j injection is the summation of term I, VIII, IX, VI, and IV,

~V-g”=-V. VVuw(Vu)T—%VI-tr(Vu) -V (1= VW] -V-[1-8&) (vr (VwT)] - V- [1-& 2v79)]
-V [&(~2kb)] +V'(%VTI-tr(Vu)). (5.23)

The implementation of Equation (5.23) in OpenFOAM can be found in Appendix B.2. Additionally, it can be seen
that due to the incompressible flow assumption, Vu can be made 0. Nonetheless, since Vu is never really 0 during
a simulation, such term is kept in Equation (5.23) for stability. Following this analogy, the term of Vu should also
be kept in Equation (5.14) and Equation (5.15) for the turbulence production rate. However, the default implemen-
tation in OpenFOAM did not keep it unlike the shear stress momentum source. Therefore, Vu is not included in
Equation (5.15), to be consistent with the original implementation of it.

5.3. The Steady-state Wind Plant Solver

Putting the puzzle pieces together, the core of RANS adaptation of SOWFA - the solver, can now be touched upon. In
theory, since the original SOWFA windPlantSolver utilizes PIMPLE that, as mentioned in Section 2.5.2, includes a
SIMPLE outer iteration and a PRIME inner iteration, if

1. PRIME iteration is 0; 3. physical time step At =1 s, imitating a iteration;

2. SIMPLE iteration is 1;

then a PIMPLE scheme is effectively a SIMPLE scheme. Moreover, due the identity between Reynolds-averaged and
filtered governing equations in Section 5.1 and Section 4.2 respectively, SOWFA's windPlaneSolver should be able to
correctly solve Reynolds-averaged flow fields instead of the original filtered instantaneous flow fields. Nevertheless,
a closer inspection of Algorithm 1 reveals that there are three redundancies in SOWFA windPlantSolver scheme if
only steady-state flow fields are of interest, namely

1. Courant number and A¢ do not have to evaluated every time step since At =1s;
2. time-averaged field calculation is unnecessary as the solutions themselves are already time-averaged;

3. the momentum and potential temperature sources are also constant thus not necessary to interpolate and
update between time steps.
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Moreover, for the case of neutral stability ABL, as is in this project, the temperature almost does not change below
the capping inversion layer of 700 m. If the simulation of the ABL domain were to be below 700 m, the corrector step
for (@) on line 18 of Algorithm 2 could be unnecessary.

The foremost and foundation of SOWFA RANS implementation would be SOWFA's windPlantSolver itself.
Since windPlantSolver in essence uses the incompressible PIMPLE solver which is a transient flow solver, the new
RANS solver would thus utilize the incompressible SIMPLE steady-state solver and is hereby named windPlant-
SimpleSolver. As mentioned in Section 4.5, windPlantSolver is based on buoyantBoussinesqPimpleFoam,
therefore, windPlantSimpleSolver would be accomplished based on both windPlantSolver as well as buoyant-
BoussinesqSimpleFoam. In Algorithm 2, the pseudo code of the windPlantSimpleSolver is shown.

Algorithm 2: windPlantSimpleSolver

Data: u, p?, 6, k, ¢, x, vi, R, ¢/, field required, (b) field optional. Inflow profile of (@), (8), (k), (¢) from
ABLSolver. Time-averaged momentum and temperature sources from ABLSolver.
Result: Converged time-averaged flow fields above, additional (Q), (w), and LES/ML blended Ryenq field,
ADM turbine related outputs.

1 begin
2 read geographical information;
3 read and/or initialize input and result fields;
4 | read (@) and (0) sources;
5 check for cell flux balance and verbose;
6 update BC in case of internal field mesh change during case setup;
7 /* SIMPLE scheme */
8 while maximum iteration not reached do
9 update V- (u) and V- (8) blending divergence scheme;
10 compute Coriolis force;
11 compute V- aﬁend with (u), v, k, and (b);
12 /* Predictors */
13 solve incompressible momentum equation with (@) source for intermediate (u)*;
14 solve incompressible (9) transport equation with (é) source for ()*;
15 /% <p>D, (u) (and (0)) corrector */
16 compute (p)D from (u)*;
17 update (u) from (u)* and (p)”;
18 (correct incompressible (#) transport equation with (9) source for (0));
19 update (u)*;
20 check flux continuity error;
21 /* k-¢ ABL turbulence model */
22 compute LES/ML blended turbulent production G with (u), v, k, and (b);
23 solve € transport equation with k and G for ¢;
24 solve k transport equation with ¢, and G for v;
25 /* ADM turbine model */
26 compute turbine blade force vector field and project them as f in momentum equation;
27 update Rv[\Zall and q, at ground boundary;
28 compute (Q) and (w);
29 if output iteration step reached then
30 compute Ryjeng with (u), v;, k, and (b);
31 output field result;
32 else
33 L continue;
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Compared to windPlantSolver in Algorithm 1, the windPlantSimpleSolver has several changes.

1. Solver: This is the most apparent change. The core of the algorithm is changed from PIMPLE to SIMPLE for
steady-state simulations.

2. Input data: Since windPlantSimpleSolver uses k-e turbulence model, an extra € needs to be supplied as
input. Furthermore, there is the addition of (b;;) retrieved from a completed SOWFA LES to realize data-
driven RANS.

3. Potential temperature corrector: Given the low importance of the potential temperature in neutral ABL simu-
lations, the corrector step of the potential temperature has been omitted.

5.4. Wind Plant Reynolds-averaged Navier-Stokes Simulation Case Setup

The simulation strategy for SOWFA RANS is depicted in Figure 5.2. The top bar corresponds the time-averaging pro-
cess of LES precursor outputs that starts at 20,000 s for ABL-N-H and 18,000 for ABL-N-L and ABL-N-H-HiSpeed.
And the lower bar shows the strategy of dividing the total iterations of RANS into different phases of the ‘data-
driven’ involvement. There are two cases simulated in wind plant RANS, namely the N-H-OneTurbine and N-H-
ParallelTurbines case.

Time-averaging

SOWFA LES
precursor

| SOWFA wind plant

No LES binjection

5,000 s

Figure 5.2: Simulation strategy of SOWFA RANS test cases

The original proposed domain size is the same as the LES precursor cases, being 3,000 m x 3,000 m x 1,000 m
in the x, y, z directions respectively. The cell size was that of the base mesh, being uniformly 10 m cubes. However,
during several wind plant RANS, regardless of the numerical schemes, BC, and the SIMPLE solver relaxation factor,
the simulation always diverges rather quickly within 100 iterations. Furthermore, it was always the north-west corner
at around 700 m causing the floating point exception, i.e. ‘division by zero. Coincidentally, it is the starting height
of the inversion layer where the potential temperature begins to gradually climb. Measures have been taken to even
smooth the k inflow profile artificially at the inversion layer but to no avail. Therefore, two options were available:
disable the temperature transport equation or trim the domain height to below 700 m. Since the turbine apex is
located at 153 m that is way below the inversion layer, it was decided to halve the domain height to 500 m and the
cell size was unchanged. Expectedly, thanks to the constant potential temperature profile from 0 to 500 m of z as
seen in Figure 4.4, the simulation of a domain size of 3,000 m x 3,000 m x 500 m converged successfully.

5.4.1. Boundary Conditions & Wall Models

Same as the situation when performing wind plant LES in Section 4.4.2, approximations are needed to correct the
BLs inner structures as the first cell centre height of the RANS mesh grid is the same as the LES precursor base mesh,
being 5 m. For the wall shear stress, OpenFOAM provides the nutkAtmRoughWallFunction that first approximates
Vi with

y'x
Viwall =V m -11, (5.24)
where
E=YT% (5.25)

20
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As can be deduced from Equation (5.25) and Equation (5.24), the wall function will turn off if the first cell centre
height y is smaller than z,. Subsequently, the turbulent shear stress at wall RS. wall 18

RP

ijwall =

=2V wallSij» (5.26)

With the same argument that the nutkAtmRoughWallFunction is only suited for y* of range [30, 300] which is
not the case here, the Schumann [77] model is used instead. As a result, the approximation of v, at the wall defined
in Equation (5.25) is completely bypassed. This poses a problem: if v, is not corrected at the wall, then any term
other than R;; that involves v, will be uncorrected at the wall. From Section 5.2, it has been gathered that v is
used to calculate G for instance. Assuming the near wall flow to be laminar, and that the velocity varies linearly

with distance from the wall in a laminar flow, Versteeg and Malalasekera [97] defined the wall shear stress O'l.% wall (@s
shown in Section 4.4.2, the wall stress 0 j wan is only non-zero when j = 3) as
aui
Oi3wal =V|3— . (5.27)
0x3 ) x3=0
In the discretised domain of the finite volume method, 0 ;3 wan becomes
Uij/2 = Uj,
O3 FVM = vy R / : Wau, (5.28)

AX3

where u; 1,2 is the velocity at the first cell centre from the wall; Ax3 is the wall-normal distance from the first cell cen-
tre; and u; wan is 0 for solid walls. If u; 1/ lies in the log-law region of the BL, then clearly the vertical velocity profile
becomes exponential rather than linear and thus o3 wan # 0i3,rvm. To equate Equation (5.27) and Equation (5.28), a
new kinematic viscosity at the wall veft wan is proposed,

Veffwall = V + Vi wall (5.29)

so that
Uj1/2 — Uj,wall

=0; . 5.30
Axg i3,wall ( )

0i3,FVM = Veff,wall

If vefr wan Were not employed by not using the nutkAtmRoughWallFunction, then the velocity gradient of Equa-
tion (5.30) would have to be corrected instead for Equation (5.30) to hold. More importantly, the turbulence produc-
tion rate G at the wall is governed by

Gwall = 2V¢,wanSi3Sis. (5.31)

Bypassing the correction of v; a1 means the vertical velocity gradient in S;3 needs to be corrected in return.
Therefore, in the absence of a wall function for v; by opting for Schumann [77] model of wall shear stress, an addi-
tional wall model of velocity has to be provided. This is provided in SOWFA as the velocityABLWallFunction.

Additionally, as the k-e¢ ABL turbulence model is used, wall models need to be considered for k and € too. The
wall model for € is the epsilonWallFunction — quite straight forward as there is only one model available. The BC
of k at the wall has been set to 0 since it was thought that the turbulent stress near the wall is fully taken over by

L.[}ywau. However, reflecting back to this choice, it is probably better to use the kqrWallFunction because k does
not have to be 0 near the wall. The kqriWallFunction is essentially a ‘zeroGradient’ condition.

For the inflow BC, timeVaryingMappedFixedValue is applied to velocity, potential temperature, k, and ¢, al-
though the inflow values are not varying with time/iteration. The sole reason for choosing this BC is that time-
VaryingMappedFixedValue is the most simple BC to map a list of data to a patch. Statistical averaging over time
has been done to the total k and € (resolved scale + SGS). Furthermore, with the understanding that a RANS simu-
lation will eventually reach a uniform field at each height, given infinite amount of iteration, horizontal averaging is
also performed. The resultant inflow profiles of the turbulent properties are shown in Figure 5.3 for k and Figure 5.4
fore.
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(a) Total value (b) SGS componenet
Figure 5.3: (k) inflow profile averaged over 20,000 - 25,000 s of the ABL-N-H precursor case. The blue patch represents the swept area of the

turbine

As expected, the most of k are stored in larger, resolved scales while the opposite is happening to €. Furthermore,
the inversion layer centre at 750 m, or z/z; = 1, has caused quite some fluctuation of the k profile even after two
averaging operations.

(a) Total value (b) SGS component

Figure 5.4: Time-averaged ¢ inflow profile averaged over 20,000 - 25,000 s of the ABL-N-H precursor case

Finally, the BC of all relevant flow variables are shown in Table 5.1 and from which, as mentioned above, the lower
BC of k is arguably better if using the kqriallFunction instead but this has not been verified.

Table 5.1: Boundary conditions of the wind plant RANS

Boundary H Lower ‘ Upper ‘ West ‘ South ‘ East North
(u) ABL wall function Slip Fixed inflow 65—‘;) =0 aé—‘;) =0
D ~ Hp)? _ o | A _
(p) Fixed flux pressure =0 | =5 =0
C) % =0 Fixedinflow | %% =0 | %2 =¢
Wind plant RANS 0z ox 9
RD Schumann 0
k 0 % -0 | Fixedinflow | % =0 k=0
Doy 0
€ Wall function g—g =0 | Fixed inflow g—; =0 g—i =0
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5.4.2. Numerical Scheme & Solution Control

The numerical scheme for wind plant RANS uses two schemes — one stable but diffusive scheme, and the other
second order scheme more accurate but hard to converge. In the initial stage of a simulation, the more stable scheme
is used. The more accurate second order scheme is switched to once the simulation with the lower order schemes
have reached convergence. Table 5.2 shows the summary of the main numerical scheme used.

Table 5.2: Two numerical schemes for a wind plant RANS

Scheme ‘ ‘ Initial Final

Gradient cellMDLimited Gauss linear 1l cellMDLimited Gauss linear 0.5

(u), (0): bounded Gauss localBlended;
(u), (0): bounded Gauss localBlended
Divergence . linearUpwind grad(*) upwind;'
k, e: bounded Gauss upwind
k,€: bounded Gauss linearUpwind grad(x)

Laplacian Gauss linear corrected

Surface-normal
. corrected
gradient

Two of the numerical schemes shown in Table 5.2 are elaborated here:

* cellMDLimited Gauss linear 1
This scheme limits the gradient in each direction individually, such that when cell values are extrapolated to
faces using the calculated gradient, the face values do not fall outside the bounds of values in surrounding
cells. A limiting coefficient is specified after the underlying scheme for which 1 guarantees boundedness.

° bounded Gauss localBlended linearUpwind grad(*) upwind
This scheme is sometimes pure linear differencing, which provides no artificial diffusion, causes instability,
so a blend of linear plus a small amount of upwind is used. The bounded keyword does cancel V-u in an
incompressible transport equation for numerical stability.

With regard to comes to solution control, fist of all, no linear system solver is changed from the recommended
ones by Churchfield [11]. Nonetheless, the relaxation factors in RANS plays a huge part in reach fast convergence.
Since it was discovered that the pressure variable is the hardest to reach low residual, a 0.3 relaxation factor is used
for it while 0.6 is used for other flow properties. The relaxation factors would not have been useful if the flow solver
were SIMPLEC. Unfortunately, the SOWFA solver is based on OpenFOAM 2.4.x that does not support SIMPLEC.

L+ refers to either of the variables
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5.5. Wind Plant Simulation Case Summary

The work flow of wind plant simulation done with SOWFA RANS is shown in Figure 5.5, which evolved from the LES
wind plant work flow in Figure 4.2.

Cyclic inflow/ Mesh Field initialisation SOWFA LES

Base mesh creation -
outflow BC decomposition precursor

Time-average

SOWFA wind plant Mean LES b Mean LES Mean LES_ inflow Mean LES flow field
L= momentum source profile

Inflow/Outflow BC SOWFA wind plant

update RANS simulation Mesh reconstruction

Mesh recreation Field mapping

RANS/LES blended
mean flow field

Figure 5.5: Work flow chart of SOWFA LES precursor and thereafter SOWFA wind plant RANS simulation

As a comparison, although the precursor step ‘Flow 1’ has not changed, there are several changes for the wind
plant simulation ‘Flow 2’ in the following:

* inflow profiles as well as momentum source term have been averaged over the period of recorded inflow pro-
files and sources shown in Figure 4.11;

* if only half height of the LES mesh were to be used, as is this case, a new mesh has to be created with relevant
flow fields mapped to it;

* no mesh refinement is done near the turbine;
° most importantly, the unsteady LES with ALM has been changed to steady RANS simulation with ADM;
* lastly, high-fidelity time-averaged (b; ;) is injected into the simulation.

Finally, summarising the wind plant LES cases in Chapter 4 and the wind plant RANS cases in this chapter, an
overview of all cases simulated in this thesis is revealed in Figure 5.6. A metric so called the ‘degree of freedom’
(DoF) is shown as well. The DoF in Figure 5.6 indicates the complexity of the case design variables. The base case
is N-H-OneTurbine LES and RANS that has 0 DoE Therefore, as an example, N-L-ParallelTurbines LES would have
2 DoF w.r.t. the N-H-OneTurbine LES because of the atmospheric stability and plant layout difference. As another
example, N-L-SequentialTurbines has 3 DoF because it not only has an extra turbine over the N-H-OneTurbine LES
but also imposes a different inflow condition to the rear turbine. And this marks the end of the description of wind
plant simulation methodology and setup.
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ABL-N-H-HiSpeed

Degree of freedom

ALM-N-H-
ParallelTurbines-

ALM-N-H-
OneTurbine

ADM-N-H-
OneTurbine

HiSpeed

ALM-N-H-
ParallelTurbines

ADM-N-H-

ParallelTurbines ALM-N-L-

ParallelTurbines-
Yaw

ALM-N-L-
ParallelTurbines

ALM-N-L-
SequentialTurbines

Figure 5.6: An overview of all cases considered in both wind plant LES and wind plant RANS



Implementation of an Enhanced Tensor Basis
Decision Tree Framework

In this chapter, the motivation as well implementation detail of an enhanced Tensor Basis Decision Tree (TBDT)
framework. The word ‘framework’ refers to any machine learning (ML) technique and functionality relevant to the
TBDT, with the TBDT as the core of this framework. When considering the ML model/framework to use for the
application of wind plant CFD simulations, there are four traits of the ML model that are desired.

1. Generality: The chosen ML model should be able to generalise the learning of a training case. A ML model
with high generality is able to limit the prediction power loss when predicting unseen flow data from cases of
varying condition or domain. Having said this, it is understandable and expected that no current ML model
will be able to generalise across a significant change of flow conditions. Nonetheless, qualified ML model
should at least be able to be unaffected by a change of the reference frame such as translation and rotation of
the same flow case.

2. Interpretability: The chosen ML model should be to some extent exhibiting the ease of interpreting a training
or prediction outcome. The interpretability of bad results provide ways to debug and analyse the pit fall of the
model. While the interpretability of a successful prediction helps the user to understand correlation between
a complex set of flow features to the corresponding turbulence characteristics.

3. Efficiency: Due to the high scale of flow case data, it would be unfavourable to use a ML model that is inefficient
especially when it is not because of model algorithm limitation but rather unoptimised implementation. With
this in mind, the chosen ML model should be agile in the algorithm itself by setting certain hyper-parameters.
Implementation-wise, the model should be written in a compiled programming language and preferably is
compatible with process parallelisation so that its training and/or predicting speed is scalable to given com-
putation resource. Lastly, the use of computation resource such as memory should be efficient in order to train
on large data set.

4. Extendability: The chosen ML model can be used as a baseline that be developed upon and improve overtime
with the introduction of more intelligent algorithms or variants.

The four essential traits of a desired ML model/framework has led to the decision of employing the TBDT frame-
work introduced by Kaandorp [41], but not without some modification and enhancement. The reason of using the
TBDT framework is:

1. The TBDT framework has embedded invariance, i.e. invariant to translation and/or rotation of the reference
frame. Such generality also translates better prediction of unseen flow case. For instance, Kaandorp [41] was
able to train on the periodic hill case and predict the square duct case with adequate accuracy .

2. The TBDT framework is highly interpretable. As every decision made in a TBDT can be traced and analysed,
this leads to the possibility of understanding the correlation between a certain feature value and the path it
leads to. It has to be noted that this is easier said than done as many flow features do not have a straight
forward physical meaning.
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3. The TBDT framework is highly flexible and extendable. Kaandorp [41] has already extended the TBDT into the
Tensor Basis Random Forest (TBRF) as start. The TBDT can be further extended to models with either bagging
or boosting techniques.

Nevertheless, the current TBDT framework also have known issues and limitations:

* Some of the training features proposed by Kaandorp [41] that are supposed to be Galilean and rotational in-
variant are not actually invariants, mostly due to the poor choice of non-dimensionalisation factors.

 The efficiency of the current implementation is mediocre as it is written in Python, an interpreter program-
ming language. Moreover, there is no parallelisation implemented. Lastly, as will be elaborated later, the cur-
rent TBDT is not memory efficient.

 Albeit inheriting high extendability, the current TBDT framework is largely under-developed. A rebase of the
framework to well-known and optimised packages will create a good foundation of the framework and (almost)
instantly gain access to useful auxiliary utilities.

With this in mind, the current TBDT framework is reimplemented in the mature and optimised platform of scikit-
learn that uses Cython for the majority of the functions. The upcoming sections will explain a bit more detail of this
reimplementation.

6.1. Building the Tensor Basis Decision Tree
The DecisionTree.fit () function does following actions sequentially.

1. Check the inputs X, y, tb, sample_weight etc. for correct dimensions and sizes
. Presort X to obtain the sorted array indices if requested

. Initialise MSE criterion instance

. Initialise Tree instance

2

3

4. Initialise BestSplitter splitter instance

5

6. Initialise DepthFirstTreeBuilder instance
7

. Build Tree by callingbuild () function of DepthFirstTreeBuilder.

DepthFirstTreeBuilder is the essential part of tree building as this module will be used by any variations of
TB tree based models, while Tree is the essential part for tree split recording.

6.1.1. The Tree Builder Algorithm

DepthFirstTreeBuilder is one of the two schemes offered by scikit-learn and build a tree depth-wise, i.e. with-
out the limitation of total number nodes. The build () function in DepthFirstTreeBuilder, as called by the fit
method of the DecisionTree, employs the Stack class for split record storage. The Stack class has two function-
alities, namely storing (‘pushing’) data via push() and retrieving (‘popping’) data via pop(). Stack uses the LIFO
(last in, first out) strategy such that when ‘pushing’ a new element, it is stored on top of a record stack; and when
‘popping’ an element, the first element on top of the stack is removed and used. A simple representation of the LIFO
strategy is shown in Figure 6.1.
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Figure 6.1: Stack push and pop operation on a data collection [101]
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In the very beginning, information of the root node if pushed onto the tree node record stack in which impu-
rity is initialised as co and all training samples are eligible to consider for split. Following this, the record stack is
popped recursively to split the tree depth-wise until leaf status is_leaf is reached. The status is reached if any of
the following conditions is met:

* depth =max_depth:
Current depth reached maximum requested

* n_node_samples <min_samples_split:
Current node samples is less than minimum samples allowed to make a split

* n_node_samples < 2min_samples_leaf:
Current node samples is less than sum of minimum samples allowed at left and right (potential) child node

* weighted_n_node_samples < 2min_weight_leaf:
Current node weighted samples is less than minimum weighted samples allowed at leaf and right (potential)
child node

° impurity <min_impurity_split:
Current node’s impurity is no larger than minimum impurity considered for a split

* split.pos = end:
No split is found

* split.improvement <min_impurity_decrease:
Impurity improvement after split is less than minimum value allowed.

Until is_leaf status is reached, the BestSplitter splitter will split the currently popped tree node. The left
child node after a split is always pushed earlier than its right counterpart. Therefore, following th LIFO strategy; it is
also the left node that is popped first when considering the next split.

6.1.2. The Tree Node Splitting Method

BestSplitter, as the name suggests, tries to the find the best possible split by evaluating a pseudo impurity im-
provement of each split location. The default behaviour of scikit-learn’s splitting strategy is, first, filtering-out con-
stant features that do not vary with samples; then going through every feature that is eligible for a split (recalling not
all features have to be used to find the best split to reduce prediction variance) for every sample of the DT. However,
the necessity of solving g% for every single node of the TBDT renders the default brute-force scheme extremely
inefficient. Kaandorp [41] used an auto-optimisation scheme combining the Brent optimisation [7] and brute-force
to find the optimal split. The Brent optimisation is a local minimum finder that uses the golden section search and
switches to the successive parabolic interpolation whenever possible as it is faster. The advantage of the Brent lo-
cal minimum finder is the guaranteed convergence for any function and superlinear convergence for well-behaved
functions [7]. The ‘auto-optimisation’ refers to the strategy of applying the Brent optimisation for large number of
samples at a node and switching to the brute-force scheme when the number of samples fall below a user defined
threshold. This is because the Brent optimisation is a local minimum finding scheme and might not locate the global
minimum.

Both pure Brent optimisation and the Brent auto-optimisation strategy have been trailed for the reimplementa-
tion of the TB ML framework in scikit-learn. Although both strategies yielded significantly faster split finding time,
the pure Brent optimisation offers tremendous time saving over the auto-optimisation strategy moreover. Acknowl-
edging the fact that find the absolutely best split of a node, i.e. find the absolutely best set of " is also more prone
to model over-fit, it is decided to use the Brent optimisation regardless of how many samples are in a node to gain the
best efficiency while having a high model generalisation. While the Brent optimisation scheme is available through
theminimize_scalar function of Scipy in Python, there is no existing implementation of the Brent optimisation in
Cython. As such a Brent algorithm is implemented in Cython by adapting an open source implementation in Python.

6.2. Mean Squared Error Regression Criterion

The regression criterion is the very essence of a DT splitting mechanism, as each split to aiming for the lowest com-
bined regression error of the left and right child node after such candidate split. Specifically, the mean squared error
(MSE) regression criterion is looked into and adapted to suit the need of the TBDT.
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6.2.1. Default Behavior
In this section, the default behaviour of the MSE in scikit-leanr’s DT is first examined, which will form the foundation
for further modifications. Recalling the multi-dimensional MSE from Equation (3.14) and expanding it,
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Term II of Equation (6.2) is regarded as the deviatoric component of MSE. It can be easily seen that while term
I-term II = 0, II can be both positive and negative as long as term II < term I. Since, by default, the prediction of y
at each tree node is simply the (weighted) average of y; for all sample i at such node, the MSE loss function in tree
models is essentially variance o? from Equation (3.19). And in line with the decomposition in Equation (6.2),

1 m n ) 1 m
MSE,p = 02, - 22 Vi - Y (6.3)
j=1li=1 j=1
———
1 1I: deviatoric

With this in mind, it can be seen that what should have been the deviatoric MSE term becomes term II of
Equation (6.3) while term I of MSE and that of o2 equal. The definition of o2 in Equation (6.3) is also the def-
inition of impurity in scikit-learn. Let subscript ; and r denote the left and right child node after a candidate
split 8 = (f, t,,) consisting of a feature f and threshold #,,, of node g, and moreover consider 1D y for convenience,
impurity_improvement is defined as

n n n
impurity_improvement = — [MSE - (—LMSEL + —RMSER)] , (6.4)
N n n

where N is the number of all samples for the tree and fraction §; shows the relative significance of the improvement.
It is important to note that for a node, no matter where and at which feature the split is done, the MSE and variance
of such node does not change. As such, if anything is affecting impurity_improvement, it would have to be the left
and right child node’s MSE contribution in Equation (6.4) for which the name proxy_impurity_improvement is
given,
. . . ny nr
proxy_impurity_improvement = —MSE; + —MSEg, (6.5)
n n
and, contrary to impurity_improvement, lower is better. The definition of proxy_impurity_improvement in

Equation (6.5) can be simplified considering # is also a constant for a node during split. Therefore, SE from Equa-
tion (3.12) can be substituted in Equation (6.5) and

proxy_impurity_improvement = n;SE; + ngSEgr (6.6)
nr ) nr ) nR ) ngr )
= nLZyi - nLZ (2}71')/1' _JA/,') + nRZyi - nRZ(ZJA/iyi _JA’Z')- (6.7)
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Truncating term I + III of Equation (6.7) which is constant, proxy_impurity_improvement is finally only con-
sisting of contributing parts and

nr nRr
proxy_impurity_improvement = —nLZ (29iyi- )712) —ng Z (29iyi- 3712) (6.8)
i

i

As mentioned above, when the prediction y is coincidentally equal to the nodal mean j, impurity_improvement
and proxy_impurity_improvement are de facto formulated as

n n n
impurity_improvement = N [02 - (—LO'% + —RU%)] (6.9)
n

proxy_impurity_improvement =

3|3

n
a§+70R. (6.10)
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Again, truncating all constant terms, proxy_impurity_improvement in Equation (6.10) is redefined as
proxy_impurity_improvement = nLj/% + nRj/%? (6.11)

where j; and jp are left and right child nodal average respectively. As low proxy_impurity_improvement is pre-
ferred, Equation (6.11) implicates thatlarge nodal averages are penalised. Let sum_total, sum_left, and sum_right
denote the sum of y of current node, that of left child node after a split, and that of right child node after the same
split,

n
sum_total = Zyi (6.12)
i
ny
{sum_left =) y; (6.13)
i
nR
sum_right =) y;, (6.14)
i

as a result, the definition of proxy_impurity_improvement in Equation (6.11) becomes

. . . sum_left? sum_right?
proxy_impurity_improvement = - + p . (6.15)
L R

Equation (6.15) is the default criterion of scikit-learn when it comes to evaluating a split of a tree node using MSE
criteria as it removes any unnecessary computation of constant values at such node.

6.2.2. Adaptation to the Tensor Basis Mean Squared Error Criterion
As the next step, the default variables described in the previous section will undergo changes to adapt to the new
MSE criterion designed for TB. Recall the tensor basis MSE of n samples from Equation (3.23),
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Since b; ; is a symmetric tensor, b; ; has 6 unique components. Shrink the by ; j from rank 3 to rank 2 as by; where
l € [1,6], then Equation (6.17) becomes
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Note the similarity between the formulation of MSEtg and MSE,;;p in Equation (6.2). The only difference is the
lack of dimensional mean, i.e. averaging over number of b; outputs /. This is due to the alternative formulation of
MSE for the application of TB in Equation (3.23) and that taking the mean of outputs does not add any value to the
regression criterion as the number of outputs / will be constantly 6. Nevertheless, the similarity between the default
MSE and the MSE for TB stops here. The definition of the default mD MSE in Equation (6.3) cannot be applied to
TB as the premise that predictions of a node are simply the weighted mean of ground truths does not hold anymore.
In order the preserve the default scikit-learn MSE regression criterion work flow to the maximum, the functionality
of sum_left, sum_right, and sum_total are kept the same although their meanings are changed and not literally
‘summations’ anymore. To achieve it, sum_left and sum_right are redefined as the deviatoric term II and IV of
Equation (6.7) so that

n; 6 R R
sum_left=n; Y Y. (2bg by - b%,) (6.20)
k=11=1
ng 6 R
sum_right =ng y_ Y. (2bxibr —b%,) (6.21)
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k=
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sum_total=nY_ Y (2bx by —D%,). (6.22)
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The formulation of proxy_impurity_improvement in Equation (6.8) is carried on here for the TB MSE criterion,
and

n;, 6 R nr 6 R R
proxy_impurity_improvement = nj, Z Z (2bki by - bkl +ng Z Z (2bki by - bil) =sum_left + sum_right.
k=11=1 k=11=1

(6.23)
The reason of changing the relationship between proxy_impurity_improvement and sum_x* (* stands for either
left orright) fromproxy_impurity_improvement ~ sum_x2 in Equation (6.15) to proxy_impurity_improvement
~ sum_x in Equation (6.23) is because the RHS of Equation (6.20) to Equation (6.20) would have to take the square
root that can lead to unwanted complex values. Finally, impurity_improvement is described with MSErp instead
and
. . . n ny, nr
impurity_improvement = — [MSETB - (—MSETB,L + —MSETB,R)] . (6.24)

Finally, to prevent over-fitting, a small set of g(”” would be preferred over a large set as the smaller g are,
the less sensitive b; j is when multiplying slightly varying T(m) during the prediction. To do this, the L2-norm regu-
larisation coefficient a; is introduced which can be placed in any of MSEtg, proxy_impurity_improvement, and
impurity_improvement from Equation (6.19), Equation (6.23), and Equation (6.24) respectively. For practicality,
the L2-norm regularisation is applied to the pseudo impurity improvement for the least computation cost and Equa-
tion (6.23) becomes

proxy_impurity_improvement = ny,
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in which g}f ) and gﬁ{) are the LS-fitted coefficients of the left and right child node respectively, after a candidate split.

5 happens to be large.

As such, the term — z}.‘; (a g gif ) effectively penalises the gain of impurity improvement if g,
6.2.3. Least-squares Fit for Tensor Basis Coefficients

To minimise MSErp from Equation (6.19), a set of 10 ¢ at a node of n samples is solved with the least-squares
method, given Tr(l”ll; and by,;; of each sample in that node. At a node of n samples the set of 10 &' can be solved
by first collapsing the rank of Tr(l":; and by, ;; to 1, then vertically stacked each sample’s collapsed T,(l"l’; and by, ; j such

that one set of § is solved that minimises the sum squared error of each sample. The collapsed and stacked matrices
of a node with n samples is shown in Equation (6.26).
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As can be seen from Equation (6.26), if only 1 sample is present in a node, the linear system will be under-
determined, i.e. there are an unlimited number of combinations of g that fulfils the such system of equations. There-
fore, to drive a unique set of g for a node, there have to be at least two samples so that there are 12 equations in the
system and the effective rank of the system should be at least 10 — the same number of unknowns in g.
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The learnt g at a node of n samples comes from solving
g=(TIT + T T + ..+ T0T,) " (T7by + Tl by + ...+ Tlb,,). (6.27)

When implementing the LS fit to solve ¢ from the linear system shown in Equation (6.28) in scikit-learn’s
RegressionCriterion class, the DGELSD function from LAPACK - a linear algebra package written in Fortran 90 is

used.
10

Y Tmgm = p, (6.28)
m=1
Since the RegressionCriterion class is written in Cython, a LAPACK wrapper for Cython, provided by SciPy, is
used. The DGELSD function uses the singular value decomposition on T even if it is rank-deficient, i.e. number of
rows of T is less than the number of columns of it.

6.3. Tensor Basis Framework Extension to Boosting Methods

One major benefit of basing the TB framework on scikit-learn is the easy extension of a base model the whole family
of models built from the base model. In this case of DT based family, the TBDT can be used as the basis not only
for the bagging of it but also boosting methods. Two boosting methods of interest are AdaBoost and GBDT. In this
section, the procedure of extending the TB framework to AdaBoost and GBDT and forming the Tensor Basis AdaBoost
(TBAB) and Tensor Basis Gradient Boosting (TBGB) respectively are briefly laid out.

6.3.1. Tensor Basis Adaptive Boosting

Since the AdaBoost utilises weightings to each successive weak learner, individual sample weights wl(cp ), ke [1l,N] are
assigned, where k refers to the kth sample weight amongst the N samples used to train the pth learner. As each weak
learner p is a shallow TBDT in its own, the same TB MSE regression criterion entailed in Equation (6.19) is used with

the addition of sample weights w,(cp ), shown in Equation (6.29),
18 e L& e 22
MSErpp=— > w! Y b ——= > w! Y (2bribe - by,). (6.29)
N =1 I=1 n =1 I=1

The other variables such as sum_x, pseudo impurity improvement, and the actual impurity from Equation (6.20)
to Equation (6.25) follow the same treatment. Their sample weights inclusive formulations are left as an exercise for
the reader and are not repeated here. Furthermore, because the error of the kth sample error egcp ) of the pthlearner’s
loss function that is used to update the sample weights after the pth boosting iteration (starts from 1) is only designed
for single-output problems in scikit-learn, the multi-output nature of TBAB has to be reduced to single-output for

(p)
€p > and

6
GECP) = I_Z‘i |bkl — bkl' . (6.30)

Subsequent to Equation (6.30), the pth estimator error can be evaluated with the loss function of choice and the
sample weight of the next boost can be set.

Similarly, when performing predictions, due to the fact that the weighted median of all boosts are used as the
final output, the weighted median of each sample of multiple outputs as is the case of TBAB is done by taking the
median of each learner’s Frobenius norm of b; j- Note that this does not change the fact the eventual predictions are
still b, ;j with 6 outputs — the weighted median information merely determine which learner’s prediction is used for a
sample.

6.3.2. Tensor Basis Gradient Boosting
OL(Yg,Fp-1(xk)
0Fp-1(xk)

from Equation (3.7) to Equation (3.11) in Section 3.1.4 previously. The adaptation of the GBDT to the Tensor Basis
Gradient Boosting (TBGB) does not require the modification of the base weak learner. Because of this, the TBDT
model is appointed as the weak learner, or the boost model, of TBGB. Adaptations of the loss function and their
negative gradient, on the contrary, does need to be done due to the single-output attribute of their default definition.
Starting from the LS loss, the expansion of the output dimension needs to be performed to meet the multi-output
nature of TB ML models. With this in mind, Lis of a sample k is a function of the ground truth by;; collapsed to

The loss functions L(yk, Fy(xi)) as well their corresponding negative gradient — have been described
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by, 1 € [1,6], and the cumulative multi-output prediction till the pth boost F,E,l) (xx). As the cumulative multi-output

prediction F,f,l) (xx) can also be denoted B;C’;) with the superscript -’ denoting the cumulation till the pth boost, Lis
of one sample within the TB framework is defined as

1 ~ 2
[ 2
L= 5 (|ber - B7)) - (6.31)

Subsequently, the negative gradient of Lils) g W-LL. F,(gl) (xg) for sample k is
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It is worth noting that Equation (6.32) is 6D, meaning that for each unique component of by, there is a distinct
OLis,t8(bs, 5;’;))

7 ()
ob,,

Furthermore, the initial guess b;col) is set to 0 for all unique components of it to avoid the suspected violation of

negative gradient. Therefore, — is a 6-element vector hosting the direction to descend for each output.

Galilean and rotation invariance (although not confirmed in this thesis). With 0 bg’l), the first learner essentially fits
by with a shallow TBDT. Analogously, the negative gradient from the LAD loss for TBGB is defined as

()] 7(p)
3 6LLAD,TB(bkl’ by,)

;P
ob,

- sign(bkl - 13;5)), le1,6l. 6.33)

Finally, combining Equation (6.32) and Equation (6.33) together yields the negative gradient of the Huber loss in
the TB ML framework as

I ~(p) ~ . ~
aLi—ILber,TB(bkl’bkFl)) bkl_bgfz’)’ if bkl_bg) <0p
_ s =" oy - . le[L6]. (6.34)
bV mgn(bkl—bkl ) if |br - 67| > 6,

6.4. Invariant Input Features for Wind Plant Flow Fields

An invariant feature related to wind plant flow fields is inspired from feature 48: the wall distance based Re in Ta-
ble 3.3. Most of the ML turbulence modelling work done in the past by Ling et al. [52], Kaandorp [41], and Wu et al.
[105] are based on simple 2D flow fields such as the periodic hill, the square duct, the backward facing step, etc. For
simple 2D flow fields, the (closest) wall distance d usually exists in one direction as a horizontal or vertical distance.

For 3D flow fields, the addition of dimension means d will likely involve two components. As only flat terrain is sim-

ulated in this study, feature 48: min(%,Z) will perform equivalently to a 2D flow field since there is no geometry

variation in the 3rd dimension. However, the existence of wind turbines in the simulation of this study brings up
the question that whether a distance related to the rotor locations can be drawn as a wind plant ML specific feature.

After all, awind turbine is a wall just like the planetary surface but rotating. The most apparent solution to this would

%,2) is already taking

care of the vertical distance to the ground, including vertical information into this new feature is unnecessary and
dilute the importance of the horizontal distance in this feature. Therefore, the horizontal, radial distance to a rotor
centre point is taken as the distance parameter r. Furthermore, as multiple turbines can exist in a wind plant flow
field, r of a cell to the closest turbine is calculated. Table 6.1 shows the latest addition of the invariant input features
to the existing collection of FS1 and FS2.1 from Table 3.2 and Table 3.3 respectively.

be using the spherical distance to a rotor centre point. However, since the feature 48: min(

Table 6.1: Supplementary invariant feature FS2.2 related to wind plant simulation

Feature index \ Description Raw input @ | Non-dimensionalisation factor
51 Horizontal distance to VEr i
the (closest) rotor hub based Re v

Vkd

o0 2), feature 51: @ does not take the maximum of the distance based Re and

Compared to feature 48: min(

a constant because there is no reason to do it. Since feature 51: @ is also a supplementary feature to FS1, the
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feature set in Table 6.1, albeit only one for this study, is labelled as FS2.2 — supplementary features specific to wind

plant flow fields. Same as feature 48: min(@ 2), no non-dimensionalisation is needed. A potential problem of

50v
the current formulation of feature 51: YA~ is that this feature cannot differentiate locations upstream of a turbine

v
and downstream of it while the flow physics are clearly different between the two. This implies that feature 51: @
is not fully distinguished in every location of a wind plant flow fields and should only be used as a supplementary

information to the training of a ML model.

6.5. Machine Learning Case Setup

In this section, the ML pipeline of learning and predicting the wind plant LES mean turbulence anisotropy tensor
(bij) is shown in Figure 6.2. The training case is the N-H-OneTurbine LES. Furthermore, due to the large size of
flow data and relatively limited computation resource, only the second refinement zone of the flow field is extracted
for training. Recall that the second refinement zone is the small and most refined region around the turbine, as
illustrated in Figure 4.12. When performing predictions, five wind plant LES flow fields are available. Again only the
second refine zone data is used.

N N-H-
10,000 GS samples Training data ParallelTurbines
N-H-
ParallelTurbines-
HiSpeed

Feature selection N-L-

TB ML training ParallelTurbines

w/ TBRF
N-L-
ParallelTurbines-
Yaw

TBRF feature Best hyper- Trained TB ML N-L-

selector parameters model SequentialTurbines

Figure 6.2: ML pipeline of training on the N-H-OneTurbine LES case and predicting b; j of other LES cases

6.5.1. Grid Search Configuration

In order to find the best hyper-parameter combination for each TB model, GS(CV) is employed with the R? score
used as the metric. All hyper-parameters for the training of N-H-OneTurbine LES flow data are displayed in Table 6.2.
The explanation of the hyper-parameters can be found on the documentation website of scikit-learn and is repeated
here.



78 6. Implementation of an Enhanced Tensor Basis Decision Tree Framework

Table 6.2: ML model configuration

Hyper-parameter | TBDT | TBRF | TBAB | TBGB
Feature selection Threshold 0.1-Median | Median'
n_estimators 3200
min_samples_split [%] (0.05, 0.1, 0.2) ‘ 0.2
max_features [%] (33, 66, 100)
alpha_g_split (0, 1e-5, 1e-3)
Grid search learning_rate - (0.1,0.2,0.4)
max_depth None (5, 10)
cv 4 | - 4
Metric R?
Presort True
n_jobs 4 ‘ 32 ‘ 4
min_samples_leaf 2
General n_estimators - 32 16
Bootstrap sampling - True - 80%
Loss - - LS Huber
Split criterion MSE
Split scheme Brent

6.6. List of Functionality Improvements
After all aforementioned changes, the comparison is done between the original and new implementation of the
TBDT framework and the functionality improvement is summarised in Table 6.3.

Table 6.3: Functionality comparison between the Kaandorp [41] TB ML model implementation and the reimplementation in scikit-learn

H Kaandorp [41] Reimplementation in scikit-learn

Core function language Python & C C & Fortran
8" solver Serial Parallel”
TBDT builder Serial® Parallel
Model TBDT, TBRF TBDT, TBRE TBAB, TBGB
Number of hyper-parameter 5-6 6-8
Required output dimension Nx9 Nx(VMeN)
Auxiliary utility N/A Decision path, Feature importance, GS(CV), Feature selection

As for the required output dimension, the old TB ML framework is restricted to all 9 components of b;; as well
as Tl.(]'.”). The new implementation removed this restriction. In principle, any positive number of outputs can be
accepted although the most logical number would 6 for 3D flows due to the symmetry of b;; and Tl.(]'."). This change

allowed the new TB ML framework to be more memory efficient. For an input of 51 features, i.e. FS1, FS2.1, and
FS2.2, the new TB ML framework saves 22.3% of memory usage on the input features, Tl.]'."), and b;; altogether.

LOnly for the training of mean LES feature — mean LES b; j. For RANS feature — mean LES b; j, ‘0.1-Median’ is chosen.

2The new TBDT is able to utilise 4 CPU threads on 4-core, 8-thread CPUs although it is not known what the thread limit for this parallelisation is
when using different CPUs. There is also no parameter to control it moreover.

3The old TBRF framework should be easy to enable parallelisation using the multiprocessing package of Python. Kaandorp [41] even experi-
mented such scheme but did not eventually include it in the source codes available on GitHub.



Verification & Validation of Efficient Tensor
Basis Decision Tree Based Models

In this chapter, the newly implemented TBDT based models are verified and validated, before utilised in the ML of
wind plant simulations. For the verification and validation process, two questions will be asked:

1. Verification: is the model doing what it is supposed to do, i.e. learning invariant flow features?
2. Validation: is the model doing the right thing, i.e. efficiently predicting an unknown flow field?

To answer the first question, verification of the newly implemented TBDT based models are conducted. The
periodic hill case of Re = 10,595 from Breuer et al. [9] has been used and referenced because of its ease of result inter-
pretation. Furthermore, the periodic hill case has been investigated by Kaandorp [41] too, which makes it a natural
choice for validation. When training a fully grown TBDT, it should be expected that such TBDT can predict the train-
ing data set perfectly while carrying great tendency of over-fitting when it comes to unseen test data. Therefore, a
fully grown TBDT with 2 min_samples_split and 1 min_samples_leaf provides the perfect method of verifying
the new implementation of it. Apart from verifying the basic functionality of TBDT, it is equally important to test the
invariance of the predictions under different frames of reference. Lastly but not least, some auxiliary functionalities
of TBDT models such as grid search and feature selection will be investigated. The flow chart of the verification
process is shown in Figure 7.1.

IF outlier & novelty

80% training data 20% test data detection

Ty . Sensitivity analysis Inygrlaqce
feature selection verification

Fully grown TBDT

Figure 7.1: Verification strategy

79



80 7. Verification & Validation of Efficient Tensor Basis Decision Tree Based Models

To answer the second question, the validation of the new TBDT models will be benchmarked against the current
implementation from Kaandorp [41]. As a final test, the new TBDT models are put up with the challenge of predicting
unseen periodic hills of slightly and vastly altered Re respectively.

7.1. Outlier & Novelty Detection

Before training a fully grown TBDT for verification, the periodic hill flow field of Re = 10,595 is visualised in this
section. More specifically, outliers of the training data and novelties of the test data is presented in Figure 7.2. The
background of Figure 7.2 is the barycentric map elaborated in Section 2.9.2. The turbulence state fields have not
been processed in any way and are interpolated using the nearest mapping method. The outliers and novelties are
marked by the grey colour of five shades. The five shades each represent a detected outlier/novelty region when
training an Isolation Forest (IF) with the contamination percentage of 10%, 8%, 6%, 4%, 2% respectively. A higher
contamination implies more percentage of the data is labelled as ‘outlier’. Additionally, each IF is an ensemble of
1,000 normal DT and is trained on the FS1 training data.

From Figure 7.2 (a), it can be seen that the detected outliers, no matter what prescribed contamination per-
centage, are gathered outside the free shear layer region. These outliers indicate regions of abnormal invariant flow
features in FS1 compared to the rest of the training data. In Figure 7.2 (b), the novelties deduced by the IF trained on
the data set shown in Figure 7.2 (a) is displayed. Since the test data comes from the same case, the detected novelties
ly in the same region as the outliers for the contamination percentage of 10%, 8%, 6%, 4%, 2%.

(a) Train data with highlighted outliers (b) Test data with highlighted novelties

Figure 7.2: Outlier and novelty visualisation using IF of five contamination percentages. Darker shade corresponds to more obvious
outlier/novelty. Background is the barycentric map.

7.2. Results from a Fully Developed Tensor Basis Decision Tree

In this section, the result of a fully developed TBDT is presented. As part of the new ML model verification, showing
the result of a fully grown TBDT might not yield the best learning result. Rather, the fully grown TBDT provides a
way to inspect the result with a known expectation — the prediction on the training data should be an exact fit. This
is because with every training sample assigned to a leaf node in the fully developed TBDT, each sample has a unique
set of ten g Therefore, when providing the Tl.(]m) from the training data to the fully developed TBDT to compute

the corresponding b; j» each sample’s unique set of g™ ensures the original b; j used for training is derived, and
b; j = b;;j. With this knowledge, Figure 7.3 presents the result of the training data, test data, prediction of the training
data, and prediction of the test data respectively. Similar to the plots in the previous section, no interpolation is done
to any of the fields. The prediction of the test data in Figure 7.3 (d) has a lot of wrong turbulence state representation
while that of the training data in Figure 7.3 (a) predicted perfectly, matching the expectation.
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(a) Ground truth for training (b) Ground truth for testing

(c) Prediction of train data (d) Prediction of test data

Figure 7.3: Barycentric map of both ground truth and prediction from a fully grown TBDT

As seen in Figure 7.3 (d), a large amount of misrepresentations occurred during the prediction of the unseen test
data. To understand the exact cause of this, and verifying that it is not a model implementation error, Figure 7.4
and Figure 7.5 reveal the difference between the predicted tensor basis coefficients gies; and the coefficients derived
from training ginin at each location of the test data mesh. It has been gathered from Figure 7.3 (c) that the derived
8train, combined with the ground truth training T;;, will yield exactly the ground truth training b;;. So why are the
difference of g at some locations extremely large? Moreover, there is a vertical stride of low | g’ | around x = 0.75
m but it did not translate to good b; j of the test data at x = 0.75 m as evidenced in Figure 7.3 (d). To answer these
questions, a more detailed look of prediction data needs to be done.

Figure 7.4: Absolute difference between giain and gtest for T’ i(Jl') to Tl.(JB.)
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Figure 7.5: Absolute difference between girain and gtest for Ti(]7.) to Tl.(jl.o)

7.3. Novelty Decision Paths

In this section, three erroneous prediction samples are picked according to the prediction result in Figure 7.3 (d) and
inspected. The three samples are at [0.74 m, 0.79 m], [2.54 m, 0.03 m], and [8.10 m, 1.38 m] respectively. Figure 7.6
reveals the decision paths of two of the three picked samples in the fully developed TBDT. Several observations can
be made:

e for the location at [0.74 m, 0.79 m], both training and test sample location shared the same decision paths and
arrived at the same set of g,

» for the location at [2.54 m, 0.03 m], the test sample chose a different decision path than the training sample
from the seventh tree depth and arrived at a different set of g,

If the training and test sample at [0.74 m, 0.79 m] both arrived at the same set of g(’”), then the only variable that
can change their respective b;; drastically is their corresponding set of Tl.(;”).
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Figure 7.6: Decision paths of by novelties at [0.74 m, 0.79 m] and [2.54 m, 0.03 m]. Only relevant decision nodes are illustrated

Figure 7.7 plots the feature value for the training and test data at three novelty locations of [0.74 m, 0.79 m],
[2.54 m, 0.03 m], and [8.10 m, 1.38 m]. The shade spikes in Figure 7.7 represents the feature importance of relevant
features. For the location [0.74 m, 0.79 m] in Figure 7.7 (a), it can be seen that for features with non-zero importance,
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the training sample mostly matches the test sample. This also explains the matching decision path of this location
on the LHS of Figure 7.6. The same is happening to the training and test sample at location [8.10 m, 1.38 m] in
Figure 7.7 (c), where the important feature values of both training and test samples matches, suggesting the decision
paths of these two samples would be identical. A different scenario is happening to the location of [2.54 m, 0.03 m]
in Figure 7.7 (b), where several features with importance, especially the 20th feature, have different values between
the training and test data, explaining the parting decision paths of the two on the RHS of Figure 7.6.

(a) by = 6.0¢5 at [0.74 m, 0.79 m] (b) b1 =332.64 at [2.54 m, 0.03 m] (c) by =253.82at [8.10m, 1.38 m]

Figure 7.7: Feature value comparison between the train and test data at three b1 novelty locations. Shade is feature importance of both the
decision path of train and test sample combined

As summarised before, the only cause for the erroneous b; j prediction of the test sample at location [0.74 m, 0.79
m] is byits T l(;”) To verify such claim, Figure 7.8 shows the absolute error of Tl(ll) and of g at each basis i, between

the training and test sample at the same three locations used before. Moreover, the shades in Figure 7.8 displays the
cumulative error of by, as more and more bases are added to it,

/
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For the location of [0.74 m, 0.79 m], the absolute error of g(i) is almost 0 for every basis and the increase of the
shade, i.e. the increase of B’H is solely due to | Tlr(l’) ), despite being 0.055 at most. Furthermore, it has been found that

g®@ for both the training and test sample at location [0.74 m, 0.79 m] is -3.42e-7. As such, even a 0.045 ‘T£§2)| will

! ~
cause a difference of 1.54e6 in (Tﬁ)g(z)) . Therefore, the cause of erroneous b;; at [0.74 m, 0.79 m] is due to trained

g(” over-fitting and being too large. The cause of erroneous Bi jat[2.54 m, 0.03 m] and [8.10 m, 1.38 m] are both due
to large difference between the training and test g g(¥) that is a result of varying input feature values. This defies
the claim previously that the training and test sample location [8.10 m, 1.38 m] having identical decision paths. It
goes to show that this fully grown TBDT is extremely sensitive to subtle variations of the input features.
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(@) b1y =6.0e5at [0.74 m, 0.79 m] (b) by; =332.64 at [2.54 m, 0.03 m] (c) by; =253.82 at [8.10 m, 1.38 m]

Figure 7.8: Tl(? and g(i) difference comparison between the train and test data at three b1 novelty locations. Shade is the cumulative sum of

. . - ~\/
Tl(ll)g(’) difference as basis i increases. Ideally, ¥ ; [Tl(ll)g(”] =0when i=10

Finally, root cause tracing was made possible thanks to the easy decision paths interpretation of DT based mod-
els. Having analysed and explained the root cause of three largest b;; discrepancy locations, the fully developed
TBDT created wrong predictions with plausible explanation. Therefore, it can be determined that the newly imple-
mented TBDT model is working as intended.

7.4. Rotation Invariance

One of the advantages of TB based ML models is their embedded invariance including the Galilean and rotational
invariance. In this section, the rotational invariance of the newly implemented TBDT based models will be put to
test. This means the via the rotation matrix Q, the following transformation should hold [88],

Qb(S,Q, VL, Vp)QT =b(QSQ’,Q0Q7,QVk,QVp). (7.2)

Using Equation (7.2), the rotational invariance is tested on two categories of the TBDT based models, namely the
bagging fo DT e.g. TBRE and the boosting of DT, e.g. TBAB. The TB ML models were first trained on the flow field
rotated 10°, 20°, and 30° around the x, y, and z axis respectively, which corresponds to the RHS of Equation (7.2).
The resultant b;; prediction should be in the form of the LHS in Equation (7.2). To verify it, if the rotation matrix Q
were cancelled on the LHS of Equation (7.2), the original b; ; field should be obtained, described in Equation (7.3)

Q'Qb(S,Q,Vk,Vp)Q'Q=b(S,Q,Vk, Vp) =Q"b(QSQ,QQQ",QVk,QVp)Q, (7.3)

using the fact that
Q'=Q7, Q'Q-=L (7.4)

Figure 7.9 to Figure 7.11 presents the field of by, by, and bs3 respectively.

(a) Ground truth in the base reference frame (b) TBRF (c) TBAB

Figure 7.9: by1, b12, and byy prediction of train data after the inputs are rotated 10°, 20°, and 30° around x, y, and z axis respectively
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(a) Ground truth in the base reference frame (b) TBRF (c) TBAB

Figure 7.10: by truth and prediction of train data after the inputs are rotated 10°, 20°, and 30° around x, y, and z axis respectively

(a) Ground truth in the base reference frame (b) TBRF (c) TBAB

Figure 7.11: b33 truth and prediction of train data after the inputs are rotated 10°, 20°, and 30° around x, y, and z axis respectively

As can be seen, both the bagging TB candidate TBRF and the boosting TB candidate TBAB were able to preserve
the rotational invariance by successfully reproduce the ground truth b;; in the original reference frame.

7.5. Hyper-parameter Sensitivity Analysis

In the section, the functional verification of the hyper-parameter sensitivity is analysed. Overall, there are four hyper-
parameters of interest, namely the minimum samples in a node to consider for a split, the maximum percentage of
features to consider for the best split, the L2-norm factor ag, and, for boosting methods, maximum depths of the
tree, and the learning rate. The R?> metric defined in Equation (3.20) is used to gauge the quality of the predictions.
Figure 7.12 shows the hyper-parameter sensitivity of TBDT and TBRE The solid line represents the R? score after
fitting on the training data set, while the dashed line represents the mean score after performing 4-fold CV and
fitting on each validation fold. Normally the training R? score will be higher than the CV R? score because it is
easier to over-fit. Therefore, a close match between the two scores are desired. For TBDT in Figure 7.12 (a), both
maximum features and minimum split samples show huge difference between the training and CV R?. As the scale
of the R? axis is bounded by -0.1 in Figure 7.12, it is difficult to determine whether the CV scores of these two hyper-
parameters had large variations. On the other hand, a; played an important role in TBDT to prevent over-fitting.
And as expected, a larger ag improves the generality of the model. The same trend of a; is observed for TBRF in
Figure 7.12 (b). Additionally, the maximum features becomes a sensitive hyper-parameter too, with 66% being the
optimal value. This is expected since only using a subset of all features to find a split, i.e. max_features <1, increases
the randomness of the tree development. While a too small max_features results in trees too shallow to represent
unseen samples accurately.
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(a) TBDT (b) TBRF

Figure 7.12: Hyper-parameter validation curve with 4-fold CV for TBDT and TBRF

Figure 7.13 presents the hyper-parameter sensitivity of the TBAB. As can be observed, a deeper tree during each
boost reduces the generalisation of the model. The maximum features again found a balance at 66%. The same trend
for ag is found in TBAB, as higher a leads to less over-fitting and closer match between the R? of training and CV.
Lastly, for the learning rate, it has been found that a low rate achieves the best R?.

Figure 7.13: Hyper-parameter validation curve with 4-fold CV for TBAB

Finally, Figure 7.14 presents the hyper-parameter sensitivity of the TBGB. The first thing to notice is that TBGB
strongly favours low maximum features — trees with a lot of randomness. Although lowering the maximum depth of
each tree helps with the training R? score, it has no effect the CV R? score. On the right of Figure 7.14, g once again
showed its significance in reducing over-fitting. Contrary to the TBAB, TBGB prefers a high learning rate.
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Figure 7.14: Hyper-parameter validation curve with 4-fold CV for TBGB

7.6. Feature Selection

This sections shows the result of feature selection on the case of periodic hill and using FS1 and FS2.1 combined.
Figure 7.15 displays feature three importance distributions:

1. the TBRF feature selector: a TBRF of 1,000 shallow TBDT of max_depth = 3 is fitted over the training data;
2. the TBRF for training: the TBRF of 8 TBDT without max_depth constraint used for training;
3. the pipeline of TBRF feature selector followed by the TBRF used for training.

With these three distributions, the efficacy of the TBRF feature selector can be judged. Since the TBRF for training
is the actual fitting of the training data, its feature importance is deemed as the ground truth and the other two
methods are gauged against it. To begin with, the feature importance distribution between the TBRF selector and
the TBREF for training is compared. As can be seen, the TBRF feature selector is able to identify high importance just
like features 1 to 10, and 42 to 50. Nonetheless, features such as feature 1 and 50 that hold great importance in the
ground truth have been under-appreciated by the TBRF feature selector. When it comes to the comparison between
the pipeline of the TBRF feature selector followed by the TBRF used for training and the TBRF directly used for
training, the distributions are mush similar both median and 0.1-median threshold displayed in Figure 7.15 (a) and
(b) respectively. Moreover, the median threshold of the selector that is more stringent than 0.1-median filtered out
more features like feature 33 and 35, hence the small discrepancy in Figure 7.15 (a). Since the TBRF feature selector
has deemed features such as feature 10 to 14 hold no importance which is true given the ground truth, theses features
are filtered out and the reduction of input dimension has led to computation cost saving.

(a) Median feature selector (b) 0.1- Median feature selector

Figure 7.15: Feature importance of all 50 features for TBRE Blue shades show the standard deviation of the TBRF feature selector while green
shades show standard deviation of TBRF trees
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7.7. Comparison with Kaandorp [41] Tensor Basis Decision Tree Based Models

In this section, the newly implemented TB ML models are put to test against the original implementation to see if the
new models achieved an expected level of prediction power. The models to benchmark are TBDT and TBRF as those
are the ones implemented by Kaandorp [41]. The following settings are applied to the TB ML models: the minimum
samples to split is 0.2% of the given training data. There is no maximum depth. There is no L2-normalisation. The
maximum feature percentage is 1. Brent optimisation is used to find the best split for the entire duration of the
training process. Since the original model does not have the setting to control minimum samples at leaf nodes, this
parameter in the new TBDT is set to 0.1% which should correspond to the behaviour of the original TBDT and TBRF
when minimum samples to split is 0.2%. For the TBRE 8 TBDT are used. The same periodic hill data at Re = 10,595
is used for both training and testing, with no sample overlap of course.

7.7.1. Tensor Basis Decision Tree

The first benchmark is done on the TBDT. Figure 7.16 reveals the result of the predictions from the new and original
TBDT. Furthermore, the prediction from the new model with 2 minimum samples at leaf nodes is presented in Fig-
ure 7.16 (b) in order to show what the prediction would be when the TBDT is given more freedom of hyper-parameter
definition. First, compared to the original model’s prediction, the new TBDT achieved similar performance. The
slight difference is attributed to the randomness of the splitting process. However, this has not be testified. When
changing the minimum samples at leaf nodes to 2 which is only possible in the new framework, the prediction field
received a slight improvement.

(a) Ground truth for testing (b) Prediction with min_samples_leaf =2

(c) Prediction from Kaandorp [41] (d) Prediction with min_samples_leaf =0.1%

Figure 7.16: Barycentric map from test data

7.7.2. Tensor Basis Random Forest

Analogous to the Figure 7.16, Figure 7.17 presents the predictions of the original TBRE the new TBRE and the new
TBRF with minimum samples at leaf nodes being 2 instead of 0.1%. As the TBRF with 8 TBDT is quite powerful
to predict such a simple test field, all models achieved excellent accuracy. Because of this, changing the minimum
samples at leaf nodes to 2 did not change much of the prediction. Nonetheless, compared to the original TBRE
slightly more noisy prediction is observed for the newly implemented TBRE
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(a) Ground truth for testing (b) Prediction with min_samples_leaf =2

(c) Prediction from Kaandorp [41] (d) Prediction withmin_samples_leaf =0.1%

Figure 7.17: Barycentric map from test data

7.7.3. Computation Cost

As final benchmark with the original TB ML models, the training time of the original and new TB ML models are
measured, shown in Figure 7.18. As can be seen, the improvement of the training time is significant. The new TBDT
is 24 times faster than the original one. As for the TBRE the new model which is utilising eight CPU threads in
parallel is about 30 times faster than the old model which is running in serial by default. If the original TBRF were to
be extended to parallel computation with eight threads too, the theoretical best result is also displayed in Figure 7.18
to be 25 min. This is still three times slower than the new TBRE Therefore, the new implementation of the TB ML
models achieved much better efficiency while maintaining the same level of accuracy.

Figure 7.18: Model training time comparison

7.8. Validation

To validate the new TBDT framework, the model is tested by predicting a two flow fields massively different Re, after
training on the training data set of the periodic hill Re = 10,595 mentioned before. The first test set is the periodic
hill with Re = 5,600. The second test set is the periodic hill with Re = 700. Table 7.1 displays the model specification
when predicting on the two test cases.



7.8. Validation

91

Table 7.1: ML model specification for validation

Hyper-parameter

H TBDT \ TBRF \ TBAB \ TBGB

Feature selection None
Presort True
n_jobs ‘ 8 ‘ 4
min_samples_leaf 2
min_samples_split [%] 0.2
max_features [%] 100
max_depth None 10
n_estimators 16 8
learning_rate - 0.1
Bootstrap sampling True - False
Loss - LS Huber
Split criterion MSE
Split scheme Brent
Seed 123

The validation proves to be successful, i.e. although the prediction performance of TBDT based models drop,
they were still able to recognise the free shear layer and other distinct flow regions. As the periodic hill is not a
relevant case for this thesis, the results are shown in Appendix A.






Visualisation of Ground Truth Wind Plant
Flow Fields

In this chapter, flow fields from all SOWFA LES cases mentioned in Section 4.4.1 are visualised and then compared.
This chapter goes through several sections by means of unsteady and steady result visualisation. At first, instanta-
neous flow field will be presented in Section 8.1to demonstrate the unsteadiness of SOWFA LES. Ultimately, as the
goal is referencing steady, mean flow field result from SOWFA LES and being either learnt or compared with the
mean flow field from SOWFA RANS, it is of utmost importance to ensure statistical convergence of flow quantities at
interest. The corresponding convergence histories are shown in Section 8.2. Lastly, SOWFA LES mean flow fields will
be presented in Section 8.3.

8.1. Instantaneous Flow Field

After running every single SOWFA LES case mentioned in Table 4.3 for a full 5,000 s of physical time, the instanta-
neous field at the final simulated physical time is captured and presented in this section. The property to demon-
strate unsteadiness of the simulation is chosen to be the second invariant of velocity gradient tensor Q. Recalling
that Q shows the intensity of flow rotation, higher magnitude of Q indicates highly unsteady rotating flow. As such,
it is expected to see rotor tip vortices incurred from turbine rotation. Since there are six SOWFA LES cases, as sum-
marised in Table 4.3, a few design variables can be paired to compare:

1. baseline (N-H-OneTurbine LES);

2. impact of ‘H and ‘T zy (N-H-ParallelTurbines and N-L-ParallelTurbines LES);

3. effect of various turbine yaw angles (N-L-ParallelTurbines and N-L-ParallelTurbines-Yaw LES);

4. influence of different prescribed Uy, (N-H-ParallelTurbines and N-H-ParallelTurbines-HiSpeed LES);
5. turbines with vastly different inflow condition (N-L-SequentialTurbines LES).

Lastly, it has to be noted that all Q isosurfaces of ‘H’ zy cases are visualised around 0.04 s~2 while that of all
‘L zo cases have 0.0275 s~2 Q visualised. The reason for choosing 0.0275 s2 instead of 0.04 s~2 is to, first, ensure
the best interpretability of the vortical flow field; and secondly, be consistent with that in Churchfield et al. [13] for
verification.

8.1.1. Baseline

To start with result analysis, the most basic SOWFA LES result is presented. Figure 8.1 shows 0.04 s~2 isosurface of
Q for N-H-OneTurbine LES at 25,000 s of physical simulation time. A few flow characteristics are entailed. First,
due to surface roughness, flows near the ground is quite vortical. Secondly, the turbine wake rotation is prominent.
Large wake structures seen in the vicinity of the turbine break down into smaller pieces downstream rather quickly.
Moreover, as the isosurface is coloured by the time-averaged velocity magnitude, it can be observed that the flow
wake experiences a slow-down in the vicinity of the turbine and gradually picks up speed downstream. Lastly but
not least, the bound vortices of three turbine blades can be roughly seen in the rotor plane.

93
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Figure 8.1: 0.04 s~2 isosurface of Q for N-H-OneTurbine LES after 5,000 s. The isosurface is coloured by time-averaged velocity magnitude.

8.1.2. High vs. Low Surface Roughness

Figure 8.2 shows 0.04 s™2isosurface of Q for N-H-ParallelTurbines LES at 25,000 s physical simulation time and
0.0275 s~2 for N-L-ParallelTurbines LES at 23,000 s physical simulation time respectively. Compared to Figure 8.1
from N-H-OneTurbine LES, the difference to be seen in Figure 8.2 (a) is expected be subtle due to the fact that N-
H-ParallelTurbines and N-H-OneTurbine LES share the same flow condition. Having said this, the actual vortical
flow field in Figure 8.2 (a) shows a clear wake vorticity distinction not only between the twin turbines but also be-
tween the twin turbines in N-H-ParallelTurbines to the turbine in N-H-OneTurbine . Additionally, compared to the
turbine in Figure 8.1, southern turbine of N-H-ParallelTurbines LES has a closer resemblance in the near wake re-
gion while the northern turbine of it has a closer resemblance in the far wake region. These differences boil down
to turbine locations in the flow domain which have been conditioned with slightly varying inflows upstream. De-
picted in Figure 4.12, the turbine in N-H-OneTurbine would sit in between the southern and northern turbine in
N-H-ParallelTurbines LES or any ‘ParallelTurbines’ cases for that matter.

Comparing ‘H’ zy with ‘L’ zy, the most significant difference is the vorticity near the ground. Even with 0.0275
s~2 Q isosurface in Figure 8.2 (b), ground with ‘L’ zy still generated tremendously less vortical structures than that
with ‘H’ zp. Despite this, turbine wakes of both ‘H’ and ‘L’ zy showed identical behaviour downstream: scale break-
down from large to small. Furthermore, ‘L’ zy condition seems to have delayed such breakdown since large vortical
structures can still be identified in downstream distances where only small vortical structures can be found in ‘H’
zo condition. Another major difference is the tip vortices integrity. Bound vortices can be noticed more clearly for
N-L-ParallelTurbines LES although such result is mostly attributed to less surface vortices in the background. Tip
vortices for N-L-ParallelTurbines LES displayed more coherence around rotor tips downstream than those in N-H-
ParallelTurbines LES. Finally, compared with the ‘L’ zy cases simulated by Churchfield et al. [13], N-L-ParallelTurbines
LES showed identical vorticity intensity as well as vortical structure breakdown in the vicinity of the turbine, with the
exception that tip vortices are a little more coherent in Churchfield et al. [13].

(a) N-H-ParallelTurbines 0.04 s~2 isosurface LES (b) N-L-ParallelTurbines 0.0275 s~2 isosurface LES

Figure 8.2: Isosurface of the second invariant of velocity gradient tensor Q for N-ParallelTurbines LES with varying surface roughness after 5,000
s. The isosurface is coloured by time-averaged velocity magnitude.
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8.1.3. No Yaw vs. Yaw

Figure 8.3 shows 0.0275 s~2 isosurface of Q for both N-L-ParallelTurbines and N-L-ParallelTurbines-Yaw LES at
23,000 s physical simulation time. Recalling that the northern turbine has yaw angle of 20° while the southern tur-
bine has a yaw angle of 10° in N-L-ParallelTurbines-Yaw LES, the top view in Figure 8.3 (b) shows very little impact
on turbine wake vortical structure breakdown process due to various turbine yaw angle especially when yaw angle
is only 10° as for the southern turbine. Nonetheless, the northern turbine of N-L-ParallelTurbines-Yaw displayed a
shortening of the turbine wake isosurface. This phenomenon is due to reduced effective frontal area of the rotor
plane that is perpendicular to free stream direction prescribed at zp,p (88.3% for 20° yaw relative to no yaw) and is
in agreement with instantaneous wake vorticity result from Churchfield et al. [14]. Moreover, from the top view, a
wake width expansion downstream of turbines can also be observed. Wake redirection, on the other hand, is not
noticeable from these isosurface visualisations. Lastly, using the same LES precursor, both N-L-ParallelTurbines and
N-L-ParallelTurbines-Yaw LES had very identical vortical intensity on the ground.

(a) N-L-ParallelTurbines LES (b) N-L-ParallelTurbines-Yaw LES

Figure 8.3: 0.0275 s~2 isosurface of the second invariant of velocity gradient tensor Q for N-L-ParallelTurbines LES with varying yaw angle after
5,000 s. The isosurface is coloured by time-averaged velocity magnitude.

8.1.4. Low vs. High Prescribed Velocity at Hub Height

Figure 8.4 shows the 0.04 s~2 isosurface of Q for N-H-ParallelTurbines and N-H-ParallelTurbines-HiSpeed LES at
25,000 s and 23,000 s physical simulation time respectively. As the isosurfaces are coloured by the velocity magnitude
in the range of [2, 10] m/s for Figure 8.4 (a) and [2, 12] m/s for Figure 8.4 (b), the top view of the flow field shows a
clear difference in the magnitude of velocity both near the ground and in turbine wakes. Furthermore, because of
prescribed Uy, difference between N-H-ParallelTurbines and N-H-ParallelTurbines-HiSpeed , more small vortical
structures can be seen for N-H-ParallelTurbines-HiSpeed LES. Comparing the wake region of turbines, a more dense
far wake vorticity can also be observed in the N-H-ParallelTurbines-HiSpeed case.

(a) N-H-ParallelTurbines LES (b) N-H-ParallelTurbines-HiSpeed LES

Figure 8.4: 0.04 s~2 isosurface of the second invariant of velocity gradient tensor Q for N-H-ParallelTurbines LES with varying Upyp after 5,000 s.
The isosurface is coloured by time-averaged velocity magnitude.
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8.1.5. Turbine Experiencing Turbulent Inflow

Figure 8.5 shows the 0.0275 s~2 isosurface of Q for N-L-SequentialTurbines at 23,000 s of physical simulation time.
Only the second refinement region as depicted in Figure 4.12 has been visualised which is why the isosurfaces vanish
outside the confined region. When it comes to the front turbine wake, similar characteristics can be found, e.g.
vortical structure breakdown and wake expansion. Moreover, bound and tip vortices are clearly visible for the front
turbine, just like N-L-ParallelTurbines in Figure 8.2 (b) although the tip vortices quickly disassembled. While the tip
vortices of the rear turbine is hardly noticeable, the unnoticeable tip vortices of the rear turbine is likely due to visual
blockage by the front turbine wake. The rear turbine that has been subject to the front turbine wake as inflow is barely
noticeable. Having said this, the rear turbine wake has a larger width than that of the front turbine. Furthermore,
only small vortical structures are present in the rear turbine wake. The rear turbine wake in N-L-SequentialTurbines
, albeit under ‘L’ zy ABL, has a close resemblance to the wake in N-H-OneTurbine under ‘H’ ABL. This is due to the
fact that the turbulent inflow of the rear turbine can be considered as an increase of zj.

Figure 8.5: 0.0275 s~2 isosurface of the second invariant of velocity gradient tensor Q for N-L-SequentialTurbines LES after 5,000 s. The
isosurface is coloured by time-averaged velocity magnitude.

8.1.6. Common Traits
Having analysed each LES cases individually, there are some common characteristics shown for the turbine wakes
as well as flow domain surface and is summarised below:

* vortical structures break down turbine wakes, in agreement with Churchfield et al. [13];

* bound vortices can be seen from all cases except for the rear turbine in N-L-SequentialTurbines LES;
* tip vortices break down faster in ‘H’ zg ABL than in ‘L’ zy ABL;

* turbine wake vorticity expands downstream;

* turbine wake width is proportional to effective rotor plane area perpendicular to free stream direction at zpp;

8.2. LES Statistical Convergence

Convergence history is vital to the mean flow field quality from LES. As depicted in the simulation strategy from
Figure 4.11, the time-averaged mean flow field has been computed over 4,500 s of physical simulation time for every
LES case, after the initial 500 s of physical simulation time which is the time deemed sufficient for one pass-through
of large scale turbulent structures. To monitor statistical convergence, three properties are of interest, namely time-
averaged velocity (i;) in the resolved spectrum; time-averaged turbulent stress (7) in the unresolved spectrum; and
time-averaged turbine quantities.

8.2.1. Mean Resolved Flow Field

The flow quantity of interest to inspect the convergence mean resolved flow field is naturally the time-averaged flow
velocity. For better analysis, the horizontal and vertical component of the velocity vector is separated. The ‘+- D’
labels in the plots of this section refers to -D downstream turbine.
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Horizontal Velocity Magnitude

The horizontal velocity magnitude gradually picks up to the free stream velocity as flows travels downstream tur-
bines. For all ‘ParallelTurbines’ cases in Figure 8.6 (b) to (e), ‘Turb0’ denotes the southern turbine while ‘Turb1’
denotes the northern turbine. For the N-L-SequentialTurbines case in Figure 8.6 (f), ‘Turb0’ denotes the front tur-
bine while “Turb1’ denotes the rear one. All probes are at zapex. In high zp cases with parallel turbines in them, the
southern turbine has a slight velocity magnitude advantage over the northern one. For the N-L-SequentialTurbines
case, the velocity drop of the rear turbine due to the turbulent wake of the front turbine is clearly present yet not
very pronounced. The N-H-ParallelTurbines-HiSpeed case naturally attained higher horizontal velocity magnitude
because of the 10 m/s Uy, instead of 8 m/s in all other cases.

(a) ALM-N-H-OneTurbine (b) ALM-N-H-ParallelTurbines (c) ALM-N-H-ParallelTurbines-HiSpeed

(d) ALM-N-L-ParallelTurbines-Yaw (e) ALM-N-L-ParallelTurbines (f) ALM-N-L-SequentialTurbines

Figure 8.6: (Upor) convergence history of wind plant LES cases for the entire duration of statistical time-averaging. Note the value scale
difference between ‘H’ and ‘L’ cases

Vertical Velocity

(uz) in all cases have reached convergence with maybe the exception of the rear turbine (‘Turbl’) in the case of
N-L-SequentialTurbines LES. Despite this, the scale of (u,) is too small to have significant implication to the over-
all convergence of the mean velocity field of the N-L-SequentialTurbines case. From the N-H-OneTurbine case in
Figure 8.7 (a), it can be seen that (u;) first experienced a drop from +1D downstream to +2D then slightly picked
up the velocity when travelling farther downstream to +4D. Due to the small scale of (u.), the difference between
+2D and +4D can be attributed to statistical error. Nevertheless, the decrease of (u;) from +1D to +2D is expected
as the rotor wake is mixed with the free stream that does not have a vertical velocity component due to the neutral
ABL stability. The same (u,) decline can be observed in the N-H-ParallelTurbines , N-L-ParallelTurbines , and N-
H-ParallelTurbines-HiSpeed case. In the N-L-SequentialTurbines case, the rear turbine can be seen to have much
weaker magnitude of (u;) than the front turbine. This could be due to the slower free stream velocity surrounding
the rear turbine, as also evidenced in Figure 8.6 (f).
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(a) ALM-N-H-OneTurbine (b) ALM-N-H-ParallelTurbines (c) ALM-N-H-ParallelTurbines-HiSpeed

(d) ALM-N-L-ParallelTurbines-Yaw (e) ALM-N-L-ParallelTurbines (f) ALM-N-L-SequentialTurbines

Figure 8.7: (ii;) convergence history of wind plant LES cases for the entire duration of statistical time-averaging. Note the value scale difference

8.2.2. Mean Turbine Outputs

The mean turbine outputs of interest are the turbine thrust and the power received at the turbine generator. Like the
previous statistics, the turbine outputs have been time-averaged.

Turbine Thrust

Figure 8.8 displays the turbine thrust for all six SOWFA LES cases. The ‘Average’ curve for multiple-turbine cases
indicated the average of the all turbines, and in this study the average of two, as wind energy researcher might only
be interested in seeing the averaged output of a wind plant rather than individual turbines. Every single case has a
quick convergence of the turbine thrust. This is expected as the horizontal velocity convergence was very prompt
as well. Nevertheless, there are two plots that needs more analysis. The first plot is the turbine thrusts of the N-H-
ParallelTurbines LES in Figure 8.8 (b). ‘Turb0’ refers to the southern turbine while ‘Turb1’ refers to northern turbine.
The turbine thrust of the southern turbine and that of the northern turbine started to differ at around 21,500 s of
physical time. The raw data has been checked multiple times and it was found that the turbine thrust did differ
during the simulation. Considering the N-H-ParallelTurbines case is the only other case that uses the ABL-N-H
precursor inflow and momentum source, apart from the N-H-OneTurbine case. It could be that the inflow in front
of the southern turbine is very different from that of the northern turbine. The second plot of interest is the N-L-
SequentialTurbines case in Figure 8.8 (f). ‘Turbl’ refers to the rear turbine subjected to the turbulent wake of the
front turbine. As such, the turbine output is seriously hindered.
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(a) ALM-N-H-OneTurbine (b) ALM-N-H-ParallelTurbines (c) ALM-N-H-ParallelTurbines-HiSpeed

(d) ALM-N-L-ParallelTurbines-Yaw (e) ALM-N-L-ParallelTurbines (f) ALM-N-L-SequentialTurbines

Figure 8.8: Time-averaged turbine thrust convergence history of wind plant LES cases for the entire duration of statistical time-averaging. The
‘Average’ curve refers to average between turbines. Value scale for the ‘HiSpeed’ case is different than others

Turbine Generator Power

The turbine generator power statistics is shown in Figure 8.9. The generator power is more difficult to converge since
power is force multiplied by velocity and is thus also dependent on the turbine blade rotation rate for example. Again
the two points of interest appears here again. The southern turbine’s power output is higher than that of the northern
turbine for the N-H-ParallelTurbines case in Figure 8.9. At least the southern turbine’s output is consistently larger
than the northern turbine. Moreover, the N-L-SequentialTurbines case in Figure 8.9 (f) demonstrated again just how
important it is to have a laminar inflow. Despite the output difference, overall, every LES case’s turbine generator
power can be considered converged.



100 8. Visualisation of Ground Truth Wind Plant Flow Fields

(a) ALM-N-H-OneTurbine (b) ALM-N-H-ParallelTurbines (c) ALM-N-H-ParallelTurbines-HiSpeed

(d) ALM-N-L-ParallelTurbines-Yaw (e) ALM-N-L-ParallelTurbines (f) ALM-N-L-SequentialTurbines

Figure 8.9: Time-averaged turbine generator power convergence history of wind plant LES cases for the entire duration of statistical
time-averaging. The ‘Average’ curve refers to average between turbines. Value scale for the ‘HiSpeed’ case is different than others

8.2.3. Mean Unresolved Flow Field

The last convergence statistic to inspect is the mean unresolved flow field. Obviously, the perfect candidate would be
the turbulence anisotropy tensor b; ;. However, since b;; has 6 unique components, tracking and analysing each of
them is very troublesome and unnecessary. As a result, the three time-averaged eigenvalues (1;) the time-averaged
anisotropy tensor (b;;) is used to trace the convergence progress of the unresolved flow field. Furthermore, for
the sake of readability, only the largest eigenvalue 13 is presented here as all three eigenvalue’s convergence history
convey the same message. Figure 8.10 visualises the convergence history of the largest eigenvalue (A3) of (b;;). The
‘+ - D’ refers to -D downstream. As can be seen, the multiple-turbine cases from Figure 8.10 (b) to (f) see rather well
convergence of (13). The convergence of the N-H-OneTurbine case in Figure 8.10 (a) is questionable, as a slight
upward tendency can still be seen for 2D downstream.
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(a) ALM-N-H-OneTurbine (b) ALM-N-H-ParallelTurbines (c) ALM-N-H-ParallelTurbines-HiSpeed

(d) ALM-N-L-ParallelTurbines-Yaw (e) ALM-N-L-ParallelTurbines (f) ALM-N-L-SequentialTurbines

Figure 8.10: Largest time-averaged eigenvalue (13) of <u; u;> convergence history of wind plant LES cases for the entire duration of statistical
time-averaging. Note the value scale difference

8.3. Resolved Mean Flow Field

Having confirmed appropriate convergence of properties of interest, the mean flow fields are presented in this sec-
tion. Due to the large extent of the simulation domain, only the vicinity of the turbine is visualised. Furthermore,
for ‘ParallelTurbines’ cases, the fields have been zoomed in and rotated ¢, = —30° clockwise to maximize turbine
wake visualisation. Furthermore, three horizontal slices of flow fields at zpup = 90 m, Zmiq = 121.5 m and zapex = 153
m will be plotted in each figure. As the subscript suggests, -pyp, refers to hub height; - ,iq refers to the mid point be-
tween turbine hub height and turbine apex; and -apex refers to turbine apex. Like Section 8.1, several comparisons
are performed regarding various turbine layout, zp, Upyp and turbine yaw angle. The as mentioned in the previous
section, the first flow property of interest is time-averaged velocity (ii;) in the resolved spectrum. While (ii,) always
points upward, perpendicular to the planetary surface, results of (iiy) and (iiy) change with choice of coordinate
system rotation as well as flow direction. To make results in the x, and y direction more general and independent of
coordinate system rotation, (ii,) and i, ) are combined into a resultant horizontal component, denoted by (Unor)
in which U stands for velocity magnitude. As a result, the following sections present the resolved mean flow field in
horizontal and vertical direction respectively.

8.3.1. N-H-OneTurbine vs. N-L-SequentialTurbines LES

The horizontal mean flow field is compared between N-H-OneTurbine and N-L-SequentialTurbines LES in Fig-
ure 8.11. The purpose of such comparison is to see the effect of inflow conditions of turbines. In order to maxi-
mize turbine wake visualisation, Figure 8.11 (a) is more zoomed-in than Figure 8.11 (b). Comparing the free stream
field between the two, that difference of ‘H’ zy and ‘L’ zy ABL is not impactful to <0>h0r at zhyp and zyiq. However,
a slightly lower (U hor €an be observed for N-L-SequentialTurbines at zypex. The same can be said about turbine
wakes. The turbine wake in N-H-OneTurbine LES and that of the front turbine in N-L-SequentialTurbines LES have
equal magnitude at zpyp and zpiq with the wake in N-H-OneTurbine carrying more speed at zapex. Nonetheless, both
figures showed a clear centre region of velocity up to the free stream due to the fact that the turbine blades start ata
small distance from the turbine hub.
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When it comes to a turbine subject to a turbulent inflow in Figure 8.11 (b), it can be seen that the wake to free
stream speed deficit in the rear turbine is greater than that in the front turbine. In additional, the wake diameter
appears to increase in the rear turbine as evidenced by the slice at zapex. This is in agreement with the findings in
Figure 8.5.

(a) N-H-OneTurbine LES (b) N-L-SequentialTurbines LES

Figure 8.11: (U >hor slices at zpyp, Zmid, and zapex for N-H-OneTurbine and N-L-SequentialTurbines LES

After presenting the result of (U hup the result of (ii;) is shown in Figure 8.12 for N-H-OneTurbine and N-L-
SequentialTurbines LES. The positive value of (ii;) on one side of turbines and negative values on the other side
indicates a rotating motion in and out of the horizontal plane. Comparing between ‘H’ zy ABL from N-H-OneTurbine
and ‘L’ zg ABL from N-L-SequentialTurbines , (ii,) differential is slightly more apparent for N-L-SequentialTurbines
LES. Both N-H-OneTurbine and N-L-SequentialTurbines LES showed a (ii;) magnitude peak at rotor roots, while
(ii;) at rotor cores stay the same as free stream. Lastly, front turbine wake does not seem to affect the rear turbine as
much as in the case of (U),,,, although this is likely due to the fact that the scale of (i) is smaller than (T), .

(a) N-H-OneTurbine LES (b) N-L-SequentialTurbines LES

Figure 8.12: (iiz) slices at zyp, Zmid, and Zapex for N-H-OneTurbine and N-L-SequentialTurbines LES
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8.3.2. N-H-ParallelTurbines vs. N-H-ParallelTurbines-HiSpeed LES

In this section, a comparison of the mean flow field is made between ABL with Up,p, = 8 m/s and ABL with Uy, = 10
m/s. Figure 8.13 shows the result of (U), . for N-H-ParallelTurbines and N-H-ParallelTurbines-HiSpeed LES. Due
to the prescribed Uy, difference, the velocity difference in the free stream can be noticed and such Uy, difference
is influential through out the turbine height. As a result, turbine wake velocity for N-H-ParallelTurbines-HiSpeed is
also slightly higher than that for N-H-ParallelTurbines . Other than that, the size and shape of the turbine wake in
under both 8 m/s and 10 m/s Upyp remain unaltered. Lastly, as N-H-ParallelTurbines has simply an extra turbine in
comparison to N-H-OneTurbine , the mean turbine wakes achieved a good match as expected.

(a) N-H-ParallelTurbines LES (b) N-H-ParallelTurbines-HiSpeed LES
Figure 8.13: (U)o, at Zhub Zmid> and Zapex for N-H-ParallelTurbines LES with different Uy
The mean vertical component of the mean velocity field, (ii,), is shown in Figure 8.14. The vertical component
flow field is differs not as much as the horizontal on in Figure 8.13 because Uy, is only prescribed as a horizontal

velocity with no vertical component. Additionally, all turbine wakes match with the one in Figure 8.12 in size and
shape.

(a) N-H-ParallelTurbines LES (b) N-H-ParallelTurbines-HiSpeed LES

Figure 8.14: (iiz) slices at zyp, Zmid, and Zapex for N-H-ParallelTurbines LES with different Uy,
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8.3.3. N-L-ParallelTurbines vs. N-L-ParallelTurbines-Yaw LES

In this section, the same comparison as in the above sections is done but for the case of N-L-ParallelTurbines and
N-L-ParallelTurbines-Yaw LES this time as Figure 8.15 first shows the horizontal component of the mean velocity
field. Recalling that while there is no yaw in both turbines of N-L-ParallelTurbines LES, in N-L-ParallelTurbines-Yaw
LES, the northern turbine is subject to a 20° yaw and the southern turbine is subject to a 10° yaw. This can also be
seen from the turbine locations marked by the grey line in Figure 8.15. Wake redirection is more pronounced in the
northern turbine in Figure 8.15 (b) as the northern wake streak first experienced a deflection to the south due to the
rotor plane slightly pointing north-west; then tilted towards north compared to the turbine wakes in Figure 8.15 (a).
This is in agreement with the result presented by Churchfield et al. [14].

(a) N-L-ParallelTurbines LES (b) N-L-ParallelTurbines-Yaw LES

Figure 8.15: (U, ) slices at znyp, Zmid, and Zapex for N-L-ParallelTurbines LES with varying yaw angle

When it comes to the vertical component of the mean velocity field, the stronger tip vortices can be seen by the
presence of stronger negative (ii,) streak in the southern side of the northern turbine in Figure 8.17 (b). To explain
this phenomenon, first, it should be kept in mind that the rotation of turbines is counter-clockwise from the front
view that is proven by positive (ii;) on the southern side of turbines and negative (ii;)on their opposite side. As the
southern side of a turbine rotates upward, the upper side of the turbine blade is the pressure side and the lower side
of the blade is then the suction side, which creates a pressure gradient. The flow will try to escape from the pressure
side to the suction side, thus the tip vortices and negative (i) at the southern side of rotor tip. In the case of yaw, tip
vortices grows stronger with yaw angle although the reason is not acknowledged by the author at this point. Hence,
at turbine apex, zapex, tip vortices become very obvious, as illustrated in Figure 8.16.

(@) zpub (b) zpmig (€) zapex

Figure 8.16: Front view of the rotor plane with tip vortex width illustrated when sampling at various heights
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Furthermore, due to turbine yaw, corresponding turbine wakes appear asymmetrically, with the southern side
having more elongation of the wake as more wake and free stream mixing happens. Analogous to the instantaneous
Q field shown in Figure 8.3, turbine wake width shrinks due effective rotor plane area perpendicular to wind direc-
tion.

(a) N-L-ParallelTurbines LES (b) N-L-ParallelTurbines-Yaw LES
Figure 8.17: (iiz) slices at zpyp, Zmid, and Zapex for N-L-ParallelTurbines LES with varying yaw angle
8.3.4. Summary
Summarising the mean velocity field of all cases, here are some of the findings:
 the mean velocity field is smooth, which confirms LES statistical convergence in Section 8.2;
* turbine wake is symmetric when there is no turbine yaw but is more asymmetric with yaw angle;

* zooming in on the southern side of turbine wakes, the velocity deficit is higher than that of the northern side
of turbine wakes, in agreement with Churchfield et al. [14];

* higher Upyp results in higher (U), .. in the wake region but not much difference to (ii.);

¢ turbulent and slower inflow increases the wake velocity deficit on the other hand.






Learning Result of High Fidelity Wind Plant
Turbulent Fields

This chapter discusses the result of TB ML models described in Chapter 6 employed to learn and identity LES tur-
bine wakes of different form and under various conditions. Before jumping into the turbine wake learning result,
Section 9.1 showcases the feature importance when employing a TBRF feature selector to reduce number of fea-
tures used for training as well when performing the actual training of selected N-H-OneTurbine LES mean flow fea-
ture inputs. Additionally, the outlier and inferred novelty of the training case N-H-OneTurbine LES as well as all
other five test LES cases are depicted to form a foundation of interpreting the prediction result of mean turbulence
fields in terms of turbulent state as in Section 9.2, time-averaged turbulent energy production rate as in Section 9.3,
and time-averaged turbulent shear stress momentum source as in Section 9.4. The reason of choice is because the
learned and predicted (b; ;) will directly influence the aforementioned turbulent properties. Three TB ML models
will be assessed, namely TBRE TBAB, and TBGB, all of which have gone through feature selection as well as grid-
search (CV) as depicted in Figure 6.2. Finally, as a reminder, the concept of ‘DoF’ has been introduced in Figure 5.6
of Section 5.5, as the term ‘DoF’ will be brought up a lot in this chapter.

9.1. LES Mean Flow Feature

This section presents the analysis and visualisation related to the input of TB ML models, i.e. LES mean flow features.
Feature importance as well as detected outlier and inferred novelty are presented respectively.

9.1.1. Feature Selection & Importance

As a measure to exclude useless or noisy learning features, and more importantly, to reduce training time of 4.5
million samples of N-H-OneTurbine LES mean flow features, feature selection is employed as part of every TB ML
scheme depicted in Figure 6.2. Figure 9.1 plots the importance of all 51 N-H-OneTurbine LES mean flow features,
FS1, FS2.1, and FS2.2 summarised in Table 3.2, Table 3.3, and Table 6.1 respectively. The feature importance is plotted
not only for the actual TB ML models used for training, but also that perceived be the TBRF feature selector. This
way, a comparison can be made about the correlation of TBRF feature selector’s feature importance according to
10,000 GS samples and the actual importance after training on all 4.5 million training samples of N-H-OneTurbine
LES and the accuracy of the TBRF feature selector can be evaluated thereof. Due to the fact that the feature selection
threshold is median importance for TBDT alone while being 0.1-median for TBRE TBAB, and TBGB, the 0.1-median
threshold line in Figure 9.1 is at merely 0.001 while that of median threshold is at 0.012. As the TBRF feature selector
is trained on 3,200 shallow TBDT, the standard deviation of it is also displayed in orange shade. Features with higher
importance also possess a larger standard deviation of perceived importance among shallow TBDT.

When it comes to correlation between TBRF feature selection’s result and the actual feature importance found
out through training by various TB ML models, a few disparities can identified including the most notable disparity
of feature 1: Slz.j for TBDT, TBRE and TBAB; feature 49: k/ (v ”S,-j H) for TBRF; and feature 5: Q?J. Sl?]. for TBGB. S?j of
feature 1’'s importance has been largely under-estimated by the TBRF feature selector. On the other hand, features
involving Ay and A, such as feature 7: Ay, feature 19: ASQS?, and feature 31: ©*SA,S* have been regarded as rela-
tively important according to the TBRF feature selector but remained mostly unused during the actual training using

107
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various TB ML models. Some particular attention is paid to feature 48: min(\/l_cd /(50v), 2), which physically repre-
sents wall distance based Reynolds number. Feature 48 has been demonstrate to have relatively large importance
during training the Re = 10,595 periodic hill verification case, whereas when performing feature selection with TBRF
feature selection on 10,000 GS samples of N-H-OneTurbine LES it is zero for every shallow TBDT of the TBRF feature

selector whatsoever. To understand why min(\/Ed / (501/),2) bore no importance at all during feature selection, re-

calling that the lowest cell center height, which is d here, is 1.25 m in the 2nd mesh refinement zone in Figure 4.12
while v = 1e — 5 m?/s, it means the smallest value of Vkdmin/(50v) has to satisfy

\/Edmin >2, 9.1)
50v

from which k has to be smaller than 6.4e-7 m?/s? for feature 48 to take effect that is not reasonable. Hence, the
current formulation of feature 48 does not suit a simulation domain as large as a wind plant. Furthermore, the
wind plant specific feature 51: V'kr/v, another geometry based feature, did not have impressive importance either
which is good news as it is more of a geometrical constraint rather than flow feature. Since no maximum cap was
implemented to feature 51, it did not suffer the same fate of its sister feature 48.

After performing feature selection on all 51 features with either median (for TBRE TBAB, TBGB) or 0.1-median
(for TBDT only) importance threshold, 26 and 46 features have been selected for TB ML models to fit on. Neverthe-
less, from Figure 9.1, it is clear that a large number of features do not hold much importance if any. As have been
mentioned, features such as feature 19 and 31 have been perceived as important from the TBRF feature selector but
turned out to be not during the actual training. This is likely due to the fact that the TBRF feature selector has been
fed with 10,000 randomly sampled GS data instead of the whole 4.5 million training data of N-H-OneTurbine LES.
It goes show that having merely 10,000 GS data is not representative or a more sophisticated sampling method such
as uniform spatial sampling needs to be in place to improve correlation between the TBRF feature selector and the
actual training.

(a) TBDT (b) TBRF

(c) TBAB (d) TBGB

Figure 9.1: Feature importance of all 51 features during feature selection as well as when training on the whole training data set. Orange shaded
area is the standard deviation of TBDT in TBRF feature selector
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9.1.2. Outlier & Novelty Detection

With 26 and 46 LES mean flow features selected via either median or 0.1-median threshold TBRF feature selector
depending the TB ML model of choice, an IF of 1,600 DT is employed to detect 10% outlier and inferred novelty from
the selected features. Figure 9.2 shows the detected 10% outlier in N-H-OneTurbine LES and inferred novelty in N-L-
SequentialTurbines LES mean flow features, displayed in gray. The background of each slice is the Barycentric map
of LES (b; j ). In this case, the IF is trained on selected N-H-OneTurbine LES mean flow features at the slice of zpyp.
The 10% outlier is displayed in dark at zp}, for N-H-OneTurbine LES. As such, the ‘outlier’ displayed at zmiq and zapex
are, strictly speaking, also novelty. Nonetheless, the training of IF and its result visualisation yields the difficult areas
to learn as well as to predict.

The outlier of N-H-OneTurb LES mean flow features detected by the IF are mostly concentrated around the tur-
bine, especially its free shear layers in the near wake where the rotation rate is the strongest. Additionally, the area of
outlier grows as z increases farther from the z, slice the IF was trained on. Lastly, it is interesting to see some out-
liers spawned right after the north-east border of the first mesh refinement and only happened in mostly one state
turbulence structure (red colour value close to 255). In Figure 9.2 (b), the inferred novelty of N-L-SequentialTurbines
after training the IF on N-H-OneTurbine LES mean flow features at zp is visualised. Surprisingly, the detected nov-
elty is much less prominent in the back turbine than the front one when it is normal to think the turbine condition
in N-H-OneTurbine LES bears more resemblance to the front turbine in N-L-SequentialTurbines LES simply due to
their similar location. Having said that, as N-L-SequentialTurbine LES has three DoF compared to N-H-OneTurbine
LES including the z, difference, it could be that the condition of the back turbine with ‘L’ zy is more of a match to a
turbine with ‘H’ zy due to higher turbulence intensity upstream that is also evidenced from Figure 8.1.

(a) N-H-OneTurbine LES outlier location (b) N-L-SequentialTurbines LES novelty location

Figure 9.2: 10% outlier detection of N-H-OneTurbine LES and inferred novelty detection of N-L-SequentialTurbines LES visualised at zy 1), Zmid>
and zapex, after fitting IF to N-H-OneTurbine LES mean flow feature inputs

The novelty of N-H-ParallelTurbines LES with different Uy}, inferred from the previously trained IF is depicted
in Figure 9.3.
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(a) N-H-ParallelTurbines LES novelty location (b) N-H-ParallelTurbines-HiSpeed LES novelty location

Figure 9.3: Inferred novelty detection of N-H-ParallelTurbines LES with different Uy, visualised at zpp, Zmid, and zapex, after fitting IF to
N-H-OneTurbine LES mean flow feature inputs

The most notable novelty for (b): N-H-ParalleTurbines-HiSpeed LES lies on the border of both the first and
second mesh refinement which is not as significant as in (a): N-H-ParallelTurbines LES. For N-H-ParalleTurbines-
HiSpeed LES, the artificial noise at the border of each refinement zone has been labelled as novelty and should not be
physical either. Apart form the aforementioned artificial noise, N-H-ParallelTurbines-HiSpeed LES showed slightly
longer trait of novelty distribution in the free shear layer of the turbines. Nonetheless, both cases showed identical
shape of the novelty distribution which is an indication that the turbine near wakes exhibited similar mean flow
feature characteristics.

Lastly, the novelty inferred from the IF trained on the N-H-OneTurbine LES mean flow features at zy,, is shown
for N-L-ParallelTurbines LES with varying yaw angle in Figure 9.4. Alittle more novelty distribution around the north-
east border of the first mesh refinement zone can be spotted in (b): N-H-ParallelTurbines-Yaw LES that shows a bit
more artificial noise due to the mesh size transition from the first mesh refinement zone to the base mesh not smooth
enough. Comparing turbines with different yaw angles, it can be seen that turbines with yaw has asymmetrical
novelty distribution and is inline with their corresponding wake redirection direction. Furthermore, comparing ‘L
zp in this case to previously ‘H’ zg in Figure 9.3 (a), the proportion of novelty increases in the near wake of turbines
and there are significantly more novelty detected around the turbine centres.
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(a) N-L-ParallelTurbines LES novelty location (b) N-L-ParallelTurbines-Yaw LES novelty location

Figure 9.4: 10% novelty detection of N-L-ParallelTurbines LES with varying yaw angle visualised at zpyp, Zmid, and zapex, after fitting IF to
N-H-OneTurbine LES input features

9.2, Turbulence State

Considering the barycentric triangle is already a bit messy and thus not informative in the simple prediction of
the periodic hill Re = 5,600, it is deemed not useful to plot the barycentric triangle result for the remainder of the
simulations done in this study:.

Having identified the feature importance of each feature during training of N-H-OneTurbine LES mean flow
feature inputs for N-H-OneTurbine LES (b; ;) outputs and having visualised 10% outlier and novelty locations after
fitting IF on N-H-OneTurbine mean flow features at zy,;, the training and prediction result of the LES mean turbulent
field can now be presented. Five cases will be presented with the absence of the prediction of N-H-OneTurbine LES
— in which case it is simply training and predicting on the same set of data. Nevertheless, it has be noted that the
training data does not have to be perfectly recreated during prediction since it often leads to over-fit.

9.2.1. N-H-ParallelTurbines LES

In Figure 9.5, four barycentric maps of N-H-ParallelTurbines LES at zhupb, Zmid, and zapex are presented, with (a) being
the LES ground truth and (b), (c), (d) the learning result from TB ML models trained on N-H-OneTurbine LES. N-H-
ParallelTurbines LES is the simplest test case with only one DoF — ‘ParallelTurbines’ instead of ‘OneTurbine’. The
most notable deviation from all predictions in Figure 9.5 (b), (c), (d), compared to the ground truth in (a), is that
the field is less smooth especially upstream of turbines. The turbulent state in some areas upstream turbines are
preserved, such as a stride of one component turbulence right in front of the northern turbine at z,,. As for the
most important part of the field — turbine wakes, a distinct one component turbulence in the free shear layer as well
as two- to three-component turbulence within the turbine span have been successfully learned and predicted. In
addition, comparing various TB ML models, TBRF generally predicted the most detail in turbine wakes while TBAB
mostly over-predicted free stream field with three- instead of one-component turbulence in ground truth. Lastly,
TBGB was not able to predict the wake right behind northern turbine at z;,;q and interpreted it as axisymmetric
two-component turbulence rather than axisymmetric expansion turbulence.
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(a) N-H-ParallelTurbines LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.5: Predicted Barycentric map at zpyp, Zmid, and Zapex for N-H-ParallelTurbines LES, after training on N-H-OneTurbine LES training data
set

If only the 255 red colour values of the barycentric map are shown, like in Figure 9.6, then an isovolume of these
selected Barycentric map colours can be plotted in 3D.
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Figure 9.6: Barycentric map with 255 red colour value, any blue and green colour value

In such a way, the quality of various predictions can be inspected in 3D with a more complete picture. The resul-
tant isovolume of N-H-ParallelTurbines Barycentric map where the red colour value is 255 is presented in Figure 9.7.
Coming from and due to the second mesh refinement border of the lower-left side of Figure 9.7 (a), an axisymmetric
expansion can be seen in front the turbines. In the free shear layer region of the turbines, a round axisymmet-
ric turbulent expansion with rare one-direction turbulence occurrence can be seen that is in agreement with the
barycentric map in Figure 9.5. Such elongated turbulent structure is due to the cause of large shear stress caused
by the peak angular velocity at turbine tips, while as the wake propagates, the turbulence expands towards isotropic
turbulence. Comparing to the ground truth in (a), TBRF in (b) does the best job in reproducing both free stream and
turbine wakes. Having said that, all TB ML models suffered under-estimate of the scale of axisymmetric turbulence
expansion.

(a) N-H-ParallelTurbines LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.7: Predicted 255 red colour value isovolume in the barycentric map for N-H-ParallelTurbines LES, after training on N-H-OneTurbine
LES mean input and output
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9.2.2. N-H-ParallelTurbines-HiSpeed LES

This section discusses the prediction result of N-H-ParallelTurbines-HiSpeed LES turbulence states. The type of
plots are again shown in the order of slices at znup, Zmid, and zapex in Figure 9.8, followed by an isovolume of the
barycentric map inFigure 9.9. From Figure 9.8 (a), the ground truth of N-H-ParallelTurbines-HiSpeed LES turbulent
state is presented. As already explained in Figure 9.3 (b), the artificial noise due to mesh refinement really affected
the mean turbulent flow fields. Because the border of Figure 9.8 actually coincides with the border of the second
mesh refinement, noisy turbulent state result busts out of the border into the refinement region. Nevertheless, near
wake region of the southern turbine are hardly affected. The northern turbine, on the other hand, has been affected
a little more by the noise coming from the northern border of the mesh refinement. This has caused the northern
turbine to

* have more isotropic turbulence and less axisymmetric turbulent expansion in the free shear layers;

* have less axisymmetric turbulent contraction and more isotropic turbulence at z;4;

¢ have less smooth far wake.

As such, predicting the northern turbine becomes more of a challenge than the southern turbine. From various
TB ML models in Figure 9.8 (b), (c), and (d), the artificial noise near the western and northern border of the second
mesh refinement has been predicted nothing but isotropic turbulence. In the free stream region of the slices, TBRF
has the best correspondence in terms of the hue of barycentric map colours, i.e. both TBAB and TBGB tend to predict
the free stream towards isotropic turbulence rather than axisymmetric turbulent contraction and expansion. When
it comes to the wake region of turbines, TBAB presented the closest turbulent state recreation although with several
deviations:

° more axisymmetric turbulent contraction and less axisymmetric turbulent expansion in the near wake region;

° more axisymmetric turbulent contraction and less isotropic turbulence in the near wake region at zp,;q;

* under-estimation of the rate of axisymmetric turbulent expansion to isotropic turbulence transition of the free
shear layers in the far wake.

As for TBRF and TBGB, TBGB performed the worse of both and have for instance mis-interpreted axisymmetric
turbulent expansion as axisymmetric turbulent contraction or even axisymmetric two-component in the free shear
layers at zapex.
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(a) N-H-ParallelTurbines-HiSpeed LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.8: Predicted barycentric map at zpp, Zmid, and Zapex for N-H-ParallelTurbines-HiSpeed LES, after training on N-H-OneTurbine LES
training data set

Figure 9.9 connects the results where red colour value is 255 in the barycentric map for N-H-ParallelTurbines-
HiSpeed . Some large one-component turbulence structure can be spotted again. Compared to N-H-ParallelTurbines
from Figure 9.7 (c), having a higher Uy}, expectedly sped up the transition of axisymmetric turbulent expansion to
isotropic turbulence in the free shear layers as the isovolume for N-H-ParallelTurbines-HiSpeed in Figure 9.9 (a) is
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slightly shorter streamwise. Out of the three TB ML models, TBRF and TBAB exhibited similar level of prediction
power judging by the size of the free shear layer isovolume. This conclusion also shows the necessity of not only
examining slice plots but also 3D fields when it comes to 3D simulations.

(a) N-H-ParallelTurbines-HiSpeed LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.9: Predicted 255 red colour value isovolume of the barycentric map for N-H-ParallelTurbines-HiSpeed LES, after training on
N-H-OneTurbine LES training data set

9.2.3. N-L-ParallelTurbines LES

In this section, turbulence state prediction of N-L-ParallelTurbines LES is looked into, beginning with Figure 9.10 that
shows the barycentric map at zpuph, Zmid, and Zapex. Similar to N-H-ParallelTurbines-HiSpeed LES, N-L-ParallelTurbines
LES has two DoF compared to the baseline N-H-OneTurbine LES — having ‘ParallelTurbines’ instead of ‘OneTurbine’
and ‘L' zp instead of ‘H’ zy. In this case, artificial noises that were present in N-H-ParallelTurbines-HiSpeed due to
mesh refinement are close to non-existent. Moreover, N-L-ParallelTurbines LES wake shape shows high identity with
N-H-ParallelTurbines LES from Figure 9.5 (a), with three differences:

° at zpy;q, the axisymmetric turbulent contraction in the near wake of the turbines is more persistent farther
downstream for N-L-ParallelTurbines LES;

° axisymmetric turbulent contraction is more pronounced than N-H-ParallelTurbines at zp, and zp;q;

» asmall region of axisymmetric turbulent contraction occurs right behind the rotor plane in the free shear layer
at Zapex thus breaks the symmetry of the turbine wake at zapex;

e the wake of the northern turbine is narrower than that of the southern turbine as seen at zapex.

In particular, the cause of narrower wake for the northern turbine is likely due to a slightly different nearby free
stream condition in the wake of each turbine. Comparing three TB ML models, the performance among them is
quite similar. The main differences happen at the file right in front of the turbine as well as the free shear layers at
Zapeex in the near wake of turbines. For the flow right in front of the turbines, both TBRF and TBAB predicted largely
isotropic turbulence while TBGB predicted less so and so that it blends in with the rest of the flow field better. In
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addition, both TBAB and TBGB predicted two-component turbulence right behind turbines in the free shear layers
at zapex When it should have been axisymmetric turbulent contraction instead. The wake prediction from all three
models lacks smoothness as well as contrast. Because of this, the details in the near wake at zy,;q is missing from all
models.

(a) Ground truth from LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.10: Predicted barycentric map at zyyp, Zmid, and Zapex for N-L-ParallelTurbines LES, after training on N-H-OneTurbine LES training
data set
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The isovolume of the barycentric map for N-L-ParallelTurbines where red colour value is 255 is displayed in
Figure 9.11. Starting with the ground truth in Figure 9.11 (a), large axisymmetric turbulent expansion is especially
prominent in front of the northern turbine. This has also been captured in Figure 9.10 (a) where a wide axisymmetric
turbulent expansion stripe is laid in front of the northern turbine. Such inflow condition difference of each turbine
is believed to also be the cause of the difference at the ‘tail’ of each turbine’s isovolume. Identical to the result shown
in Figure 9.10, all three models predicted rather closely. While TBGB'’s prediction preserves the smoothness of the
isovolume, it also shows the least proportion of almost one-component turbulence presented in Figure 9.11 (a).

(a) Ground truth from LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.11: Predicted 255 red colour value isovolume of the barycentric map for N-L-ParallelTurbines LES, after training on N-H-OneTurbine
LES training data set

9.2.4. N-L-ParallelTurbines-Yaw LES

The prediction difficulty in this section is one level higher than the previous section simply because a third DoF is
introduced - turbine yaw. Figure 9.12 shows the barycentric map of the ground truth of N-L-ParallelTurbines-Yaw
LES along with its predictions from TBRE TBAB, and TBGB. To begin with, the ground truth of N-L-ParallelTurbines-
Yaw LES in Figure 9.12 (a) is compared to that of N-L-ParallelTurbines LES in Figure 9.10 (a). Since the northern
turbine in N-L-ParallelTurbines-Yaw LES has a yaw angle of 20° while the southern turbine has a yaw angle of 10°, it
can be observed that the wake of the northern turbine shows wake redirection behaviour. Two wake turbulent state
changes are

» asymmetrical wake structure where the turbulent states on the northern side of the turbine wake is elongated
other than equalling its southern side counterpart;

° a transition from axisymmetric turbulent expansion to axisymmetric turbulent contraction occurs on the
southern side of the far turbine wake.

Wake redirection of the southern turbine is less noticeable due to its smaller yaw angle but the aforementioned
changes still apply. Regarding the prediction quality of TBRE TBAB, and TBGB, the prediction in the free stream field
is almost the same as in N-L-ParallelTurbines LES since both N-L-ParallelTurbines and N-L-ParallelTurbines-Yaw
LES have the same inflow and initial field condition from the N-L ABL precursor afterall.
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(a) N-L-ParallelTurbines-Yaw LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.12: Predicted Barycentric map at 2y, Zmid, and Zapex for N-L-ParallelTurbines LES, after training on N-H-OneTurbine LES training
data set

When it comes to predicting turbine wakes, wake redirection characteristics described above are indeed notice-
able from all three TB ML models. However, smaller details are either lost or interpreted wrongly into a different
turbulent state. TBAB and TBGB, for instance, have the problem of predicting what was supposed to be isotropic
turbulence in the far wake as axisymmetric turbulent contraction instead. For TBAB, it even predicted some of the
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very one-component like turbulence into axisymmetric turbulent contraction in the free shear layers at zapex. In
TBRF’s prediction, these misinterpretations are less serious but it still suffers from losing wake details.

In Figure 9.13, the isovolume of the barycentric map where red colour value is 255 is plotted for N-L-ParallelTurbines-
Yaw LES. Again, the ‘tail’ of the isovolume for the northern turbine is slightly longer than that of the southern turbine
due to different inflow condition. Even though the shape of isovolumes in N-L-ParallelTurbines-Yaw LES is identical
to that in N-L-ParallelTurbines LES from Figure 9.11 (a), a rotation of it is noticeable for the northern turbine due
to its larger yaw compared the southern one. Such rotation is also replicated by all three TB ML models. On top of
that, the isovolume shape of both turbines are preserved by all TB ML model. Although TBGB’s prediction exhibits
a slightly smoother surface of the isovolume, it fails to reproduce almost one-component turbulence at the outskirts
of the isovolume presented in Figure 9.13 (a).

(a) N-L-ParallelTurbines-Yaw LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.13: Predicted 255 red colour value isovolume of the Barycentric map for N-L-Parallel Turbines-Yaw LES, after training on
N-H-OneTurbine LES training data set

9.2.5. N-L-SequentialTurbines LES

In this section, the predicted turbulent state of N-L-SequentialTurbines LES by TBRE TBAB, and TBGB is presented.
Figure 9.14 shows the the barycentric map of both ground truth and its prediction for N-L-SequentialTurbines LES.
Since only the second mesh refinement zone is used for prediction, the outside of it is unpredicted and thus rendered
black. N-L-SequentialTurbines LES also has three DoF compared to the training case N-H-OneTurbine LES, namely
‘L' vs. ‘H’ zp, twin vs. one turbine, and ‘SequentialTurbine’ layout where the twin turbines are 7D apart. By observing
the ground truth in Figure 9.14 (a), the influences of turbine flow field interactions on turbine wake are:

* shorter near wake at z,,;, and zpjq in the streamwise direction for the rear turbine;

* the axisymmetric turbulent contraction in the far wake at z;,jq is more pronounced in the rear turbine than
the front turbine;

* transition from axisymmetric turbulent expansion to axisymmetric turbulent contraction of the free shear lay-
€rs at Zapex is much earlier for the rear turbine than the front turbine.
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At zpyp, what the TB ML models predicted the best are the free shear layers that are axisymmetric turbulent
expansion as well as the axisymmetric turbulent expansion in the centre of the front turbine near wake. Neverthe-
less, all TB ML models over-estimated the proportion of axisymmetric turbulent contraction and moreover misin-
terpreted it as isotropic turbulence instead.

(a) N-L-SequentialTurbines LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.14: Predicted Barycentric map at zpp, Zmid, and Zapex for N-L-SequentialTurbines LES, after training on N-H-OneTurbine LES training
data set
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The same can be said about the rear turbine wake prediction — over-estimation of dual axisymmetric turbulent
expansion in the near wake and misinterpreting the axisymmetric turbulent contraction as isotropic turbulence.

At zyq, the predicted axisymmetric turbulent contraction location in the near wake of the front turbine is shifted
further downstream. In the far wake of front turbine, just in front of the rear turbine, a small axisymmetric turbulent
contraction distribution observed in Figure 9.14 (a) has been misinterpreted as isotropic turbulence by all TB ML
models. As for the rear turbine wake at z,;q, the prediction is a bit better in the sense that the most noticeable
wake characteristics are correctly preserved. Nonetheless, the proportion of axisymmetric turbulent contraction is
exaggerated by TBAB and under-estimated by TBRE with TBGB performing the best for this part of the flow.

Lastly, at zapex, although the turbine wake characteristics are not as intricate as those in previous two slices, the
TB ML models did not show a sign of easier turbulent state prediction. The clearly axisymmetric turbulent contrac-
tion in the far wake of both front and rear turbine has been missed by the TB ML models.

Comparing among TB ML models, TBGB stands out when it comes predicting the correct turbulent state at zj
as well as zpiq. While at z,pey, all three TB ML models failed to present the correct turbulent state information in the
far wake of both front and rear turbine.

Figure 9.15 showcases the isovolume of the barycentric map of N-L-SequentialTurbines where red colour value is
255. Note that the black areas are because the prediction only predicted the second refinement zone of every single
test case. As can be seen, the rear turbine holds much less axisymmetric turbulent expansion or one-component
turbulence than the front turbine. Moreover, a void of isovolume presents for the rear turbine that is inline with
the barycentric map slices in Figure 9.14 (a). That is, the void is the early transited axisymmetric turbulent contrac-
tion instead. From the predictions of TBRE TBAB, and TBGB, it can be notices that all of them predicted a longer
isovolume shape of the front turbine wake than the ground truth. On the other hand, the predicted rear turbine
wake isovolume is shorter than reality. TBRF does provide the a slightly better resemblance of the rear turbine wake
isovolume but the deviation in size is still significant.

(a) N-L-SequentialTurbines LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.15: Predicted 255 red colour value isovolume of the barycentric map for N-L-SequentialTurbines LES, after training on N-H-OneTurbine
LES training data set
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9.3. Turbulence Production Rate

As the unresolved scale stress directly contributes to the turbulent energy production G in the TKE transport equa-
tion that is used for one- and two-equation turbulence models, the result of predicted G provides a useful insight
into the prediction power of TB ML models in reproducing the an accurate energy production rate that will affect
the calculation of k and even e during CFD. In this case, (G) is computed for the LES field and has a slightly differ-
ent, shown in Equation (9.2), than what it should be by performing statistical averaging because only individually
averaged quantities were available at the time of reconstructing (G).

(G)=(7ijtts,;) = (Tij) i), 9.2)
in which 5
(Tij)=2(k) (% +(bij>). 9.3)

This however, does not affect the comparison between the ground truth (G) and its predictions as long as the
formulation of (G) and its prediction, (G), is consistent, demonstrated in Equation (9.4),

© = {ti (@), 94
where 5
<Tl'j>=2(k> (%+<b,‘j>). 9.5)

From Equation (9.5), it can be seen that (b;;) directly impacts the shear component of the unresolved stress
and therefore the magnitude of (/G\> Similar to Section 9.2, all five test case results will be examined, namely N-H-
ParallelTurbines LES, N-L-ParallelTurbines LES, N-L-ParallelTurbines-Yaw LES, N-H-ParallelTurbines-HiSpeed LES,
and N-L-SequentialTurbines LES. For each test case, four visualisations and plots will be presented. When examining
the efficacy of model predictions, three questions are asked:

1. what is the trend of (G) in rotor wakes and how is it captured by TB ML models;
2. how does the 3D structure of (G) look like and does predictions reconstruct similar structures;
3. how close are predictions to ground truth (G) quantitatively?

The first visualisation is slice plots of (G) sampled at vertical slices starting at the rotor plane till 4D downstream
it with 1D intervals, meaningful for showing the prediction accuracy on wake development. The plots are views
from the back of turbines, meaning the rotor plane is on the left of the plot while the 4D slice is on right of the plot.
The second visualisation is the isosurface of (G), meaningful for presenting a single value result but showcasing
3D spatial relations. The last visualisation is a quantitative plot of (G) sampled at several horizontal lines that are
perpendicular to the free stream flow direction at zyy,.

9.3.1. Parallel Turbines

In this section, predicted (G) of N-H-ParallelTurbines LES is presented. Since the TB ML models have been trained
on the second mesh confinement region of N-H-OneTurbine only, the whole N-H-ParallelTurbines domain is un-
seen to the trained models. Having said this, N-H-ParallelTurbines should be easiest to predict as it only has one
DoE namely number of turbines in a flow domain. With this in mind, Figure 9.16 shows (G) prediction of N-H-
ParallelTurbines as turbines wakes develop downstream. According to the ground truth in Figure 9.16, (G) trend as
well as magnitude of both turbines are identical. Such identity has been replicated by all TB ML models successfully
since flow features around both turbines are probably closely matched for TB models to yield the same g and thus
b; j- Of all the slices visualised, ground truth (G) has its peak at 1D downstream. This implicates that most TKE is
produced at approximately 1D downstream turbines. Such production experiences a decay further downstream the
rotor planes due to wake-free stream mixing so that the flow becomes less and less turbulent. Moreover, pronounced
TKE generation rate at both rotor tip as well root implies that the rate of TKE production is a cause of vortices. All
three phenomena have been correctly captured by all TB ML models although the major discrepancy happens at 2D
downstream. At 2D downstream, TBRF over-predicted turbulent energy production while TBAB and TBGB under-
predicted it. This, however, does not have a impact on the predictions downstream as TB ML models only work with
local flow feature information. In the free stream, all TB models correctly predicted low production of turbulence.
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(a) N-H-ParallelTurbines LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.16: Prediction of time-averaged turbulent production rate slices at rotor plane, 1D, 2D, 3D, and 4D downstream for
N-H-ParallelTurbines LES, after training on N-H-OneTurbine LES training data set

Having analysed the turbulent production decay trend, it is time to see if the good prediction continues in terms
of 3D turbulent structures. The isosurface of 0.1 m?/s® (G) is presented in Figure 9.17 for the ground truth from N-
H-ParallelTurbines and its corresponding predictions. A vertical slice perpendicular to the direction of (#;), through
turbine centres is shown as well. Be inspecting the ground truth in Figure 9.17 (a), the outstanding characteristics
are:

« there is a ring of 0.1 m?/s3 (G) in rotor planes created by tip vortices shown in Figure 8.2. As the tip vortices
discontinued shortly downstream rotor planes, a discontinuity of (G) is present here too;

¢ there is a floor of isosurface in the range of 5 m to 15 m height due to 0.2 m z;

* in turbine wakes, isosurfaces resides in the free shear layers and are prolonged at turbine apex compared to
the lower end of the turbine, likely due to higher free stream velocity with height.

After recognising aforementioned turbulent production characteristics, it can be seen that TBRF in Figure 9.17
(b) is able to reproduce all of the characteristics. Furthermore, TBRF over-predicted the length of wake isosurfaces,
unlike TBAB and TBGB.
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(a) N-H-ParallelTurbines LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.17: Predicted 0.1 m2/s3 isosurface of time-averaged turbulent production rate for N-H-ParallelTurbines LES, after training on
N-H-OneTurbine LES training data set

Finally, a quantitative comparison between the ground truth (G) and its predictions by the all four TB ML models
are shown in Figure 9.18. The lines are sampled horizontally at -1D, +1D, and +3D relative to rotor planes and at
Zhup- In terms of (G) peaks and troughs locations, all predictions are excellently matching the ground truth. The
main deviation appears at the peaks and troughs too.

Figure 9.18: Predicted (G) sampled —1D, +1D, and +3D relative to turbine location at z,;, for N-H-ParallelTurbines RANS, after training on
N-H-OneTurbine RANS input features and N-H-OneTurbine LES <bi j>

9.3.2. Higher Prescribed Velocity & Parallel Turbines

In this section, learning results of N-H-ParallelTurbines-HiSpeed LES is presented. Again all TB ML models have
been trained on the N-H-OneTurbine LES training case. As N-H-ParallelTurbines-HiSpeed LES has two DoE namely
twin turbines and 10 m/s Uy, instead of 8 m/s in N-H-OneTurbine, the prediction difficulty is expected to be higher
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than predicting N-H-ParallelTurbines that had merely one DoE Furthermore, as already illustrated in Figure 9.3 that
a significantly more amount of artificial noise was generated during the simulation of N-H-ParallelTurbines-HiSpeed
LES, the prediction of (G) is expected to be negatively affected too. With this in mind, Figure 9.19 shows the trend
of (G) downstream turbines. Compared to the ground truth of N-H-ParallelTurbines LES, N-H-ParallelTurbines-
HiSpeed LES has a faster turbulent production due to higher Uy, although the same trend is found - highest
turbulent production rate at 1D downstream followed by a decay of such rate. Similar to the prediction of N-H-
ParallelTurbines LES, all three TB ML models successfully predicted the production rate peak at 1D downstream
turbines and the decaying trend of (G). Additionally, TBRF over-predicted the magnitude of (G) at every plotted
planed while TBAB and TBGB did the opposite.

(a) N-H-ParallelTurbines-HiSpeed LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.19: Prediction of time-averaged turbulent production rate slices at rotor plane, 1D, 2D, 3D, and 4D downstream for
N-H-ParallelTurbines-HiSpeed LES, after training on N-H-OneTurbine LES training data set

As Figure 9.19 illustrated much higher (G) for N-H-ParallelTurbines-HiSpeed over N-H-ParallelTurbines due to
8 m/s Upyp increasing to 10 m/s, the 0.1 mmsss (G) isosurface presented in Figure 9.20 further demonstrated the
increment of (G). The gap between rotor planes and wakes are gone, inline with the observation of Q in Figure 8.4.
During the prediction, all TB ML models successfully recreated isosurface details including rotor plane isosurfaces,
wake isosurface sizes and shapes.
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(a) N-H-ParallelTurbines-HiSpeed LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.20: Predicted 0.1 m?/s3 isosurface of time-averaged turbulent production rate for N-H-ParallelTurbines-HiSpeed LES, after training on
N-H-OneTurbine LES training data set

In Figure 9.21 where horizontal lines are sampled at -1D, +1D and +3D w.r.t. rotor planes at zpp, the same
shape of the curves have been recreated by all TB ML models. Compared to the prediction of N-H-ParallelTurbines
LES, more discrepancies are found at the far wake of the northern turbine. By comparing turbine wake shapes at
+3D between Figure 9.21 and Figure 9.20, with the fact that the northern turbine wake is affected by artificial noise
coming from the northern border the second mesh refinement zone, it is interesting to see that the TB ML models
are trying to correct and undo the noise influence. Amongst four TB ML models, TBGB has the largest discrepancy
while the other three demonstrated identical prediction power.

Figure 9.21: Predicted (G) sampled —1D, +1D, and +3D relative to turbine location at zy,,;, for N-H-ParallelTurbines-HiSpeed LES

9.3.3. Lower Surface Roughness & Parallel Turbines
The trend of ground truth (G) and its predictions in rotor wakes is displayed in Figure 9.22. In this case, zo becomes
0.001 m instead of 0.2 m in the N-H-OneTurbine training case. Therefore, in comparison to Figure 9.16 (a), the
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rate at which TKE is generating is slight slower in the upper part rotor wakes. On the other hand, lower part of
rotor wakes experienced higher (G), making the (G) rings’ displayed in Figure 9.22 more uniform than ‘H’ z, cases
previously. This implicates that smoother planetary surfaces allow rotor free shear flows close them generate TKE
quicker without interference from rough surfaces demonstrated by N-H-ParallelTurbines LES. The ‘rings’ are also
thinner than those from N-H-ParallelTurbines LES since its free stream is subject to less turbulent intensity. All three
TB ML models accurately predicted the trend of (G) decay in rotor wakes as well as high (G) occurred at rotor tips
and roots. Furthermore, the more uniform distribution of (G) in each ‘ring’ has been replicated by all TB ML models
too.

(a) N-L-ParallelTurbines LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.22: Prediction of time-averaged turbulent production rate slices at rotor plane, 2D and 4D downstream for N-L-ParallelTurbines LES,
after training on N-H-OneTurbine LES training data set

Figure 9.23 shows the 0.1 m?/s® isosurface of (G) for N-L-ParallelTurbines LES ground truth and predictions.
This most notable difference for the isosurface of N-L-ParallelTurbines LES with zy = 0.001 m compared to that of
N-H-ParallelTurbines with zy = 0.2 m is its low volume. By also considering the interpretation in Figure 9.22 that
the ‘rings’ became thinner and the transition to zero production rate is more abrupt for ‘L’ z. It can be deducted
that such low volume of 0.1 m?/s® (G) isosurface is a result of a very thin region of 0.1 m?/s® (G) in free shear layers.
Because of this, isosurface shape of twin turbines also slight varies. Furthermore, as also seen in Figure 9.22, surfaces
subject to ‘L’ zj exhibit a lower rate of TKE generation due to it being smoother than those subject to ‘H’ zy. Amongst
three TB ML models, isosurfaces in rotor wakes are about the same volume as the ground truth, albeit different in
shape. Additionally, both TBRF and TBAB predicted a thin isosurface ring in rotor planes. Having said this, the small
volume of visible isosurfaces has made any reconstruction difference more dramatic. This is proved by the necessary
quantitative plots in Figure 9.24.
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(a) N-L-ParallelTurbines LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.23: Predicted 0.1 m?/s3 isosurface of time-averaged turbulent production rate for N-L-ParallelTurbines LES, after training on
N-H-OneTurbine LES training data set

In Figure 9.24, (G) and its predictions are horizontally sampled at zpy, located -1D, +1D, and +3D w.r.t. rotor
planes. The differences between TB ML models as seen in Figure 9.23 are not as pronounced. The main discrepancy
between predictions, from all models, and the ground truth is in free shear layers induced by rotor tips and roots.

Figure 9.24: Predicted (G) sampled —1D, +1D, and +3D relative to turbine location at zj,,, for N-L-ParallelTurbines LES

9.3.4. Lower Surface Roughness & Yawing Parallel Turbines

In this section, prediction result of (G) for N-L-ParallelTurbines-Yaw LES is presented. Compared the previous sec-
tion where the result of N-L-ParallelTurbines LES was presented, N-L-ParallelTurbines-Yaw LES proposed an extra
DoF that is turbine yaw angle. Recalling that the northern turbine has 20° clockwise yaw while the southern one has
10° yaw clockwise, wake redirection is expected to see in the trend of (G) too. With this in mind, Figure 9.25 plots the
true and predicted trend of (G) in the rotor wakes of N-L-ParallelTurbines-Yaw LES. As can be seen form Figure 9.25
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(a), the trailing (G) ‘Tings’ that caused rotor tip vortices have been redirected north of the plot for the northern tur-
bine. The redirection is barely noticeable for the southern turbine however due to its lower yaw angle. At the rotor
plane, revisiting Figure 9.22 or Figure 9.19 for clearer illustration, higher (G) can be spotted at the top of and bottom
of rotor swept areas. For the southern turbine with 10° yaw in Figure 9.25 (a), such distribution is rotated clockwise
from this view. And for the northern turbine with 20° yaw, a further rotation is observed and high (G) distribution
moves closer the rotor hub also the cause is yet unknown. Theses rotor plane phenomena has been replicated by
both TBRF and TBGB, suggesting that the phenomena are not random. TBGB was not able to replicate the proper
rotor plane although the trend of TKE production rate decay has been predicted correctly. Additionally, all three TB
ML models were able to correctly predict wake redirection of the northern turbine.

(a) N-L-ParallelTurbines-Yaw LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.25: Prediction of time-averaged turbulent production rate slices at rotor plane, 1D, 2D, 3D, and 4D downstream for
N-L-ParallelTurbines-Yaw LES, after training on N-H-OneTurbine LES training data set

In Figure 9.26, the 3D structure of 0.1 m?/s3 (G) is visualised for N-L-ParallelTurbines-Yaw LES. Like Figure 9.23,
the isosurface of 0.1 m?/s® (G) is scarce due to the abrupt transition from fast TKE production in free shear lay-
ers to slow TKE production outside it in the near wake of turbines. Furthermore, as the wake redirecting north in
Figure 9.25, the 0.1 m?/s® (G) structure rotated north too. The predictions by TBRE TBAB, and TBGB all captured
wake redirection as well the small volume of 0.1 m2/s3(G) structure. Moreover, analogous to the prediction of N-L-
ParallelTurbines LES, a ‘ring’ has been created for each of the turbine by TBRF and TBAB but not TBGB. A small tilt
can be seen for these ‘rings’ due to the fact that NREL 5-MW reference turbine as a tilt angle of 5° upward. Last but
not least, it has to be noted that discrepancies displayed by predictions are enlarged as very small truth volume is
present to begin with.
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(a) N-L-ParallelTurbines-Yaw LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.26: Predicted 0.1 m?/s3 isosurface of time-averaged turbulent production rate for N-L-Parallel Turbines-Yaw LES, after training on
N-H-OneTurbine LES training data set

Quantitative plots of true and predicted (G) have been shown in Figure 9.27 where three horizontal lines sampled
at -1D, +1D, and +3D w.r.t. turbine locations and at z, are plotted. Compared to N-L-ParallelTurbines , N-L-
ParallelTurbines-Yaw certainly exhibits a larger deviation of (G) between the northern and southern side of a rotor
free shear layers. Specifically, the northern side experiences a stronger TKE production rate. Interestingly, two peaks
present at +1D in the rotor root vortices of Figure 9.24 reduce to basically one for N-L-ParallelTurbines-Yaw LES,
regardless of yaw angle. When it comes to predictions, three TB ML models all achieved same level of performance
as for N-L-ParallelTurbines . This indicates adequate learning of flow physics other than geographical features.

Figure 9.27: Predicted (G) sampled —1D, +1D, and +3D relative to turbine location at z,, for N-L-ParallelTurbines-Yaw LES

9.3.5. Lower Surface Roughness & Sequential Turbines
In this section, truth and prediction result of (G) for N-L-SequentialTurbines LES is presented. In comparison to
N-H-OneTurbine LES on which TB ML models were trained on, N-L-SequentialTurbines LES differs in z;, number
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of turbines, and location of the second turbine. Instead of the ‘ParallelTurbine’ configuration, the second turbine is
7D downstream the front turbine that happens to locate at the same coordinate as the turbine in N-H-OneTurbine
. It has already been demonstrated in the previous sections that predicting (G) in varying zo ABL is not a problem.
The question that whether trained TB ML models can predict (G) of a turbine subject to very turbulent inflow will
be answered. Figure 9.28 shows the trend of (G) in rotor wakes of N-L-SequentialTurbines LES. A direct comparison
between the front and rear turbine indicates that high TKE production rate is more wider around rotor tip. This, in
turn, results in wide free shear layers induced by rear rotor tip. The rear rotor root, on the other hand, does not induce
mush free shear layer due to low (G). Furthermore, although high rate of TKE production decays quickly downstream
the front turbine, the rear turbine is still subject to more turbulent inflow than the front turbine or turbine in other
configurations. This is because (G) of a point does not indicate how much turbulent intensity is present there but
rather the rate at increasing/decreasing it. With these characteristics in mind, all three TB ML models successfully
recreated the situation of a ‘SequentialTurbines’. Once again, TBRF slightly over-predicted (G) in the near wake of
the rear turbine while TBAB and TBGB did the opposite.

(a) N-L-SequentialTurbines LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.28: Prediction of time-averaged turbulent production rate slices at front rotor plane, 1D, 2D and 4D downstream it, back rotor plane,
and 2D downstream it for N-L-SequentialTurbines LES, after training on N-H-OneTurbine LES training data set

Figure 9.29 visualises 0.1 m?/s® (G) structure of both the front and rear turbine in N-L-SequentialTurbines . De-
spite the front turbine behaving similarly to the turbines in N-L-ParallelTurbines , the rear turbine behaves more
like a the turbines in N-H-ParallelTurbines with a little bit shorter wake structure. This is expected as ‘H’ cases also
have higher turbulent intensity in the free stream, much like what the rear turbine in N-L-SequentialTurbines LES is
experiencing. All three TB ML models predicted the 0.1 m?/s® (G) structure rather well and good on that of the front
turbine in terms of volume. Nevertheless, the same issue occurred for all three TB ML models that the shape of the
front turbine (G) structure was not recreated exactly.
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(a) N-L-SequentialTurbines LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.29: Predicted 0.1 m2/s3 isosurface of time-averaged turbulent production rate for N-L-SequentialTurbines LES, after training on
N-H-OneTurbine LES training data set

Finally, the quantitative plots of (G) for N-L-SequentialTurbines is shown in Figure 9.30 for TBDT and TBRE and
in Figure 9.31 for TBAB and TBGB. As the turbine configuration is sequential, horizontal lines sampled at -1D, +1D,
+3D w.r.t. the rear turbine location are plotted along side of the same types for the front turbine. The higher turbulent
intensity upstream of the rear turbine deduced previously is confirmed here. And despite changing inflow condition,
the predictions from all three TB ML models are very close to the truth. Moreover, opposite to the front turbine where
the northern side of its tip free shear layer has faster TKE production rate, the rear turbine has a higher (G) at the
southern side of the tip free shear layer. This is interestingly inline with ‘H’ zy cases in Figure 9.18 and Figure 9.21
likely due to cause of turbulent inflows trailing the front turbine.

Figure 9.30: Predicted (G) from TBDT and TBRE sampled —1D, +1D, and +3D relative to front and back turbine location respectively at z,,;, for
N-L-SequentialTurbines LES
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Figure 9.31: Predicted (G) from TBAB and TBGB, sampled —1D, +1D, and +3D relative to front and back turbine location respectively at z,}, for
N-L-SequentialTurbines LES

9.4. Turbulent Shear Stress Momentum Source

Turbulent shear stress momentum source —V - T?j, derived from the buoyant LES momentum conservation and the

decomposition of shear stress into a resolved and an unresolved component, as the name suggests, is a flow driving
gradient caused by unresolved shear stress. Because of this, there is a direct influence by b;; in -V - rl.Dj and therefore

the momentum equation CFD is solving. By statistically averaging this turbulent momentum source,
= (V-1D) = =V-(2kbij) = 2Ky V- (by;) + O, 9.6)

in which (b; ;) can be replaced with the predictions to formulate predicted turbulent momentum source in

~{(v1B) =20 V- (bij) + 0. 9.7)

e

In order to compare — <V . T?j> with — <V . T?j>, the assumption that

0=0' (9.8
is made. Furthermore, in this section, the term mean unresolved shear stress ‘[?j is frequently interchanged with the
term Reynolds stress Rl.[;. for convenience although strictly their definitions are not the same (see Equation (2.20)).

From Equation (9.6) and Equation (9.7), it can be easily deduced that —V - T?j is a vector field. If large —V - T?j ina

direction is experienced at a point, the flow at that point experiences an acceleration thereby. Following this logic,
supposing no other driving gradients exist, a flow moving in x direction will tend to rotate if -V - r?j is strong in the
y direction that incurs vortices. In another example, the same flow would be accelerate if -V - T?. is strong in the
same direction as flow. To analyse the prediction power of TB ML models, two types of plots are provided for each
test case. The first type of plots will show the trend of -V - Tle in rotor wakes, while the second type quantifies the
deviation of predictions from ground truths. As -V - TiDj, the horizontal and vertical component will be separately

analysed, just like how (ii;) has been analysed in Section 8.3.

9.4.1. Parallel Turbines
In this section, the ground truth and predictions of N-H-ParallelTurbines LES is presented. Figure 9.32 visualises

the trend of <V . R£>h , recalling that rg. are declared interchangeable with Rf;. for convenience. From the ground
or

truth in Figure 9.32 (a), a ring’ of no flow acceleration can be observed at the rotor tip free shear layers, surrounded
by ‘rings’ of high horizontal accelerations on both sides of tip free shear layers. The outer ‘ring’ of high horizontal
acceleration is due to mixing of free shear layer with free stream on the outer side of the free shear layer recalling
that large horizontal velocity gradient exists between the free shear layer and the free stream. The same explanation
applies to the inner ‘ring’ of high horizontal acceleration. From (U Yhor Plot in Figure 8.13, an increase in velocity

magnitude has been observed from the tip free shear layer to the rotor wake as a result of high <V : R5>h . Both
or

regions are where TKE is dominant and thereby the driving gradient caused by <V . Rf} hor” Since the horizontal
or



9.4. Turbulent Shear Stress Momentum Source 135

component of <V . Rﬁ.> is a magnitude with no direction, it can be deduced that <V . Rll.a. >h on the outer side of tip
or

free shear layers is along the free stream and that on the inner side of tip free shear layers is against the free stream. As
the wake convects downstream, horizontal acceleration due to turbulent shear stress dissipates and diffuses as large
turbulent structures holding the most TKE breaks down into smaller scales with significantly less TKE. Additionally,
a high acceleration caused by turbulent shear stress in the upper part of the rotor plane is observed. It has to be

noted that since the turbines have a tilt angle of 5° upward, the upper part of the rotor plane slice is slightly in front
the rotors. With this in mind, the direction of <V . Rg. N at that location is against the free stream direction which

or
formulates the rotor induction phenomenon.

After describing key characteristics of horizontal rotor wake acceleration trend due to turbulent shear stresses, it
is time to inspect the quality of the predictions from TBRE TBAB, and TBGB. As can be seen, <V . Rg. >h0r right in front
of the rotors have been heavily over-predicted. In the wake region, all three TB ML models were able to replicate
the diffusive and dissipative trend of <V-R3>hor, however, at the cost of non-smooth and noisy ‘ring’ recreation.

Furthermore, the almost none-existent horizontal acceleration in the ambient as seen in Figure 9.32 (a) has been
exaggerated by all three TB ML models. This goes to show the importance of accurate (b; ;) prediction even if (k) is
rather small in the ambient for Equation (9.7).

(a) N-H-ParallelTurbines LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.32: Predicted <V . Rg. >h of N-H-ParallelTurbines LES at rotor plane, 1D, 2D, 3D, and 4D downstream
or

Figure 9.33 visualises the trend of <V . R5> for N-H-ParallelTurbines . The same acceleration distribution can
¥4

be found in each vertical slice, while being vertical acceleration this time around. Since <V . R3> is not a resultant
z

field, it possesses direction. From the ground truth inFigure 9.33 (a), there exists a large negative vertical acceleration
in the upper part of the rotor plane caused by turbulent shear stress. As mentioned previously, the rotor is tilted 5°

upward. This means the large negative <V . Rll.3.> is trying to push the flow downward towards the planetary surface.
Z

Analogously, in the wake region, a Ting’ of negative vertical acceleration is found as tip free shear layers transit to
the free stream; and a ‘ring’ of positive vertical acceleration is found as tip free shear layers transit to rotor wakes.

Because the wake region is heavily turbulent, the impact of <V . R3.> in flow’s acceleration is quite pronounced.
z



136 9. Learning Result of High Fidelity Wind Plant Turbulent Fields

Looking back at the (i )field at z,pex from Figure 8.14, a deceleration of {ii;) downstream is seen. This corresponds
to the negative <V . R3.> ‘ring’ displayed on the outer side of tip free shear layers. On the other hand, large positive
z

<V . Rl.[;.> at the inner ‘ring’ of tip free shear layers suggest a vertical expansion of the rotor wakes.
z

When comparing the predictions to the ground truth, the trend as well as discussed wake characteristics of
<V . Rﬁ.> downstream is still preserved by all three TB ML models. Nonetheless, all three models also encountered
z

the same problem as the ones in Figure 9.32 — exaggeration of <V . Rll.3.> magnitude.
z

(a) N-H-ParallelTurbines (b) TBRF

(c) TBAB (d) TBGB

Figure 9.33: Predicted <V . Rg.> of N-H-ParallelTurbines at rotor plane, 1D, 2D, 3D, and 4D downstream
Z

Lastly, a quantitative comparison between the ground truth and predictions is done in Figure 9.34 for <V . RZ >h
or

and Figure 9.35 for <V . RiDj> . The ambient noise predicted by three TB ML models are shown by the fluctuations

¥4
outside rotor wakes. Nevertheless, the peaks and troughs locations seen in the ground truth have been correctly
predicted especially at +1D in the near wake. The correct peak and trough location prediction is less so at +3D

downstream. For <V . R£.> in Figure 9.35, the predictions are more chaotic. This is even the case for ground truth
Z
itself since the magnitude of <V . R3> is about 9 times smaller than its horizontal counterpart. This means that
Z
although the prediction performance is worse than predicting <V . Rf} hor’ <V . RiDj> ’s low magnitude makes it less
or ¥4

impactful on overall predictions of <V . R3>.
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Figure 9.34: Predicted <V . Rl.I;.>h sampled —1D, +1D, and +3D relative to turbine location at zj,,p,
or

Since Figure 9.35 does not yield any useful information, the predicted <V . R5.> line plots for the remainder of
z
the cases are not shown.

Figure 9.35: Predicted <V . RI.I}> sampled —1D, +1D, and +3D relative to turbine location at z,,j, for N-H-ParallelTurbines LES
z
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9.4.2. Higher Prescribed Velocity & Parallel Turbines

Compared to the case of N-H-ParallelTurbines LES, N-H-ParallelTurbines-HiSpeed has an extra DoF that is 10 m/s
Unup other than 8 m/s. This has led to a stronger horizontal acceleration due to turbulent shear stress due to greater
(k) applied in Equation (9.6) as visualised in Figure 9.36 including near the surface. This shows that even though
both N-H-ParallelTurbines and N-H-ParallelTurbines-HiSpeed are subject to the same ‘H’ zy condition, Up,p ap-
plied at zpy, = 90 m actually has a very large altitude range of influence. Other than magnitude, the trend of

<V . Rl.[;. >h downstream rotor wakes remain the same between LES cases subject to 10 m/s and 8 m/s Uy,,. The
or

same conclusion applies to the vertical acceleration due to turbulent shear stress depicted in Figure 9.37. Affected

by the artificial noise coming from the northern border of the second mesh refinement, some noises are spotted in
Figure 9.37 (a) in the northern border. Predictions of <V . Rﬁ.>hor from TBRE TBAB, and TBGB are lacklustre. A lot
of wrong predictions occurred at the tip free shear layer of rotors especially evident in the near rotor wake region.
On top of this, the mispredicted region has values way above the normal <V . Rl.[;. >h0rrange of [0, 0.1] m/s®. The wake

feature TB ML models did predict correctly is the diffusion of horizontal accelerations downstream.

(a) N-H-ParallelTurbines-HiSpeed LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.36: Predicted <V . RiDj >h of N-H-ParallelTurbines-HiSpeed LES at rotor plane, 1D, 2D, 3D, and 4D downstream
or



9.4. Turbulent Shear Stress Momentum Source 139

(a) N-H-ParallelTurbines-HiSpeed LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.37: Predicted <V . R£.> of N-H-ParallelTurbines-HiSpeed LES at rotor plane, 1D, 2D, 3D, and 4D downstream
z

The predictions of <V . R3.> is presented in Figure 9.37. While it is not the case for TBGB, wrong predictions
z

in tip free shear layers are less than those of <V . R£.> using TBRF and TBAB. Having said this, there exists a lot
of discontinuities in the rotor plane as well rotor wakes. Additionally, the problem of non-smooth prediction is
persistent.

The errors of predictions mentioned in the previous analyses can be quantified in Figure 9.38 for <V-RiDj>h0r.
First, the artificial noise introduced by the northern border of the second mesh refinement can be at the spurious
peak of LES ground truth spotted in Figure 9.38 at all three sample locations. Secondly, the match of peaks and
troughs at +1D is not as accurate as the predictions for N-H-ParallelTurbines LES and is less so the further down-

stream at +3D. Unsurprisingly, predictions of the southern turbine have a better accuracy as it was less affected by
artificial noise.

Figure 9.38: Predicted <V . RiDj >h sampled —1D, +1D, and +3D relative to turbine location at zy,,, for N-H-ParallelTurbines-HiSpeed LES
or
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9.4.3. Lower Surface Roughness & Parallel Turbines

This sections discusses the prediction results of another case with two DoE namely 0.001 m instead of 0.2 m zg
and parallel turbines. Figure 9.39 visualises the trend of <V . R5>h for N-L-ParallelTurbines LES. Compared to
or

V- R5>h of N-H-ParallelTurbines in Figure 9.32, <V . R3>h of N-L-ParallelTurbines experiences smaller hori-
or or

zontal acceleration everywhere as well thinner high horizontal acceleration ‘rings’ — similar to the findings of (G)
trend. This is expected as ‘L’ zp results in lower turbulent intensity in the flow field in general. When it comes to
comparing the predictions to TBRE TBAB, and TBGB to the ground truth, then first discrepancy to notice is the

over-prediction of <V-R3>h in rotor planes. Such over-prediction is more drastic than the same issue in N-H-
or

ParallelTurbines LES, suggesting some key characteristics at the rotor plane have not been learned. On the other
hand, the replication of the wake region have been adequate and arguably smoother than the predictions in the

wakes of N-H-ParallelTurbines LES. Having said this, it could also be due to small magnitude of <V'R3> not

hor

displayed in Figure 9.39.

(a) N-L-ParallelTurbines LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.39: Predicted <V . R3>h of N-L-ParallelTurbines LES at rotor plane, 1D, 2D, 3D, and 4D downstream
or

Figure 9.40 visualises the trend of <V~R£.> for N-L-ParallelTurbines . A comparison with the ground truth
Z

<V . Rll.3.> of N-H-ParallelTurbines shows a very identical result both in terms of wake trend, distribution, and value.
z

The difference lies in the ambient where N-H-ParallelTurbines LES possesses more downward acceleration from

<V . Rl.[;.> . The predictions from all three TB ML models again over-predict the rotor plane with TBGB being the
z

worst but appropriately recreated the trend of <V . RZ.L;> downstream in the wakes.
Z
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(a) N-H-ParallelTurbines (b) TBRF

(c) TBAB (d) TBGB

Figure 9.40: Predicted <V . RiDj> of N-L-ParallelTurbines LES at rotor plane, 1D, 2D, 3D, and 4D downstream
V4

The appropriate recreation of rotor wakes has been recorded by the sample lines too in Figure 9.41 for <V . Rg. >h0r.
TBDT has the largest discrepancy amongst all TB ML models at +3D while, thanks to bagging, TBRF achieved the
closest match. The quantitative plot of <V RD > shows a more stable curve of the ground truth compared that in ‘H’
zo. Nonetheless, this does not results in better match from the predictions.

Figure 9.41: Predicted <V . RiDj>h sampled —1D, +1D, and +3D relative to turbine location at zj,,j, for N-L-ParallelTurbines LES
or

9.4.4. Lower Surface Roughness & Yawing Parallel Turbines
In the case of N-L-ParallelTurbines-Yaw LES where the northern turbine has 20° yaw counter-clockwise and the
southern turbine has 10° yaw, a trend of the rotor plane <V Rlz > distribution can be traced by following the result

of N-L-ParallelTurbines LES, southern turbine of N-L- ParallelTurblnes Yaw LES and then northern turbine of N-L-
ParallelTurbines-Yaw LES. The high horizontal acceleration caused by turbulent shear stress have rotated clockwise
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from the current view in Figure 9.42 while also moving gradually towards rotor hub. This is analogous to the trend
found for (G) in Figure 9.25. The trend of horizontal acceleration diffusion and dissipation in downstream turbine
wakes have stayed the same as that in N-L-ParallelTurbines LES with the exception that the wake of the northern

turbine slightly redirected towards north. Having inspected the prediction result of the previous cases, it bares no

surprise to observe a similar miss interpretation of <V . R£>h in the rotor plane. The diffusive and dissipative trend
or

of <V . Rg. >h has been recreated by all three TB ML models but problem of prediction consistency persists.

or

In Figure 9.43, the same rotation of rotor plane acceleration distribution can be seen for <V-R3.> . More-
Z
over, such rotation can even been noticed for the wake region of the northern turbine, now that the distribution
of <V . Ri[}> in a ring’ is not uniform like that of <V . Rl.[;. >h . The predictions from three TB ML models have cor-
z or

rectly reproduced the shape, distribution and even rotation of the vertical acceleration due to turbulent shear stress
in the wake but suffers from over-prediction in the rotor planes with TBGB performing the worst.

(a) N-L-ParallelTurbines-Yaw LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.42: Predicted <V : RZ >h of N-L-ParallelTurbines-Yaw LES at rotor plane, 1D, 2D, 3D, and 4D downstream
or
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(a) N-L-ParallelTurbines-Yaw LES (b) TBRF

(c) TBAB (d) TBGB

Figure 9.43: Predicted <V . R5> of N-L-ParallelTurbines-Yaw LES at rotor plane, 1D, 2D, 3D, and 4D downstream
V4

Figure 9.44 reveals the deficit between ground truth and predictions for N-L-ParallelTurbines-Yaw LES. Com-
pared to TBRE TBDT showed higher fluctuations in Figure 9.44. Between the northern turbine to the southern
one, a clear asymmetric at +1D can be found in northern turbine wake. Furthermore, at +1D, compared to N-L-
ParallelTurbines LES in Figure 9.41, a wider dip can be seen between rotor hub and northern rotor border as a result
of wake redirection. At +3D, all predictions are more off the truth. All of them over-estimated the amount of hori-
zontal acceleration caused by turbulent shear stress. This is the same situation as N-L-ParallelTurbines LES because,
after all, N-L-ParallelTurbines-Yaw LES should be harder to predict due to the additional yaw angles.

Figure 9.44: Predicted <V . Rg. >h sampled —1D, +1D, and +3D relative to turbine location at zy,;, for N-L-ParallelTurbines-Yaw LES
or

9.4.5. Lower Surface Roughness & Sequential Turbines
In this section, the prediction result of N-L-SequentialTurbines LES is revealed. Like N-L-ParallelTurbines-Yaw LES,
N-L-SequentialTurbines LES has three DoE, namely 0.001 m instead of 0.2 m zy, two turbines, and the second turbine
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located in the donwstream of the first turbine. The trend of <V . Rlpj > in rotor wakes are displayed in Figure 9.45 for the

horizontal magnitude and in Figure 9.46 for the vertical component. As can be seen in Figure 9.45 )(a), <V . Rll.3.>h
or

in the front turbine wake quickly diffuses and dissipates downstream. When it reaches the rear turbine, the intensity
is very small but still higher than the ambient, which shows the rear turbine is subject to a more turbulent inflow
than the front turbine. Additionally, the ‘double ring’ observed in the near wake of all previous cases including the
front turbine wake of this case, becomes wider and more diffusive in the near wake of the rear turbine. Moreover, for
the rear turbine, the flow experiences a much stronger acceleration between the free shear layer and the inner wake.
This can be confirmed by the velocity plot in Figure 8.11 (b) as the (U Yhor dip in the inner wake is more pronounced
than that of the front turbine. The outer ‘ring’ of the rear tip free shear layer, on the contrary, experiences much less
horizontal acceleration as (U), . in the free shear layer is very close to that of the free stream. This is because of the
more turbulent environment the rear turbine is subject to.

During the predictions of both turbines, it is surprising to see all three TB ML models were able to much less

over-estimation of <V . R5>h in the rear rotor plane while that of the front rotor plane were as over-estimated as
or

all previous cases. Not even the predictions of N-H-ParallelTurbines LES at the rotor planes have as good as a match
like this. Upon inspecting the difference between the turbines in N-H-ParallelTurbines LES and the rear turbine in
N-L-SequentialTurbines LES, it can be found that even though N-H-ParallelTurbines LES is conditioned to 0.2 m z
while N-L-SequentialTurbines LES is conditioned to 0.001 m zp, the environment around the rear turbine is even
more turbulent. As such, there must be a combination of mean flow features and turbine ALM characteristics that
led the flow in the rear rotor plane to a familiar setting to the trained TB ML models. Nevertheless, this does not
suggest the prediction is more accurate for the rear rotor plane. In fact, discarding the predicted magnitude, the

prediction shape of the rear rotor plane is arguably more off than that of the front rotor plane. Apart from the rotor
plane predictions, all TB ML models were able to correctly predict the diffusive and dissipative nature of <V . R3.>

hor
in the wakes. Furthermore, for the rear turbine, all three models recreated the ‘double ring’ of varying width and

magnitude in the near wake. Lastly, it can be seen that the TB ML models are more confused about lower horizontal
acceleration flows in the far wake as their flow characteristics are not as distinct as strongly turbulent flows.

(a) N-L-SequentialTurbines (b) TBRF

(c) TBAB (d) TBGB

Figure 9.45: Predicted < V. RiDj >h of N-L-SequentialTurbines at rotor plane, 1D, 2D, 3D, and 4D downstream
or
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The result of <V . Rf.3.> for the rear turbine shown in Figure 9.46 (a) does not have a very different wake shape
Z

like <V . R3>h . In fact, <V . R3.> in the rear turbine wake looks like a more diffusive version of that in the front
or Z

turbine wake. The predictions of three TB ML models well recreated the near wake of the front turbine. Although
the predictions also diffuse and dissipate downstream wakes, the values are pretty unstable as the ground truth itself

has a chaotic <V . R3> distribution in the far wakes.
Z

(a) N-L-SequentialTurbines (b) TBRF

(c) TBAB (d) TBGB

Figure 9.46: Predicted <V . R3> of N-L-SequentialTurbines at front rotor plane, 1D, 2D, 3D, 4D, 5D, and 6 D downstream it; rear rotor plane,
z
1D, 2D, and 3D downstream it

Quantitative result of <V . R3> is plotted in Figure 9.47 and Figure 9.48. Since there the turbines are sequential,

six lines instead of three have been sampled. They located at -1D, +1D, and +3D around each turbine. In Figure 9.47
and Figure 9.48, it can be seen that -1D of the rear turbine has significantly more horizontal acceleration due to

turbulent shear stress. Following this, the wake of the rear turbine also experienced more <V . R;I')j >h than the front
or

turbine. Grouping +1D, +3D, +6D of the front turbine together, a trend of the prediction accuracy implies that the
near wake of turbines are well learnt but less so in the far wake. Since the training case took the turbine wake as far as
+5D into account, there should be enough samples to train for the far wake. With this in mind, the reason for better
prediction in the near wake is more likely due to more distinct features in the more turbulent field. This goes to show
that the current feature set is not sufficient to learn far turbine wakes.
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Figure 9.47: Predicted <V . Rﬁ >h from TBDT and TBRE sampled —1D, +1D, and +3D relative to both front and back turbine location
or
respectively at zp,, for N-L-SequentialTurbines LES

Figure 9.48: Predicted <V . Rg. >h from TBAB and TBGB, sampled —1D, +1D, and +3D relative to both front and back turbine location
or
respectively at zy,,1, for N-L-SequentialTurbines LES

9.5. Summary

In an effort to quantify and rank the TB ML models, Table 9.1 shows the scoring of prediction quality using TBRE
TBAB, TBGB. The scores comes from a subjective view of the author. According to Table 9.1, the TBRF comes on
top, with TBAB and TBGB in similar performance. However, it has been noticed that when doing predictions, TBRF
would need significantly more memory than TBAB and TBGB because TBRF does median prediction of all deeply
grown TBDT. Although TBAB also does weighted median prediction, each TBDT of it is a shallow tree instead.
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Table 9.1: Scoring of prediction quality for TBRE TBAB, and TBGB, based on turbulent state, (G), and <V . RL.L;.>

| TBRF | TBAB | TBGB

N-H-ParallelTurbines 2 1 1
N-H-ParallelTurbines-HiSpeed 2 2 0

Turbulent state N-L-ParallelTurbines 1 1 1
N-L-ParallelTurbines-Yaw 1 0 0
N-L-SequentialTurbines 0 0 1
N-H-ParallelTurbines 2 2 2
N-H-ParallelTurbines-HiSpeed 2 2 1

(G) N-L-ParallelTurbines 2 2 2
N-L-ParallelTurbines-Yaw 2 2 2
N-L-SequentialTurbines 2 2 2
N-H-ParallelTurbines 1 1 1
N-H-ParallelTurbines-HiSpeed 0 0 0

<V ‘R le > N-L-ParallelTurbines 2 2 1
N-L-ParallelTurbines-Yaw 1 1 1
N-L-SequentialTurbines 1 1 1

\S}
—
—
\]
—
(<]

Total
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Result of Mapping Low Fidelity Flow Features
to High Fidelity Turbulence Anisotropy Fields

This chapter discusses the result of using TB ML models to recreate LES mean turbulent fields. The TB models have
been trained on 51 SOWFA RANS mean flow features as FS1, FS2.1, and FS2.2, described in Table 3.2, Table 3.3,
and Table 6.1 respectively. Similar to Chapter 9, three main turbulent characteristics will be compared, namely
turbulence states in Section 10.2, turbulence production rates in Section 10.3, and turbulent shear stress momentum
source in Section 10.4. But before showing the aforementioned prediction results, mean flow features from SOWFA
RANS used for training is illustrated in Section 10.1.

10.1. RANS Mean Flow Feature

This section discusses the key difference of the the ML results presented in this chapter - RANS mean flow feature
rather than LES mean flow feature input as in Chapter 9. Next, the effect of feature selection as a preprocess of the
ML framework in Figure 6.2 is demonstrated. Last but not least, the outlier and novelty detected by trained IF is
presented as a foundation for later predicted mean turbulent flow field analysis.

10.1.1. Feature Selection & Importance

The feature importance plots of the four trained TB models can be seen in Figure 10.1. Before training, all 51 RANS
mean flow features of N-H-OneTurbine have been fed to a TBRF of 3,200 shallow TBDT to filter out features with im-
portance less than 0.1-median importance. Compared to the median importance threshold applied in training with
LES mean flow features, 0.1-median is used instead since the amount of samples used for training is only 15.6%
of N-H-OneTurbine LES training samples thanks to the coarser mesh of N-H-OneTurbine RANS. Consequently,
0.1-median importance threshold posed a less stringent requirement on feature importance, with the 0.1-median
line barely seen in Figure 10.1, at 0.0014. Furthermore, as 3,200 shallow TBDT each have a distinct perspective of
feature importance, the standard deviation of each feature’s importance metric has been shown too. Although some
features bare higher standard deviation than others, i.e. the importance of such feature varies a lot among shallow
TBDT, their standard deviation range also scales with their corresponding importance. Therefore, a feature with low
importance is will have relatively low importance in every shallow TBDT.

During training, only features that have been filtered by the TBRF feature selector have an importance metric
larger than 0 as expected. Like the feature selection result in N-H-OneTurbine LES mean flow features, the result here
shows a tremendous mismatch between the TBRF feature selector and the actual training outcome on feature 1: S?,
and feature 11 QA;. Additionally, several features between feature 36 and feature 47, that are involves 5+ symmetric
and anti-symmetric tensors of S, Q, A, and A, mismatched as well, just that not as significant since these features
still have relatively low importance regardless of method. Recalling that the IF is trained on a randomly subsampled
data set of 10,000 samples from the training set, the mismatches can be attributed to the subsample set not being
representative of the whole training data set. Nevertheless, this would not have made a difference as the feature

filter threshold of 0.1-median importance is so low such that only feature 48: min(\/fd /(50v),2| was eliminated,

which opposes its relatively significant importance in the periodic hill verification case again but inline with in N-H-
OneTurbine LES mean flow feature importance in Figure 9.1 and its cause explanation in Section 9.1.1 — only that in

149



150 10. Result of Mapping Low Fidelity Flow Features to High Fidelity Turbulence Anisotropy Fields

this case, as diin becomes 5 m due to coarser RANS mesh with no refinement, k has to be smaller than 1e-8 m?/s?
for feature 48 to take effect.

To compare feature importance across different TB ML models, TBAB seems to exert the best agreement with the
TBREF feature selector. While TBRF has a moderate agreement with the TBRF feature selector, TBGB and especially
TBDT have shown most disagreement with the TBRF feature selector. In particular, feature 50 k/e/ (1/11S;;11) shows
the most disparity between TBAB and other TB models. Lastly, the wind turbine specific feature 51: v/kr/v has been
deemed as not important the TBRF feature selector but enjoyed much higher importance in reality by all three TB
ML models during training.

(a) TBDT (b) TBRF

(c) TBAB (d) TBGB

Figure 10.1: Feature importance of all 51 features after feature selection, grid-search, and training on the whole training data set. Orange shaded
area is the standard deviation of the TBRF feature selector

10.1.2. Outlier & Novelty Detection

With N-H-OneTurbine RANS mean flow feature 48: min(\/fd /(50v), 2) removed as a result of 0.1-median importance
threshold feature selection, an IF of 1,600 DT is employed to detect 10% outlier and inferred novelty from the remain-
ing 50 features. Figure 10.2 shows the detected 10% outlier in N-H-OneTurbine RANS and inferred novelty in N-H-
ParallelTurbines RANS mean flow features, displayed in grey. As the IF is trained on selected N-H-OneTurbine RANS
mean flow features at the slice of zp,p, the displayed outliers of N-H-OneTurbine RANS are mostly concentrated
around the turbine, especially its free shear layers in the near wake where the rotation rate is the strongest at the
slice of zp,p. Moreover, the outlier distribution expands downstream from rotor hub towards rotor apex. The same
trend is seen for N-H-ParallelTurbines RANS. Moreover, the shape and size of the novelty in N-H-ParallelTurbines
RANS remain largely identical to the outliers detected in N-H-OneTurbine RANS. This implies that the flow features
outside the outlier/novelty zone in N-H-ParallelTurbines RANS are likely to be predicted properly by TB ML models
trained on N-H-OneTurbine RANS.
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(a) 10% outlier from N-H-OneTurbine RANS features (b) Resultant novelty from N-H-ParallelTurbines RANS features

Figure 10.2: Outlier and novelty detection from N-H RANS cases visualised at zp,p, Zmid, and zapex, after fitting IF to N-H-OneTurbine RANS
training data set. The Barycentric map is mapped from LES as ground truth

10.2. Turbulence State

Similar to the analysis flow in Section 9.2, the turbulence state is presented for TBRE TBAB, and TBGB after training
on the second mesh refinement zone of N-H-OneTurbine RANS (although no mesh refinement is actually done),
and compared with the ground truth from N-H-ParallelTurbines LES. However, as N-H-ParallelTurbines RANS uses a
much coarser mesh without mesh refinement, the ground truth from N-H-ParallelTurbines LES has been mapped to
the RANS mesh. At first, the slices of the barycentric map at zhup, Zmid, and Zapex will be presented. Then, isovolumes
of the barycentric map where the red colour is 255 will be revealed to gauge the prediction power at reconstructing
3D structures.

Figure 10.3 plots the barycentric map at the aforementioned heights for the mapped ground truth and three pre-
dictions. As the ground truth is mapped, the turbulence state field can be observed to be more blurry than that
from N-H-ParallelTurbines LES in Figure 9.5. Furthermore, it can immediately be seen that all three TB ML mod-
els have noticeable deficiencies. First, both TBRF and TBGB have wrongly recreated the flow field in the northern
turbine induction zone. TBGB even predicted the tip free shear layer in the near wake of the northern turbine as two-
component turbulence instead of axisymmetric expansion. TBAB did not encounter the mis-interpretation occurred
for TBRF and TBGB but suffers from noisy prediction. TBRE despite the wrong prediction in the northern turbine
induction zone, maintained the smoothest prediction. In the wake regions, some details have been captured by all
three TB ML models, such as isotropic turbulence in between tip and root free shear layers; the small axisymmetric
turbulent expansion streak in the near wake of turbines at zy; and axisymmetric turbulent expansion to axisym-
metric turbulent contraction transition in the far wake at zapex. TBRF was even able to capture a small portion of tip
axisymmetric turbulent contraction at turbine tips. What is also of interest is the deviance between predicting the
southern and northern turbine for TBRF and TBGB. Although the number of training samples have greatly reduced
from 4.5 million to 70,000, this could be a result of over-fitting rather than the number of training samples as the
TBAB was able to find a good configuration with the same set of training samples after GS.
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(a) N-H-ParallelTurbines LES mapped onto RANS mesh (b) TBRF

(c) TBAB (d) TBGB

Figure 10.3: Predicted Barycentric map at zpyl, Zmid, and Zapex for N-H-ParallelTurbines RANS, after training on N-H-OneTurbine RANS input
features and N-H-OneTurbine LES <bl~ j> output

The isovolume of the barycentric map where red colour value is 255 is visualised in Figure 10.4. Again, due to
mesh being much coarser in RANS (10 m vs. 2.5 m cell size), the isovolume becomes leaner than that in Figure 9.7.
Compared to the mapped ground truth, both TBRF and TBAB were able to reconstruct the shape of the northern
turbine. TBGB, on the other hand, reconstructed less 3D structure for the northern turbine. Having said this, all three
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TB ML models have under-estimated axisymmetric turbulent expansion at the lower part of the southern turbine
isovolume. This finding shows that good result in slice plots of Figure 10.3 does not translate to equally good 3D
connectivity.

(a) N-H-ParallelTurbines LES mapped to RANS mesh (b) TBRF

(c) TBAB (d) TBGB

Figure 10.4: Predicted 255 red colour value isovolume of the barycentric map for N-H-ParallelTurbines RANS, after training on N-H-OneTurbine
RANS input features and N-H-OneTurbine LES <b,~ j> output

10.3. Recreating LES Turbulent Energy Production Rate

In this section, the turbulent energy production rate (G) is attempted to recreate with predicted (b;;). The recon-
struction of (G) involves only RANS flow variables.

G=R;j(uij), (10.1)
in which
<Rij> =2k 3 +bij|. (10.2)
The reconstructed G is then o
G=R;j(uij), (10.3)
where 5
R = Zk(g +<bij>). (10.4)

As TB ML models here are only employed to map RANS mean flow features to LES (b; ), no improvement is done
on RANS mean flow features by either predicted (b; ;) or (b;;) from LES. Therefore, a value deviation is expected.

However, plotting G from RANS vs. G with (bij) can provide insight into how much difference TB ML models can
make in terms of magnitude improvement as well wake shape detail. To do this, Figure 10.5 and Figure 10.6 present
the prediction result of N-H-ParallelTurbines RANS using TBRE TBAB, and TBGB respectively. At +1D downstream
turbines, the improvement in magnitude is not obvious. However, more peaks and troughs of the curve can be found
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at the northern side of turbines for the prediction that also correctly coincide with the ground truth LES curve. At
+3D downstream turbines, the magnitude improvement comes into play with peaks being stronger by predictions
and closer to the ground truth. Having said this, the gap to LES ground truth is still quite significant and it bares the
question that whether the significant deficit is a cause of the TB ML model limitation or the limitation of RANS and
ADM. Finally comparing amongst TB ML models, TBGB can be seen to have the smallest dip of G in the northern
side of turbines. As such, TBGB is considered to predict closest to the ground truth. Although G’s prediction of the
turbulence state in Section 10.2 has been the worst, it does not necessarily translate to bad prediction when putting

(bij) in use in Equation (10.4) and Equation (10.3).

Figure 10.5: (G) for N-H-ParallelTurbines using TBRF and TBAB trained on N-H-OneTurbine RANS mean flow feature inputs and
N-H-OneTurbine LES mean b; ; output

Figure 10.6: (G) for N-H-ParallelTurbines using TBGB trained on N-H-OneTurbine RANS mean flow feature inputs and N-H-OneTurbine LES
mean b; ; output

10.4. Recreating LES Turbulent Shear Stress Momentum Source
In this section, prediction results of the turbulent shear stress momentum source V - ng. for N-H-ParallelTurbines
RANS using TBRE TBAB, and TBGB are revealed. The formulation of V - Rg. in RANS is described as

VR =V-(2kbij), (10.5)

in which b;; can be replaced with the predictions to formulate predicted turbulent momentum source in

—

V-RD =2kV-(bij). (10.6)

Similar to the situation in Section 10.3, there will be a discrepancy if V - Rl.[;. were to be compared with the ground
truth from LES simply because k in Equation (10.6) still comes from the original RANS without any influence from

—

(bij). Fortunately, V - Rg. is a vector field in three directions so that the vector direction of it can be visualised. This
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visualisation will not taken into account of k, thus making the comparison between LES and reconstructed result
from RANS consistently. With this in mind, Figure 10.7 displays the quiver plots of V- Rg. at zpypfor ground truth,
reconstruction from RANS using TBRE TBAB, and TBGB respectively. Inspecting on Figure 10.7 (a), it can be seen
that the quivers in tip free shear layers are pointing downstream and out of the wake. Few free stream quivers can
also be observed to have a direction opposite the flow direction in order to slow the flow down - afterall, V- Rg.
represents acceleration/deceleration caused by turbulent shear stress. In the root free shear layer, V- RiDj exhibits
identical strength as that of tip free shear layers. However, the direction of the quivers there are more random even
with 5,000 s time-averaging done in LES. Furthermore, root free shear layers have shorter region of large V - Rlpj such
that the tip free shear layers gradually fold toward rotor centres.

Comparing the predictions to the ground truth, TBAB immediately stands out amongst the three TB ML models
thanks to its better prediction in the northern turbine induction zone. This result mimics the what has been revealed
in the turbulence state. In addition, all models had a better prediction of the southern turbine over the northern one
as another consistent finding with the turbulence state. Looking at the wake details, both TBRF and TBAB were able
to reconstruct V - Rg. correctly in the tip free shear layers in both the near and far wake region. TBGB managed to
predict the right vector directions in tip free shear layers but has way more misplacement of these quivers. For root
free shear layers, as the trend of vector direction is hard to find for the ground truth itself, the vector direction is not
compared. Nonetheless, all three TB ML models possess the problem of under-estimate of root free shear layer size.
This is especially prominent for the northern turbine.

(a) N-H-ParallelTurbines LES, vector magnitude of range [0.01, 0.1] m/s? is shown (b) TBRE vector magnitude of range [0.005, 0.05] m/s? is shown

(c) TBAB, vector magnitude of range [0.005, 0.05] m/s? is shown (d) TBGB, vector magnitude of range [0.005, 0.05] m/s? is shown

Figure 10.7: Prediction of time-averaged turbulent shear stress momentum source quiver slice at zj,,, for N-H-ParallelTurbines RANS, after
training on N-H-OneTurbine RANS input features and N-H-OneTurbine LES <b,- j> output

By comparing sampled RANS result, reconstructed result, and LES result, the predictions’ capability of the right
wake peak and trough locations is put to test. As mentioned before, since V- Rlp. contains k that is from the original
RANS field, discrepancies in magnitude between the reconstructed result and LES result is expected. With this in

mind, Figure 10.8 presents the comparison for TBRE while Figure 10.9 and Figure 10.9 present the comparison for
TBAB and TBGB respectively. In Figure 10.8 and Figure 10.9 (a), the resultant horizontal component of V - Rlpj is
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plotted. For the southern turbine, the peaks and troughs of the reconstructed line can match the ground truth and
the amplitude has been improved over RANS for both +1D and +3D downstream turbines. The predictions of the
northern turbine using TBRF and TBAB, on the other hand, only improved the amplitude of the curve but not the
shape at +1D. The inability to recreate curve shape recovered at +3D for TBRF and TBAB.

@ (v:55) o (i),

hor
Figure 10.8: Components of <V . RiDj> for N-H-ParallelTurbines using TBRF trained on N-H-OneTurbine RANS mean flow feature inputs and
N-H-OneTurbine LES mean b; ; output

D D

@(v-RD), &) (v-RD)

Figure 10.9: Components of <V . R3> for N-H-ParallelTurbines using TBAB trained on N-H-OneTurbine RANS mean flow feature inputs and
N-H-OneTurbine LES mean b; ; output

For TBGB in Figure 10.10 (a), the prediction result is a little different. To begin with, TBGB completely missed the
highest peak at +1D in the southern turbine which TBRF and TBAB at least predicted the right peak location. On the
other hand, TBGB was able to predict not only the highest of the northern turbine, but also predict other peaks and
troughs in the northern turbine better than TBRF and TBAB.
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Figure 10.10: Components of <V . RiDj> for N-H-ParallelTurbines using TBGB trained on N-H-OneTurbine RANS mean flow feature inputs and
N-H-OneTurbine LES mean b; ; output
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Results of Data-driven Wind Plant Simulations

As a result of LES (b;;) injection into RANS, the turbulent flow field is directly affected by improved accuracy of
b; j, followed by indirect improvement of the mean resolved flow field. In this chapter, the results of the data-driven
RANS is provided. To begin with, the b;; field with and without injection is presented in Section 11.1 in the form
of turbulence state and the difference is discussed. Because of b;; difference during the simulation, the resultant
turbulent flow fields are presented from Section 11.2 to Section 11.4. The impact of the improved turbulent flow
fields results in Section 11.5. And finally, as another interesting insight in performing wind plant CFD simulations,
the wind turbine statistics using the data-driven technique will be presented in Section 11.6.

11.1. Turbulence state Correction

For the data-driven approach applied to SOWFA RANS, the approach refers to injecting the LES (b; ;) that is of higher
accuracy into pure SOWFA RANS. Two cases, namely N-H-OneTurbine and N-H-ParallelTurbines , have been simu-
lated and analysed. Fortunately, during both simulations of N-H-OneTurbine and N-H-ParallelTurbines , 100% (b; ;)
from N-H-OneTurbine LES and N-H-ParallelTurbines LES respectively have been successfully injected. With this in
mind, when reviewing the turbulence state of a data-driven RANS turbulent flow field, there is no surprise to see
the state matches that of LES exactly. This is displayed in Figure 11.1 for N-H-OneTurbine and Figure 11.2 for N-H-
ParallelTurbines . As mentioned, Figure 11.1 (b) and (c) match exactly due to 100% LES (b; ;) injection. The only
difference is the resolution of the field as the RANS mesh has no mesh refinement while the LES mesh received mesh
refinement twice in the vicinity of turbines. Nonetheless, the identity between Figure 11.1 (b) and (c) does suggest
(bij) mapping has been performed properly. Between pure RANS and other CFD methods, a clear deficiency can be
found. SOWFA RANS regarded the free stream as unanimously isotropic turbulence instead of a mix of axisymmetric
turbulent expansion and axisymmetric turbulent contraction . Moreover, the turbine induction zone has been iden-
tified as axisymmetric turbulent expansion in RANS compared to a mix of axisymmetric turbulent expansion and
axisymmetric turbulent contraction in LES and data-driven RANS. In the wake region, free shear layers have been
classified as axisymmetric turbulent contraction in RANS instead of axisymmetric turbulent expansion in LES and
data-driven RANS. The near wake region between the tip free shear layers contains much less detail in RANS and
some two-component turbulence exists when it should have been one-component turbulence. Last but not least,
rotor wakes in RANS is much shorter than LES and data-driven RANS especially in between tip free shear layers. As
will discovered later, this has an impact not only to turbulence flow fields but also resolved mean flow fields.

159
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(a) RANS (b) RANS with 100% LES <b,-j> injection (c) LES

Figure 11.1: Barycentric map at zpyp, Zmid, and Zapex for N-H-OneTurbine using various CFD methods

(a) RANS (b) RANS with 100% LES <b,- j> injection (c) LES

Figure 11.2: Barycentric map at zpyp, Zmid, and Zapex for N-H-ParallelTurbines using various CFD methods

11.2, Turbulence Production Rate

Described in Equation (9.2) for LES and Equation (10.1) for RANS and data-driven RANS, b;; directly influence the
rate at which turbulent energies are produced. Three types of visualisation is used. The first one is a horizontal
slice plot, showing the trend of and magnitude of G at various height of interest including znup, Zmid, and Zapex.
The second type visualises the 3D structure of G at 0.02 m?/s® to discuss the impact of data-driven RANS on 3D
structure coherence. The last type of visualisation focuses on the quantitative analysis of G produced by RANS and
data-driven RANS. With these in mind, Figure 11.3 shows the slice plots of G for the N-H-OneTurbine case using
RANS, data-driven RANS, and LES. Between RANS methods and LES, the biggest difference is the magnitude of G.
Considering G is affected not only by b;; but also U and k, either or both of the two can be the culprit of the small G
magnitude in RANS methods. Enabling data-driven capability on RANS did not help in terms of magnitude thereof.
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Apart from the magnitude, the shape of rotor wakes got improved by using data-driven RANS, with visibly longer
wake structure as well as more details of the tip free shear layers. Nevertheless, the injected LES (b; ;) also brings in
non-smooth wake features that are not present in either pure RANS or LES.

(a) RANS (b) RANS with 100% LES (b;; ) injection (c) LES mean

Figure 11.3: (G) at zpyp, Zmid, and Zapex for N-H-OneTurbine using various CFD methods

(a) RANS (b) RANS with 100% LES (b; ) injection (c) LES mean

Figure 11.4: (G) at zpyp, Zmid, and zZapex for N-H-ParallelTurbines using various CFD methods

Figure 11.5 and Figure 11.6 display G isosurface of N-H-OneTurbine and N-H-ParallelTurbines respectively. Since
the magnitude gap between RANS methods and LES is too large, visualising 0.1 m?/s® isosurface of (G) like in Fig-
ure 9.17 would result in empty field for RANS methods, 0.02 m?/s® isosurface of G is visualised instead and not
comparison between LES and RANS methods is made. Nonetheless, the comparison between pure RANS and data-
driven RANS can be made and the elongated wake is visible for the whole circumference of the tip free shear layers.
In addition, a ring at rotor planes can be spotted, similar to the discovery in Figure 9.17 for LES. Near the ground, a
thin layer of high turbulent energy production rate is found for data-driven RANS to properly reflect high zy of both
N-H-OneTurbine and N-H-ParallelTurbines RANS cases.
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(a) RANS (b) RANS with 100% LES <b,~ j> injection

Figure 11.5: 0.02 m?/s3isosurface of (G) for N-H-OneTurbine . A vertical slice of (G) perpendicular to rotor plane is plotted through turbine
centre.

(a) RANS (b) RANS with 100% LES <b,— i > injection

Figure 11.6: 0.02 m?/s%isosurface of (G) for N-H-ParallelTurbines . A vertical slice of (G) perpendicular to each rotor plane is plotted through
each turbine centre.

Finally, the quantitative comparison amongst three CFD methods are revealed in Figure 11.7, with Figure 11.7
(a) showing the result of N-H-OneTurbine while (b) showing the result of N-H-ParallelTurbines . In both sub-figures
of Figure 11.7, clear improvement can be seen in terms of both magnitude and curve shape. The details of the near
rotor wake at +1D in between tip free shear layers have been recreated by data-driven RANS. On the other hand, for
the far rotor wake at +3D, some non-existent flow features have been generated by data-driven RANS such as the
kink in the southern tip free shear layer of the turbine in Figure 11.7 (a) and the dip in the northern tip free shear
layer.
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(a) N-H-OneTurbine (b) N-H-ParallelTurbines

Figure 11.7: {G) for N-H-OneTurbine and N-H-ParallelTurbines using various CFD methods, horizontally sampled at -1D, +1D, and +3D relative
to turbine locations

11.3. Turbulence Model Correction

Having analysed G in Section 11.2 and witnessed the difference between the G from RANS and RANS with data-
driven approach, this section presents the result of turbulence model correction that has been contributed by the
correction of G. As the turbulence model of choice is k-¢ turbulence model, k and e will be reviewed individu-
ally. Moreover, two types of visualisation will be presented: horizontal slice plots around the turbine to show qual-
itative result, complemented by the quantitative horizontal line plots sampled -1D, +1D, and +3D w.r.t. turbine
locations. Figure 11.8 shows the horizontal slices of k for N-H-OneTurbine while Figure 11.9 shows those for N-
H-ParallelTurbines with various CFD methods. The magnitude of k are much less different amongst different CFD
methods than that case for G. This is especially true for the free stream and ambient. Nevertheless, rotor wakes in
RANS still possess a little less turbulent energy than those in LES. By enabling data-driven technique, the magnitude
deficit slightly reduces. Furthermore, more wake features are recreated with data-driven RANS, such as the asym-
metrical expansion of tip free shear layers downstream rotor wakes. Due to data-driven RANS, even the ambient is
subject to LES characteristics, as evidenced by the subtle energy streaks along the wind direction at zp,,. Despite
these improvements, the velocity dip in between tip free shear layers as observed in LES is not seen for neither RANS
nor data-driven RANS.

(a) RANS (b) RANS with 100% LES < b; j> injection (c) LES mean

Figure 11.8: k at zpyp, Zmid, and Zapex for N-H-OneTurbine using various CFD methods



164 11. Results of Data-driven Wind Plant Simulations

(a) RANS (b) RANS with 100% LES <b,- j> injection (c) LES mean

Figure 11.9: k at zpyp, Zmid, and Zapex for N-H-ParallelTurbines using various CFD methods

The quantitative line plots of k for N-H-OneTurbine and N-H-ParallelTurbines are revealed in Figure 11.10. At
+1D downstream rotor planes, k simulated with data-driven RANS did not improve over RANS in either curve shape
or k magnitude. This changed at +3D downstream where data-driven generated a curve with much stronger ampli-
tude towards the ground truth. This finding correlates with G curves in Figure 11.7.

(a) N-H-OneTurbine (b) N-H-ParallelTurbines

Figure 11.10: k for N-H-OneTurbine and N-H-ParallelTurbines with various CFD methods, horizontally sampled at -1D, +1D, and +3D relative to
turbine locations

The second transport equation to be solved in k-¢ turbulence model, € transport, is shown in Figure 11.11 for
N-H-OneTurbine and Figure 11.12 for N-H-ParallelTurbines with various CFD methods. It is interesting to see that
with data-driven in effect, € becomes much more pronounced than both pure RANS and LES especially in tip free
shear layers at the far rotor wakes. With that said, it has to be noted that € from LES is predominantly modelled,
meaning it cannot be taken as ground truth. As such Figure 11.11 and Figure 11.12 merely presents the resultant e
field with not much comparison to be done. Nevertheless, as € is not only solved in data-driven RANS but also with
LES (b; j), Figure 11.11 and Figure 11.12 should provided to closest € to reality. And due to lack of ground truth, the
quantitative plot of € serves no purpose and is not presented here.



11.4. Turbulent Shear Stress Momentum Source 165

(a) RANS (b) RANS with 100% LES <bi j> injection (c) LES mean

Figure 11.11: € at 2y}, Zmid> and Zapex for N-H-OneTurbine using various CFD methods

(a) RANS (b) RANS with 100% LES <bi j> injection (c) LES mean

Figure 11.12: € at Zpyp, Zmid, and Zapex for N-H-ParallelTurbines using various CFD methods

11.4. Turbulent Shear Stress Momentum Source
By having accurate b;; and improved k due to 100% LES (b; ;) injection, an improved R;; is in place because of its

definition in Equation (10.2). With this new R; j, a more accurate turbulent shear stress momentum source <V . R3>
defined in Equation (10.5) can thereby be expected. To illustrate the influence of data-driven RANS on <V . R3>,
three types of visualisation will be presented, namely quiver plots to show <V . RI.L;.> trend downstream and its vec-

tor orientation; horizontal slices to compare magnitude of <V-R£.>h as well as <V-R£.> of various CFD meth-
or z

ods; and finally quantitative line plots sampled -1D, +1D, and +3D w.r.t. turbine locations for <V‘R£. >h and
or

<V-Rl.[;.> separately. To begin with, Figure 11.13 displays the ground truth <V-R£.> from N-H-OneTurbine and
z

N-H-ParallelTurbines LES. For comparison, Figure 11.14 illustrates the <V . RZ.L;> quiver plots using RANS and data-
driven RANS for N-H-OneTurbine while Figure 11.15 illustrates those for H-ParallelTurbines. Between LES and RANS
vector field, it can be immediately seen that the LES vector field is more stochastic while RANS vector fields are more
organised. This is normal as LES vector field is the result of statistical averaging and the uniformity of the quivers
strongly depends on how the averaging is performed. Comparing between pure RANS and data-driven RANS in Fig-
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ure 11.14 and Figure 11.15, it can be seen that more quivers appear in tip free shear layers filtered by the selected
<V . Rlpj> magnitude range of [0.005, 0.05] m/s?. Moreover, the quiver orientations in between tip free shear layers
displayed more downward direction in the lower part of the rotor as most notably seen in +4D downstream. This
is inline with the result shown in Figure 11.13. Lastly, <V-RZ.> vectors near the ground picked up some upward

direction in data-driven RANS. <V-R3> vectors in Figure 11.13 also contain vertical component. However, their
directions are the opposite of the ones in data-driven RANS.

(a) N-H-OneTurbine LES (b) N-H-ParallelTurbines LES

Figure 11.13: Ground truth <V . R3> quiver plot from N-H-OneTurbine and N-H-ParallelTurbines LES at rotor plane, 2D, and 4D downstream.
” <V . Rg. > ” is plotted at zp,. u <V . Rg.> H in [0.01, 0.1] m/s%is displayed

(a) RANS (b) Data-driven RANS

Figure 11.14: <V . Rg.> quiver plot for N-H-OneTurbine at rotor plane, 2D, and 4D downstream. ” <V . RZ. > ” is plotted at zy,,. ” <V . RiDj> u in
[0.005, 0.05] m/s?is displayed
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(a) RANS (b) Data-driven RANS

Figure 11.15: <V . RZ.> quiver plot for N-H-ParallelTurbines at rotor plane, 2D, and 4D downstream. H <V . RiDj> ” is plotted at zy,,. ” <V . RiDj> ” in
[0.005, 0.05] m/s?is displayed

Figure 11.16 and Figure 11.17 shows the horizontal slices of <V RD >h for N-H-OneTurbine and N-H-ParallelTurbines
respectively. The magnitude difference displayed amongst RANS, data drlven RANS, and LES is obvious in the far
wake region. In RANS, dissipation of <V “R; j> o is much faster than LES. Such issue has been tackled by data-driven
RANS and all characteristics of the wake observed in LES are visible in data-driven RANS as well. Nevertheless, both
RANS methods still lack a bit of strength in <V . RZ>hOr compared to that in LES, solely due to k because of Equa-

tion (10.5). Recalling the strength of G was also lacking in RANS methods due to either or both k and u, with the
fact that k in RANS methods is indeed smaller than that in LES in rotor wakes, it can be concluded that k has caused
the magnitude deficit of both G and <V . R3>h0r. Furthermore, enabling data-driven approach was not effective in
bringing up the magnitude of aforementioned turbulent quantities which begs for further investigation.

(a) RANS (b) RANS with 100% LES (b;; ) injection (c) LES mean

Figure 11.16: <V . Rﬂ >h at Zhyb, Zmid, and Zapex for N-H-OneTurbine using various CFD methods
or
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(a) RANS (b) RANS with 100% LES <b,- j> injection (c) LES mean

Figure 11.17: <V . RiDj>h at Zhyb, Zmid, and zapex for N-H-ParallelTurbines using various CFD methods
or

If attention is paid to the quantitative comparison of <V . Rg. >h for the three CFD methods, one can see a clear
or

step-up of both magnitude and shape matching in Figure 11.18 at both +1D and +3D downstream. The improvement
at +3D is the biggest of the two, which coincides with the larger improvement seen in Figure 11.16 and Figure 11.17.

(a) N-H-OneTurbine (b) N-H-ParallelTurbines

Figure 11.18: <V . R3>h for N-H-OneTurbine and N-H-ParallelTurbines using three CFD methods, horizontally sampled at -1D, +1D, and +3D
or
relative to turbine locations

As the complementary component of <V . R£.>, <V . Rl.[;> of the three CFD methods are revealed in Figure 11.19

z
for N-H-OneTurbine and Figure 11.20 for N-H-ParallelTurbines . In pure RANS, a lot of details of rotor wakes have
been - the only characteristic it captured is the direction shift of <V RD > from one side of a rotor wake to the other.

Having said this, more details does not necessarily mean better sunulatlon if the additional details are just a result
of field fluctuation. As can be seen in Figure 11.19 and Figure 11.20 (c), it is the case for LES because the magnitude

<V . Rﬁ.> much smaller than that of <V . R3>h thus requires longer statistical averaging to achieve the same level
z or

of relative precision. As 100% b;; used in data-driven RANS comes from LES, the fluctuating nature of insufficient
LES mean field has been carried over. Therefore, although more wake details are revealed in the near wake region,

non-smoothness are observed in the far wake region. Lastly, due to the non-smoothness of LES <V . R3.> fields,
Z
quantitative comparison of the three CFD methods does not yield much information and is not presented here.
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(a) RANS (b) RANS with 100% LES <b,» j> injection (c) LES mean

Figure 11.19: <V . RiDj> at Zphyb, Zmid, and Zapex for N-H-OneTurbine using various CFD methods
z

(a) RANS (b) RANS with 100% LES < b; j> injection (c) LES mean

Figure 11.20: <V . R3> at Zpyb, Zmid, and zapex for N-H-ParallelTurbines using various CFD methods
z

11.5. Resolved Mean Flow Field

Improvement in <V . R£> leads to improved mean velocity field due to <V . R5>’s involvement in the momentum

conservation in Equation (5.4). With this in mind, it is expected to see more pronounced far wake — where <V . R5>
changed the most between pure RANS and data-driven RANS. This has been confirmed by the horizontal velocity
magnitude slices in Figure 11.21 for N-H-OneTurbine and Figure 11.22 for N-H-ParallelTurbines using three CFD
methods. Although the far wake regions is subject to a wider and more pronounced wake, it is arguable if such
change is for the better or worse due to an over-estimation of the velocity deficit in the wake centre in data-driven
RANS. Such peculiarity appears abnormal considering the data-driven RANS of <V . R3.> in Section 11.4 has been
quite successful without any magnitude exaggeration.
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(a) RANS (b) RANS with 100% LES <b,- j> injection (c) LES mean

Figure 11.21: (U at Zhyb, Zmid, and Zapex for N-H-OneTurbine using various CFD methods

(a) RANS (b) RANS with 100% LES <b,- j> injection (c) LES mean

Figure 11.22: (Udpor at Zhyb, Zmid, and Zapex for N-H-ParallelTurbines using various CFD methods

In the quantitative comparison of (U)y,, in Figure 11.23, the extra horizontal velocity dip can be seen at +3D
downstream. At +1D downstream, only a small improvement can be seen in terms of both curve shape and magni-
tude by enabling the data-driven technique in RANS.
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(a) N-H-OneTurbine (b) N-H-ParallelTurbines

Figure 11.23: (U)o, for N-H-OneTurbine and N-H-ParallelTurbines using three CFD methods, horizontally sampled at -1D, +1D, and +3D
relative to turbine locations

When it comes to the vertical component of mean velocity, (u.), the improvement due to more accurate b;; is
more prominent. As shown in Figure 11.24 for N-H-OneTurbine and Figure 11.25 for N-H-ParallelTurbines using
three CFD methods, the wake structures are prolonged to match those from LES. However, a positive (u;) stride in
the northern side of turbine wakes can be spotted for data-driven RANS while non-existent in other CFD methods.
This is another example of exaggeration of LES wake characteristics using data-driven RANS although the reason
why only this part of the wake gets exaggerated remains unanswered.

(a) RANS (b) RANS with 100% LES < b; j> injection (c) LES mean

Figure 11.24: (uz) at zpyp, Zmid, and Zapex for N-H-OneTurbine using various CFD methods
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(a) RANS (b) RANS with 100% LES <b,- j> injection (c) LES mean

Figure 11.25: (uz) at Zpyh, Zmid, and zapex for N-H-ParallelTurbines using various CFD methods

By inspecting the line plots in Figure 11.26, the problem at the northern side of turbine wakes becomes very
obvious at +3D downstream and the cause of it can also be traced back to +1D downstream. What is interesting is
that the (u;) kink occurred approximately where (1) switched sign in LES. Despite this finding, the explanation for
the (u,) kink is unclear.

(a) N-H-OneTurbine (b) N-H-ParallelTurbines

Figure 11.26: (u;) for N-H-OneTurbine and N-H-ParallelTurbines using three CFD methods, horizontally sampled at -1D, +1D, and +3D relative
to turbine locations

11.6. Turbine Output

How does the mean velocity field from data-driven RANS help in increasing the accuracy of turbine outputs? In this
section, turbine thrust and power are compared amongst SOWFA RANS, data-driven RANS, and LES. Time averaged
turbine thrust (T) should roughly correlates to (U)? since

1 2
()~ SpU) (11.1)

while time averaged turbine power (P) roughly correlates (U)3 because
(P) ~(T)<U). (11.2)

Figure 11.27 shows the thrust comparison between (data-driven) RANS and LES. For the first 5,000 iterations, the
simulations are purely RANS, from 5,000 to 10,000 iterations, the LES (b; ) is gradually injected into the turbulence
production rate as well the shear stress momentum source. After 10,000 iterations, 100% of LES (b; ;) was achieved
and the simulations were running till convergence. The ‘Target’ line in Figure 11.27 is the average wind plant thrust
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gathered during the SOWFA LES and is regarded as the ground truth. With this information, it can be seen that
data-driven RANS also successfully improved the accuracy of the turbine outputs.

Figure 11.27: Turbine statistics of N-H-OneTurbine RANS

The same improvement is also seen for the N-H-ParallelTurbines case, as shown by Figure 11.28. However, the
output from the southern turbine greatly deviates from the northern one. It has been noted that during the SOWFA
LES of the N-H-ParallelTurbines case, the same turbine output deviation occurred. The cause should not be the
influence of the inflow since the inflow for SOWFA RANS has been horizontally averaged, i.e. uniform at each height.
Another variable that could cause the output differential would be the Coriolis forcing. Therefore, some investigation
is needed to understand such deviation.

Figure 11.28: Turbine statistics of N-H-ParallelTurbines RANS

11.7. Computation Cost

Finally, the last result of this thesis is the computation cost of each wind plant simulation performed. Figure 11.29
reveals the CPU hours needed to complete each simulation. It becomes rather clear that SOWFA RANS is 3.5 times
more efficient than their LES counter-part. Without the inclusion of the LES precursor that ideally should never be
included, the computation cost saving is even more magnificent. Combined with the positive improvement of tur-
bine outputs in the previous section, the data-driven RANS approach presented in this thesis shows great potential
in speeding up wind plant simulations of tomorrow.
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Figure 11.29: CPU hour comparison of SOWFA RANS, data-driven RANS, and LES
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Conclusions & Recommendations

This thesis investigated the efficacy of machine learning (ML) in the application of wind plant computational fluid
dynamics (CFD) simulations. The aim was to bring together recent data-driven turbulence modelling efforts and
wind plant CFD in atmospheric boundary layer (ABL) to find new means of fast and accurate wind plant CFD. The
following main objectives were achieved:

1. animproved tensor basis decision tree (TBDT) based ML framework over the original implementation of Kaan-
dorp [41] has been established that is easy to interpret prediction results and highly efficient to tackle dense
data sets from large scale wind plant simulations;

2. the mean flow fields of Large Eddy Simulations (LES) of a wind plant with only one turbine has been learned by
the improved ML framework and predictions of unseen wind plant layouts are ABL conditions are visualised
and analysed;

3. adata-driven approach in Reynolds-averaged Navier-Stokes (RANS) simulations of wind plants has been im-
plemented with the LES b;; provided as correction.

The work of this thesis revolves around discovering the answer to the three main research questions in Sec-
tion 1.1. Following the accomplishment of the main objectives, conclusions of this thesis are given in Section 12.1
and Section 12.2. Finally, recommendations are given in Section 12.3 to layout further research possibilities of this
topic.

12.1. To What Extent Can Mean Turbine Wake Anisotropy Fields in Atmospheric
Boundary Layers Be Represented by Machine Learning of High Fidelity

Mean Flow Fields?

The TB ML models, based on the theory of effective-viscosity hypothesis from Pope [70], have been used by Ling
et al. [51] as TB neural networks (TBNN) and Kaandorp [41] as TBDT and TB random forests (TBRF). In particular,
TBDT based models have been chosen because they provide the advantage of embedded Galilean and rotational
invariance that leads to better universality and prediction power; and high interpretability of prediction results due
to feature threshold based decision making. A more efficient implementation of the TBDT based models in scikit-
learn in this thesis furthermore improved the efficiency on both training and predicting wind plant flow fields. The
TBDT based models were able to learn the centre region of the LES mean flow fields of one turbine with high surface
roughness and reconstruct the main structures e.g. the free shear layers as well as the wake size and orientation of
the (b; ;) field in wind plants consisting:

* twin turbines parallel to each other, sufficiently apart so no interference is ensued;
* twin turbines parallel to each other and with various yaw angle, sufficiently apart so no interference is ensued;
° twin sequential turbines, one behind the other that is subject to the wake of the front turbine;

¢ higher prescribed velocity at hub height;
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* lower surface roughness.

A particular interest is paid to the prediction of the parallel turbines with yaw angle, during which the wake redi-
rection has been reproduced by TB ML models. When predicting the parallel turbine field with a higher prescribed
velocity at hub height, the TB ML models were furthermore able to ignore the simulation artefacts and correct them
to an expected magnitude of turbulent properties e.g. the turbulence production rate. Nevertheless, the following
features of the (b; ;) field are misrepresented or under-predicted:

* details between the turbine tip and root free shear layers;
* induction zone of turbines;
* prediction fields are not smooth. Smoothing the fields will result in more detail loss.

It has been pointed out by Wu et al. [105] that some features used by Ling et al. [52] and Kaandorp [41] are not
Galilean invariant. As such, a systematically derived Galilean and rotational invariant features by Wu et al. [105] has
been adopted for this study although most of the features related to the mean turbulent kinetic energy and pressure
have very low importance in learning the (b; ;) field. On the other hand, features involving only the strain rate and
rotation rate tensor have a high importances in general. The newly introduced invariant feature that is specific to
wind plant simulation, the horizontal distance to rotor centre based Reynolds number (Re) has an importance of
about the median of all feature importances.

12.2. To What Extent Can Data-driven Turbulence Modelling Assist Low-fidelity

Simulation of Wind Plants in Atmospheric Boundary Layers?

The implemented data-driven RANS framework of wind plant simulations was first utilised without the “data-driven”
aspect of it. The mean resolved flow field lacks detail in the near wake region and under-predicts the velocity dip in
the far wake region. The turbulent field from RANS wind plant simulations shows a large discrepancy to the LES
turbulence field known as the ground truth. In particular, the turbulent componentality of the b;; from RANS are
composed predominantly of isotropic turbulence while the ground truth shows mostly axisymmetric turbulence
expansion. In an effort to map the mean flow fields of wind plant RANS simulations to the ground truth (b;;) field
from wind turbine LES using TB ML models, only the TB adaptive boosting model managed to predict the near wake
of both turbines in a parallel turbine test field successfully. Nevertheless, like the learning of the LES turbine wake
characteristics in the previous section, the predictions lack smoothness. Considering the extensive field smoothing
Kaandorp [41] has performed to enable data-driven RANS on simple 2D flow cases, it is deemed not feasible to inject
ML b;; to wind plant RANS simulations. Rather, the ground truth (b; ) from LES has been used to inject into wind
plant RANS simulations to improve the turbulence field accuracy of RANS. By gradually injecting the ground truth
(bij) from LES into the turbulence production rate of the k- turbulence model and the shear stress momentum
source of the momentum equation, 100% injection is achieved and turbulence field saw direct improvement in terms
of both the near wake detail and the far wake magnitude. When it comes to the mean flow field, the improvement is
less pronounced and some artefacts were produced. Nonetheless, data-driven RANS achieved better correlation of
the turbine output to the LES mean turbine outputs known also as the ground truth. Expectedly, the computation
cost reduction from LES to (data-driven) RANS is enormous. The result of 100% LES (b; ;) injection should indicate
the maximum efficacy of data-driven RANS in the application of wind plant CFD simulations.

12.3. Recommendations

This section discusses the recommendations for the continuation of this topic. The recommendations are divided
into two categories. Section 12.3.1 will first talk about the possible improvements of the ML model that can be done.
As the other focus of this thesis, the data-driven approach implemented for wind plant simulations needs further
investigations and tuning.

12.3.1. Possible Improvements of Machine Learning

In this thesis, TBDT based ML models have been employed and is based on Scikit-learn. The limitation that comes
with it is that Scikit-learn does not always have the fastest variants of a class of models. Examples for DT based
models are the XGBoost model [10] and the LightGBM model [42] that are only available through their respective
package in Python. Implementation of the TB approach to the XGBoost or LightGBM model would be a probable
upgrade in terms of both efficiency and prediction power over the currently implemented TBRE TBAB, and TBGB.
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Even in scikit-learn itself there is the recent release of a faster GBDT implementation called the Histogram-Based
Gradient Boosting (HBGB) that, instead of going through every feature value when splitting w.r.t. a feature, the
feature values are segregated into a limited amount of bins (typically 256). The benefit is obvious — if multiple feature
values are concentrated around a short range, the HBGB can effectively avoid the fruitless evaluation of every feature
value in this short range but only evaluate one representative value in the corresponding bin. Secondly, during
verification of the newly implemented TBDT based models, small deviation have consistently occurred from the
original implementation of Kaandorp [41]. One of the differences between the new and old algorithm is the least-
squares (LS) fit of finding the ten tensor basis coefficients — the algorithm of Kaandorp [41] sums up all samples
in a tree branch before LS while the new algorithm appends all samples in the branch. The former is a reduction
operation which should supposedly lose information in the process. Having said that, more testing might be needed
to explain the prediction difference between the original and new implementation of TBDT based models.

When it comes to training features, only the feature sets proposed by Wu et al. [105] has been used. Features
provided Wang et al. [100] and Kaandorp [41] could be experimented although modifications are needed to ensure
the Galilean invariance of each additional feature. The wall-distance based Re did not work properly due to the
wrong limit set to it. Since it has a tremendous importance for the periodic hill verification and validation case, the
wall-distance based Re is expected to also possess high importance in the application of wind plant flow fields, once
the parameters are set appropriately. Additionally, since the turbulence field at the induction zone of turbines are
largely misrepresented by TB ML models, more wind turbine specific features should be trialled to distinguish the
inflow physics of wind turbines. One solution is giving the horizontal distance to rotor centre based Re feature signs
to distinguish distances upstream and downstream of turbines. However, this would break the rotational invariance
of such feature. Moreover, as the current study only accounts for neutral atmospheric stability cases where the
potential temperature is constant until a certain altitude far above the turbine apex, potential temperature is not a
useful feature to train on. In the case of other atmospheric stability such as the unstable and stable condition, the
potential temperature can be used as the fifth input to construct the invariant bases from Wu et al. [105], after the
strain rate tensor, rotation rate tensor, turbulent kinetic energy, and pressure.

Furthermore, the grid search was based on the R? score which might not be the best metric to select hyper-
parameters.

Lastly, the current TB ML framework only trains on the second refinement zone of the wind plant, which accounts
for merely 20% of the whole flow field. Given enough resource, new ML could be done to train on the entire flow field
of a base case. The addition of training samples will improve generalisation of the trained model. Nonetheless, the
relative importance of the samples in the turbine wake is inevitably reduced.

12.3.2. Further Investigation of Data-driven RANS in Wind Plant Simulations

In the current scope, only the ground truth (b; ;) from LES is used for data injection in the data-driven RANS frame-
work. Ultimately, the predicted (b; ;) from ML models should be used instead to fulfil the real purpose of data-driven
RANS - at the moment LES still needs to be performed for data-driven RANS to work. This is contingent on the
smoothness of the predicted field as well as the accuracy of it. Furthermore, the RANS simulation domain is halved
over the one during LES due to instability of RANS when simulating the atmosphere inversion layer at the top of the
domain. Therefore, special attention needs to be paid to the cause of such instability. After all, if unstable or stable
atmospheric condition were to be simulated, such instability is likely to occur at lower portion of the domain as the
potential temperature varies. Lastly, the actuator disk model (ADM) is employed in (data-driven) RANS while the
actuator line model is used in LES instead. Although it is reasonable to use the ADM for steady-state simulations, its
parameters are set to default and the deficiency between the ADM and ALM alone ideally should be analysed and
quantified first, before comparing other mean field difference between (data-driven) RANS and LES. What is equally
important is to investigate the reason for the turbine output deviation seen in both N-H-ParallelTurbines LES and
RANS. Finally, as the wind plants are simulated in ABL that does not only have the neutral atmospheric stability, a
stable solver that can handle the inversion layer where the potential temperature changes. After that, the equivalent
of b;; in the potential temperature transport equation — the residual heat flux rate q} can be attempted to correct as
it will improve the representation of small temperature fluctuations.
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Prediction Result of the Periodic Hill with
Different Reynolds Numbers

A.1.Re =5,600

(a) Ground truth for testing (b) Novelty visualisation

Figure A.1: Barycentric map of Re = 5,600. Novelties are detected using IF of five contamination percentages that was trained on Re = 10,595.
Darker shade corresponds to more obvious novelty

(a) TBDT (b) TBRF

(c) TBAB (d) TBGB

Figure A.2: Barycentric map prediction of Re = 5,600
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(a) TBDT (b) TBRF

(c) TBAB (d) TBGB

Figure A.3: Turbulence production rate G truth and prediction of Re = 5,600 plotted at three locations of x = 1, 4.5, and 8 m

(a) TBDT (b) TBRF

(c) TBAB (d) TBGB

Figure A.4: (V . Rg.) truth and prediction of Re = 5,600 plotted at three locations of x = 1, 4.5, and 8 m
X



A2.Re=700 189

(a) TBDT (b) TBRF (c) TBAB

Figure A.5: Barycentric triangle coordinate of truth and predicted b; ; for Re = 5,600 at x=1m

A.2. Re=700

(a) Ground truth for testing (b) Novelty visualisation

Figure A.6: Barycentric map of Re = 700. Novelties are detected using IF of five contamination percentages that was trained on Re = 10,595.
Darker shade corresponds to more obvious novelty

(a) TBDT (b) TBRF

(c) TBAB (d) TBGB

Figure A.7: Barycentric map prediction of Re = 700
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(a) TBDT (b) TBRF

(c) TBAB (d) TBGB

Figure A.8: Turbulence production rate G truth and prediction of Re = 700 plotted at three locations of x = 1, 4.5, and 8 m

(a) TBDT (b) TBRF

(c) TBAB (d) TBGB

Figure A.9: (V . Ri[}) truth and prediction of Re = 700 plotted at three locations of x = 1, 4.5, and 8 m
X



Data-driven k-e¢ Turbulence Model in
OpenFOAM

B.1. Reynolds Stress

1 // LES and RANS blended Reynolds stress with mix_ratio
> // If T want to use a new function name I need to declare it in turbulenceModel.H which is a hassel
5 tmp<volSymmTensorField> kEpsilonABL::R() const

a |

/] atio () parses the C-string str interpreting its content as an integral number, which is returned as a
value of type int.

/1 c_str() gets C-string equivalent of word class timeName ()

// dimensionedScalar tnow_ = atoi(runTime_.timeName/() .c_str());

/] Get the current time.

scalar t = runTime_.value();

/1 /] LES-RANS bij mixing ratio is default to 0 and cannot be smaller.
/1 [/ It’1l only be overriden if current time t > mix_startTime

// scalar mix_ratio = 0.;

// dimensioned<scalar> tend_ = runTime_.endTime () . value () ;

// Mixing ratio of LES-RANS bij, capped on request

if (t > mix_startTime_.value())

{
mix_ratio = min((t — mix_startTime_.value () )*mix_ratio_cap_.value () /mix_duration_.value () ,
mix_ratio_cap_.value());
}
if (mix_verbose_.value() > 1)
{
scalar bij_min = min(cmptMin(bij_));
scalar bij_max = max(cmptMax(bij_));
reduce (bij_min, minOp<scalar>());
reduce (bij_max, maxOp<scalar>());
Info << "Min LES/ML bij when writing Rij is " << bij_min << "; max is " << bij_max << endl;
}
return tmp<volSymmTensorField>
(
new volSymmTensorField
(
I0object
(
"R
runTime_.timeName () ,
mesh_,

I0object : :NO_READ,
I0object::NO_WRITE // AUTO_WRITE doesn’t work here as R is tmp?
)
(1. — mix_ratio) *(((2.0/3.0) *I)xk_ — nut_stwoSymm(fvc ::grad (U_)))
+ mix_ratio=2.xk_*(bij_ + 1/3.#1), // Rij_LES = 2k(1/3+1 + bij)
bij_.boundaryField () .types() // Boundary type of R is set to same as bij which are all "calculated"
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45 /1 k_.boundaryField () . types ()

47 )

48 }

B.2. Shear Stress Momentum Source

// The source term for the incompressible momentum equation

1

> // divDevReff(u_i) = —div((nu + nut)u_i,j) — div((nu + nut) (u_j,i — (u_j,j/3)+*delta_ji))
3 [/ = —div(nu*u_i,j + nuxu_j,i — nu/3*u_j,jxdelta_ji) ...[1]

vy — div(nut*u_i,j + nutxu_j,i — nut/3*u_j,j*delta_ji) ...[2]

5 // We leave [1] as it is and incl. blending of LES-RANS bij to [2].
6 /1 [2] = —div(2nutxSij) ...[3]

7 1/ + div(nut/3*u_j,jxdelta_ji) ...[4]

s // We leave [4] as it is and replace 2nut+Sij in [3] with blended bij, recall 2nut+Sij ~ —-2k#bij
9 [/ [3] = —=div((1 — mix_ratio)*2nut*Sij + mix_ratio*(—2k+bij)) ...[5]

10 // Summing up, divDevReff(u_i) = [1] + [5] + [4]

u 1/ = —div(nu*u_i,j + nuxu_j,i — nu/3*u_j,j+delta_ji) ...[1]

12 [/ — div((1 — mix_ratio)*2nut=Sij)) ...[6]

13 /1 — div(mix_ratio*(—2k#bij)) ...[7]

u [/ + div(nut/3*u_j,jxdelta_ji) ...[4]

15 // Additionally, we’re going to make [6] partially implicit, i.e. fvm again as it used to be:
16 // [6] = —div((1 — mix_ratio)*2nut+u_i,j) ...[8], fvm treatment

17 [/ — div((1 — mix_ratio)=*2nutxu_j,i) ...[9]

18 // Finally, divDevReff(u_i) = [1] + [8] + [9] + [7] + [4]

19 [/ = —div(nu*u_i,j + nuxu_j,i — nux1/3xu_j,j+delta_ji)

2 [/ — div((1 — mix_ratio)*nut+u_i, j)

21 [/ — div((1 — mix_ratio)*nut*u_j, i)

2 [/ — div(mix_ratio*(—2k+bij))

23 [/ + div(nut/3*u_j,j*delta_ji)

2« [/ Laplacian of u_i results in 3x1 vector, i.e. same rank as u_i
25 [/ Note that ideally, due to continuity, u_j,j = 0. But for stability (u_j,j is never actually 0 in simulations),

it’s kept
26 tmp<fvVectorMatrix> kEpsilonABL:: divDevReff (volVectorField& U) const
27 {
28 // dimensioned<scalar> tnow_ = atoi(runTime_.timeName () .c_str());
29 scalar t = runTime_.value();
30 /] scalar mix_ratio = 0.;
31 /] Mixing ratio of LES-RANS bij, capped on request
32 if (t > mix_startTime_.value())
33 {
34 mix_ratio = min((t — mix_startTime_.value () ) *mix_ratio_cap_.value () /mix_duration_.value () ,
35 mix_ratio_cap_.value());
36 }
37
38 return
39 (
40 /1 — fvm::laplacian (nuEff() , U)
11 /1 — fvc::div(nuEff () xdev(T(fvc::grad(U))))
12 — fvm::laplacian (nu(), U) // ...[1]
13 — fvc::div(nu() *dev(T(fvc::grad (U)))) // ...[1]
44 — fvm::laplacian ((1. — mix_ratio)*nut_, U) // ...[8]
15 — fvc::div((1. — mix_ratio)*nut_*T(fvc::grad(U))) // ...[9]
46 // — fvc::div((1l. — mix_ratio)*nut_stwoSymm/(fvc :: grad (U))
47 /1 + mix_ratio*(—-2.xk_xbij_))
18 — fvec::div(mix_ratiox(-2.xk_xbij_)) // ...[7]
49 + fve::div(nut_/3.«tr (T(fvc::grad(U)))=I) // ...[4]
50 );
51 }

B.3. Update Eddy Viscosity with High Fidelity b;; Injection

1 void kEpsilonABL:: correct ()

2 |

3 /] Correct laminar viscosity nu if necessary
4 RASModel:: correct () ;

6 if (!turbulence_)

7 {

8 return;
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}

/1l

dimensioned<scalar> tnow_ = atoi(runTime_.timeName() .c_str());

scalar t = runTime_.value() ;

/1l
Il
if
{
}

if
{

}

/1l

Im_

Il

scalar mix_ratio = 0.;

Mixing ratio of LES-RANS bij, capped on request

(t > mix_startTime_.value ())

mix_ratio = min((t — mix_startTime_.value () ) *mix_ratio_cap_.value () /mix_duration_.value () ,
mix_ratio_cap_.value());

(mix_verbose_.value() > 0)

Info << "Current LES/MI-RANS bij mixing ratio is " << mix_ratio << endl;

if (mix_verbose_.value() > 1)

{

/| cmptMin () /cmptMax () takes min/max of all componets in tensor or vector, for each cell

// Then min() /max() takes min/max of a scalar field

scalar bij_min = min(cmptMin(bij_));

scalar bij_max = max(cmptMax(bij_));

reduce (bij_min, minOp<scalar >());

reduce (bij_max, maxOp<scalar>());

Info << "Min LES/ML bij is " << bij_min << "; max is " << bij_max << endl;

scalar nut_min = min(nut_) .value() ;

scalar nut_max = max(nut_) .value();

reduce (nut_min, minOp<scalar>());

reduce (nut_max, maxOp<scalar >());

scalar nut_avg = nut_.weightedAverage (mesh_.V()) .value () ;

Info << "Min nut is " << nut_min << "; max is " << nut_max << "; wighted mean is "
}

Update length scale
= pow(Cmu_,0.75) *pow(k_,1.5) /epsilon_;

Compute maximum length scale

computeMaxLengthScale () ;

<< nut_avg << endl

/] Compute the shear production term. This is where eddy—vicosity approximation comes into play in k—epsilon
model

/1 G = 2nut+Sij:Sij but also 2nut=Sij:gradU),

/] where symm(grad (U)) = 0.5(u_i,j + u_j,i) = Sij,

// and magSqr(Sij) is Sij:Sij

/1 Since Rij_LES = 2/3xk+I + 2k*bij and Rij_RANS = 2/3xk+I — 2nut=Sij,

/] 2nutxSij ~ —2kxbij

/1 So with blending, G = ((1 — mix_ratio)+*2nut*Sij + mix_ratio*(—2k+bij)) : grad (U)

volScalarField G("kEpsilonABL:G",

((1. — mix_ratio) *nut_stwoSymm/(fvc :: grad (U_))

+ mix_ratio*(—-2.xk_xbij_))

&& fvc::grad(U_)); // Double inner dot : is double dimension reduction from 3 x 3 to 1
if (mix_verbose_.value() > 1)

{

/1 volScalarField G("kEpsilonABL:G", 2.0xnut_xmagSqr(symm(fvc::grad(U_))));

volScalarField G_old = 2.0*nut_smagSqr(symm(fvc::grad(U_)));

scalar g min = min(G) . value () ;

scalar g max = max(G) .value();

reduce (g_min, minOp<scalar>());

reduce (g_max, maxOp<scalar>());

scalar g_avg = G.weightedAverage (mesh_.V()).value();

Info << "Min G is " << g min << "; max is " << g max << "; wighted mean is " << g_avg << endl;
scalar g_old_min = min(G_old) .value () ;

scalar g_old_max = max(G_old) .value();

reduce (g_old_min, minOp<scalar>());

reduce (g_old_max, maxOp<scalar>());

scalar g_old_avg = G_old.weightedAverage (mesh_.V()).value();

Info << "Min original G is << g_old_min << "; max is "

"

<< g old_max << "; wighted mean is <<

"

g_old_avg << endl;
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}
forAll (G, i)
{
if (G[i] == 0.0)
{
G[i] = 1.0E-10;
}
}
forAll (G. boundaryField () ,b)
{
forAll (G.boundaryField () [b],1)
{
if (G.boundaryField () [b][i] == 0.0)
{
G.boundaryField () [b][i] = 1.0E-10;
}
}
}

/] Compute the buoyancy production term, should be 0 for neutral ABL below inversion layer
// TODO: this is untouched from LES data but could inject T'T’ here too

volScalarField B("kEpsilonABL:B",(1.0/TRef_)*g_&((nut_/Prt_)=*fvc::grad(T_)));

if (mix_verbose_.value() > 1)

{

scalar b_min = min(B) .value();

scalar b_max = max(B) .value () ;

reduce (b_min, minOp<scalar>());

reduce (b_max, maxOp<scalar>());

scalar b_avg = B.weightedAverage (mesh_.V()) .value () ;

Info << "Min B is " << b_min << "; max is " << b_max << "; wighted mean is " << b_avg << endl;
}

/] Compute the local gradient Richardson number.
volScalarField Ri = -B/G;

// Compute alphaB.
forAll (alphaB_, i)
{
if (Ri[i] > 0.0)
{
alphaB_[i] = 1.0 — Im_[i]/lmax_.value();
}
else
{
alphaB_[i]
value () ;

}

1.0 — (1.0 + (Ceps2_.value() — 1.0) / (Ceps2_.value() — Cepsl_.value())) * Im_[i]/lmax_.

}
if (mix_verbose_.value() > 2)
{
Info << "alphaB calculated" << endl;

}

/1 Compute CepslStar.
CepslStar_ = Cepsl_ + (Ceps2_ — Cepsl_)*(Im_/lmax_);
if (mix_verbose_.value() > 2)
{
Info << "Cepsl calculated" << endl;

}

/1 Compute Ceps3
Ceps3_ = (Cepsl_ — Ceps2_)=alphaB_ + 1.0;
if (mix_verbose_.value() > 2)
{
Info << "Ceps3 calculated" << endl;

}

/] Update epsilon and G at the wall
epsilon_.boundaryField () . updateCoeffs () ;
if (mix_verbose_.value() > 2)
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147 {

148 Info << "epsilon boundary field updated" << endl;
149 }

150

151 /1 Dissipation equation

152 tmp<fvScalarMatrix> epsEqn

153 (

154 fvm:: ddt(epsilon_)

155 + fvm::div(phi_, epsilon_)

156 — fvm::laplacian (DepsilonEff() , epsilon_)
158 CepslStar_xGrepsilon_/k_

159 + Ceps3_=*Bxepsilon_/k_

160 — fvm::Sp(Ceps2_xepsilon_/k_, epsilon_)

161 );

162

163 epsEqn () .relax () ;

164

165 epsEqn () . boundaryManipulate (epsilon_.boundaryField () ) ;
166

167 solve (epsEqn) ;

168 bound(epsilon_, epsilonMin_);

171 /] Turbulent kinetic energy equation
172 tmp<fvScalarMatrix> kEqn

173 (

174 fvm::ddt(k_)

175 + fvm::div(phi_, k_)

176 — fvm::laplacian (DkEff(), k)
177 ==

178 G

179 + B

180 — fvm::Sp(epsilon_/k_, k)

181 );

183 kEqn() .relax () ;
184 solve (kEqn) ;
185 bound(k_, kMin_);

188 /I Re—calculate viscosity
189 nut_ = Cmu *sqr(k_) /epsilon_;
190 nut_. correctBoundaryConditions () ;
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