
Bachelor Project System (BEPsys)

by

Sarah Bashirieh - 1523259
Nima Rahbari - 1515659

Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

October 2013

Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Abstract

In this report we represent the detailed procedure of developing a web system for the

faculty of EEMCS of Delft University of Technology. The Bachelor Project System -

BEPsys1- makes it possible for companies to propose projects and for students to find

a project in an easy and convenient way. In chapter one we have described a short

research about similar existing systems, methods and web application frameworks to

start a project, and we made a comparison between them. Chapter two describes the

design of the database and the front-end of the system and different decisions that we

made. In chapter three we added more details about the implementation of the system.

In chapter four the usability testing of the system and the method we used to test is

explained. Finally the last chapter contains our conclusion of the project in short.

1BEPsys stands for Bachelor Eindproject Systeem

Contents

Abstract i

List of Figures v

1 Orientation 1
1.1 Introduction . 1
1.2 Current system investigation . 1
1.3 Future system . 2
1.4 Comparison with existing systems . 3

1.4.1 Customer Relationship Management systems 3
1.5 Choice of software methodology . 5

1.5.1 Adaptation to change . 5
1.5.2 Increased productivity . 5
1.5.3 Variable requirements . 6

1.6 Implementation . 6
1.6.1 Back-end . 6

1.6.1.1 Choice of framework . 6
1.6.1.2 Framework comparison 9

1.6.2 Front-end . 9
1.7 Deployment . 10

2 Design 11
2.1 Introduction . 11
2.2 Main activities in the application . 11

2.2.1 Company wants to propose a project 11
2.2.2 Student wants to do a project . 12

2.3 Back-end of the system . 12
2.3.1 Database design . 12

2.3.1.1 The domain model . 12
2.3.1.2 Entities . 13
2.3.1.3 User roles . 13
2.3.1.4 First approach . 14
2.3.1.5 Second approach . 14
2.3.1.6 Final approach . 15

2.4 Front-end of the system . 16

ii

Contents iii

2.4.1 Introduction . 16
2.4.2 Use cases . 17
2.4.3 Register . 20
2.4.4 User’s home page . 21
2.4.5 Projects page . 21
2.4.6 Ads page . 22
2.4.7 Coordinator’s special pages . 23

2.4.7.1 Static information pages 23
2.4.8 Informing users . 24

3 Implementation 25
3.1 Introduction . 25
3.2 Back-end . 25

3.2.1 Models . 26
3.2.1.1 DataSources . 27
3.2.1.2 Behaviors . 27
3.2.1.3 Data association . 27
3.2.1.4 Data validation . 28

3.2.2 Views . 29
3.2.3 Controllers . 29

3.2.3.1 Components . 30
3.2.3.2 PagesController . 31

3.2.4 Dispatcher . 31
3.2.5 Routes . 31
3.2.6 AJAX . 31

3.3 Front-end . 32
3.3.1 jQuery . 32
3.3.2 Bootstrap . 33

3.3.2.1 Dropdown button . 33
3.3.2.2 Tooltip . 33

4 Testing 34
4.1 Introduction . 34
4.2 Test Plan . 34

4.2.1 Goals . 34
4.2.2 Participants . 35
4.2.3 Test Method . 35
4.2.4 Tasks . 35
4.2.5 Test Environment . 35
4.2.6 Evaluation . 36

4.2.6.1 User interface . 40
4.2.6.2 Effectiveness . 43
4.2.6.3 Overall satisfaction . 45
4.2.6.4 Conclusion . 47

5 Conclusion 48

Contents iv

A Project Plan 49
A.1 Introduction . 49

A.1.1 Background . 49
A.2 Project description . 50

A.2.1 Introduction . 50
A.2.2 The client . 50
A.2.3 Contacts . 50
A.2.4 Problem description . 50
A.2.5 Goal . 50
A.2.6 Product . 50
A.2.7 Preconditions . 50

A.3 The approach . 51
A.3.1 Introduction . 51
A.3.2 Software Engineering Methodology 51
A.3.3 Technical details . 51
A.3.4 Proceedings and schedule . 51

A.4 Quality Assurance . 52
A.4.1 Introduction . 52
A.4.2 Quality . 52

A.4.2.1 Evaluation . 52
A.4.2.2 Versioning . 52
A.4.2.3 Pilots . 52

B Requirements Elicitation 53
B.1 Introduction . 53
B.2 Current system . 53
B.3 Proposed system . 53

B.3.1 overview . 53
B.3.2 Stakeholder analysis . 54

B.4 Functional requirements . 54
B.4.1 Company contacts . 54
B.4.2 Coordinators . 55
B.4.3 Supervisors . 56
B.4.4 Students . 57

B.5 Nonfunctional requirements . 58
B.5.1 Usability . 58
B.5.2 Security . 58

B.6 Scenarios . 58
B.6.1 Company contacts . 58
B.6.2 Coordinators . 59
B.6.3 Supervisors . 60
B.6.4 Students . 60

B.7 Flow charts . 62
B.7.1 User register . 62
B.7.2 Company . 64
B.7.3 Coordinator . 65
B.7.4 Student . 67

Contents v

Bibliography 69

List of Figures

1.1 Scrum . 5
1.2 Disciplined agile requirements change management process 6
1.3 How the MVC pattern works . 7

2.1 The approach without a User table. 14
2.2 Bachelor Project System database EER diagram 15
2.3 Use case diagram of company contact . 17
2.4 Use case diagram of the student . 18
2.5 Use case diagram of the coordinator . 19
2.6 Use case diagram of the supervisor . 20
2.7 Registeration page . 21
2.8 List of projects in student view . 21
2.9 A project’s page . 22
2.10 Ad page . 23
2.11 List of student available for coordinators 23
2.12 Registration successful alert . 24
2.13 Delete a student from the system . 24

3.1 A typical CakePHP request . 26
3.2 Models of the system . 26
3.3 Controllers of the system . 30
3.4 Bootstrap dropdown button . 33
3.5 Bootstrap tooltip . 33

4.1 Navigation . 40
4.2 Understandability . 40
4.3 Website’s look . 40
4.4 Help messages . 41
4.5 Clarity of the forms . 41
4.6 Website’s organization . 41
4.7 UI satisfaction . 42
4.8 Task performance steps . 43
4.9 Task performance time . 43
4.10 Website’s learning curve . 43
4.11 Productivity . 44
4.12 Helpful to perform the task . 44
4.13 Use in future . 45
4.14 Recommend to colleagues . 45

vi

List of Figures vii

4.15 Ease of use . 45
4.16 Satisfaction about the whole website . 46

B.1 Definition of icons . 62
B.2 Registration (except supervisor) . 63
B.3 Proposes/edits project . 64
B.4 Closes a completed project . 65
B.5 Fills in presentation date . 66
B.6 Project approval . 66
B.7 Post Ad . 67
B.8 Join/leave project, Invite supervisor, coordinator approval 68

Chapter 1

Orientation

1.1 Introduction

This section is the result of the orientation phase. In order to obtain a better understand-

ing of the problem, we interviewed the client1 several times. We compared a number of

existing systems which are similar to our product. With the result of interviews and the

research about the existing system we made workflow examples of the future system2.

We will discuss the software methodology that was used in the project. Furthermore

we choose a suitable web application framework for our project based on our desired

features and comparing possible frameworks.

1.2 Current system investigation

The current bachelor project system is part of the blackboard environment, and it is

treated like a course. There is no direct interaction between the company and the bach-

elor project system. The interaction is done via the bachelor coordinator. Companies

interested to work with the university need to contact the coordinator, who then will

inform the company about the project proposal layout. A company needs to make a

document which fulfils the desired requirements. After sending the document to the

coordinator, the project proposal is uploaded in the blackboard page. If the suggested

project does not meet the requirements of TU Delft the coordinator will contact the

company via email or phone in order to change the project description. In the current

system there are three types of project:
1See Appendix A section 2.2
2see appendix B section 3

1

Orientation 2

• Open projects: projects available to be chosen by students.

• Active projects: projects which are not available any more to choose, with contact

information about the supervisor and student team.

• Completed projects: projects that were successfully finished, with contact infor-

mation about the supervisors and student team.

When a project is accepted by the coordinator, it is put in the open projects list by

the coordinator. In order to start a project, the students contact the coordinator and a

supervisor about a chosen project. They must print the project proposal form and add

their name and the supervisor name to the form. This form should be signed by students

and company contact person. The students submit the form to the coordinator for ap-

proval. After approval the project is put in the active project list with the corresponding

information. If the project is completed it will be moved to the completed project list.

In the current system there is an opportunity for the students to find a suitable group.

This functionality is called Group Finder3. The students are able to publish an ad4.

The students may send desired message to the coordinator, which will be uploaded in

the Group Finder by the coordinator.

1.3 Future system

In this section we give an overview of functionalities of the future system that fulfils the

client’s needs. The structure of the system will be like the current system with project

lists and group finder functionality. In BEPsys, due to the direct interaction between

users and the system, the printing and signing the proposal as mentioned in previous

section will be reduced. The company can upload the project proposal directly in the

system. When a company proposes a project, the coordinator will be notified about it.

After approval the project proposal will be added to the open project list.

In this system we have another type of project besides open, active and completed

projects:

• Proposed projects: a list of proposed projects by companies, to be approved by the

coordinator. These projects are visible to the company who proposed it and the

coordinator. After approval the status of the project will be changed to open.
3A part of the system where students can post ads to seek a partner or group.
4An ad in this context is a message that can be posted by students to help them find a group or a

partner.

Orientation 3

The students can join a desired project. When all the group members have joined and

a supervisor is invited to the group, they can request approval from the coordinator.

Once approved, the project will be moved to the active projects list. The Group Finder

functionality will be almost the same as the Group Finder on the blackboard, but students

can now post an ad without contacting the coordinator.

In the new system users5 can edit their content. For instance companies can edit their

project information and students can edit their registration information in the system,

so there is no need to send an email to the coordinator for each minor change. However

the coordinator will be notified by email about each change. In the future a search

functionality could be implemented in the system for the coordinator to have a better

overview about the different projects and project members. For example the name of

the student can be searched in the system for obtaining information such as contact

information and group number. This feature is however not a must have.

1.4 Comparison with existing systems

In this section a comparison is given between two existing Customer Relationship Man-

agement systems with our system, BEPsys. Customer Relationship Management systems

automate interaction between companies and their customers. We have decided to in-

vestigate CRM systems, because BEPsys is also a CRM system where TU Delft is the

company and students and companies play the role of customers. First, the features of

each CRM system are given and second some of them are compared in a table.

1.4.1 Customer Relationship Management systems

We have investigated two open source CRM systems, namely Zurmo [1] and Splendid-

CRM [2] that have the following features:

• Contact management: Both systems let users6 view contacts7 in the system and

there is a search function to find any contact.

• Activity management: A list of actions that have to be done or were done is

viewable by the users, i.e. activities, notes and meetings. This way there is a

summary available which is easy to view.
5See appendix B section 3.2
6Staff of the organization
7Customers of the organization

Orientation 4

• Reward system: A reward program to keep users more involved and to teach them

to use the system better or let them try new functionality. Users can for example

earn achievements or badges after they have completed a particular action. This

feature is found only in Zurmo system.

• Reporting: Reports about all records in the system. These reports can be saved

or exported or viewed in form of charts.

• Security: Both systems also take care of different roles8, permissions and policies.

i.e. who can view a particular document. This feature is especially important when

there are different roles that have different permissions in a system.

• Product management9: Lets users create product catalogs and the items of the

product with their quantities.

• Internationalization: Both systems offer many language packs and support many

timezones, so that the calendars can be customized per time zone.

• Personalizing feature: Zurmo has custom fields and layouts that allow developers

to customize the environment. Furthermore users can personalize their home page

which exists of different panels. So the users are able to delete a panel if it is not

usable for them.

• Portability: Both system are compatible with different browsers. Zumro also runs

on Android and iOS.

In the following table we have compared features that are important for us in Zurmo,

SplendidCRM and BEPsys.

CRM System/Features Zurmo SplendidCRM BEPsys

Activity management yes yes yes

Product management yes yes yes

User management yes yes yes

Security yes yes yes

Portability yes no yes

Reporting yes yes no

With respect to the comparison we came to the conclusion that except minor differences

they are very much alike.
8For instance admin or regular user
9Product can be any product or service that is sold by the company

Orientation 5

1.5 Choice of software methodology

In the beginning of the project we looked at Scrum method of Agile software develop-

ment framework.

In this project the requirements are not known in the first place, we had several interviews

with the client to gather all the requirements. Due to variability of the requirements we

have decided to use Scrum method.

At the beginning of every cycle, which is a short period of working on a specific func-

tionality, we discuss what has to be done and when the deadline is, the so called sprint

backlog. When a cycle starts, we will have daily meetings where we very shortly talk

about what we have done and what we are doing right now. In the next subsections we

explain in detail why we have chosen Agile for this project.

Figure 1.1: Scrum

1.5.1 Adaptation to change

Doing the project in cycles or sprints enables us to be ready for possible changes in the

requirement. After each sprint the work can be shown to and user-tested by the client

and changes could be made on time to meet the client needs. This is much better than

finishing the project entirely, risking to have to do the project all over again if the client

is not happy with the result.

1.5.2 Increased productivity

Daily meetings encourage the developers to discuss what they are doing and what prob-

lems they are facing. This prevents the developers from wasting much time on problems

Orientation 6

which otherwise would be solved in a couple of minutes. Also if someone has done

something the way it should not be done, it can be detected early.

1.5.3 Variable requirements

As we mentioned before the requirements are gathered from several interviews with the

client. During the project, changes in the requirements are possible, therefore we need

to be prepared. We can benefit from The Agile Change Management Process which is

suited for this kind of projects[3]. It focuses on the priority of the requirements, meaning

the requirement with the highest priority are going to be implemented first. Each part

of the project can be re-prioritised at any time. The priority of each part is decided by

the client or by ourselves. For example if the client would like to see a part of project

first or if many parts of the project are dependent to a particular part, we will increase

the priority.

Figure 1.2: Disciplined agile requirements change management process

1.6 Implementation

1.6.1 Back-end

1.6.1.1 Choice of framework

We think it is important that the code of this project is maintainable and upgradable and

that the project should be finished within our desired time frame. In order to achieve the

Orientation 7

aforementioned we decided to use a web application framework which will help us con-

centrate on the specific functionality and components instead of wasting time on making

general functionality which is available in a framework. There are many considerations

when it comes to choosing a suitable web application framework to build a web applica-

tion. In our opinion the following considerations are important in choosing a framework:

Software pattern

Almost all web application frameworks use the MVC pattern. MVC stands for Model,

View and Controller. Using the MVC pattern helps you keep your data (Model), the logic

of your application (Controller) and the user interface (View) separate. It also makes it

easier to re-use code as different components are separate and there is more flexibility

when one wants to apply a change in the system. In other words, MVC improves code

maintenance in the future.

Figure 1.3: How the MVC pattern works

Learning curve

Every framework has its own structure and conventions10. Some of them strictly follow

the general conventions, while others may sometimes do things in their own special way.
10For instance the way how controllers and models should be named in a framework.

Orientation 8

The more they deviate from the general conventions the steeper the learning curve is

and the more time it takes to get familiar with the environment and up to speed.

Core features

It is important to know what the core features of a framework is, so you choose the one

with the features you would like to have. The following features are important to us:

• Data validation: making sure input data have the right format.

• Data sanitization: cleaning input data from potential dangerous content.

• Authentication: recognizing the user.

• Authorization: what the user can access and what not.

• AJAX: built-in AJAX functionality.

• Templating: views in different formats

Documentation

The quality of the documentation plays a very important role in the success of a web

application framework. The better explained the documentation the more productive

developers will be and the more they support the framework. This way it will be easier

for new developers to pick up the framework relatively fast.

Community

No matter how well a framework is documented, you will run into problems which you

simply cannot solve without the help of other experienced developers. This is simply

because documentation cannot cover all possible problems you will come across in the

framework. With a bigger community it is easier as a newbie to start coding in a frame-

work and that makes the learning curve less steep, which then will result in more time

to work on the project.

License

First of all it is important to know what kind of licence a certain framework is dis-

tributed under. Some licenses allow you to use the framework for commercial purposes

if you mention the copyright owners in the code or have a copy of the license agreement

file some where in the system. While most of the web frameworks allow you to use the

framework in a commercial environment, it is important to first know what the license

is before you start using it to prevent surprises. Some of the most used free software

licenses for web application frameworks are MIT license, GPL license and BSD license.

Orientation 9

1.6.1.2 Framework comparison

We have decided to compare 3 popular frameworks: CakePHP which was written in

PHP, Django written in Python and Ruby-on-rails written in Ruby. After comparing we

will draw a conclusion based on a mix of our desired features and the comparison.

When someone is already familiar with web development and there is not much time, it

could be wise to just use CakePHP and not look further. In case of Ruby on Rails, not

only there is a new programming language to learn - Ruby - but there are also a lot of

framework specific stuff to learn. Hence the use of Ruby on Rails is only recommended

when there is time to learn a programming language from scratch.

Django, written in Python, requires one not only to know Python, but also the so called

Django Template Language, which is not really straight-forward and requires time to get

used to. Below is a comparison table, which compares CakePHP, Django and Ruby on

Rails on features that we would like to have.

Framework/Characteristic CakePHP Django Ruby on Rails

Data validation 4 4 4

Data sanitization 4 4 4

Pattern MVC MTV(model template view) MVC

Ajax AjaxHelper 7 JavaScriptHelper

Authentication 4 4 7

Authorization 4 4 7

Learning curve Slight Slight Steep

Documentation level High High Very high

Community Huge Big Big

CakePHP has all the features that we want. Furthermore we have experience both

in PHP as a language and CakePHP as a web application framework. The two other

frameworks require us to learn a programming language from scratch, which will take

much more time than we can afford in this project.

1.6.2 Front-end

BEPsys should facilitate the interaction between companies and the university. The

front-end implementation plays an important role here. It should be fast, reliable and

also simple to use, in short the front-end design should be user friendly. Keeping in

mind the time span of the project and the need of a robust front-end implementation

we decided to use Bootstrap which is a toolkit for developing user interfaces for web

applications. The technical advantages of Bootstrap, which make it suitable for our

project are:

Orientation 10

• Fast: Bootstrap is built with Less which is a flexible pre-processor that offers much

more power and flexibility than regular CSS[4].

• Customizable: it has the ability to be tailored for the project in short time.

• Cross-browser: there is no need to test whether tables and forms are compatible

with different browsers.

• Device compatibility : it has wide support for different devices including mobile

phone and tablets

• Responsive: it adapts itself to different platforms.

1.7 Deployment

The client has chosen Heroku to deploy the application. Heroku is a cloud platform

as a service (Paas) which supports several programming languages. Heroku has many

advantages including:

• No need to manage server infrastructure.

• Easily scalable.

• Support for variety of database management systems.

• Free basic account.

• Only pay for what you use.

In short, with Heroku developers can deploy their applications written in several sup-

ported programming languages with very little configuration. Heroku takes care of ev-

erything server-side except for special customizations.

Chapter 2

Design

2.1 Introduction

In this chapter the design of the system will be explained in details. Our domain model

will be explained as well as the front-end of the system along with what choices we

have made throughout this process and when relevant, why we have chosen for a cer-

tain approach or method. In the subsection dedicated to the front-end, different user

interactions and important pages are shown.

2.2 Main activities in the application

In order to understand the benefits of the new system we discuss two most important

activities in the system from the start to the end. For detailed explanation and charts

see appendix C.

2.2.1 Company wants to propose a project

A company wants to propose a new project. The system can be accessed via an email

address. If it is the first time that a company accesses the system, the contact information

form must be filled in. Whereafter the company is redirected to the company home page.

In this page the company can propose a new project by filling in the project proposal

form. After submitting the form an email is sent to the company about the proposed

project. See figure B.3

The coordinator receives an email about the new proposed project. The information

about the project can be seen in the email, so the coordinator is able to approve the

11

Design 12

project. If the project proposal needs change the coordinator will contact the company

outside of the system or remove the project. See figure B.6. A company contact can

edit a proposed or an open project in the company home page if it is needed, however

an approval is always required.

2.2.2 Student wants to do a project

In order to start a bachelor project, students need to have a group of two to four people.

Students agree to be in a team outside of the system. When students access the system

for the first time, they need to fill in their information such as name and student number.

They can go to the projects page and see the open, active and completed projects. Joining

the project is possible if the status of the project is open. To start a project students

must invite a supervisor1 to the project. In the project page the email address of the

supervisor can be added, after which he/she receives an email with the information about

the project and an approval link, which also registers2 and logs the supervisor into the

system. After supervisor’s approval, students can request approval from the coordinator.

The coordinator can approve the project group or delete students from a project. In case

of approval students can start the project. See figure B.8.

2.3 Back-end of the system

In this section the design of our database will be explained in details using the domain

model we have created using our requirements elicitation document. Furthermore, dif-

ferent approaches that were considered are explained and finally what was decided to

carry on with. When necessary the approach is justified.

2.3.1 Database design

This subsection is dedicated to explanation about the structure of the database of BEPsys

and how it was designed.

2.3.1.1 The domain model

In our requirements elicitation document (Appendix B), we have seen that BEPsys

consists of four different stakeholders: Company contact, Student, Coordinator and
1This is also agreed beforehand outside of the system.
2In case the supervisor is invited to the system for the first time.

Design 13

Supervisor. Each student can do one Project at the same time, while company con-

tact and supervisor can be attached to many projects at the same time. On the other

hand, each project has and belongs to many users, thus we decided to add a model User

to our design to be the general type of specific roles. We use inheritance to let the specific

roles inherit characteristics from the parent User model. Students should be able to post

Group Finder3 ads, so we needed a table Ad to hold information about an ad. Each

student can post many ads, hence there is a one-to-many relationship between Student

and Ad. In the next subsections the structure of the database is explained in details.

2.3.1.2 Entities

The database of the system exists of 8 tables of which 7 are entities and 1 is a many-to-

many join table:

• User: a User is a general user of the system and contains the common attributes

from different special users of the system. Most importantly User contains a role

which determines what kind of special user a User is.

• Student: contains individual attributes of a student, such as a study number, etc.

• Company contact: contains individual attributes of a company contact, such as

address, etc.

• Coordinator: contains individual attributes of a coordinator.

• Supervisor: contains individual attributes of a supervisor.

• Project: a Project contains the attributes of a project, which is proposed by Com-

pany contact, done by Student, supervised by Supervisor and coordinated by the

Coordinator.

• Ad: contains attributes of a Group Finder message

• User_Project: a join table which matches users to projects.

2.3.1.3 User roles

BEPsys consists of four users, each of them having a role in the system. Based on their

roles is determined how the authorization of each of the actors is done. Although the

roles of each user is unique, all 4 of them are users who access the system. Therefore,

we had to choose the best approach to create the database without being inefficient or

slowing the system.
3See Appendix C for more information

Design 14

2.3.1.4 First approach

The first approach we thought of was to have one table User for all users of the system.

This would not require any joins when selecting information from the users and thus be

processed faster. On the other hand there would be a lot of redundant storage in the

table. This would produce a table with a huge amount NULL values, which eventually

would decrease the performance of the system. Therefore this approach was not the

approach we looked for.

2.3.1.5 Second approach

The second approach was to have no table User at all. The system would consist of only

special tables representing different roles without a general User table:

Figure 2.1: The approach without a User table.

With this approach there would be redundant columns in company_contact, student,

coordinator and supervisor, namely name and email.

Design 15

2.3.1.6 Final approach

In our final approach, we wanted to avoid having NULL values in columns, which would

decrease the performance of the queries and secondly we wanted to avoid having the

same attributes in different tables which are handled the same. We wanted the User

table back, but to avoid NULL values we decided to have a general User table which

would contain the attributes that are common between all the users and each special

user’s table would contain attributes that belong to each special user. Having separate

tables for each kind of user would not be a performance trade-off because there would

not be any expensive joins involved with these tables. Therefore we thought it was wise

to normalize. Below is a EER diagram of the final approach after proper normalization

of the database:

Figure 2.2: Bachelor Project System database EER diagram

Design 16

2.4 Front-end of the system

2.4.1 Introduction

The front-end of the system enables the interaction between different users and the

system. The goals of our front-end system:

• Navigate users to the different part of the system: after accessing the system, users

can go to the project page, by clicking the projects button in the navigation bar.4

• Inform users about different actions that they can perform in the system and its

consequences: Suppose a supervisor accepts the invitation of the students to start

the project. The invite supervisor input is not going to appear for that particular

project. So the students know they can’t invite another supervisor to the project.

• Make the users aware of the state of the system: When a company contact submits

a project proposal, he/she will be informed by an alert5 that the submission was

done.

• Show the changes that users make in the system: for instance when a student joins

a project, the join button is going to be changed to the leave button.

• Let the users know which information they can change in the system: for instance

a company contact can only change his project information when the status of the

project is proposed or open.

• Contains information pages that help the users to understand the rules and regu-

lations of the system: For instance there is a page dedicated to information for the

companies about how to use the system.

• Restrict access for different users: for example the front-end enables the coordinator

to change the status of the projects while it is hidden from other users.

Besides fulfilling targets mentioned above the system’s front-end is considered successful

when it works without any bug in different user environments. To achieve this we used

Twitter Bootstrap6. During the rest of this chapter we going deeper in the front-end of

each specific part of the system.

4Users home page
5We discussed the alerts later in subsection Informing users
6See 1.6.2.

Design 17

2.4.2 Use cases

As we mentioned before we have four different types of actor in the system which can

perform different actions. As a result of that the front-end of the system looks different

for each role he/she has in the system. Before designing the front-end we define the

actions of each user by providing the use case diagram separately for each role.

Figure 2.3: Use case diagram of company contact

Design 18

Figure 2.4: Use case diagram of the student

Design 19

Figure 2.5: Use case diagram of the coordinator

Design 20

Figure 2.6: Use case diagram of the supervisor

2.4.3 Register

Using a drop-down button users can indicate what role they have. They can choose one

of the three roles : student, company contact and coordinator. After filling the email

field and clicking the submit button they will be registered in the system, after which

an email is sent to the user containing a private access URL. By accessing this URL the

user is logged into the system. In our database design we have one table for all users.

Therefore each user needs to be unique. If an email address is already used to register,

the system suggests to recover the account by showing a message. Recovering an account

works in a similar way.

Design 21

Figure 2.7: Registeration page

2.4.4 User’s home page

In our system each user has his/her own home page. We divided the home pages in

four groups namely: student, company contact, coordinator and supervisor homepage.

Students, supervisors and companies can see their related projects in their home pages.

Via the home page users can perform all the actions possible. For example via navigation

bar in home page7 a student is navigated to the list of projects or to the Group Finder

page. Furthermore, a coordinator can navigate to the list of companies, list of students

and list of supervisor’s page. Companies can propose a project via their home page.

2.4.5 Projects page

The projects page accessible from the navigation bar, contains a list of open, active and

completed projects. Coordinators can in addition see another list in this page, namely

proposed projects. The company contact responsible for a project can still edit the

Figure 2.8: List of projects in student view

information of an open or proposed project in his home page. Coordinators can edit the

information of open, proposed and active projects and delete all type of projects of the

system. By clicking each project all information about that project will be shown in a
7Note that when a user logs in to the system the navigation bar will be available in all pages

Design 22

separate page. So each project has it’s own page. It this page besides the information

available, there is a possibility for students to join8 the project, and invite a supervisor

to the system.

Figure 2.9: A project’s page

2.4.6 Ads page

In this page students can find a partner or a group for the bachelor project by posting

an Ad, they can also delete or edit their Ads. Coordinators can monitor this page and

delete the Ads from the system. In the picture below we see the view of the Ads page

for a student. He/she can view all of the Ads and delete his/hers ad via Action button.

8or leave the project if they have already joined

Design 23

Figure 2.10: Ad page

2.4.7 Coordinator’s special pages

Via navigation bar coordinators can access list of companies, students and supervisors. In

these lists coordinators can see all information about these users. Moreover coordinators

can delete a user from the system.

Figure 2.11: List of student available for coordinators

2.4.7.1 Static information pages

The users should be aware of the rules and regulations of the system. Extra information

about how to propose a project or how to use the system in order to start a project is

explained in a special information pages. In this pages extra information for companies,

students and supervisors will be provided, in order to be able to use the system.

Design 24

2.4.8 Informing users

The system’s front-end is responsible for informing the user about changes that he has

made or might make in the system. This can be seen as a feedback from the system to

the user. For instance when a user is registered in the system an alert will appear to

inform the user that the registration was successful.

Figure 2.12: Registration successful alert

Another example is when a coordinator deletes a user from the system, the system asks

the coordinator if he/she is sure about this action.

Figure 2.13: Delete a student from the system

Chapter 3

Implementation

3.1 Introduction

After designing the system, in this chapter we will go into more details about how we

implemented BEPsys. We will divide the chapter into two parts, namely back-end and

front-end.

3.2 Back-end

As explained in detail in chapter 1, we used the CakePHP web application framework

which uses the MVC software architecture pattern. In this section an overview is given

about the three layers of MVC, namely Model, View and Controller in our system. These

three layers work together to finish a request from the user. The following figure shows

a typical CakePHP request:

25

Implementation 26

Figure 3.1: A typical CakePHP request

The details in the above figure will be explained in the coming sections.

3.2.1 Models

The Model layer is responsible for retrieving, saving, processing, validating and associat-

ing data. The model is the first layer of interaction with the database. We have made a

model class for each entity in the database. There is no need to make a model class for

the many-to-may table user_project, because data association and validation happens

in user and project model separately. The following figure shows the model classes of

BEPsys.

Figure 3.2: Models of the system

Implementation 27

3.2.1.1 DataSources

DataSources are responsible for linking the data with the Models. For our database which

is described in chapter 2, we needed a RDBMS1. CakePHP datasources support MySql,

Postgres, Sqlite and Sqlserver by default.Because Postgres is supported by CakePHP and

Heroku has an official plugin for it, we decided to chose Postgres as RDBMS .

3.2.1.2 Behaviors

Behaviors in CakePHP are part of the model layer. They allow us to organize frequently

used functionality to be able to reuse them, without requiring inheritance. For instance

we can let a model behave like a Tree structure. However, we did not need any special

behavior in BEPsys and thus we did not use this part.

3.2.1.3 Data association

As we mentioned earlier, data association is also part of the model layer. In a CakePHP

model, data associations are defined using an associative array which accepts several

conditions as its elements. There are 4 different kinds of associations that can be used

to link models:

• hasOne

• hasMany

• belongsTo

• hasAndBelongsToMany

For instance, data association in Project model is done as follows:

/**

* hasAndBelongsToMany associations

*

* @var array

*/

public $hasAndBelongsToMany = array(

’User’ => array(
1 RDBMS stands for Relational Database Management System

Implementation 28

’className’ => ’User’,

’joinTable’ => ’user_project’,

’foreignKey’ => ’project_id’,

’associationForeignKey’ => ’user_id’,

’unique’ => ’keepExisting’,

’conditions’ => ’’,

’fields’ => ’’,

’order’ => ’’,

’limit’ => ’’,

’offset’ => ’’,

’finderQuery’ => ’’,

’deleteQuery’ => ’’,

’insertQuery’ => ’’

)

);

3.2.1.4 Data validation

Data validation happens before saving data. For instance when a company contact fills in

the information of a new project2 and submits the form, the save() method of Project

model is called after data is validated successfully. CakePHP has several validation rules

built in such as notempty, email and alphaNumeric. The example below is part of the

validation from project:

public $validate = array(

’name’ => array(

’notempty’ => array(

’rule’ => array(’notempty’),

’message’ => ’The name field should not be empty!’,

’allowEmpty’ => false,

’required’ => true,

),

),

’project_description’ => array(

’notempty’ => array(

’rule’ => array(’notempty’),

’message’ => ’The description of the project should not be empty!’,

2Propose a project

Implementation 29

’allowEmpty’ => false,

’required’ => true,

),

),

);

In the above example we see the notempty rule which makes sure that users fill in the

name and the project_description field. If users leave these field empty, the ’message’

makes sure that users get informed properly.

3.2.2 Views

The View layer is responsible for presenting the user with information from the model.

The view can provide a user with different types of result. The result can be a rendered

HTML page or JSON encoded or even a XML view. For views that need to be rendered

CakePHP uses its own .ctp extension which stands for CakePHP Template. These view

pages (e.g. index.ctp) can be written in plain PHP or a mix of PHP and HTML. The

view layer consists of 4 parts:

• Views: each view is unique for each controller and belongs to an action from that

controller. It is the base of each response.

• Elements: these are smaller, reusable views which can be included in every view

file to prevent coding something you already have done.

• Layouts: these files are containers of views. Most of the views are rendered inside

layouts. For example the head tag of the rendered HTML pages are inside layouts

and not inside views.

• Helpers: these are the available logic to use in the view files. For example HtmlHelper

makes it easy to construct Html elements and TimeHelper has methods available

for displayig date and time in the views.

More details about the implementation of the views can be found in the font-end sub-

section.

3.2.3 Controllers

The Controller layer is responsible for handling the user’s request and send back a re-

sponse to the user. It does that with the help of the Model and the View. The controller

Implementation 30

is like a manager. It waits for a request from the user, sends the work to the correct

part of the system, checks for authorization and authentication rules and after checking

the response type, sends back the response to the user. BEPsys consists of the following

controllers:

Figure 3.3: Controllers of the system

3.2.3.1 Components

Components are logic packages shared between all the controllers. Components are

comparable with helpers in the view layer, with the only difference being that helpers

provide functions for data presentation. We used Auth and Session components.

public $components = array(

’Auth’ => array(

’authenticate’ =>

’loginRedirect’ => array(’controller’ => ’users’, ’action’ => ’login’),

’logoutRedirect’ => array(’controller’ => ’pages’, ’action’ => ’display’, ’home’),

), ’Session’

);

Auth component

Auth component is responsible for identifying and authorizing users. As we see in the im-

age above for authentication we added loginRedirect and logoutRedirect handlers. When

for visiting a certain page a login is required, loginRedirect with the users controller and

Implementation 31

login method is called. So the user needs to login to the system in order to access the

page. Furthermore when users logout of the system the logoutRedirect is responsible to

display the home page of the system.

Session component

The Session component of CakePHP is a wrapper of $_SESSION in PHP, which per-

sists user data when logged into the system. In the above code we added ’Session’ to

components array to tell CakePHP to remember the logged in user.

3.2.3.2 PagesController

The PagesController is used to serve static pages. Static pages do not require a model

and a controller. We used this controller for our main homepage and our information

pages.

3.2.4 Dispatcher

Dispatcher is responsible to convert requests to calls of the controller methods. After it

has found the requested controller, it calls the requested action in that controller. 3

3.2.5 Routes

Routes enable us to connect different URLs to controller actions. In the example below

which is a part of our routes.php, we map /register to /users/register to make the URL

shorter.

Router::connect(’/register/*’, array(’controller’ => ’users’, ’action’=>’register’));

3.2.6 AJAX

In BEPsys we have used AJAX technology to perform certain actions asynchronously

without refreshing pages. These actions are actions that change the page’s content in

real time where the user expects to see this right away instead of seeing an unnecessary

page reload. An good example is a student joining a project. After successfully done so,

the server send a response back to the script that will change the state of the button to

leave and shows the name of the student in the list of participants.
3http://api.cakephp.org/2.3/class-Dispatcher.html

Implementation 32

3.3 Front-end

A combination of a good front-end design and an efficient front-end implementation leads

to a proper front-end in the system. In this section we are going to explain our approach

for front-end implementation in more details.

3.3.1 jQuery

jQuery is a very popular open source JavaScript library which makes it easier for de-

velopers to write front-end code using much less code than pure JavaScript; that is the

reason we used jQuery instead of pure JavaScript. The main advantages[5] of jQuery

are:

• Cross platform compatibility: jQuery takes care of JavaScript compatibility in

different web browsers. There’s no need to worry whether your code works well in

different browsers.

• Great event handling engine: catches and triggers any event with little code and

takes care of browsers that use their own custom event system.

• Short DOM manipulation: making a page dynamic with pure JavaScript requires

tens of lines of code, which takes jQuery a couple of lines to do. jQuery’s toggle()

function hides a DOM element if it’s visible and shows it otherwise:

jQuery

$(’.foo’).toggle()

JavaScript

foo = document.getElementsByClassName(’foo’);

for (i = 0, len = foo.length; i < len; i++) {

el = foo[i];

if (el.style.display === ’block’) {

el.style.display = ’none’;

} else {

el.style.display = ’block’;

}

}

Clearly jQuery’s version of the above code contains much less code while it does

the same with the DOM element.

Implementation 33

3.3.2 Bootstrap

In orientation phase we decided that for the front-end of our system we would use Boot-

strap framework. We have used several Bootstrap components to make the pages cleaner

and more user-friendly.

3.3.2.1 Dropdown button

Bootstrap has a useful Dropdown button component which allows us to assign multiple

actions to one button. This makes the users interface less complicated. In the image

below you see can an example of this component.

Figure 3.4: Bootstrap dropdown button

3.3.2.2 Tooltip

The tooltip component shows what action can be taken by an element when hovering

on that element. This enables the user to see the consequences of an action before

performing the action. An example of using the tooltip component:

Figure 3.5: Bootstrap tooltip

If a mouse cursor is on the delete button, the user can see that this button will remove

the corresponding student.

Chapter 4

Testing

4.1 Introduction

To test our system we decided to conduct Usability Testing. That is, we provide users1

with particular tasks to perform to see whether they were able to complete those actions.

However, there is also the matter of how well users think they can complete an action.

That is the user experience of the system. This chapter covers the aforementioned in

detail.

4.2 Test Plan

4.2.1 Goals

In order to use the results of usability testing properly, we had to set usability goals[6].

Usability goals must contain usability concepts such as effectiveness and satisfaction[7].

We also decided to measure how users experience the user interface of the system as a

part of usability testing. These 3 concepts are explained below:

• Effectiveness: By effectiveness is meant how useful users find the system, that is

how the system helped users perform their task and whether the system made it

possible for them to complete their task in an effective2 way.

• Quality of User Interface: How users experience the user interface of the system

and whether or not different parts of the user interface was clear to them. This also
1see participants subsection
2Effectiveness here is defined by test users.

34

Testing 35

covers the overall organization of the system and the ability to navigate through

the system in users’ opinion.

• Satisfaction: To what extend users are satisfied about the whole system, e.g. the

ease of use of the system. This is about the whole system in general.

4.2.2 Participants

We let 10 people each taking a role in the system, test the usability of our system. All

of our test users have different occupation and age.

4.2.3 Test Method

For usability testing we have decided to use the hall way method[8]. There is a mathe-

matical model that claims that letting 5 people test the system is sufficient with as large

as possible number of tasks to perform. However we decided to have more people test

the system, because testing in different roles with the same users would give us almost

the same answers for our questionnaire. We eventually let 10 people test the system in

a random role.

4.2.4 Tasks

For testing our system, we ask testers to complete some tasks. We have decided to divide

tasks for each role:

• Student: register, join a project, leave a project, invite supervisor

• Coordinator: register, close a completed project, delete a project, delete a project

participant, edit project, approve a project

• Company: register, propose project, edit project, delete project, delete account

• Supervisor: approve a project

4.2.5 Test Environment

Although our system is compatible with mobile devices, we decided to test the function-

alities of the system using the personal computer and laptop of the testers.

Testing 36

4.2.6 Evaluation

After the tasks are performed by our testers, we asked them to fill in a questionnaire

about their experience with the system. The questionnaire consists of 3 sections with

the 3 usability goals introduced earlier in this chapter. In the remainder of this chapter

the questions and results are shown, after which a short conclusion is given.3

3The colors are there to differentiate between different score and do not have a special meaning.

9/22/13 BEP system questionnaire

https://docs.google.com/forms/d/1wRZav6jvW6cEHFOhYV_1mtR4XKZWUB806WUI9n5z8rM/viewform 1/3

Edit this form
BEP system questionnaire

* Required

What is your role in the system? *
 Coordinator

 Student

 Company

 Supervisor

User interface
The following questions are about the system's look and feel.

It was easy to navigate through the website. *

1 2 3 4 5

very difficult very easy

Texts on the website were understandable. *

1 2 3 4 5

not at all very much so

The website looked appealing to me. *

1 2 3 4 5

not at all very much so

Help messages were helpful during my task. *

1 2 3 4 5

not at all very much so

It was clear for me what I had to fill in the forms *

1 2 3 4 5

not at all very much so

The website was well organized. *

1 2 3 4 5

not at all very much so

9/22/13 BEP system questionnaire

https://docs.google.com/forms/d/1wRZav6jvW6cEHFOhYV_1mtR4XKZWUB806WUI9n5z8rM/viewform 2/3

How satisfied are you about the user interface of the website *

1 2 3 4 5 6 7 8 9 10

not satisfied at all very satisfied

Effectiveness
The following questions are about how useful you think the website is.

I could perform my tasks with few steps. *

1 2 3 4 5

not at all very much so

I could perform my task in little time. *

1 2 3 4 5

not at all very much so

It was easy to learn to use this website. *

1 2 3 4 5

not at all very much so

I was productive using this website. *

1 2 3 4 5

not at all very much so

The notification system was helpful to perform my task. *

1 2 3 4 5

not at all very much so

Overall satisfaction
The following questions are about your overall experience with the website.

I am going to use the website in the future. *
 Yes

 No

I am going to recommend the website to collegues *
 Yes

9/22/13 BEP system questionnaire

https://docs.google.com/forms/d/1wRZav6jvW6cEHFOhYV_1mtR4XKZWUB806WUI9n5z8rM/viewform 3/3

 No

The website was easy to use. *

1 2 3 4 5

not at all very much so

How satisfied are you about the whole website? *

1 2 3 4 5 6 7 8 9 10

not satisfied at all very satisfied

Do you have any comments?

100%: You made it.

Powered by

This content is neither created nor endorsed by Google.

Report Abuse Terms of Service Additional Terms

Submit
Never submit passwords through Google Forms.

Testing 40

4.2.6.1 User interface

Figure 4.1: Navigation

Figure 4.2: Understandability

Figure 4.3: Website’s look

Testing 41

Figure 4.4: Help messages

Figure 4.5: Clarity of the forms

Figure 4.6: Website’s organization

Testing 42

Figure 4.7: UI satisfaction

Testing 43

4.2.6.2 Effectiveness

Figure 4.8: Task performance steps

Figure 4.9: Task performance time

Figure 4.10: Website’s learning curve

Testing 44

Figure 4.11: Productivity

Figure 4.12: Helpful to perform the task

Testing 45

4.2.6.3 Overall satisfaction

Figure 4.13: Use in future

Figure 4.14: Recommend to colleagues

Figure 4.15: Ease of use

Testing 46

Figure 4.16: Satisfaction about the whole website

Testing 47

4.2.6.4 Conclusion

From the results we can see that the testers found that the system made them more

productive and that using the website was easy for them, hence it took them not much

time to perform their tasks. They also thought the system is well organized. As expected

they found the system not very appealing, as the user interface has yet to be improved

in the future. One of the testers suggested usernames and passwords to use for login,

something we have already thought of and will build in the near future. The same goes

for search functionality for the system.

Chapter 5

Conclusion

The goal of this project was to develop a system that should be an improvement to the

current system. The future system would make proposing, finding and joining projects

faster and more organized. The coordinator would no longer have to make each small

change in the system himself/herself. Instead this should easily be done by the concerning

user. In addition the system would help easing the process of approval which is done

several times in different work flows. During this project we successfully implemented

the must have requirements. The delivered product is a working system1 which was

mentioned in the requirements elicitation document. Before the system is completely

ready for production, some improvements had to be done such as authorization. After

testing we received positive feedback about the system. The user interface needs some

improvements in order to make the system more appealing to the users. In addition we

think some functionalities need to be added to the system before production:

• Login with user name and password

• All approval possible within the system: coordinator should be able to approve

actions in the system and not in an email.

And some suggestions for later versions are:

• Notification within the system: in-system notifications as an alternative to email

notifications.

• Document upload system.

• Messaging system which ables to users to interact within the system.

1Development version

48

Appendix A

Project Plan

A.1 Introduction

In this section a planning of the project is given. It will become clear what the background

of the project is, what the project exactly contains, what are the requirements and

restrictions, what approach we will to use and finally a schedule of important events

during the project.

A.1.1 Background

At the moment the communication about potential bachelor project between the inter-

ested companies and TU Delft happens through email. A company sends an email to

someone from TU Delft (not always the coordinator), in many cases this person (if not

the coordinator) notifies the Bachelor’s final project coordinator. The coordinator will

send a project proposal template to the company to fill in (if the company does not

already have it). The company will send the proposal document back to the coordinator.

When the project meets the rules, it will be posted on the related BlackBoard page. The

aforementioned procedure could be improved a lot if there is more automation in parts

of it. If the project is carried out successfully, the process should be more organized and

less waste time.

49

Appendix A 50

A.2 Project description

A.2.1 Introduction

This section is about the project specifically. We will describe who is the client, who are

the contacts, what are the goals of the project and what exactly has to be delivered.

A.2.2 The client

The client is Dr.Ir. Felienne Hermans from TU Delft.

A.2.3 Contacts

Dr. Martha Larson is the coordinator of the project, the project is supervised by Ir.

Hans Geers.

A.2.4 Problem description

As mentioned in the introduction section the current system requires a lot of unnecessary

wasting of time and sending emails. Companies are not able to update their project

proposal without the help of the coordinator.

A.2.5 Goal

Develop an organized web system that should improve the communication between the

companies, the university and the students by easing the process of proposing a project,

registering for a project and approving the project proposal by the coordinator.

A.2.6 Product

The product is a web application which will be available on a public domain.

A.2.7 Preconditions

There are no special preconditions defined. Although, the system has to maintainable

and has to be finished very rapidly because of the lack of time. The focus is more on

having a basic working system.

Appendix A 51

A.3 The approach

A.3.1 Introduction

This chapter describes methods, techniques and approaches that will be used in the

project.

A.3.2 Software Engineering Methodology

This project will to be carried out using the Agile framework and specifically the Scrum

method. In each sprint there will be worked on a new part of the system and at the

end the new functionality will be added to the whole system. We will have two kinds of

meetings. The daily meeting during which we will shortly discuss what we have done and

what we are doing right now. If there are any problems we will try to solve them. The

other meeting is a sprint meeting at the end of a new sprint or milestone of the project.

If there is any problem with the functionality another spring will start, only shorter in

time. We have chosen this method because of the fact that the project has to be finished

very rapidly.

A.3.3 Technical details

We will be using a web application framework which is most suitable to our situation.

We will investigate this in the orientation report.

A.3.4 Proceedings and schedule

Week/Activity 1 2 3 4 5 6 7 8

Orientation

Requirements Analysis

Front-end design

Technical Design

Implementation

Testing

Final Report

Presentation

Appendix A 52

A.4 Quality Assurance

A.4.1 Introduction

In this chapter we discuss the different methods that we will use to guarantee the quality

of the entire project.

A.4.2 Quality

The quality of this system is assured by working according to the software methodology

mentioned in the chapter The approach. We will also organize weekly meetings with the

client and test during the implementation phase to get the right feedback on time.

A.4.2.1 Evaluation

The written code will be evaluated by SIG, after which we are able to improve the quality

of the implementation according to the feedback.

A.4.2.2 Versioning

We are using Git as a version control technology to ensure the quality and maintainability

of the code we are writing.

A.4.2.3 Pilots

Because of the time restriction and to avoid surprises after the product delivery we need

to get the proper feedback from the client. We decided to let the client test the system

as much as possible during the implementation phase. When new functionality is added

to the system, we let the client test and give feedback. During the final user-testing we

let all the actors test the product. At last we could tweak the system a bit using the

relevant feedback.

Appendix B

Requirements Elicitation

B.1 Introduction

This appendix contains functional and nonfunctional requirements of the system, includ-

ing user stories and scenarios.

B.2 Current system

At the moment registering for a bachelor project is done by filling in a form (on paper) by

student teams, that has to be signed by both the company and the university. Further-

more, a company interested to work with the university needs to contact the coordinator

first, who then will upload the project proposal. This will happens many times until the

proposal is approved to appear in the list of open projects. This method is inflexible,

because the proposal cannot be updated/edited by the company and the coordinator

needs to be contacted again in order to update the proposal.

B.3 Proposed system

B.3.1 overview

The bachelor project monitoring system is a web application that lets students, coor-

dinators/supervisors and companies communicate in a well organized and reliable web

environment. It enables all involved parties to access contact, project and company in-

formation in a fast way. The new system should make the change to the project proposal

flow more flexible as it lets the companies edit their projects. On the other hand it make

53

Appendix B 54

it easier for coordinators as proposing and joining the projects happens in one central

system, where input from other users can be approved using very little time.

B.3.2 Stakeholder analysis

Four different stakeholders are distinguished:

Company contacts: They are people within a company who have project available for

the students of the university.

Coordinators: Coordinators are responsible for approval of the proposed projects. Fur-

thermore they are able to see the information of all users of the system and also to delete

users from the system.

Supervisors: Supervisors get invited by a project group, they will assist the group

throughout the project.

Students: The students executing a project or looking for a project or a partner.

B.4 Functional requirements

In Agile software development methodology user stories are used as an alternative for a

requirements list. In order to get a more clear overview we decided to use user stories

for each actor. To prioritize the requirements we will use the MoSCoW method.

B.4.1 Company contacts

Must have:

• Register in order to access the system.

• Fill in a project proposal form in order to propose a project.

• Edit or delete the content of the project proposal.

• Edit or delete registration information.

• Recover account

Could have:

• See the list of the projects that I have proposed so far, regardless of their status.

• Get notified when a group is approved to work on the project.

Appendix B 55

• Receive a confirmation via email that the submission is done.

• Receive a confirmation via email that the project is approved.

B.4.2 Coordinators

Must have:

• Register in order to access the system.

• See the list of open/active/completed projects.

• See the company contact1 information of projects.

• Be able to remove projects.

• Approve a group of students in order to begin a project.

• See the presentation date and time of each project.

• Enter a presentation date and name as a presiding coordinator for each project.

• Close a completed project.

• Remove a participants from a project.

• Edit or delete registration information.

• Recover account.

Could have:

• Find the contact information of companies and students.

• See a a list of supervisors and their projects.

• Get notified by email that a project has been approved.

• Receive a confirmation email containing email addresses of the involved students

when a project is closed.

• Get notified by email when a project is edited.

• Get notified by email when a students posts an ad in the Group Finder. This email

contains a link to that ad.
1By company contact is meant that each company can be represented by different contacts. Each

company page belongs to a company contact.

Appendix B 56

• Receive a CC of the confirmation email that a project was submitted by a company.

• Receive a CC of the confirmation email that an ad was submitted.

• See the list of students participating in a project.

Won’t do:

• Use the system to send a feedback to the company if the project does not meet the

requirements.

• Approve or reject a proposed presentation date by students.

B.4.3 Supervisors

Must have:

• See the presentation date and time of my projects.

• Approve2 the invitation of students.

• Edit or delete registration information.

• Recover account.

Could have:

• Receive a confirmation email that supervisor has just joined a project in the system.

• See the list of all open/active/completed projects in one page.

• See a list of projects that supervisor have supervised so far.

• See the company contact information of projects.

• Get notified by email that project was approved.

Won’t do:

• Approve or reject the proposed presentation date by students.
2The supervisor can only approve the invitation, because the students and the supervisor agree to

work on the project prior to this invitation. This invitation also registers the supervisor on the system.

Appendix B 57

B.4.4 Students

Must have:

• Register in order to access the system.

• See the list of all open/active/completed projects.

• See the company contact information of projects.

• Confirm3 that student has all the requirements to begin the project.

• Join an open project.

• Leave a project.

• Request approval to start a project.

• Invite a supervisor to the system.

• Edit or delete my registration information.

• Recover my account

Could have:

• Post an ad in the Group Finder.

• Get notified by email when my group has been approved.

• Delete my ads when student has a project.

• Get notified by email that ad was submitted.

• Get notified by email that ad was approved.

• Get notified by email that ad was deleted and that student has to post another

one if student wants.

Won’t do:

• Propose a presentation date in the system.
3The student is asked to check a check box. It is the students’ responsibility to check if they have all

the requirements. The system has no way of checking this.

Appendix B 58

B.5 Nonfunctional requirements

Besides the main functionality and behavior of the system, in other words: what the

system is supposed to do, it is also important to specify how the quality of the system

is supposed to be.

B.5.1 Usability

The system should have a simple and understandable interface for the Bachelor’s final

project coordinator. Furthermore, the system should let coordinators approve student

groups, projects, Group Finder ads.

The system should let companies submit their project proposal without spending too

much time. Right from their home page companies should be able to edit or delete their

info and their project proposals.

B.5.2 Security

The system requires all the input from users first to be approved by the coordinator.

Relevant input should be validated and cleaned before saving. Passwords should be

encrypted before saving.

B.6 Scenarios

B.6.1 Company contacts

• Register: when a user goes to the website and wants to register, when user fills

in an email address and submits the form, they receives an email with a private

access URL to access the system.

• Proposes project: when a company contacts goes to add a project page, the

company contact can fill in the project proposal form and submit it.

• Edit/delete project: when company contacts go to the edit page of their project,

they see a project proposal form that they have filled in before. This form is

editable, so they can update the information. If they submit the data, it will be

also updated in the system. Company contacts can also delete their project by

delete button.

Appendix B 59

• Edit/delete registration information: when users click on their name in nav-

igation bar they access their home page. In this page they can edit or delete their

registration information using edit or delete button in action drop down.

• Recover account: via recover account page, users can fill in their email address

in to receive their private access URL by email.

B.6.2 Coordinators

• Register: see Company contacts register

• See list of projects: coordinators are able to access the projects page via naviga-

tion bar. In this page they see 4 lists of project, namely: open, active, completed

and proposed. All of the projects in the system belongs to one of these lists.

• See company contact information coordinators can access the company con-

tacts page by company contacts button in navigation bar. In this page they can

see all the company contacts with their information.

• Remove project: in projects page, coordinators are able to remove each project

using delete button.

• Approve a group of students in order to begin a project: when a request

approval email 4 is sent to the coordinators. They can access the project by a link

which is provided in email. They can either approve the request by changing the

status of the project from open to active, using status drop down; or delete the

project(See B.6.2 subsection, remove project part) or remove the participants from

the project (See B.6.2 subsection, remove a participant from the project).

• See the presentation date: see See list of projects. In this page the coordinators

can see the presentation date and time of each project in the active project list.

• Enter presentation date: when coordinators are in project’s page, they are able

to submit a date and time for the presentation of the project along with the name

of the presiding coordinator.

• Close a completed project: when coordinators are in projects page, they are

able to close a finished project by changing the status of the project from active to

completed.
4This email is sent by student who wants to start the project. It contains a link to the project page.

For more information about request approval see subsection C.6.4, Request approval part

Appendix B 60

• Remove a participant from a project: in project’s page, coordinators is able

to remove a student or a supervisor from the project using remove button which is

located next to each participant.

• Edit/delete registration information: see Edit/delete registration information

in Company contacts.

• Recover account: see Recover account in Company contacts.

B.6.3 Supervisors

• Sees presentation date and time: in supervisor’s home page, the supervisors

can see their projects. Next to each project the corresponding presentation date

and time is also available.

• Approves invitation/joins group: see Student invites supervisor. An email

should be sent to the supervisors containing an approval link, which also registers

the supervisors on the system.

• Edit/delete registration information: see Edit/delete registration information

in Company contacts.

• Recover account: see Recover account in Company contacts.

B.6.4 Students

• Register: see Company contact register.

• See project list: students are able to access the projects page via navigation bar.

In this page they see 3 lists of open, active, completed projects.

• See company contact information: in projects page students can select one

project to see more information about it5. By clicking the company name the

students can see more information about the company and the company contact

who offers the project.

• Confirm requirements: in project’s page when students want to join a project,

there is a check box where they can confirm that they have the requirements to

start the project.
5We call this page project’s page which contains the project proposal and other information such as

company name.

Appendix B 61

• Join an open project: in project’s page when the status of the project is open,

students can join the project using join button. Then their name will be added to

the list of participants in this page.

• Leave a project: see above paragraph Join an open project. Students can leave

the project using leave button in this page. Then their name will be removed from

the participants of the project.

• Requests approval: when a group of students already have a supervisor and are

ready to start6, they are able to request approval from the coordinator, by request

approval button in project’s page.

• Invite a supervisor: in project’s page when students fill the email of their su-

pervisor and submit it, the supervisor will be invited to the project by email7.

• Edit/delete registration information: see Edit/delete registration information

in Company contacts.

• Recover account: see Recover account in Company contacts.

6The project should consists of at least two students
7This email consists of project’s information and a link which enables the supervisor to join the

project

Appendix B 62

B.7 Flow charts

In this section workflows of the system are displayed. This is done to divide all user

stories in more understandable processes and thus making user stories more clear for

the reader. Note that actions in grey font are actions which don’t belong to must have

requirements. Below is the definition of the icons which appear in the workflows.

Figure B.1: Definition of icons

B.7.1 User register

Appendix B 63

Figure B.2: Registration (except supervisor)

Appendix B 64

B.7.2 Company

Figure B.3: Proposes/edits project

Appendix B 65

B.7.3 Coordinator

Figure B.4: Closes a completed project

Appendix B 66

Figure B.5: Fills in presentation date

Figure B.6: Project approval

Appendix B 67

B.7.4 Student

Figure B.7: Post Ad

Appendix B 68

Figure B.8: Join/leave project, Invite supervisor, coordinator approval

Bibliography

[1] Zurmo - open source crm, .

[2] Splendidcrm, .

[3] Tom DeMarco and Tim Lister. Peopleware: Productive Projects and Teams. 2013.

[4] Mark Otto. Bootstrap from twitter. https://dev.twitter.com/blog/

bootstrap-twitter, 2011.

[5] What are some of the pros and cons of using jquery?, .

[6] Jeffery Rubin and Dana Chisnell. Handbook of usability testing. Academic press,

2008.

[7] Nielsen. Usability Engineering. Academic press, 1994.

[8] Jacob Nielsen and Thomas K. Landauer. A mathematical model of the finding of

usability problems, 1993.

69

https://dev.twitter.com/blog/bootstrap-twitter
https://dev.twitter.com/blog/bootstrap-twitter

	Abstract
	List of Figures
	1 Orientation
	1.1 Introduction
	1.2 Current system investigation
	1.3 Future system
	1.4 Comparison with existing systems
	1.4.1 Customer Relationship Management systems

	1.5 Choice of software methodology
	1.5.1 Adaptation to change
	1.5.2 Increased productivity
	1.5.3 Variable requirements

	1.6 Implementation
	1.6.1 Back-end
	1.6.1.1 Choice of framework
	1.6.1.2 Framework comparison

	1.6.2 Front-end

	1.7 Deployment

	2 Design
	2.1 Introduction
	2.2 Main activities in the application
	2.2.1 Company wants to propose a project
	2.2.2 Student wants to do a project

	2.3 Back-end of the system
	2.3.1 Database design
	2.3.1.1 The domain model
	2.3.1.2 Entities
	2.3.1.3 User roles
	2.3.1.4 First approach
	2.3.1.5 Second approach
	2.3.1.6 Final approach

	2.4 Front-end of the system
	2.4.1 Introduction
	2.4.2 Use cases
	2.4.3 Register
	2.4.4 User's home page
	2.4.5 Projects page
	2.4.6 Ads page
	2.4.7 Coordinator's special pages
	2.4.7.1 Static information pages

	2.4.8 Informing users

	3 Implementation
	3.1 Introduction
	3.2 Back-end
	3.2.1 Models
	3.2.1.1 DataSources
	3.2.1.2 Behaviors
	3.2.1.3 Data association
	3.2.1.4 Data validation

	3.2.2 Views
	3.2.3 Controllers
	3.2.3.1 Components
	3.2.3.2 PagesController

	3.2.4 Dispatcher
	3.2.5 Routes
	3.2.6 AJAX

	3.3 Front-end
	3.3.1 jQuery
	3.3.2 Bootstrap
	3.3.2.1 Dropdown button
	3.3.2.2 Tooltip

	4 Testing
	4.1 Introduction
	4.2 Test Plan
	4.2.1 Goals
	4.2.2 Participants
	4.2.3 Test Method
	4.2.4 Tasks
	4.2.5 Test Environment
	4.2.6 Evaluation
	4.2.6.1 User interface
	4.2.6.2 Effectiveness
	4.2.6.3 Overall satisfaction
	4.2.6.4 Conclusion

	5 Conclusion
	A Project Plan
	A.1 Introduction
	A.1.1 Background

	A.2 Project description
	A.2.1 Introduction
	A.2.2 The client
	A.2.3 Contacts
	A.2.4 Problem description
	A.2.5 Goal
	A.2.6 Product
	A.2.7 Preconditions

	A.3 The approach
	A.3.1 Introduction
	A.3.2 Software Engineering Methodology
	A.3.3 Technical details
	A.3.4 Proceedings and schedule

	A.4 Quality Assurance
	A.4.1 Introduction
	A.4.2 Quality
	A.4.2.1 Evaluation
	A.4.2.2 Versioning
	A.4.2.3 Pilots

	B Requirements Elicitation
	B.1 Introduction
	B.2 Current system
	B.3 Proposed system
	B.3.1 overview
	B.3.2 Stakeholder analysis

	B.4 Functional requirements
	B.4.1 Company contacts
	B.4.2 Coordinators
	B.4.3 Supervisors
	B.4.4 Students

	B.5 Nonfunctional requirements
	B.5.1 Usability
	B.5.2 Security

	B.6 Scenarios
	B.6.1 Company contacts
	B.6.2 Coordinators
	B.6.3 Supervisors
	B.6.4 Students

	B.7 Flow charts
	B.7.1 User register
	B.7.2 Company
	B.7.3 Coordinator
	B.7.4 Student

	Bibliography

