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Abstract

Learning from demonstration is a technique where the robot learns directly from humans. It can be
beneficial to learn from humans directly because humans can easily demonstrate complex behaviors
without being experts in demonstrating required tasks. However, it can be challenging to gather large
amounts of data from humans because humans often get tired, bored, or lose focus while giving many
demonstrations. Therefore, the learning algorithms require to be as dataefficient as possible. To solve
sequential tasks using few human demonstrations, the Transporter Network was introduced.

The Transporter Network consists of two networks, namely the pick network and the place network.
Both these networks have a fully convolutional architecture which has the property of being transla
tionally equivariant. Translational equivariance is well suited for estimating pick locations because the
predicted pick location changes corresponding to the change in the object’s position in the image. How
ever, the performance of the transporter network on sequential tasks depends on the receptive field
of the fully convolutional network because each pixel in the output should depend on each pixel in the
input image. This correlation is important for the network to make predictions based on the overall con
figuration of objects in the input image. A larger receptive field would give a prediction by correlating
large amount of pixels in the input image, however increasing the receptive field could result in loss of
resolution which in turn leads to information loss in the latent space. Therefore, it is essential to select
an appropriate size for the receptive field such that there is minimal loss of resolution in the latent space
of the fully convolutional network. This limitation of selecting the appropriate size of the receptive field
was also observed in the preliminary experiments on the pick network of the Transporter Network.

In this work, a SEquential Attention Network (SEA Net) is introduced to overcome the dependence
of the Transporter Network on the receptive field size for solving sequential task. SEA Net is a variation
of the pick network of the Transporter Network. SEA Net works under the assumption that the set of
objects to be picked are known beforehand. Based on this assumption, the SEA Net learns to predict
two things: 1) The pick location of all the objects. 2) ”what” object to pick as a function of the current
configuration of the objects in the environment. SEA Nets can be used independently to predict pick
location sequentially and also be used as a replacement of the pick network in the Transporter Network.
SEA Net is evaluated on two datasets, namely synthetic dataset and simulated robot dataset. The
synthetic dataset has a topdown view of simple shape blocks. In contrast, simulated robot datasets
are extracted using a pretrained policy on the Mujoco simulators. The Object Keypoint Similarity
(OKS) metrics is used to score the distance between the predicted pick point and the ground truth.
The OKS Metric uses a standard deviation threshold (𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). A strict standard deviation threshold
(𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) of 2 pixels and a lenient threshold (𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) of 20 pixels is used because a strict threshold
will evaluate the resolution of the prediction. In contrast, the lenient threshold will assess if the predicted
pick point is, at least on the desired object. The model achieved an overall accuracy of 64% for a
strict standard deviation threshold (𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) of 2 pixels and accuracy of 85% for a lenient standard
deviation threshold (𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) of 20 pixels on the OKS metrics, on the synthetic dataset. The model
could perform on a simulated robot dataset with an accuracy of 82% on a strict standard deviation
threshold (𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) of 2 pixels.
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1
Introduction

The need to introduce robots for automated process has paved the way for new technologies. There
has been an exponential increase in the use of robots in various areas [1, 2]. For example, logistical
warehouses use robots for sorting packages. The field of agriculture also uses robots for harvesting
fruits and vegetables. Incorporating robots in industries has paved the way to higher quality in pro
duction and reduced costs [3]. Robots can react autonomously to the changes in the environment
due to unforeseen situations. To achieve autonomy, the robots need to be trained to perform a spe
cific task. The training of the robot could be based on cameras and other sensors. Cameras provide
images and teaching a robot using images is a complex and systematic problem because they are
highdimensional input and require high memory and computation techniques to get the desired re
sults. However, cameras(RGB) are cheap and provide rich information about the surrounding of the
robot. The advancement in deep learning has increased the interest of using images to extract relevant
information from images. Hence the thesis aims to train a robot to perform dataefficient, sequential
tasks using images. The thesis will focus on estimating the pick location of a sequential task as a
function of an image that provides relevant information about the environment in each time step.

1.1. Motivation

Learning to execute sequential tasks from demonstration is an interesting approach to train the robot
easily. In learning from demonstrations, the robot can learn from human demonstrations directly. It is
beneficial to use human demonstrations because humans can demonstrate complex behaviors without
being an expert in robotics [4]. However, it is not possible to expect humans to provide a large amount of
demonstration because humans can often get bored, tired, or lose focus while giving the demonstration.
Therefore, it is essential to learn the sequential tasks with fewer demonstrations. To learn a sequential
task dataefficiently, a hierarchy could be introduced into the problem. By introducing a hierarchy, a
structure is introduced into the sequential task, which will be better for generalizing in unseen scenarios.
Therefore, sequential tasks could be learned using hierarchical learning algorithms. In the context of
imitation learning, a hierarchical learning algorithm breaks the overall demonstrations into subtasks,
thereby reducing the size of the state space for each subtask [5]. Hierarchical learning aims to learn
highlevel and lowlevel behavior together (as explained in Appendix A.1). In the context of robotics, for
instance, a highlevel controller can provide goals to be reached by a manipulator, while the lowlevel
controller sends to the robot the control commands to follow a trajectory that will take the robot from

1
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2 1. Introduction

its current position to these requested goals. The highlevel goals can be a desired robot’s state, like
a jointstate configuration or an endeffector position. A lowlevel controller can use motion primitives
to move the robot from one state to another. Therefore, a combination of the highlevel and lowlevel
controller could execute a sequential task. This thesis will focus on learning the highlevel goals of the
mentioned hierarchical structure, assuming that the lowlevel controller already exists.

To extract highlevel goals from images deep learning approaches could be used. It is possible to
extract highlevel goals as poses or spatial locations from images using computervision techniques
like object detection, image segmentation, etc [6, 7]. It is also possible to use convolutional neural
networks to directly map the image to the required goal poses or spatial locations. Some of these deep
learning techniques are already designed to extract highlevel goal locations from image for robotic
manipulation tasks [8–10]. However, the limitation of using these techniques for extracting highlevel
goal, is its inability to estimate the exact spatial location for the robot to reach using limited data. The
model needs to perform well using fewer demonstration as they are provided by humans.

Hence the aim is to extract the spatial locations of desired highlevel goals from images to carry
out a sequential task with few demonstrations. To be more clear on the objective, consider a robot that
needs to move from location 1 to 4 through intermediate points 2, and 3 Fig 1.1. It could be assumed
that the robot carries out a sequential task, i.e., it reaches point 1 first, then 2, etc. The aim is to predict
the robot’s highlevel goals that are the spatial location of the points 1, 2, 3, and 4 which needs to be
predicted consecutively with fewer demonstrations. The main motivation is to devise a computervision
technique that could learn to predict the spatial location of the goals for a sequential tasks with limited
data.

Figure 1.1: The objective is to extract the target positions the robot needs to reach from images.
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1.2. Aim and Objectives

1

3

1.2. Aim and Objectives

To solve the sequential task considered in this thesis, the highlevel controller needs to provide high
level goals in the form of spatial locations. Each spatial location corresponds to a pick point in a manip
ulation task. Consider an example of a tomato harvester. The task of the tomato harvester is to pick up
a cutting tool, harvest a tomato, and place the tomato in a box. Here the goal of the highlevel controller
is to give the goal location/pick location during each of the four tasks from images. The challenge lies in
learning what highlevel goal is needed for the lowlevel controller, along with the goal location, to ma
nipulate the sequential task with fewer demonstrations successfully. Some deep learning techniques
use a fully convolutional network to solve sequential tasks with fewer demonstrations. These fully con
volutional networks have an hourglass structure in which the output is predicted in the same dimension
of the input by correlating with each pixel in the input. Hence, it is essential to have large receptive
fields to make predictions incorporating more information from the image. However, increasing the
receptive field means increasing the loss of information in the latent space and the parameter, which
affects the generalization of the model with few datasets. Hence, a tradeoff is always set between
maximizing the receptive field and minimizing the loss of information in predicting the output.

Hence it is required to develop a model that is independent of this limitation so that it is possible to
consecutively predict the goal/pick locations without any loss of information in the latent space. This
goal was divided into a set of objectives listed below

• Define and implement a method that can predict highlevel goals in the form of pick locations in
sequential tasks dataefficiently and removing the tradeoff present in Fully Convolutional Hour
glass Networks between their receptive field size and the loss of information in the latent space.

• Create and extract simulated robot dataset and synthetic dataset.

• Validate the method on simulated robot dataset and synthetic dataset.

1.3. Outline

The content of this thesis will have the following outline:

• Chapter 2 introduces concepts and literature to understand the thesis in detail. It will start from
the basic concept of neural networks and move towards the literature that are necessary to un
derstand the thesis implementation.

• Chapter 3 explains the novel concept of multioutput pick Network which is introduced to over
come the problem faced in current literature to solve sequential pick and place task. The archi
tecture and the loss function used are introduced in this chapter.

• Chapter 4 explains the preliminary experiments carried out on the pick network of Transporter
Network and the multioutput pick network.

• Chapter 5 will propose the architecture to solve sequential prediction of pick locations. The chap
ter will introduce the architecture and the loss function of the proposed model.

• Chapter 6 will introduce the dataset and experiments used to evaluate the performance of the
proposed methods. It also gives an analysis of the results obtained.
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2
Theoretical Background and Related works

In this chapter, an overview of the fundamental concepts are provided for understanding the core of
this project. The basic concept in deep learning are explained followed by the fundamentals of Convo
lutional Neural Networks (CNNs). After explaining the fundamentals of CNNs, the hourglass structure
is introduced. Then the various method used in the current literature for extracting pick points and the
metrics used to evaluate the performance of the model are discussed.

2.1. Deep Learning Background

Artificial intelligence is used widely to make machines behave like humans. One of the widely used
subsets of Artificial intelligence is Machine learning, where the decision is made based on the given
features of the dataset. Deep learning is a subset of Machine learning in which the model has the
inherent capability to learn the feature along with the decisions. This property of deep learning has
become a powerful tool in many applications and is exploited in various decisionmaking frameworks.
The deep learning model is trained to learn a function that maps an input(x) to an output(y) based on
the Eq (2.1)

𝑦 = 𝑓(𝑥, 𝜃) (2.1)

where,

𝜃 is the model parameters

2.1.1. Neural Networks

Neural networks or feedforward neural networks correlates the input to the output by approximating
some function 𝑓∗. These networks are called feedforward neural networks because the information
flows from the input to the output without any feedback. It is possible to use different functions to map
the input to the output as represented in Eq (2.2).

𝑓(𝑥) = 𝑓(3) (𝑓(2) (𝑓(1)(𝑥))) (2.2)
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where:

𝑓(1) is the first layer of the network
𝑓(2) is the hidden layer of the network
𝑓(3) is the output layer of the network

Neural networks are called neural because they are inspired by neurons in neural science. There
fore, the building block of neural networks is the neurons. During training, each neuron’s weight and
bias value are stored as shown in Eq (2.3), and the final output is calculated as the weighted sum of
the weight and biases [11]. The neurons use a linear model, and the nonlinearity of the input could be
represented by using activation functions.

𝑓(𝑥;𝑤, 𝑏) =∑𝑥⊤𝑤 + 𝑏 (2.3)

where:

𝑤 =Weight parameter
𝑏 = Bias parameter
𝑥 = input to the network

From the above equation, the value of the function 𝑓 could range from inf to +inf. There is no
mean for the neuron to know the bound which lead to its firing. An activation function was introduced to
help the neurons understand the bounds for firing. The activation function is used to convert the linear
output of the neuron to nonlinear output that is easy for computation. The activation functions are also
differentiable making it easy for updating the parameters during backward propagation [12]. The acti
vation also helps control the output value passed to the calculation, thereby reducing the computational
burden. There are linear and nonlinear activation functions of which only the main nonlinear functions
are discussed. The different type of activation functions are depicted in Fig 2.1.

Figure 2.1: The different types of activation functions

Sigmoid functions are referred to as squashing functions used to keep the value bounds between
0 and 1 [13]. The sigmoid function is represented as in the Eq (2.4).

𝑓(𝑥) = ( 1
(1 + exp−𝑥)) (2.4)

Since the value is bounded between 0 and 1, the sigmoid functions could predict outputs based
on probability. Hence the wide application of sigmoid function is in binary classification problems. The
major drawbacks of using a sigmoid functions are vanishing gradient problem during backpropogation
and a nonzero centered function [12]. This problem is tackled in other activation functions.
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Hyperbolic Tangent Function (tanh) is like a sigmoid function, but will squash the outputs between
the value of 1 and 1. It is a zerocentered function, thereby adding in the computation during backward
propagation. The tanh function is represented in Eq (2.5)

𝑓(𝑥) = (𝑒
𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 ) (2.5)

Softmax function is another activation function that is used to scale the output between 0 and
1. The main property of a softmax function is that sum of the output probabilities is equal to 1. It is
represented in the Eq (2.6).

𝑓 (𝑥𝑖) =
exp (𝑥𝑖)
∑𝑗 exp (𝑥𝑗)

(2.6)

The softmax activation function is mainly used in multiclass models in which the probability of each
class is given with the highest probability corresponding to the target class.

Rectified Linear Unit (ReLu) is the most used activation function that is used in various deep
learning models. The Relu activation was introduced to eliminate the vanishing gradient problems of
sigmoid and tanh activation functions [14]. The ReLu activation eliminates the negative value and
keeps only the positive value as shown in Eq (2.7).

relu(𝑥) =max(0, 𝑥) (2.7)

ReLu is advantageous in computing the gradients as the gradient for smaller values is 0, and the
gradients of larger values are 1. However, eliminating the negative values means there is no contribu
tion by these values to improving the network. This problem is called the dying ReLu problem and was
the motivation for the introduction of Leaky ReLu and parameterized ReLu [14].

After the values are passed through the output layer, the neural network evaluates the loss function.
The loss function computes the error between the predicted output and the ground truth. This scalar𝐽(𝜃)
error is used to update the model parameters such that eventually, a global minimum error is obtained.
Many loss functions could be used, and the choice of the loss function depends upon the task at hand.
The generalized depiction of the loss function is shown in Eq (2.8).

𝐽(𝜃) = 𝐿𝑓(�̂�, 𝑦) (2.8)

where,

�̂� = prediction of the network
y = ground truth
𝐿𝑓 = Loss function

The model parameters are usually updated based on backpropagation algorithm. This is a method
that is used for computing the gradient of the model parameters for a particular scalar error. The
optimiser algorithms like the stochastic gradient descent (SGD) is used to learn using the gradient of a
backpropagation algorithms [11].

2.1.2. Convolutional Neural Network (CNNs)

Convolutional neural networks are the most popular networks used in image processing because of
their ability to reduce the number of training parameters in the learning network [15]. One of the most
important features of using a CNN network is its spatial independence i.e.; the CNN detects a feature
regardless of its location in the image.
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The CNNs get their name because of the use of a mathematical linear operator called convolution.
Convolution operation in mathematics is similar to crosscorrelation operation and is depicted by Eq
(2.9).

𝐺[𝑖, 𝑗] =
𝑘

∑
𝑢=−𝑘

𝑘

∑
𝑣=−𝑘

𝐻[𝑢, 𝑣]𝐹[𝑖 − 𝑢, 𝑗 − 𝑣] (2.9)

where

𝐺[𝑖, 𝑗] is the output in the next layer
𝐹[𝑖 − 𝑢, 𝑗 − 𝑣] is the filter or kernel matrix

𝐻[𝑢, 𝑣] is the input image

Why CNNs ?: Using a fully connected layer for processing an image will require many parameters
to be learned because each pixel in the image needs to be connected to the next layer. However, the
introduction of convolution drastically decreases the number of parameters required because of local
patch attention, i.e., a local patch of the image is connected to the neuron in the next layer. In addition,
in a convolution network, the weight is shared/fixed for the neurons for the entire layer. This property
decreases the parameters, further making the model more efficient.

The visualization of the modern CNN network is shown in Fig 2.2.

Figure 2.2: The visualisation of the CNN filters for an image recognition application [15]

Various operations are integrated in the CNN for reducing the parameters more and more. These
are discussed in the following section.

Stride and Padding

Stride operation is used to control the overlap of the regions in the image with the neighboring neuron.
An example of the stride operation is depicted in Fig 2.3. It is seen that with an increase in stride value,
the size of the output is also decreased.

While extracting information to the next layer connection through stride, it is not possible to extract
the data in the borders of the image as the filter will not pass through this region of the image. This
disadvantage of the CNNs are overlooked using a padding operation. Padding operation is used to
compensate the loss of the image data in the corners of the image. The simple way to do this is by
adding zeropadding, i.e., adding zeros in the sides of the image. Padding is also used to control the
output size.

Pooling

The main idea of pooling is to reduce the resolution of the input image based on the values present
in the neighborhood so that the next computation has fewer parameters to be computed. For exam
ple, as depicted in Fig 2.4, the maximum output within the rectangular neighborhood is taken for the
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(a) Stride 1 for an input image of size 7x7

(b) Stride 2 for an input image of size 7x7

Figure 2.3: The figure depicts the stride operation in a CNN. The filter moves based on the size of the stride for each neuron
connection in the next layer.

next operation in a maxpooling operation. There are other pooling operations like the average of the
rectangular neighborhood, 𝐿2 norm of the rectangular neighborhood that could be used instead of the
maxpooling operation based on the task at hand.

Figure 2.4: The max pooling operation executed in the 4x4 input image with a 2x2 filter and a stride of 2

The main advantage of using a pooling operation is its ability to remain invariant to small translation
in the input [11]. The pooling operations are helpful in applications where the presence of the feature
is more relevant than the location of these features. In general, the pooling operations increases the
computational efficiency and the reduce the memory requirement for computation.

Receptive Fields

In a neural network, the receptive field (RF) or the field of view of a neuron in a layer corresponds to
the number of neurons connected to it from the previous layer. An effective receptive field (ERF) is an
area in the input image that could influence the activation of a neuron in CNN [16]. In a CNN, the RF is
simply the filter size used in a particular layer, but the ERF footprints the extent of the input image that
influences the value of the neuron in a given layer, as depicted in Fig 2.5. It is important to note that any
feature outside the receptive field in the input image will not affect the value of the neuron. Therefore,
it is important to control the ERF such that all the relevant region in the input image is covered [17].

There are many methods to increase the receptive field of a model. One is to increase the model
depth, thereby increasing the receptive field. The other method is by using subsampling and dilation
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methods that increase the receptive field of the model [17]. The effect of an increase in a receptive field
has made the CNNs more accurate. [18] introduces receptive field block in an object detection frame
work and has noticed an increase in accuracy of the frameworks. Dilated convolution neural network is
one other way to increase the receptive field. It was introduced in [19] for semantic segmentation task
where the stateoftheart model was established on the PascalVOC dataset. The performance of the
model in [19] corresponds to the increase in receptive field where important information is not lost for
making dense pixel predictions. However, it is important to note that not all the regions enclosed in

Figure 2.5: The effective receptive field for a particular neuron in the output layer

the receptive field contribute equally to the model’s output. [17] investigated the effect of the receptive
field in the CNNs and found out that the model’s results are calculated based on only a fraction of the
receptive field rather than the theoretical receptive field. The fraction of output of the receptive field is a
Gaussian distribution, i.e., the central region within the receptive field contributes more to the activation
of the neurons.

2.2. Hourglass structure

An hourglass network uses a series of convolutions to capture information across all the scales of
images and produces a pixelwise output [20, 21]. The term hourglass is used to describe these
networks because, the steps of pooling and subsequent upsampling to get the final output resembles
an hourglass structure. The hourglass networks pools down the image into a very low resolution and
then upsamples it to get the pixelwise prediction. The hourglass structure is depicted in Fig 2.6

Figure 2.6: A representation of hourglass structure [20]

The hourglass structure could use a normal upsampling function and skip connections to get the
final output (as depicted in Fig 2.6). It is also possible to use deconvolutional layers to learn the spatial
information lost in the encoding stage. However, in a hourglass structure, the encoder and decoder
layers must be symmetrical. The backbone used in this thesis is ResNet architecture and is explained
in the next section.
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2.2.1. ResNet Architecture

Microsoft introduced the ResNet architecture [22] and was the stateoftheart for image classification
with an accuracy of 96.4%. It is a widely used backbone architecture used in many applications like
segmentation, object detection, etc. The ResNet architecture was introduced to overcome the problem
faced due to the increased depth in the convolutional neural network. Deep models faced the problem
of vanishing/exploding gradients which made it difficult to converge the model from the beginning. The
ResNet overcomes this problem by introducing residual block with introduces shortcut connections,
as depicted in Fig 2.7. The shortcut connections add identity mapping of the input to the layer’s out
put without adding additional parameters. The use of a shortcut connection in a ResNet was able to
overcome the gradient problem.

Figure 2.7: The Residual block used in ResNet architecture [22]

Many ResNet baseline architectures are introduced based on depth. Some of the examples ResNet
architecture is ResNet 34, ResNet 50, ResNet 101, ResNet 154. Increasing the depth of the ResNet
increases the accuracy of the model. However, by increasing the depth, more parameters are intro
duced into the model [23]. Hence, the working memory for the model is also increased. Therefore, it is
important to choose a ResNet backbone considering the memory and the task available at hand. The
accuracy of the various ResNet architecture is depicted in Fig 2.8a and it performance compared to
the size of parameters is depicted in Fig 2.8b.

(a) The accuracy of the various ResNet models are compared with each
other.

(b) The accuracy of the model with respect to the operation memory. The
size of the blob corresponds to the number of parameter of the model.

Figure 2.8: The comparison of ResNet architecture with other latest architectures based on the performance. [23]
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2.3. Object pose/position estimation for robotic and sequentialma
nipulation

Deep learning methods, especially convolutional neural network has performed well in processing im
ages and videos. This substantial improvement could be attributed to the availability of more compu
tational resources and training data, in addition to the introduction of new techniques [24]. In robotic
manipulation, CNNs are used for processing and extracting the pose/position of the object in the im
age. These pose/position extracted from the image could be used as the highlevel goal given by the
highlevel controller. This section will review some of the works that use visionbased techniques for
robotic and sequential manipulation tasks.

2.3.1. Learning manipulation tasks using objectcentric model

An objectcentric model requires objectspecific data to train. They are generally used in pose estima
tors. The pose estimators extracts the position and the orientation of the object in 3D coordinates. The
3D location of the objects is then given into the planner to manipulate the objects in the image. In a
conventional pose estimation method, the common visionbased technique is first used to extract the
2D location of the object in the image. The 2D locations are converted to a 3D position in the world
coordinate using pose estimation methodologies like correspondence methods [25], templatebased
methods [26], etc as depicted in Fig 2.9 [27].

Figure 2.9: The pipeline used to manipulating objects based on visionbased techniques. The object is first localised using a
visionbased techniques to get the 2D location in the image. The 2D location is then converted to 3D coordinate using object
pose estimation methods [27]

Many methods in a pose estimation algorithm uses a visionbased technique like object detection
and segmentation algorithm for extracting the 2D position of the object in the image [28–31]. The object
detection and segmentation algorithms are explained in the Appendix A.2. It is also possible to directly
extract the 3D point using deep learning bypassing the pose estimation methodologies. [32] uses a
PointNet [33] to directly estimate the required 3D coordinates of the manipulation. [34] estimates the
3D coordinates by using a RGB stereo images. The depth is estimated by using triangulation method.
There are methods that were able to have a categorylevel manipulation, i.e., predicting various 3D
points in a single object. These methods are especially used in estimating the robot gripper positions
[35]. [9] used a object detection method for solving a sequential task. The method used a seqto
seq model [36] for learning symbols that corresponds to the policy that is to be executed. The object
detection algorithm will detect the object and then based on the list of output from the seqtoseq model,
a sequential interaction will be completed.

While all these methods are high accurate in a structured environment, they require either the com
plete structure of the objects (through 3D models or point clouds) or a large amount of taskspecific
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training data. Therefore, these methods could be less flexible when encountering unseen objects. In
addition to it, these methods could not achieve the said accuracy with fewer demonstrations/data.

2.3.2. Learning manipulation tasks without using objectcentric model

To overcome the disadvantage faced by objectcentric models discussed in section 2.3.1, methods
were introduced that decoupled networks from requiring object specific models or larger amount of
data [37–39]. [37] introduced the Deep spatial autoencoders, an unsupervised technique for estimat
ing the spatial manipulation points in the image. This method is claimed to be dataefficient and is
discussed in detail. [38] introduced a general matching function that could match the pick and their
corresponding place location with images. The methods implements a Siamese network with shared
weight to generate candidate place locations and orientations. Finally, the method uses a planner
to generate the required pick and place locations. [40] used a contrastive loss function to match the
pick and place locations.However, [39] introduced the transporter networks that work on a similar con
cept but are more effective(use fewer demonstrations) than [38, 40]. Hence this method too will be
discussed in detail in the coming sections.

For the literature, two main networks were considered to be able to learn sequential pick and place
using fewer demonstrations. These two architecture are explained in the next section.

Deep spatial autoencoders (DSAE) [37]

Deep spatial autoencoder(DSAEs) is an unsupervised learning technique that is used for learning
visionbased manipulation [37]. The DSAEs learns the state of the environment by learning feature
points that corresponds to the object’s position in the image. The architecture of a DSAE is depicted in
Fig 2.10.

Figure 2.10: The architecture of a DSAE. [37]

Architecture
A DSAE has an encoderdecoder structure to extract the feature points. In encoderdecoder struc

ture the image is first downsampled into a lowerdimensional vector. These lowdimensional vectors,
also known as latent vectors, are usually dense and represent the global feature of the highdimensional
input. Such lower dimensional vectors represent the state of the environment and could be used in
learning based control algorithms like reinforcement learning or imitation learning [41]. However in a
DSAE, the lowdimensional vectors encode the spatial location of the dense latent vectors. The spatial
locations are encoded by using a spatial softmax which extracts the spatial location of the pixels, as
represented by the formula given in Eq 2.10.

𝑠𝑐𝑖𝑗 =
𝑒𝑎𝑐𝑖𝑗/𝛼

∑𝑖,𝑗 𝑒
𝑎𝑐𝑖′𝑗′/𝛼

(2.10)

where,

𝑎𝑐𝑖𝑗 = 𝑚𝑎𝑥(0, 𝑧𝑐𝑖𝑗)
𝑐 = channels

(𝑖, 𝑗) = pixels location in 2D
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The encoder part of the architecture is a standard 3layer convolutional layer that extracts the lower
dimensional latent space. The upsampling is done using a simple nearest neighbor method. A simple
64X64 image is reconstructed. Since the architecture has minimal convolutional layers, the number of
parameters to be learnt are lesser, and hence the DSAEs are dataefficient.

The spatial locations are unconstrained for a static environment. In order to constraint the genera
tion of feature points, a penalty function is added to predict feature points that have a small change in
velocity. This additional penalty function 𝑔𝑠𝑙𝑜𝑤 is added to the overall loss function. The loss function
is depicted in Eq 2.11.

ℒDSAE =∑
𝑡,𝑘
‖𝐼downsamp,𝑘,𝑡 − ℎdec (f𝑘,𝑡)‖

2
2 + 𝑔slow (f𝑘,𝑡) (2.11)

Here, 𝐼𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝 depicts the input image (downsampled to 64X64), ℎ𝑑𝑒𝑐 is the reconstructed image
using the feature points 𝑓𝑘,𝑡 at time 𝑡. The 𝑔𝑠𝑙𝑜𝑤 is the penalty function computed using 𝑔slow (f𝑡) =
‖(f𝑡+1 − f𝑡) − (f𝑡 − f𝑡−1)‖

2
2.

Eventhough, the use of a penalty function constrains the model to generate spatial point on the rel
evant objects in the image, it is difficult to teach the network what relevant feature points to concentrate
for a given time. Sometimes, it is also possible to have noisy feature points or the absence of feature
points due to occlusion. To handle these problem, the concept of feature presence and feature pruning
was introduced.

Feature presence is a methodology that is used to predict a feature point, in frames the particular
feature point is actually absent due to occlusion. The presence of a feature is determined by the softmax
activation. A kalman filter is trained on feature points with softmax activation greater than a threshold
(𝛽=0.95). This kalman filter is then used to predict the feature points when it is actually absent in a
given frame. Feature pruning was used to remove the noisy feature points from the entire sequence
of the demonstration. These noiseless feature points of the entire sequence is then used to train a
simple linear Gaussian controller that is used to manipulate objects.

It is important to note than the prediction of the vision network is not fully independent. Eventhough,
the DSAE used were able to output spatial locations dataefficiently, they were not able to give the
noiseless feature points without the inclusion of feature presence and pruning methodologies. The in
dividual performance of the DSAE is not evaluated in the paper. It could be possible that the predictions
of the DSAE could be overlapped with the prediction from the kalman filters. Therefore, the DSAE were
not considered for this thesis.

Transporter Network [39]

Google introduced transporter Networks for visionbased manipulation tasks and is the basis for our
thesis. They are an endtoend approach that maps image pixels to the required action. The signifi
cance of a transporter network is that they perform on unseen objects with fewer demonstrations by
obtaining more than 90% success rate on tabletop manipulation tasks.

Transporter networks learn to pick an action based on visual observation 𝑜𝑡 as depicted in Eq (2.12).

𝑓 (o𝑡) → a𝑡 = (𝒯pick , 𝒯place ) ∈ 𝒜 (2.12)

where,

𝒯pick = the location of pick
𝒯place = the location of place

Here the action 𝐴 is the collection of both the pick and place poses of the robot. The actions are
considered as the endeffector position of the robot in 3D space, and a simple motion primitive is
applied to move the robot from 𝑇𝑝𝑖𝑐𝑘 to 𝑇𝑝𝑙𝑎𝑐𝑒. To correspond each pixel in the observation 𝑜𝑡 to action,
an orthogonal projection is applied. RGB images and depth maps are extracted from the camera in
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this projection, and the 3D point cloud is calculated. The 3D point cloud represents the point in world
coordinates. These point clouds are then orthogonally projected to get a tabletop view of the scene.
The resulting observation is, therefore, occlusionfree and could correlate pixels to 3D actions.

Figure 2.11: The implementation of Transporter Network [39]

To transport an object from 𝑇𝑝𝑖𝑐𝑘 to 𝑇𝑝𝑙𝑎𝑐𝑒 location, the model must learn to extract these two points
from the observations, as depicted in Fig 2.11. Therefore, the overall transporting is decomposed into
two tasks namely,

1. Learning to pick

2. Learning to place based on the pick

Learning to pick: The transporter network uses a fully convolutional network usually used in image
segmentation tasks for predicting the pick location from observation. For this, the transporter uses a
ResNet hourglass structure (explained in detail in Appendix 2.2) to predict the distribution of successful
picks for all pixels in the observation 𝑜𝑡 by using an actionvalue function. The pick location is predicted
using Eq (2.13).

𝒯pick = argmax
(𝑢,𝑣)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝒬pick ((𝑢, 𝑣) ∣ o𝑡)) (2.13)

where,

𝒬pick = actionvalue function
𝑢, 𝑣 = pixel location in 2D

For having the a pick location, a imagewide softmax is implemented to the densepixel wise pre
diction from the ResNet hourglass structure and the location of the maximum probability in the image
is extracted. The ResNet architecture used is a 8stride architecture (3 2stride convolution in the en
coder) as a balance between the receptive fields and the loss of resolution in the latent representation
of the hourglass structure.

Learning to place based on the pick: This part of the transporter network is the unique part where
the place location is predicted based on the predicted pick location. For correct prediction, the objects
are assumed to have a spatially consistent visual representation, i.e., the object’s appearance remains
similar across various camera views.

The visual observation 𝑜𝑡 is first converted to a dense pixelwise prediction using a separate network
in this part of the transporter network. This prediction represents the candidate place poses 𝜏 based on
the function 𝜙 (o𝑡). A crop is taken around the pick location 𝒯pick on the visual observation 𝑜𝑡. These
crops are passed into another network to get a dense pixelwise prediction represented by the function
𝜓 (o𝑡 [𝒯pick ]). The uniqueness of the transporter network is to find the best placement based on the
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highest feature correlation using convolution function. Both the models used for generating the dense
pixel wise mapping uses the same ResNet hourglass structure as the picking model but without the
final imagewide softmax activation. This methodology is expressed in Eq (2.14).

𝒬place (𝜏 ∣ o𝑡 , 𝒯pick ) = 𝜓 (o𝑡 [𝒯pick ]) ∗ 𝜙 (o𝑡) [𝜏] (2.14)

After the correlation, the imagewide softmax is calculated, and the placing location is calculated
based on Eq (2.15).

𝒯place = argmax
{𝜏𝑖}

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝒬place (𝜏 ∣ o𝑡 , 𝒯pick )) (2.15)

It is also possible to learn planar rotation using a transporter network. For this, the rotation is
discretized into k bins, and visual observation is rotated with an angle corresponding to each discretized
bin. During the prediction of the place point, the rotation value corresponding to the bin with maximum
correlation is considered the orientation for planar rotation. The transporter networks are also performs
well on sequential tasks. The networks can predict the actions based on the position of the objects in
the environment. This feature is made possible in the model by increasing the receptive field of the
model for covering most of the visual observation(as discussed in section 2.1.2). The receptive layer
in the transporter network is based on the tradeoff with the latent representation in the hourglass
structure.

This section discussed the detailed working of transporter network. The transporter network was
able to perform well in sequential tasks by increasing the receptive field. Increasing the receptive
field contributes to the transporter network’s prediction conditioned on the objects present within the
receptive area. However, the contributions of objects within the receptive field to the output are not
equal and are in the form of a Gaussian distribution [17]. Moreover, in some cases, the object can
lie outside the receptive field. In this case, the model’s prediction will not be based on all the objects
in the scene. Hence it important for the model to be independent from the size of receptive field to
solve a sequential task. Since the transporter networks are already dataefficient and performs well
on unseen objects, this thesis considers this method to solve sequential tasks. The thesis will mainly
explore possibilities to overcome the limitations faced by the current transporter networks.

2.4. Metrics

Metrics are used to evaluate the performance of a deep learning model. Usually, in a manipulation task,
a robot performs an action based on the output from the vision network. The performance of the model
is then evaluated based on the success of these actions [37, 39]. In this thesis, only the computer
vision network is evaluated. Hence a separate metric is required to evaluate the performance of the
model.

2.4.1. Object Keypoint Similarity (OKS Metrics)

The OKS Metric is an oftenused metric to evaluate the performance of a human pose estimation
framework [42]. The main aim of the OKS metric in this thesis, is to measure the closeness of the
predicted pick location of the network to the ground truth.

To calculate an OKS metric value, a keypoint similarity (𝑘𝑠) is first calculated based on Eq (2.16).

𝑘𝑠 (𝑔𝑡𝑖 , 𝑝𝑖) = 𝑒
−(

‖𝑔𝑡𝑖−𝑝𝑖‖
2
2

2𝜎2𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
)

(2.16)

The distance between the ground truth (𝑔𝑡) and the prediction (𝑝) is first calculated and normalized to
a Gaussian distribution. The standard deviation of the Gaussian distribution is predefined based on
the tolerance of the accuracy measure represented by 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. If the evaluation needs to be strict, a
lower value of 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is used and viceversa. After normalizing the values to a Gaussian distribution,
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the OKS metric is calculated based on the visibility score. This equation is expressed in Eq (2.17).

𝑂𝐾𝑆 (𝑔𝑡𝑖 , 𝑝𝑖) =
∑𝑖 𝑘𝑠 (𝑔𝑡𝑖 , 𝑝𝑖) 𝛿 (𝑣𝑖 > 0)

∑𝑖 𝛿 (𝑣𝑖 > 0)
(2.17)

In this thesis, all the key points are assumed to be 100% visible or visibility score of 1 (𝛿𝑖 = 1). The
number of keypoints per class is also considered one (𝑖 = 1) because each object of interest in an
image has only one point used for manipulation. Hence Eq (2.17) is simplified to Eq (2.18)

𝑂𝐾𝑆 (𝑔𝑡𝑖 , 𝑝𝑖) = 𝑘𝑠 (𝑔𝑡𝑖 , 𝑝𝑖) (2.18)

There are two criteria that could be set for calculating theOKSMetrics. Firstly by setting the standard
deviation (𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) for an OKSMetrics, the point with distance more than the standard deviation, from
the groundtruth point has an OKS Metrics of 0. Secondly, after normalising to a Gaussian distribution,
the points near the tail of the Gaussian distribution have low probability. To eliminate this an additional
threshold of 0.5 is chosen to consider predictions closer to the center of the Gaussian distribution .
This threshold is represented as 𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. The number of points that satisfy both the criteria is then
averaged with the total number of test data points to calculate the accuracy of the network as in Eq
(2.19).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑂𝐾𝑆 (𝑔𝑡𝑖 , 𝑝𝑖) > 𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
Total number of predictions made (2.19)

The example of the OKS Metric is depicted in Fig 2.12.

(a) The metrics with a 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 2 pixels (b) The metrics with a 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 20 pixels

Figure 2.12: The green circle represents the standard deviation criteria in an OKS Metric. If the predicted point falls inside the
green circle, a probability value is generated. This probability value should be more than 0.5 to be considered as a correct
prediction in this thesis.

It is essential to note that the error in predicting the pick point for a sequence will directly affect
manipulating the object in the actual scene. Therefore, it is important to note the relation between the
change in the robot’s endeffector position to the change in spatial point location in an image through
camerarobot calibration. Since the dataset used is a synthetic dataset and a prerecorded Mujoco
dataset, this camerarobot calibration information is not available. Therefore, the results will be pre
sented for a very strict value of 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 2 pixels (as depicted in Fig 2.12a) and a lenient value of
𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 20 pixels (as depicted in Fig 2.12b). The result will then be presented for 𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 0.5.
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2.4.2. Classification Accuracy

Classification accuracy is the usual measure of accuracy. It is defined as the ratio of the number of
samples classified correctly by the network to the total number of samples as shown in Eq (2.20).

Classification Accuracy = Number of Correct predictions
Total number of predictions made (2.20)

The classification accuracy is used to evaluate the ability of SEA Net to predict what spatial point
of the object in the environment to choose given a particular configuration.
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Multioutput Pick Network

In this chapter the multioutput pick network is introduced, which modifies the pick network of a trans
porter network. The chapter first explains what a multioutput pick network is and describes how it is
implemented.

The transporter network is explained briefly in Section 2.3.2. The pick network in a transporter
network predicts the pick location in the image, while the place network gives the place location in the
image. It should be noted that the place location depends on the prediction of pick location. Hence, the
effect of receptive fields on the pick location is first studied and a solution is proposed. The proposed
solution could replace the existing pick network in the transporter network without any problem.

In this section, the multimodality of the pick network is studied. This means that the pick network
produces multimodal outputs in situation where a single solution exists. A multimodal output means
that two or more probability peaks are predicted by the model, as depicted in Fig 3.1. To understand
this situation more clearly, assume there are two demonstrations: 1. A demonstration to pick and
place a cube, 2. A demonstration to pick and place a sphere. Let the pick model be trained with both
the cube and sphere demonstrations. Since the pick network is exposed to both cube and sphere
during training, it exhibits a high probability in location of cube and sphere (or objects similar to cube
and sphere). Therefore, the network will have a small bias toward choosing one of the probabilities
instead of the other. In the sequential task considered in this thesis, all objects to be manipulated
are present in the scene at every instant. Therefore, the pick model can give multimodal outputs for
objects with different shapes and sizes used in sequential tasks. Hence, in this section a variation of
the pick network is introduced where instead of generating one 𝑁modal output, the network produces
𝑁unimodal output with the same receptive field.

3.1. Architecture

To overcome the multimodal constraint of the pick model, the model needs to learn to produce uni
modal outputs. This should be possible without changing the receptive fields of the network because
this thesis aims to break the dependence of the network on the receptive field size. This is made
possible with the introduction of a multioutput pick network. The multioutput pick network calculates
𝑘 actionvalued functions that corresponds to k pick locations, where 𝑘 is the number of objects to be
manipulated in the sequential task. Introducing multioutput in the pick network will force the model to
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Figure 3.1: The multimodal output of the transporter network. The image in the left shows the scene with more than one similar
object the model has seen during training. The image in the right shows the multimodal output of the pick model [39]

learn unimodal outputs corresponding to each object in the sequence. These unimodal outputs will
help the network to clearly choose the highest probability.

Figure 3.2: The multioutput pick network with multiple output channels. Each channels predicts the output of each objects in
the scene separately.

𝒯𝑘pick = argmax
(𝑢,𝑣)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝒬𝑘pick ((𝑢, 𝑣) ∣ o𝑡)) (3.1)

where,

𝒬pick = actionvalue function
𝑢, 𝑣 = pixel location in 2D
𝑘 = 1,2,… ,p where p = number of objects to manipulate

Themultioutput pick network uses the same hourglass structure (explained in detail in Section 2.2).
A ResNet 43 layer architecture is used with 12 residual blocks with 8stride (3 2stride convolutions in
the encoder and 3 upsampling in the decoder), with an output consisting of multiple channels, which
correspond to the number of objects to be manipulated in a sequential task, as depicted in Fig 3.2. The
output from the ResNet is then used to calculate a imagewide softmax layer for each channel.
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3.2. Loss Function

The crossentropy loss function can be employed to compute the loss between the prediction and the
groundtruth. A crossentropy is used to compare one probability distribution with another probability
distribution in a multiclass problem [43]. In a multioutput pick network, each pixel is considered as a
separate class. The crossentropy loss is represented in Eq 3.2

ℒCE = −
𝑛

∑
𝑖=1
𝑔𝑡𝑖 log (𝑝𝑖) , for n classes (3.2)

where 𝑔𝑡𝑖 is the ground truth in the form of onehot tensor, 𝑝𝑖 is the probability obtained from the
softmax function.

A crossentropy loss function is used for training. The crossentropy loss function is used between
the softmax output of each channel and their corresponding onehot pixel. Onehot pixel maps are
required because each pixel is considered as a seperate class and the groundtruth for each pixel is
required for computing the loss. Since the multioutput pick network predicts one output for each object
of interest in the environment, the summation of each channel’s loss is taken as the total loss of the
hourglass network.

ℒMulti−output pick network =
𝑝

∑
𝑖=1
ℒ𝐶𝐸 , k = 1,2,… ,p (3.3)

where,

𝑝 = number of objects manipulated in the demonstration

3.3. Discussion

A multioutput pick network can predict the spatial location of every individual object in a scene. This
was introduced because the pick network of a transporter network gave multimodal outputs. Multi
modal outputs biases the network to pick one of the two highest probability peaks irrespective of the
configuration of the objects in the environment. To make the output a function of the configuration of
the environment, every pixel in the output needs to be correlated with as many pixels as possible in
the input. If this is not the case, then each pixels will be only dependent on the neighbouring pixels
thereby loosing the capability to produce an output as a function of the configuration of the environment.
Receptive fields are increased to incorporate as many input pixels as possible to produce an output.
However, the pick network already has a large receptive field and it would be impractical to increase the
receptive field even more as the increase would correspond to a loss of information in the latent space
of the network. The main contribution of the multioutput pick network is to separate the outputs in the
final layer without changing the receptive field of the network and to obtain unimodal outputs. This
could eliminate the dependence of the network on receptive field and will give a unimodal output for
the same receptive field. However, the multioutput pick network is still expected to have a multimodal
behavior outputs the final channels when multiple instances of the same object are present in the scene
for sequential manipulation. But it could be assumed that randomly picking one of the same objects
will still complete the sequential task successfully. To have multiple channels in the output, this thesis
assumes that the number of objects required for manipulation in the scene is known beforehand.
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Experiment and Results  Pick Network and

Multioutput Pick Networks

This chapter will explain the preliminary experiments conducted on the pick network of a Transporter
Network and multioutput pick network. This chapter will first introduce the dataset required for the
experiment and then discuss the results obtained through the experiments.

4.1. Synthetic dataset creation  Dual Target Dataset

The thesis aims to predict highlevel goals in the form of spatial location. These spatial locations need
to be predicted sequentially. Sequentially predicting the pick point requires the output from the model to
be correlated with each pixel in the image. To check this functionality in the pick network of Transporter
Network the Dual Target dataset was introduced. This is depicted in Fig 4.1. The aim of using this
dataset is to see if the models can make the prediction by correlating all the pixels in the input image.

The Dual Target dataset consists of three different objects randomly placed in the image without
any overlap. The images display a topdown view of simple objects like squares, circles, pentagons,
and triangles. Each image in the Dual Target dataset will consist of either a square or a circle and will
always feature a pentagon and a triangle. The idea behind this setup is that the model should predict
the spatial location of a pentagon when a square is encountered in the image and the spatial location
of a triangle when a circle is encountered given both pentagon and triangle are always present in the
image. The target spatial location in the pentagon and triangle is not always in the center of the object.
The target locations are placed randomly on the object such that the same configuration could have a
different target location on the object.

To train the pick network, for each configuration the corresponding target spatial location is used as
the label. For multioutput pick network, for each configuration all the target spatial locations are used
as the label.
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(a) (b)

Figure 4.1: The Dual Target dataset has three objects in topdown view placed randomly. The green point indicates the spatial
target point for the network to predict. (a)The target location is on triangle when a circle is present. (b)The target location is on
pentagon when a square is present

4.2. Pick Network Preliminary Experiments

As discussed in section 2.3.2, a transporter network is composed of two networks. Only the pick
network is used for analysing the feasibility of predicting the pick locations in a sequential tasks. The
aim of the experiment is to test the performance of the pick network.

4.2.1. Experimental setup

The pick model of the transporter network is trained with dataset that contain 1000 images similar to
the image depicted in Fig 4.1. The model is trained for 75 epochs using Adam optimiser and learning
rate of 1e4.

The model is then evaluated on Fig 4.2. Fig 4.2a consist of three blocks namely a square, pentagon
and triangle while Fig 4.2b consist of a circle , pentagon and triangle blocks. The aim of the model is
to predict the spatial location based on the environment configuration. The aim of the experiment is to
check the ability of the transporter network to correlate the pixels of the pentagon and triangle with the
pixels of the square or circle in the input image and to predict a output based on this correlation.

4.2.2. Results

Fig 4.3 and 4.4 depicts the prediction of the pick network for the inputs given in Fig 4.2. It is expected
that given the larger receptive field, the pick network must provide a single output based on every pixel
in the image. However, it could be observed that the pick network produces multimodal predictions
as depicted in Fig 4.3a and 4.4a. The application of softmax activation layer filters out these multi
modalities. However, the model gives the same output irrespective of the configurations. This could be
due to the fact that the receptive field of the backbone is not large enough to consider all the information
in the environment for prediction. Increasing the receptive field could mean increase in the number of
learnable convolutional layers in the backbone, and an increase in the loss of information in the latent
space of the network [17]. Hence, it is essential to build a model that is independent from the effect of
size of receptive field to solve sequential tasks.
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(a) (b)

Figure 4.2: The experiment has two images. The position of the target shapes remains the same. The model needs to predict
the output spatial location based on the configuration.

(a) Pixel with high activation before softmax (b) Softmax activation

Figure 4.3: The activation and softmax prediction for an input depicted in Fig 4.2a. The pixels of maximum activation are depicted
in red colour in (a)

To overcome this problem, the network needs to predict unimodal output for the same receptive
field.

4.3. Multioutput Pick Network Preliminary Experiments

As discussed in Section 3, the multioutput pick network was designed to give unimodal predictions
without changing the receptive field size of the network. This section discusses the preliminary exper
iments carried out using the multioutput pick network.
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(a) Pixel with high activation before softmax (b) Softmax activation

Figure 4.4: The activation and softmax prediction for an input depicted in Fig 4.2b. The pixels of maximum activation are depicted
in red colour in (a)

4.3.1. Experimental setup

The multioutput pick network has output channels corresponding to the number of pick locations in
the sequence. Since the dataset used to study the performance of the network has two pick locations
(as discussed in Section 4.1), the number of output channels for a multioutput pick network is two.
The multioutput pick network is trained with the same dataset used in the pick network in the previous
section. For each image in the dataset, the spatial location of both the pick points are given to the
network for training the model. The model was trained on 1000 images similar to the image depicted
in Fig 4.1. The model is trained for 75 epochs using Adam optimiser and learning rate of 1e4.

4.3.2. Results

Fig 4.5 and 4.6 presents the output of the multioutput pick network for an input image depicted in Fig
4.2. When compared to the results form the pick network (as depicted in Fig 4.3 and 4.4), the multi
output pick network has unimodal predictions. These unimodal predictions are the passed through
a imagewide softmax layer to get the pixel with highest probability. The location of this pixel is then
used as the target spatial location.

It is important to note that unimodal outputs were obtained for the same receptive field size by
introducing multiple channel. However, for a given timestep, the multioutput pick model will return
all the pick location through different channel. Hence, it is important for the network to also chose a
particular pick location based on the configuration of the objects in the image. To implement this, the
SEquential Attention Networks (SEA Nets) were introduced which will be explained in detail in the next
chapter.
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(a) Pixel with high activation before softmax on channel 1 (b) Pixel with high activation before softmax on channel 2

Figure 4.5: The prediction of multioutput pick network for an input depicted in Fig 4.2a. The pixels of maximum activation are
depicted in red colour in (a)

(a) Pixel with high activation before softmax on channel 1 (b) Pixel with high activation before softmax on channel 2

Figure 4.6: The prediction of multioutput pick network for an input depicted in Fig 4.2b. The pixels of maximum activation are
depicted in red colour in (a)
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SEquential Attention Network (SEA Net)

In this chapter, the SEquential Attention Network (SEA Nets) is introduced, which aids in sequentially
predicting the pick points in sequential pick and place tasks. The chapter first explains a SEA Net and
describes how it is implemented.

In the Chapter 3, a multioutput pick network was introduced to separate 𝑁modal outputs into 𝑁
unimodal outputs without changing the receptive field of the model. Separating the outputs will make
the network independent of the receptive field size which should be substantially larger to make the
prediction based on the configuration. However, the multioutput pick networks, for a given timestep,
will provide all the pick locations as discussed in the previous section. Hence, it is important for the
model to learn the configuration of the object so that an unimodal solution is obtained for a given
image. SEA Net is introduced to learn simultaneously, the spatial/pick points of the objects in the
scene and predict which object should be picked at a given time step based on the configuration of the
environment, to solve a sequential task. SEA Net has a classification head, which will classify what
channel is relevant for a given image.

5.1. Architecture

As discussed in Chapter 3, the multioutput pick network simultaneously predicts the pick location of all
relevant objects in the image. The SEA Net introduces an extra classification head into the multioutput
pick network. The classification head branches from the latent space of the hourglass network. The
prediction of the classification head (𝜅𝑝𝑖𝑐𝑘) is based on Eq (5.1).

𝜅𝑝𝑖𝑐𝑘 = argmax𝑝 (𝑦 ∣ 𝑜𝑡) (5.1)

where,

𝑦 = pick object in the environment
𝑜𝑡 = Visual observation

Hence the final output of a SEA Net will be combined with the output of the classification head. This
is depicted in Eq (5.2).
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𝒯pick = argmax
(𝑢,𝑣)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝒬𝜅𝑝𝑖𝑐𝑘pick ((𝑢, 𝑣) ∣ o𝑡)) (5.2)

where,

𝒬pick = actionvalue function
𝑢, 𝑣 = pixel location in 2D
𝜅𝑝𝑖𝑐𝑘 = prediction of the classification head

The output of the classification head selects the goal to be reached next in a given time. Based on
the output from the classification head, a relevant channel is chosen in the multioutput pick network to
get the final pick location.

The overall SEA Net is depicted in Fig 5.1. In addition to the architecture of multioutput pick net
work, a classification head is added from the latent space for a SEA Net, as shown in Fig 5.1. The
classification head consists of a global pooling layer followed by a fully connected layer. The fully con
nected layer is used to connect all the inputs from one layer to another. By introducing a fully connected
layer, the rich global latent features are correlated with each other to output the desired configuration
from the image. However, fully connected layers are not translational equivariant and hence are not
dataefficient. Translational equivariance will only help in predicting the pick location of the objects
which is done using multioutput pick network. Since, the classification head is used to understand
which object to be picked next, it is possible that not much dataefficiency is lost because of adding a
classification head.

Figure 5.1: A full model representation of the SEquential Attention Network

5.2. Loss Function

The classification head of the SEA Net uses the crossentropy loss function because the prediction of
the relevant pick object is a multiclass problem. A softmax activation is used to represent the output
of the networks as the probability. The groundtruth for the loss function should be a onehot vector
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that has the highest probability(1) on the location of the vector that corresponds to the particular class
label.

The total loss of the SEA Net is represented in Eq 5.3

ℒSEA Net = ℒMulti−output pick network + 𝜆 ∗ ℒClassification Network (5.3)

where,

𝜆 = weighing constant
ℒMulti−output pick networkis based on Eq (3.3)

ℒClassification Network = −
𝑛

∑
𝑖=1
𝑔𝑡𝑖 log (𝑝𝑖) ,n = 1,2,… ,p (5.4)

𝑝 = number of objects manipulated in the demonstration
𝑔𝑡𝑖 = groundtruth of the object to be manipulated for given configuration

𝑝𝑖 = probability of the given class

During each training step, the model receives the ground truth locations in pixel coordinate for
the objects in the environment and the classification label. For example, if there are three objects
in the environment and the sequence is carried on these three objects, all the object’s locations and
classification label are given as the ground truth label into the model. All the three pixel locations are
converted into onehot tensor. Likewise, the classification label is also converted into onehot vector.
These two labels are then used to train the model.

5.3. Discussion

The SEA Net can predict the relevant pick location required to solve a sequential task. The pick net
work’s performance on sequential task is dependent on the receptive field size of the network. This
assumption is broken in the SEA Net as a classification head is additionally introduced along with
multioutput pick head, to predict the relevant object to be considered for a given segment of a demon
stration. By introducing a classification head in the latent space of the hourglass structure, a output is
predicted by correlating the global features, thereby giving a prediction based on the full configuration
of the image. However, the classification head is composed of fully connected layers which are trans
lational invariant. Still, this feature of a fully connected layer is simple used to predict the configuration
and would not greatly affect the translational variance required to predict the pick location. Hence,
it is important to study the dataefficiency of the SEA Nets. The SEA Nets were introduced with the
assumption that the number of objects manipulated in the sequential demonstrations is known before
training the model. This makes the SEA Net less flexible for online training.
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This chapter describes and discusses the experiments that were carried out to study the performance
of the proposed SEquential Attention Networks. For this, it is important to choose/design a wellsuited
dataset to test the proposed model. This chapter also explains in detail, the dataset used to train and
validate the model. It further highlights the contribution for creating new synthetic dataset, and using
a simple segmentation algorithm to sequence and extract simulated robot dataset from prerecorded
demonstration.

6.1. Hardware Setup

The network is implemented with Tensorflow and is trained on a CPU with an i7 processor and an
NVIDIA RTX 3060 GPU.

6.2. Experiment on SEA Net  Synthetic Dataset

6.2.1. Creation of Synthetic Sequential dataset

The availability of dataset to test the performance of the model on sequential tasks are limited. There is
no tailored made sequential dataset that are collected from human demonstrations available for training
models to perform sequential tasks. Hence, it is essential to create a wellsuited dataset to test the
proposed model.

The synthetic sequential dataset consists of simple shapes which are manipulated sequentially.
These shapes are randomly placed in the image without any overlap and are manipulated using a
simple robot arm represented as the red circle as depicted in Fig 6.1. The performance of the model
on the synthetic sequential dataset could prove the ability of the model to predict output based on the
configuration of objects in the environment. To train the SEA Net, a dataset 𝒟 = {𝜁1, 𝜁2, … , 𝜁𝑛} of 𝑛
expert demonstration 𝜁𝑖 = {(o0,a0,c0) , (o1,a1,c1) , …} is required where,
o𝑖 is the raw pixels from image,
a𝑖 = (Tsquare

𝑝𝑖𝑐𝑘 ,Tpentagon
𝑝𝑖𝑐𝑘 ,Tstar

𝑝𝑖𝑐𝑘 ,Ttriangle
𝑝𝑖𝑐𝑘)
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c𝑖 is the label of the object manipulated at the trajectory.

Figure 6.1: The simple sequential dataset created. The endeffector is represented by the red circle. The sequence starts from
the topleft corner and end in the bottom right corner.

In Fig 6.1, there are four shapes assumed to be present on the table for manipulation. There are
four trajectories in a demonstration.

1. The square is picked by the endeffector. c = 0

2. The square is placed in goal location (pentagon). c = 1

3. The star is picked by the endeffector. c = 2

4. The star is place in goal location (Triangle). c = 3

6.2.2. Experimental Setup

The network is evaluated on two datasets. The first dataset is a Dual Target dataset (as discussed in
Section 4.1) and the second dataset is a full sequential dataset (as discussed in Section 6.2.1). The
𝜆 value of the loss function(in Eq (5.3)) is 1. The image is normalized between the values of 0 to 1 to
make the processing easier. No pretrained weights are used in any of the experiments.

Dual Target dataset

As discussed in Section 4.1, each image in a dualtarget dataset will have two pick locations that the
model is exposed during training. Based on the configuration of the objects in the environment, the
model must chose one specific pick location. This experiment could prove the model’s robustness to
pick an appropriate pick location for a given configuration. In this experiment, the network is trained
with 1000 images of resolution 224X224, with an epoch of 75. The learning rate used is 10e4 with no
batch normalization. The network is tested with 500 images.
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Sequential dataset

The sequential dataset is already explained in section 6.2.1. This experiment could prove the model’s
ability to predict the pick locations sequentially based on the configuration (here position of the end
effector of the robot). In this experiment, The SEA Net is trained with 200 demonstration with each
demonstration having 18 images. The network is trained for 75 epochs with a learning rate of 10e4.
The network is then tested on 10 demonstrations.

6.2.3. Results

Table 6.1 shows the accuracy of the SEA Net on test images. The classification head has a higher
accuracy which depicts the SEA Net’s ability to predict the object to be considered for a particular
trajectory based on the configuration. However, it should be noted that the accuracy of the SEA Net
will depend majorly on the accuracy of the classification head. The reason is that, the output from the
classification head is used to choose the appropriate channel in a multioutput pick head of the SEA
Net. The overall accuracy is based on Eq (2.19) for the channel selected by the classification head. A
higher overall accuracy could mean that the pick points are also predicted near the groundtruth which
means that the object could be successfully manipulated.

Classification Accuracy Overall accuracy of SEA Net (OKS Metrics)

𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 2 pixels 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 20 pixels
Dual Target Dataset 100% 100% 100%

Sequential Dataset 86.2% 64% 85%

Table 6.1: The accuracy results of SEA Net

The study on DualTarget dataset shows that the SEA Net chooses the correct pick location based
on the configuration of the object in the environment. This property is essential for estimating consec
utive pick points, to complete a sequential task.

The second dataset is a sequential task that is depicted in Fig 6.1. Here the SEA Net is expected
to predict the correct spatial locations of the object to be manipulated throughout the sequential task
based on the position of the endeffector (depicted as the red point). The accuracy of the model is
depicted in Table 6.1. The experiment on sequential dataset depicts the SEA Net’s ability to predict
pick points sequentially. It could be noted that the accuracy of the SEA Net on the sequential dataset is
lower than the dualtarget dataset. The reason behind this behaviour is because the number of objects
to be considered in the sequential task is more than the dualtarget dataset. Increasing the number of
object to be manipulated could decrease the accuracy of both classification head and multioutput pick
head as the SEA Net must learn more output channels and configurations.

The results of the SEA Net is depicted in Fig 6.2.
However, it is possible to increase the accuracy by using more data for training the SEA Net. But

this was not explored in the thesis, as the aim was to use a smaller dataset.

6.3. Experiment on SEA Net  Simulation robot dataset

6.3.1. Extracting demonstration from simulators

To test the proposed model, it is necessary to acquire demonstrations of humans performing sequen
tial tasks (eg., sequential pick and place or tower of Hanoi, etc) on the robot. These demonstrations
could be provided by humans through teleoperation, kinesthetic operation [44]. However, instead of
human demonstrators, it is possible to train policies available in the garage library [45] for performing
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Figure 6.2: The results of SEA Net on the synthetic sequential dataset. The points marked in blue is the prediction of the network.
The point in red reflects the endeffector position of the robot. From the topleft corner, the square is predicted as the pick location
for the first segment (first and second image in top row). After the square is picked, the pentagon is predicted as the pick/place
location (third and fourth image in top row). After this, the star is predicted as the pick location (first and second image in bottom
row) followed by the prediction of triangle as the pick/place location (third and fourth image in bottom row).

demonstrations. But the training of these policies takes a long time with a heavy computational re
source. Hence preexisting recorded demonstrations are considered. The preexisting demonstrations
are used to train RL or IL policies. Some of the readily available demonstration could be extracted
from Multiple Interactions Made Easy (MIME), Metaworld or Robosuite [46–48]. MIME is a largescale
human demonstration dataset, but it does not contain a variety of sequential tasks [46]. Metaworld con
sist of a variety of demonstrations performed in a Mujoco physics engine [49], but the demonstrations
in Metaworld are manipulation of a single object in the environment. However, Robosuite dataset has
many pickplace demonstration. It also has sequential demonstration that could be used in to study
the objective [47]. Hence, in this thesis the Robosuite demonstrations are considered to evaluate SEA
Net.

Two settings are considered to test the SEA Net. In the first setting, a single object is picked and
placed in the required location, as depicted in Fig 6.3. In the second setting, a demonstration with
multiple pick and place actions is performed. There are four trajectories in the second setting demon
stration.

1. The red square nut is picked

2. The red square nut is placed in its goal location

3. The blue circular nut is picked

4. The blue circular nut is placed in its goal location

This sequence is depicted in Fig 6.4.
To train the SEA Net, a dataset 𝒟 = {𝜁1, 𝜁2, … , 𝜁𝑛} of 𝑛 expert demonstration is required. Each

demonstration 𝜁𝑖 = {(o0,a0,c0) , (o1,a1,c1) , …} where,
o𝑖 is the visual observations,
a𝑖 = (T0

𝑝𝑖𝑐𝑘 ,T1
𝑝𝑖𝑐𝑘 , …Tk

𝑝𝑖𝑐𝑘) for 𝑘 objects to be manipulate,
c𝑖 is the label of the object manipulated at the trajectory.

The a𝑖 consist of pick point (T𝑝𝑖𝑐𝑘) in each image frames. These pick points are also labels to the
SEA Nets which are later converted into onehot tensor for training the model. To get the label c𝑖 for
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Figure 6.3: The Swayer Robot picks and places a blue colored Can in its corresponding bin. The sequence of the execution are
depicted from left to right in the figure.

Figure 6.4: The demonstration is carried out by a pretrained policy. The overall demonstrations could be decomposed into 4
sequences. The first two images in the top row (from left) corresponds to the first sequence. The third and fourth images (from
left) on the top row corresponds to the second sequence. The first two images on the bottom row (from left) corresponds to the
third sequence. The third and fourth images (from left) in the bottom row corresponds to the fourth sequence

the demonstration, it is necessary to segment the overall demonstration to get individual trajectories.
Segmenting the demonstrations means to break a complex movement into a combination of simpler
movements, called segments [50]. After segmentation, it is possible to assign a groundtruth value to
c𝑖 that corresponds to the object manipulated in that segment/trajectory. There are various methods to
segment a demonstration [51, 52]. In this thesis, the gripper state of the robot was employed to segment
trajectories, as it made it possible to obtain required segments in a simple and effective manner. The
grippers are only actuated in the robot when the robot arm reaches a particular pick location. The state
of the grippers (𝑔𝑠) are recorder throughout the demonstrations. The transition of trajectories occur
only when there is a change in the gripper state in time. Therefore, the change in gripper state (𝑆)
is calculated between each time steps. The time step corresponding to the change in gripper state
are noted. These time steps are then used to label the trajectory which relates with the object being
manipulated in that particular trajectory. Algorithm 1 shows the general working of the segmentation
algorithm based on the gripper state.

The gripper state may have some noises as depicted in Fig 6.5a. These noises could be due to
unintentional actuation during demonstration or reactuating the gripper to pick the same object again
if not appropriately picked. Hence, a simple filter is developed that filters out these noises. This filter
take in the gripper state (𝑔𝑠) and removes the noises based on the window size (𝜏) creating a clear
segmentation (𝑔𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑) based on Algorithm 2. This is depicted in Fig 6.5b. Here the sequence 1
is from frame 0 to 1500, sequence 2 is from 1500 to 2200, sequence 3 is from 2200 to 4900 and
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Algorithm 1 Segmenting the demonstration using robotic gripper
Input: gripper actuation state for whole demonstration (𝑔𝑠)
Output: Frame number corresponding to change in gripper state 𝐼
1: for 𝑖 to 𝑙𝑒𝑛𝑔𝑡ℎ(gs) do
2: if 𝑖 = 0 then
3: continue
4: else
5: 𝑆 ← (𝑔𝑠𝑖 − 𝑔𝑠𝑖−1) → Compute change in gripper actuation state
6: end if
7: end for
8: for 𝑖 to 𝑙𝑒𝑛𝑔𝑡ℎ(S) do
9: if 𝑆(𝑖) > 0 then
10: 𝐼 ← 𝑖 → Save indices where change in state is greater than 0
11: end if
12: end for

return 𝐼

sequence 4 is from 4900 till the end.

Algorithm 2 Filtering noises in the gripper state
Input: gripper actuation state for whole demonstration (𝑔𝑠), Window size (𝜏), Frame number corre

sponding to change in gripper state 𝐼
Output: Filtered Gripper actuation state 𝑔𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
1: for 𝑖𝑛𝑑𝑒𝑥 in 𝐼 do
2: C ← 0
3: for 𝑤𝑠 in (0 to 𝜏) do
4: 𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 + 𝑤𝑠
5: if 𝑔𝑠(𝑖𝑛𝑑𝑒𝑥) = 𝑔𝑠(𝑖𝑛𝑑𝑒𝑥 + 𝜏) then
6: C ← C + 1
7: end if
8: end for
9: if C < 𝜏 then
10: 𝑔𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑖𝑛𝑑𝑒𝑥 + 𝜏) ← 𝑔𝑠(𝑖𝑛𝑑𝑒𝑥 − 1) → Remove the values with a slight

change in gripper states
11: end if
12: end for

return 𝑔𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑

6.3.2. Experimental setup

The SEA Net can learn different spatial locations on manipulation objects with fewer demonstrations.
But this is only proven on a synthetic dataset with limited features and a simple endeffector represen
tation in the image. A simulated robot dataset is used for evaluating the model to make the detection
more challenging. As mentioned in section 6.3.1, the simulated datasets are extracted from the Robo
suite dataset. The images extracted from the simulated robot are challenging because there are a lot
of noises and occlusions. These noises and occlusions are due to the movement of the robotic arm in
the image frame.

There are two different pick and place tasks used to evaluate the model. The first pick and place
task has a single object to be picked and placed, while the second pick and place task has four objects
to be manipulated. The first task is shown in Fig 6.3 and the second task is depicted in Fig 6.4.

The overall pipeline for using a simulated robot demonstration is depicted in Fig 6.6. The multiple
pick and place task is trained with 10 demonstrations with a total of 2500 images. The single pick and
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(a) Unfiltered demonstrations (b) Filtered demonstrations

Figure 6.5: Short time actuation are filtered out.

place task is trained with 10 demonstrations with a total of 1200 images. The completion time for each
tasks gives rise to varying number of images.

Figure 6.6: The experimental pipeline for simulated robotic dataset is depicted here. The demonstrations are first segmented
and the labels are extracted. These labels are then used to train the SEA Net.

6.3.3. Results

Table 6.2 depicts the result of a SEA Net on the two simulated tasks. The single pickplace tasks has a
lower accuracy than the multiple pickplace task as it is trained with comparatively lesser observations
than the multiple pickplace task. The predictions on the single pickplace task by the SEA Net is
depicted in Fig 6.7.

Tasks Accuracy of the SEA Net in %
𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.5

Classification accuracy multioutput pick Network(OKS Metric) Overall Accuracy
Pick Object 1 Pick Object 2 Pick Object 3 Pick Object 4

Single pickplace task 65.5 74.4 98.8   58.8
Multiple pickplace task 88.8 96.5 100 79.5 100 81.8

Table 6.2: The accuracy results of SEA Net with a 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 2 pixels on simulated robot demonstrations for each head
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Figure 6.7: The prediction of the SEA Net on the single pick and place task. The green dot represents the prediction of the SEA
Net. The sequence is from the left to the right.

The prediction of the SEA Net on multiple pick and place task is significant with a better classification
accuracy and overall accuracy. The predictions of the SEA Net in Multiple pick and place task is shown
in Fig 6.8.

Figure 6.8: The prediction of the SEA Net on the Multiple pick and place task. The green dot represents the prediction of the
SEA Net. The sequence starts from the top left image and ends in the bottom right image.

From Table 6.2, the accuracy of the SEA Net for predicting the location of the blue can and blue
block in the single and multiple pickplace task, is low. This is due to the presence of an additional
blue tracking feature in the endeffector of the robot. The model mispredicts the location of the blue
can/block with this additional feature and hence the lower accuracy of the model, as depicted in Fig
6.9.

This misprediction could be overcome by choosing a dataset without any artifacts like the presence
of blue feature in the robot arm. Since the dataset used in the thesis are not tailored for the purpose
of validating a vision network, these mispredictions are encountered. The SEA Net was also able to
predict the pick locations when some of the features are absent in the image. This is depicted in Fig
6.10

In conclusion, the experiments on a simulated robot dataset concludes that the SEA Net is able to
generalise well simulated robot dataset. These dataset has a lot of noises. However, the SEA Net was
able to predict the pick locations sequentially. This reveals that the model could also be implemented
in other simulated robot dataset successfully.
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(a) (b)

Figure 6.9: (a) The misprediction in a single pickplace demonstration where the endeffector feature is predicted instead of Can
(b) The misprediction in a multiple pickplace demonstration where the endeffector feature is predicted instead of blue block

Figure 6.10: The prediction of the SEA Net on the configuration the model was not exposed during training. The sequence starts
from the left and ends in the right.

6.4. Experiment  Dataefficiency study

6.4.1. Experimental setup

In this section, the dataefficiency study is conducted on the SEANet and is compared with other models
to evaluate the performance in varying training dataset sizes. Unlike researches that focus on studying
the effect of training data on the accuracy of models [53, 54], this study will just analyze the influence of
the training data on three models. This comparison study is relevant because the introduction of a fully
connected layer in the classification head could decrease the data efficiency as they are not equivariant
as a fully convolutional network. Hence, it is essential to test the data efficiency of the SEA Net as the
transporter networks are dataefficient. All the comparison models are trained using the same training
data sizes, epochs, and learning parameters. The models used are as follows:

• Regression Model: A regression model is used to estimate the pick location directly from the
images. This straightforward method can be used to predict the spatial locations directly from
the configurations. In this model, a ResNet50 backbone is used followed by fully connected
layer. The ResNet 43 (used in SEA Net and Transporter Network) has been modified to have a
higher receptive field. However, this modification is not required for a regression model. Hence,
a ResNet 50 model was chosen because it has a good accuracy with fewer parameters and are
readily available [23]. The spatial locations are normalized between 0 to 1, and the loss function
used to train this model is a mean square error (MSE) loss function for training the model.

• Singlestage object detector:
A singlestage object detector is explained in detail in Appendix A.2. The Yolo network is a single
stage object detection framework and could detect objects with high effectiveness and efficiency
because they are composed of fully convolutional networks [55]. Since the experiment is about
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testing the data efficiency of the SEA Net, a YOLO framework could be a preferred candidate
because of the abovesaid property. A YOLO model requires the bounding box’s center point,
width, and height as a ground truth, normalized between 0 to 1. The width and height of the
bounding box is assumed to be 25X25 in this experiment as position of the camera is fixed and
there is no scaling of objects. The YOLO Model regresses the center point of the bounding box.
Therefore, it is necessary to introduce an heuristic in order to get the pick point from YOLO. The
simple way of doing this is by choosing the center point of the bounding box as the pick location.
This center point used for determining the model’s accuracy.
However, a direct outofthebox YOLO framework or any objectdetection model could not predict
the pick points based on the configuration of the environment because the model learns only to
detect the presence of a feature in a given image frame.Therefore, the YOLO framework, at
a given time instant, will always give the location of all the objects present in the environment
through bounding box coordinates. To compare the results with other models, this thesis assumes
that the YOLO model can give one pick location at a time instant.

All models are tested on two datasets.

Dual Target dataset

The dualtarget dataset used in the previous experiment is again used for a comparative study on data
efficiency of the SEA Net. The performance of the model on Dual Target dataset will show the ability
of the model to pick the correct pick location based on the configuration.

Sequential dataset

For the purpose of faster computation time, the sequential dataset is simplified as depicted in Fig 6.11
and is called as the simplified sequential dataset. A simplified sequential dataset has two objects
present in the object frame. Based on the position of the endeffector (represented in red dot), there
will a change in the pick point to be estimated. For Fig 6.11a, the pick point will be the star while for Fig
6.11b, the pick point will be the pentagon. Two different demonstrations are used to train the model to
see if the model is able to generalise on two different sequences.

(a) (b)

Figure 6.11: The overall sequence is broken into small sequences. The endeffector is represented by the red dot (a) For this
configuration, the goal spatial point is star (b) For this configuration, the goal spatial point is pentagon

Both the dataset has a total of 1000 images which are broken in various stages. The aim of intro
ducing stages is to study the ability of the model to generalise well with lesser sets of data. Therefore,
the results will be depicted in five stages as depicted below.

• Stage 1 : 10% of training data
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• Stage 2 : 30% of training data

• Stage 3 : 50% of training data

• Stage 4 : 70% of training data

• Stage 5 : 90% of training data

6.4.2. Results

Dual Target Dataset

The accuracy of the models in the dataefficiency analysis on dual target dataset are tabulated in Table
6.3 and 6.4 for a strict and lenient 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 2pixels and 20 pixels, respectively.

Comparison Models Accuracy of the model in %
𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.5

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Regression Model 0 0.2 1.2 1.2 2.6
Modified YOLO Network 14 10.6 18.4 10.8 21.6
SEA Net 18 53.2 92.2 100 100

Table 6.3: The table depicts the accuracy of the models on a strict 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 2pixels

Comparison Models Accuracy of the model in %
𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.5

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Regression Model 4.8 6.6 39.6 40.6 42.6
Modified YOLO Network* 100 100 100 100 100
SEA Net 86.4 90.8 100 100 100

Table 6.4: The table depicts the accuracy of the models on a strict 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 20pixels
∗ Since center of bounding box is assumed as correct prediction in YOLO, the deviation is very less for 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 20 pixels
and hence 100% accuracy.

The SEA Net outperforms both the regression and the YOLO Network in all the stages of the data
efficiency test for a 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 2 pixels.

Table 6.5 depicts the performance of the two different heads of a SEA Net on the dataefficiency
study. It can be seen that the performance of the classification is head is similar in all the stages of the
dataefficiency test. This means that there is no loss in dataefficiency when a classification head is
added to the SEA Net. However, the accuracy of the each channel in a multioutput pick network is not
similar given each channel has the same amount of data to generalise (refer section 6.2). This depicts
that the model generalises differently for different pick locations given they are trained with the same
amount of data.

Stages Accuracy of the SEA Net in %
𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.5

Classification head accuracy multioutput pick head (OKS Metric) Overall Accuracy
Pick Object 1 Pick Object 2

Stage 1 100 22.2 18.8 18
Stage 2 99.8 60.8 42.8 53.2
Stage 3 100 96.6 85.2 92.2
Stage 4 100 100 100 100
Stage 5 100 100 100 100

Table 6.5: The table depicts the accuracy of each heads in the SEA Net on a strict 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 2pixels
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The distribution of the SEA Net’s prediction around the required ground truth could be analyzed by
the box plots depicted in Fig 6.12 for the dualtarget datasets. From Fig 6.12a, it could be seen that the
regression model predicts points very far from the groundtruth. However, these points are predicted
on the desired pick objects. The distance between the groundtruth and the predicted pick point are not
significantly reduced when the model is trained with more data. From Fig 6.12b, it could be seen that
the YOLO model outperforms the SEA Net in stage 1. However, it should be noted that the predicted
pick point in a YOLO is always assumed to be in the midpoint of the object. Hence, the deviation
from the groundtruth is comparatively lesser for YOLO than the SEA Net in stage 1. There is also no
significant change in this deviation in various stages of dataefficiency test due to the same reason.
From Fig 6.12c, it could be seen that the prediction of the SEA Net is very close to the groundtruth
and the model clearly outperforms the other models.

(a) (b)

(c)

Figure 6.12: The box plots for various stages in the dataefficiency test for dual target dataset. (a) Regression Network. (b)
YOLO Network. (c) SEA Net. The box plot depicts the distance of the predicted pick points from the groundtruth on the test
images.
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Sequential Dataset

The accuracy of the models on sequential dataset are tabulated in Table 6.6 and 6.7 for both strict and
lenient 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 2pixels and 20 pixels, respectively.

Comparison Models Accuracy of the model in %
𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.5

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Regression Model 0 1 1 4 6
Modified YOLO Network 14 12 17.4 14.8 22.3
SEA Net 15 26 31 35 70

Table 6.6: The table depicts the accuracy of the models on sequential dataset on a strict 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 2pixels

Comparison Models Accuracy of the model in %
𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.5

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Regression Model 7 40 49 54 78
Modified YOLO Network 100 100 100 100 100
SEA Net 59 62 71 80 87

Table 6.7: The table depicts the accuracy of the models on sequential dataset on a strict 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 20pixels.
∗ Since center of bounding box is assumed as correct prediction in YOLO, the deviation is very less for 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 20 pixels
and hence 100% accuracy.

The SEA Net performs well on a sequential dataset when compared to the other two models. The
same trend as discussed in the previous section is observed from the Table. However, the performance
of the SEA Net on the sequential dataset is lower when compared to the dualtarget dataset. This trend
could be because the SEANets are trained with two different demonstrations, as shown in Fig 6.11. This
means that each channel in a SEA Net needs to generalize for two different shapes (i.e, one channel
needs to generalise on square and star while the other channel needs to generalise on pentagon and
triangle), unlike the dualtarget dataset where each channel generalises on one shape. However, it
could be seen that the SEA Net is still able to predict the sequences with higher accuracy when trained
with different demonstrations.

Stages of Dataefficiency Test Accuracy of the SEA Net in %
𝛾𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.5

Classification accuracy MultiOutput Pick Network(OKS Metric)
Pick Object 1 Pick Object 2

Stage 1 98 55 14
Stage 2 98 63 20
Stage 3 99 61 38
Stage 4 100 58 57
Stage 5 100 70 97

Table 6.8: The table depicts the accuracy of each head in the SEA Net on the various stages of dataefficiency study.

The SEA Net classification head again performs well for all the stages of the dataefficiency study
as depicted in Table 6.8. However, the accuracy of the output channel of the multioutput pick head
increases with an increase in the amount of data. The distribution of the SEA Net’s prediction around
the required ground truth could be analyzed by the box plots depicted in Fig 6.13 for the sequential
datasets.

For simplified sequential datasets as depicted in Fig 6.13a, the regression model does not show
promising results. The observation is similar to that of the dualtarget dataset. The range of deviation
from the ground truth predictions is very high compared to the YOLO and the SEA Net. For a strict
threshold of 2pixel deviation, the regression model has a very low accuracy but for a lenient threshold,

Master of Science Karthik Arvind Arunmoli



6

46 6. Experiments and Results  SEA Net
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(c)

Figure 6.13: The box plots for various stages in the dataefficiency test for simplified sequential dataset. (a) Regression Network.
(b) YOLO Network. (c) SEA Net. The box plot depicts the distance of the predicted pick points from the groundtruth on the test
images

the model can have good accuracy, which means that the model can still predict the pick locations on
the required object in the environment. The regression model might perform considerably better when
provided with more training data or increasing the number of iterations, but this is out of the scope of
the thesis.

The range of deviations between ground truth and prediction for YOLO (in Fig 6.13b) and SEA Net
(Fig 6.13c) is much lower (i.e., in the range of 0 to 20 pixels). However, the accuracy of the SEA Net
is more than YOLO in all the stages of the dataefficiency test. Looking closer into these results, the
SEA Net can predict more samples closer to a deviation of 0 than the YOLO model. This is depicted in
Fig 6.14, where the number of samples closer to zero deviation is more in the SEA Net than the YOLO
model. Hence, the SEA Net’s generalization is far better than both the models in the lower stages of the
dataefficiency test, where the number of training samples used to train the networks are significantly
less. The SEA Net’s prediction is highly accurate in higher stages of the dataefficiency test, where the
model completely outperforms the other two models.
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(a) (b)

Figure 6.14: (a) The distribution curve for SEA Net on 30% training data. (b) The distribution curve for YOLO Net on 30% training
data. The distribution curve depicts clearly that the spatial locations predicted by SEA Net are closer to the ground truth than
predictions from YOLO.

In conclusion, from the dataefficiency test results it is evident that the SEA Net is able to generalise
well with a fewer demonstrations when compared to the other models. However, some drawback of the
SEA Net model could also be noted. The performance of the SEA Net dropped when a larger sequence
with more trajectories are considered for prediction. But the performance of the SEA Net is still better
than the other models for a larger sequence demonstration. In the next section the SEA Net is studied
on dataset from the simulated robot.

6.5. Discussion

The SEquential Attention Network (SEA Net) was introduced to predict the pick locations sequentially
without depending on the receptive field of the network. Previously, the Transporter Networks were
used to predict the pick location sequentially. Experiments on the Transporter Network revealed that
the predicted outputs were multimodal and depends on the receptive field of the network to solve se
quential tasks. The SEA Nets were able to overcome the aforementioned problem by introducing a
multioutput pick head and classification head. To perform experiments on the SEA Net, datasets were
created/designed in this thesis. A simple synthetic dataset were created using simple shapes and a
simulated robot dataset were created using preexisting demonstrations. The preexisting demonstra
tions were broken into segments using a simple segmentation algorithm.

Experiments on dualtarget dataset revealed that SEANets chose the desired pick location based on
the configuration of the environment with a good accuracy. The experiments on the sequential dataset
depict that the SEA Net was able to consecutively predict the pick locations based on the change in
the configuration in the environment. However, the accuracy of the overall SEA Net was dependent
on the classification head i.e., the overall accuracy of SEA Net will reduce when the accuracy of the
classification head is low. It was also observed that SEA Net’s performance decreased with an increase
in the number of objects to be picked in a sequence. However, this accuracy could be increased when
provided with more data. Experiments on the simulated dataset showed that the SEA Net model could
perform well on noisy and complex datasets. The model was able to predict the pick location even if
some features in the environment were absent. However, there were mispredictions due to artifacts
present in the dataset. This limitation could be overcome by choosing a tailoredmade dataset from
simulators or gazebos.

The dataefficiency study shows that the introduction of the classification head did not affect the
performance of the SEA Net using fewer demonstration. SEA Net performs better than the regression
and object detection model with fewer data. The SEA Net predictions were close to the required ground
truth, whereas the object detection model always assumed the predictions as the midpoint of the
bounding box.
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7
Conclusion and Future Works

This thesis aims to extract highlevel goals from images so that a lowlevel controller can complete the
overall task. The aim was to learn these highlevel goals from images given by human demonstrations.

This thesis proposes a novel model called a SEquential Attention Network (SEA Net) that can se
quentially predict the pick locations for completing a sequential task with fewer demonstrations. Initially,
the pick network of the Transporter Network was tested. These network has a larger receptive field
and the expected output from these models should be dependent on every pixel in the input image.
However, from preliminary experiments the pick network predicted multimodal outputs, which means
that the outputs were predicted based on the neighbouring pixels rather than the whole configuration.
This revealed that the pick network of the Transporter network was dependent on the receptice field
size to solve sequential tasks.

To get unimodal outputs for the same receptive field size, the multioutput pick network was intro
duced in this thesis. The architecture of the multioutput pick network separated 𝑁modal output to 𝑁
unimodal outputs. However, the multioutput pick network could not still learn to give a single unimodal
solutions for a given image. Therefore, a classification head was added to the multioutput pick network
to introduce the SEA Nets. The SEA Nets were able to give a single unimodal solution for the given
image. The dataset were created/designed to evaluate the SEA Net. The synthetic dataset were to
depict sequential tasks using simple shapes, while preexisting demonstrations were used to generate
simulated robot dataset. A simple segmentation algorithm was developed to label the ground truth for
the classification head. The performance of the model was evaluated using OKS Metrics.

The SEA Net was able to give unimodal solutions for given time step based on the configuration
of the objects in the image. SEA Nets were dataefficient when compared to regression and YOLO
networks. However, the networks accuracy depends on the classification head. If the classification
accuracy is low, the overall accuracy of the network tends to be low. The model also assumes that
the number of objects manipulated in the sequential tasks is known beforehand. But, SEA Nets are
independent of the size of receptive field for solving sequential tasks.
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7.1. Limitations and Future Work

This section presents the limitation of the thesis.

• The SEA Nets are not validated on the real world environment on real robot. There could be many
challenges in implementing the algorithm on real world robot like choosing a correct segmentation
algorithm, creating a ROS communication. But these aspects were not explored using SEA Nets
and could be looked into in future.

• The SEA Net assumes that it has prior knowledge about the number of objects that is being
manipulated in the given demonstrations. This assumption could make the model less flexible for
online training.

• The SEA Net could struggle when the sequence to predict is large or there are a large number
of pick points. It could be an interesting path to explore ways where this limitation could be
overcomed.

• In this thesis, the pick points for each frames were labelled because the camera parameters of
the Mujoco simulators were not accurate to convert the endeffector position of the robot to the
pixel location in the camera. This work was tedious as human annotation were required. With the
correct camera parameters, a self supervised method could be devised that uses a segmentation
algorithm to also extract the position of the objects in the image. This aspect could also be looked
in for future works.

• An appropriate motion primitive was not used in this thesis. In future, it could be interesting
to explore the possibility of using more than one motion primitive and choosing the appropriate
motion primitive from the output of the classification head of the SEA Net.
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A.1. DataDriven Control

A.1.1. Markov Decision Process

AMarkov decision process (MDP) is a discretetime, finite learning framework (can also be ”continuous”
which is ignored in this thesis) in which the current state does not depend on the history of the previous
states. Consider the agent in Fig A.1. In a discretetime MDP framework, an agent interacts with an
environment at discrete time scale 𝑡 = 0, 1, 2, … In each of these time steps, the agent observes the
environment and extracts the state of the environment 𝑠𝑡 ∈ 𝒮. Based on the state, the agent executes
an action 𝑎𝑡 ∈ 𝒜 which results in a reward 𝑟𝑡+1 being awarded in the next timestep and the transition
of the state from 𝑠𝑡 to 𝑠𝑡+1 [5].

The transition probability is given by

𝑃𝑎 (𝑠, 𝑠′) = Pr (𝑠𝑡+1 = 𝑠′ ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) (A.1)

The Markov decision process is hence a 4tuple (𝑆, 𝐴, 𝑃𝑎 , 𝑅𝑎). To better understand the MDP, con
sider a tomato harvester used for picking ripe tomatoes in a greenhouse. The tomato harvester has a
set of states and actions. For each time step, the tomato harvester observes the environment, perceives
the tomatoes’ state, and selects an action based on the policy. The MDP is the basic for reinforcement
learning and imitation learning algorithm.

In reinforcement learning, the agent learns the policy by maximizing the cumulative reward func
tion. [56–58]. One of the disadvantage of reinforcement learning is designing and implementing a good
reward function. A feasible and practical solution to overcome this problem is Imitation Learning.

In imitation learning, the agent has access to the expert’s demonstrations, i.e., the state and the
action of the expert agent.[44] In short, the agent has access to the expert’s policy. Some imitation
learning also has the expert available during training, known as interactive learning. The agent learns
to imitate the expert trajectories via various principles. Some of the famous principles used in imitation
learning are: 1. Behavioral cloning [4, 59–61]: learning the expert’s policy by minimising the error be
tween the agent’s policy and the expert’s policy 2. Inverse reinforcement learning [41, 60, 62]: learning
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Figure A.1: The agent learning from the environment based on MDP

a reward function based on the expert’s trajectories.

A.1.2. Hierarchical Imitation Learning

To understand hierarchical learning, consider an example of a robot agent whose objective is to move
from the Delft University campus to the Delft station. As mentioned in the previous section, the agent
needs to consider a large search space to achieve the goal successfully. In a hierarchical algorithm, the
overall goal is divided into subgoals and, in achieving these subgoals attain temporal abstraction.[5]
In the example, instead of directly reaching the Delft station, the robot could have intermediate goals,
as depicted in Fig A.2. By decomposing the overall goals into subgoals, the large search space will
reduce significantly.

Figure A.2: The agent moving from TU Deflt to Delft station has subgoals (Mekelweg) in a hierarchical control

Hierarchical learning is based on the SemiMarkov decision process (SMDP). In SMDP, options are
a set of lowlevel actions performed based on MDPs at discretetime steps.[5] The options could also
be called subcontrollers. Options usually consists of three components namely, a policy that maps
state to action 𝜋 ∶ 𝒮 × 𝒜, a termination condition 𝛽 ∶ 𝒮+ → [0, 1] and an initiation set ℐ ⊆ 𝒮 [5]. The
option starts when the state observed is present in the initiation set 𝑠𝑡 ⊆ ℐ. After the initiation of the
option, the policy associated with the option is executed. The option is then terminated when it meets
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the termination condition in a policy. Hence in hierarchical learning, the highlevel controller aims to
extract highlevel states as depicted in the central image of Fig A.3. Based on the extracted states, the
possible lowlevel controller(i.e., options) is picked (based on the state present in the initiation set) to
carry out a particular task in a sequence.

Figure A.3: The state trajectory for MDPs, SMDPs and the effect of options in the SMDPs [5]

Hierarchical learning is implemented using both reinforcement learning and imitation learning. The
hierarchical framework that uses a reinforcement learning algorithm to learn highlevel and lowlevel
controllers is Hierarchical Reinforcement Learning (HRL). To know more about HRL and its various
types refer [63–67] .

In contrast, in hierarchical imitation learning, the lowlevel controller is learned using an imitation
learning algorithm. The highlevel controller of a HIL algorithm could be learned using a reinforcement
learning algorithm or imitation learning algorithm.[68]

If, in addition to trajectories, the expert demonstrator provides observation as images, a highlevel
controller could translate the images to the robot’s state with the help of a computer vision technique.
This technique is used in algorithms that learn a sequence of actions by using context learning. Context
learning is a type of HIL where the actions are abstracted into symbols or texts. [9, 10]. Each of
these symbols represents a policy that the agent needs to execute. The highlevel controller here will
implement a computer vision algorithm to estimate the position or the pose of the object the robot needs
to manipulate. This position or pose are translated to a target state for the robot to achieve. In [9], a
pretrained Mask RCNN is used as the highlevel controller, which gives the target pose of the object
or implicitly the target pose of the robot arm. Likewise, in [10] a SegNet is used for extracting the target
pose of the object that is to be manipulated. This research uses a pretrained existing computer vision
model as the highlevel controller that gives target states to the robot arm. Generative networks [69]
are used to generate subgoal images given the final goal image to the model. [8] These subgoals
are generated in such a way that total cost for the robot to move through these subgoals is less for
completing the sequence. It is also possible to solve longhorizon tasks with planning and sequencing
algorithms.[70]

In conclusion, an hierarchical learning needs twocontrollers namely a highlevel and lowlevel con
troller. The highlevel controller will give the goal states that the robot needs to transverse. The spatial
location that would be extracted using computervision techniques could be used as the goal state
of the highlevel controller. Hence, a lowlevel controller is assumed to take the spatial locations in
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image coordinate and execute a policy to move the robot to the corresponding location in the world
coordinate.

A.2. Object detection and segmentation models

Object Detection

Traditional object detection frameworks are done using handcrafted features, but it was addressed
with deep learning. Hence, the problem definition of an object detection framework is to estimate the
location of the objects in the images and classify the object’s category. The object detection algorithms
could be classified into two types:

1. Twostage Detectors: A categoryindependent region of proposal (ROP) is extracted from the
image in the first stage in a twostage detector. The second stage is to classify and regress
the bounding box of the region of proposals.[6] The most popular twostage detectors are RCNN
[71], FastRCNN, Faster RCNN [72], and Mask RCNN[73]. In addition to object detection, a Mask
RCNN is used to generate binary masks of the feature in the region of proposals. A MaskRCNN
is used in instance segmentation of the objects.

2. Singlestage Detectors: Unlike a twostage detector, the image is completely regressed to the
bounding box position and classification in a singlestage detectors. Singlestage detectors could
be compared to an endtoend approach with no intermediate network for predicting an interme
diate result. The most popular singlestage detector is YOLO and SSD [7, 74].

(a) A representation of a twostage object detector.

(b) A representation of a singlestage object detector.

Figure A.4: A twostage detector has a separate region of proposal network while a singlestage detector directly regresses the
image [6]

In robotic manipulation, these twostage detectors are used to estimate the object’s position in the
scene. A twostage detector is used in manipulation techniques because it is more accurate. But the
amount of training data required to train these networks are heavy. These methods are light and could
be trained with lesser training data when compared to a twostage network. But the accuracy of a
singlestage detector is comparatively lesser than a twostage network.
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Segmentation

Image segmentation is used to segment the images into desired regions or objects. Segmentation
tasks are generally used in medical segmentation, autonomous vehicles etc. Segmentation involves
the classification of each pixel in an image to a particular class. It is also used to partitioning individual
objects(instance segmentation). Segmentation has been used in many applications. The backbone
of segmentation can be either a CNN for computer vision or Recurrent neural networks(RNN). But
using an RNN for segmentation task is generally not used given the speed of processing the image.
An RNN is used for sequential data learning, and since this cant be parallelized for computation, it is
difficult to achieve the same speed a CNN achieves [75]. Segmentation could be classified as semantic
segmentation and instance segmentation.

Semantic Segmentation: Semantic segmentation are used to predict the object boundaries by
predicting the class label for each pixel in the image. The final prediction of a semantic segmenta
tion model is the prediction of meaningful clusters of prediction. The semantic segmentation model
could predict the class label for each pixel by using skip connections. These skip connections are
used to preserve the spatial information while predicting the segmentation maps. UNet [76] is a pop
ular segmentation technique that uses the skip connection for predicting the class of each pixels. It is
also possible to predict segmentation maps by using a encoderdecoder structure. The main different
between a skip based and decoder based structure is that, in a decoder based structure, the pool
ing indices in encoder stage are learned in the decoder stage. The SegNet [77] architecture uses a
encoderdecoder structure for generating segmentation maps.

The semantic segmentation models however doesnot predict the difference between the instances
of the objects present in the image. Hence the instance segmentation model was introduced.

Figure A.5: The difference between semantic segmentation and instance segmentation is depicted in (c) and (d) [78]

Instance Segmentation: Instance segmentation method is the next step of a semantic segmenta
tion method. It is used to predict the different instances of the same class in an image. However, this
could be challenging as the number of instance of the same class are unknown. Instance segmenta
tion provides extra information which could be used to know about occlusions or detecting a particular
object of the same class for robotic grasping.
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