Department of Precision and Microsystems Engineering

Improve the Optical Neural Network structure by using Neural
Architecture Search for Visual Classification Tasks

Tianyang Hu

Delft
e t University of
Technology

Challenge the future

IMPROVE THE OPTICAL NEURAL NETWORK
STRUCTURE BY USING NEURAL ARCHITECTURE
SEARCH FOR VISUAL CLASSIFICATION TASKS

to obtain the degree of Master of Science
at Delft university of Technology,
Faculty of Mechanical, Maritime and Materials Engineering
to be defended publicly on July 7th 2023.

by

Tianyang Hu

Delft University of Technology, Delft, Netherlands

Supervisors:

Dr. M.A. Bessa, Brown University, School of Engineering
Dr. R.A. Norte, TU Delft, 3mE Faculty, PME

Committee member:

Dr. A.M. Aragon, TU Delft, 3mE Faculty, PME

Project Duration: July 2022 - July 2023

Keywords: Neural Architecture Search, Optical Neural Networks, Mach-Zehnder interfer-
ometer

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

CONTENTS

Summary 1
1 Introduction 3
1.1 Purpose, Goals and Their Justificatiions. 3
1.2 Proposed Methods and theoretical basics. 3
1.3 Outline e e e e e 4
2 Literature review 7
2.1 Optical Neural Network. 7
2.1.1 The advantages of Optical Neural Networks 7
2.1.2 Some typical types of optical neural networks 8

2.1.3 Mach-Zehnder Interferometer Optical Neural Network (MZI-ONN)

8

2.1.4 Photonic Deep neural Network (PDNN) 9
2.1.5 Diffractive Deep Neural Networks (D°NN) 12
2.2 Neural Architecture Search (NAS) 13
221 OVErVIEW. v v v i it e e e e e e e e e 13
2.2.2 Search Strategy based on Reinforcement Learning. 14
2.2.3 Search Strategy based on Evolutionary Algorithm 14
2.2.4 Speed up RL and EA-based NAS searching. 15
2.2.,5 Search Strategy-One-Shot. 17
2.2.6 Aspecial type of search space - Benchmark 19
3 Neural Architecture Search and Optical Neural Network 21
3.1 Choosingaproposedsolution 21
3.1.1 Reasonstouse NASforONN. 21
3.1.2 Proposed solutionandreasons. 22
3.2 Neural Architecture Searchon NASLib 23
3.3 Simulation of Optical Neural Network on Torch-ONN. 24
3.3.1 Experiment 1 - Compare mode of MZI-ONN. 26
3.3.2 Experiment 2 - Change/Add Conv/Hidden layer. 26
3.3.3 Experiment 3 - Dataset MNIST/CIFAR-10 27
3.3.4 Experiment4 - MZI-ONN/FFT-ONN. 27
3.3.5 Experiment5 - Activation function & Learning Rate 27
3.3.6 Conclusion.o 28

3.4 Combined Neural Architecture Search and Optical Neural Network. 28
3.4.1 The theoretical basis from the mathematical and physical imple-

mentation of MZI-ONN blocks that can be searched by NAS. 28

3.4.2 Implementationdetails 32

iii

iv CONTENTS

4 Discussion 37
4.1 Result and analysis for NAS searching MZI-ONN 38
4.2 Comparingtheresults 40

4.2.1 Combined NAS and MZI-ONN & MZI-ONNonly 41
4.2.2 Combined NAS and MZI-ONN & NAS and ANN in ReLU. . . 41
4.2.3 Combined NAS and MZI-ONN & ONN ResNet for CIFAR . . 41

5 Conclusion 43
51 Conclusion o o e 43
5.2 Limitation and Future Research. 44

5.2.1 Physical manufacture limitation and NAS searching. 44
5.2.2 Transfer to different dataset/tasks 44
5.2.3 Other ONN implementation. 44
5.2.4 Other Learning architecture 45

References 47

A Appendix A
ONN cell structure searching optimization process using NAS 53

B Appendix B
Flow chart of Neural Architecture Search for ONN 57

C Appendix C

Well-known CNN implemented on ONN with ResNet as an example 59

SUMMARY

This thesis explores the integration of Neural Architecture Search (NAS) with Optical
Neural Networks (ONNSs) to optimize the efficiency and performance of ONNs in tra-
ditional visual image classification tasks. The study introduces a new approach that ap-
plies NAS, a technique traditionally used to optimize the performance of Artificial Neural
Networks (ANNs), to the field of ONNs.

The primary goal of the research is to apply NAS to ONNs, predicated on the shared
similarities between ONN and ANN layers, despite ignoring the physical manufactur-
ing limitations. The integration’s feasibility is established both theoretically and through
independent NAS and ONN studies. The findings indicate that by tuning the specific
ONN structures, similar to ANNs, can significantly influence ONN performance, thereby
validating the possibility of NAS and ONN integration.

In this study, we develop a cell-based search space explicitly designed for ONNs, in-
spired by the NASBench201, and integrated with the DARTS architecture search strat-
egy. This combination demonstrated improved ONN performance, particularly in im-
age classification tasks and significantly improves the efficiency of finding the optimal
result.

Comparative performance analysis revealed that the ONN model generated using the
proposed algorithm outperformed a simple ONN model by approximately 2%, proving
the effectiveness of the NAS-ONN integration. The study also examined the properties
of ONNs and compared them with ANNSs, and explored the similarity of their optimal
structure, both of which exhibited their unique characteristics and performance. Based
on the findings we try to apply some ANN structures with superior performance into
ONNs, and the results obtained confirm our main conclusions.

In conclusion, this research successfully enhances the performance of ONNs through
the integration of NAS, establishing the potential of applying high-performance ANN
structures to ONNs. The results set the foundation for future exploration in the opti-
mization of ONNSs, promising significant contributions to the field of next-generation
artificial intelligence computing.

INTRODUCTION

HE objective of this study is to enhance the efficiency of Optical Neural Networks

(ONN) using the Neural Architecture Search (NAS) technique. To achieve this goal,
the prevailing method of searching Artificial Neural Networks (ANN) is adopted and em-
ployed for Optical Neural Networks. The primary focus is to optimize the performance
of Optical Neural Networks by utilizing the Neural Architecture Search algorithm, which
facilitates the exploration of the most suitable architecture for Optical Neural Networks.
The proposed approach is expected to contribute to the current Optical Neural Networks
implementation methods by improving their efficiency and accuracy.

1.1. PURPOSE, GOALS AND THEIR JUSTIFICATIIONS

Optical Neural Network is a potential candidate for next-generation artificial intelligence
computing due to its impressive energy efficiency and computing speed.[1] Currently,
most Optical Neural Network designs lack scalability. Previous designs are limited to
benchtop setups or parts integration [2]. Therefore, one possible solution is first to re-
gard ONN as ANN and use an automatize strategy to search for a optimal structure, then
consider physical and manufacturing constraints to obtain a feasible optimal structure.
Neural Architecture Search (NAS) automates the search for the best structure for con-
strained neural networks, so this work uses NAS to achieve our goal of finding the best
ONN structure.

1.2. PROPOSED METHODS AND THEORETICAL BASICS

In this study, physical principles and restrictions are discussed and partially ignored dur-
ing the whole progress. However, to facilitate the subsequent study of the introduc-
tion of physical constraints to adjust the automatic search. Hence, the search space
should be efficient and introduce more information into the network. NASbench201 [3]
can achieve mentioned goals. Provide extra diagnostic information to help us analyze.
NASbench201 [3] is a search space inspired by cell-based algorithms. Compared to the

3

4 1. INTRODUCTION

original search space used in DARTS [4] and other search spaces with similar functions
(like NATS-bench [5], etc.), NASbench201 [3] has fewer operational candidates [4][3] and
unique architectures [5], which can improve the efficiency of the computation. During
the iteration, this work will modify our search space based on NASbench201, making
the search space more suitable for our work while ensuring the above advantages. The
search strategy is another important part of NAS. DARTS, a differentiable NAS strategy,
has competitive performance and efficiency compared to the discrete strategies [4, 6]. It
can be explained in detail without considering as a black box [6] since both DARTS and
NASbench use directed acyclic graphs to represent each cell structure [3, 4, 6] to make
it analyzable. The high analyzability and efficiency of DARTS enable iterable updates to
be more effective and accurate. This work also adopts the same performance estimation
strategy as the one used in DARTS [4] to ensure compatibility with the previous two parts.

As for the Optical Neural Network part, the simulation provided from [7] is taken into
consideration. The author provides a library integrated with the simulation of several
different types of Optical Neural Networks, including the simulation of the Mach-Zehnder
Interferometer (MZI) type Optical Neural Network. Only MZI-type Optical Neural Net-
works will be discussed in this thesis report. Besides, using this library can allow switch-
ing to other types of ONN since similar APIs are used in the library for different ONN
types of ONNSs.

Based on these two parts, a Neural Architecture Search specific for searching Optical
Neural Networks can be designed to discover the potential possibilities to extend the
usage of NAS to find better performance ONN structure under a specific physical imple-
mentation by following the output from the NAS to change the stack of physical struc-
tures.

1.3. OUTLINE

This work initiates with a comprehensive literature review presented in Chapter 2, which
provides an in-depth analysis of the essential concepts and features of various Optical
Neural Networks (ONNSs) and the fundamentals of different types of neural architecture
search (NAS) for each of its components.

Chapter 3 introduces the original research conducted in this thesis. It starts with a novel
proposed solution that combines both NAS and ONN techniques, with a preliminary
conclusion based on the literature review. Subsequently, it presents several basic experi-
ments on NAS (DARTS+NASBench201 on NASLib) and simulations of ONNs (MZI-ONN
on Torch-ONN) separately to investigate their unique properties, followed by a thorough
analysis of the feasibility of integrating these two aspects. This is followed by a section
where NAS and ONN are combined. Initially, the theoretical foundation of this combina-
tion is presented, then a new search space specifically designed for ONNss is introduced
along with its integration with the currently available search strategy.

Chapter 4 provides an in-depth discussion and a detailed analysis and comparison of
the results for the combination of NAS and ONN from the previous methodology sec-

1.3. OUTLINE 5

tion. The final chapter focuses on the conclusion and recommendations, presenting a
comprehensive summary of the main findings and suggestions for various directions of
future research. The study concludes with supplementary information and appendices
to offer additional context and details for our conclusion.

LITERATURE REVIEW

ECENTLY, Optical neural networks (ONNs) have drawn the attention of researchers
R since ONNs provide a potential solution to resolve high energy costs in traditional
artificial neural networks (ANNSs) [1]. In this research, Neural Architecture Search (NAS),
a state-of-the-art technique in the computer science field, will be applied to optimize
currently available Optical Neural Networks (ONNs) structures to reach higher accuracy
in image classification tasks. (such as CIFAR10/MNIST) First, optical neural networks
will be introduced and some popular implementation will be introduced in the first sec-
tion. Then in the second section, the neural architecture search will be introduced in
general and some techniques/tricks that might be used will also be introduced.

2.1. OPTICAL NEURAL NETWORK

2.1.1. THE ADVANTAGES OF OPTICAL NEURAL NETWORKS

Optical neural networks provide a potential means to solve the energy-cost problem
faced by deep learning.[1] ONN has several advantages, including a noticeably faster
computational speed since electronic neural networks are restricted by clock rate (for
GPUs mostly less than 3GHz [2]), compared to the ONN model described in [8] can
reach 100 GHz photo-detection rate. And this type of computing is not constrained by
sequential instruction execution and memory access limitations. [9] Also, ONNs have
significantly lower energy consumption than traditional electronic ones. The author [8]
thinks it only requires about 10mW energy to maintain one-phase modulator settings,
which is the key component in MZI (Mach-Zehnder interferometer) type ONN. An esti-
mation of the energy efficiency given in [8] for MZI-ONN shows the energy per FLOP (A
key efficiency indicator) is 3 orders to 5 orders better than the conventional GPUs cal-
culation. All these advantages benefit from the ultra-high bandwidth, low latency, and
small energy consumption of the physical properties of optics devices.

8 2. LITERATURE REVIEW

2.1.2. SOME TYPICAL TYPES OF OPTICAL NEURAL NETWORKS

Since different ONNs have completely different implementations, here implementation
of some types of ONNs will be introduced. The focus will mainly be on on-chip ONNs
such as PDNN and MZI, but classic types like Diffractive Deep Neural Networks will also
be discussed in addition to on-chip solutions. The on-chip design is preferred because
the on-chip design is more suitable for the actual application scenario and more sus-
tainable.

2.1.3. MACH-ZEHNDER INTERFEROMETER OPTICAL NEURAL NETWORK (MZI-

ONN)
The author [8] uses the Mach-Zehnder interferometer (MZI) to create a triangular pho-
tonic circuit in order to realize the matrix and its multiplication by using optics.

ZM = WX h = f(z) . b Optical input Optical output

TS

AL AA A A A OR e A W AF
_j "\ S A N A S A N A ~ I A S A
TN VA N A AN AN A AN A AT VA NV o
) S N A Ve vaha VoV Vo A A
I\ \ \\‘ -Wuw_/\ AN A A }f\jw_/wu\ AN AN AP > Vowel X
) § i e i e Y’ A SN A S A T T A Y A A N AT S A
) AL ARA AR AR AR A A AR A A AR

Photenic integrated circuit

Figure 2.1: General architecture of the MZI-ONN. a, The general architecture of an artificial neural network
consists of an input layer, several hidden layers, and an output layer. b, The general neural network is decom-
posed into individual layers. c, Each layer of the artificial neural network consists of optical interference and

nonlinearity units. d, An all-optical, fully integrated neural network is proposed for a vowel classification task.

(8]

The architecture of the Mach-Zehnder Interferometer Optical Neural Network (MZI-
ONN) is composed of two elements: the optical input unit (OIU) and the optical non-
linearity unit (ONU), as shown in Figure 2.1c. The OIU is responsible for performing the
optical matrix multiplication required by the MZI-ONN. On the other hand, the ONU
utilizes common optical nonlinearities like saturable absorption and bistability to carry
out the nonlinear activation function. The physical implementation and design of the

2.1. OPTICAL NEURAL NETWORK 9

MZI-ONN can be found in [10], while [8] presents a detailed description of its applica-
tion in vowel classification. Thermo-optic phase shifters within the OIU may be appro-
priately configured once the weight matrices in the Multilayer Perceptron (MLP) have
been trained and deconstructed. This ONN is entirely passive as the weight matrices
are set after training, which reduces energy consumption [11]. Additionally, an extended
convolutional layer based on this technique is available in [7], which has also been em-
ployed in image classification tasks. The author in [12] also introduced an optical CNN
model, which demonstrated the prospects for the application of optical CNN.

According to the author [8], there are several limitations associated with the proposed
method. Firstly, the resolution of ONNSs is constrained by practical non-idealities, which
restricts their performance. Secondly, in the case of this particular ONN, signal prepro-
cessing is necessary to encode the amplitude of optical pulses. However, this creates a
trade-off between encoding error and photodetector noise. Lastly, further research [11]
has indicated that the MZI-ONN may not be an efficient use of space since it relies on
SVD-based techniques that require high photonic component utilization.

2.1.4. PHOTONIC DEEP NEURAL NETWORK (PDNN)

The author [2] proposed a novel approach to address the scalability issues of on-chip op-
tical neural networks (ONNSs) by introducing a photonic deep neural network (PDNN).
The proposed PDNN consists of a SiGe photodetector integrated with optical PIN atten-
uators to construct the linear computation component (Fig.2.2d). Additionally, a tran-
simpedance amplifier drive and a microring modulator were utilized to construct the
nonlinear activation (RELU) component of the PDNN (Fig.2.2e). Together, these com-
ponents were integrated to implement a photonic-electronic neuron, thus providing an
innovative solution to the challenges of on-chip ONN:s. [2]

10 2. LITERATURE REVIEW

2]
- = B
S m o

o

Attenuation (dB)

0
0 20 40 &0 80
PIM attenuator current (ma)

F\:h.lt

) 2
Vg < Vi Vi > Vi 05 06 07 08 08 10
PN junction voltage (V)

Figure 2.2: Photonic-electronic neuron implementation. a, This schematic shows an on-chip photonic-
electronic neuron that has N optical inputs and one optical output. The neuron is implemented using various
electro-optical devices. b, The PIN attenuator is created by doping P++ and N++ regions on either side of a
nanophotonic waveguide. The cross-section and microphotograph show the resulting structure, with a scale
bar of 20 um. c, The relationship between the injected current and attenuation of the PIN attenuator. d, This is
amicrophotograph of a SiGe PD that was used after each PIN attenuator. The scale bar in the image represents
15 um. e, This is a microphotograph of the MRM that was used to implement the ReLU activation function.
The scale bar measures 15 um. f, For the case that the micro-ring is aligned with the wavelength of the supply
light, when the voltage across the PN junction (VM) is smaller than the turn-on voltage of the PN junction
(VTH), the junction remains off. In this case, no carriers are injected into the junction and the micro-ring
resonance remains unchanged, resulting in a low neuron output power. g, When VM is greater than VTH, the
PN junction becomes active and injects carriers into the junction. This causes a change in the refractive index
of the waveguide, which shifts the micro-ring resonance. As a result, there is an increase in neuron output
power as VM (which corresponds to the weighted sum of neuron inputs) increases. The measured output

power of MRM (normalized to supply light power) varies with voltage across micro-ring PN junction [2].

With this basic structure of neuron the author can construct the PDNN classifier chip.

2.1. OPTICAL NEURAL NETWORK 11

a TIA drivar
From H, Ial'|'u R,
I S FromH, o o R
- gll% layer i |1—‘-—‘ To g
L L i P

From, To R,

From I, To A,
From |,

r To R,

9 Third layer: three-input neuron (O

1
=

PIN attenuator 12 photodiodes

Figure 2.3: The implemented photonic classifier chip. a, The PDNN chip’s top-level block diagram includes
an input pixel array (b) and a calibration array (c), both consisting of two 5x6 arrays of grating couplers. d, The
grating couplers are arranged in a 5x6 array, with each element having its own pitch. The input pixel array is
used for classification and generates four sets of 12 optical signals that are directed to the first layer’s neurons.
The supply light is evenly distributed among the second and third layers’ neurons, and seven MRMs are utilized
to achieve the ReLU non-linear activation function. Seven off-chip TIAs drive on-chip modulators. The system
produces two outputs that can be employed for up to four-class classification purposes. e-g, Presented the
microphotographs of a single neuron in the first, second, and third layers. These images showcase the PIN
attenuators and parallel PDs located after the attenuators in each layer. Additionally, a microphotograph of the
photonic chip implemented in the AMF 180-nm SOI process is included, along with its distribution network
(DN)[2].

The author designed a 5x6 input which is the one shown in Fig.2.3b and the classification
array part in Fig.2.3a. The light enters the calibration array, depicted in Fig.2.3cd, after
passing through the input layer. The first layer, shows in Fig.2.3e, comprises 12 inputs
from the top, which pass the linear computation represented by the 11-14 component
shown in Fig.2.3a. The I1-14 element corresponds to the four neurons in the first layer.
The second and third layers are demonstrated in the same methodology as the first layer

12 2. LITERATURE REVIEW

in Fig.2.3fg. The network’s progress from input to output involves the 5x6 input image,
four overlapping sub-images (with 3x4 convolution), which are then reshaped into 12x1.
The first layer has 4 neurons with a 12x1 input and 4x1 output, the second layer has 3
neurons with a 4x1 input and 3x1 output, and the third layer has 2 neurons with a 3x1
input and 2x1 output. The network is utilized for image classification tasks. [2]

2.1.5. DIFFRACTIVE DEEP NEURAL NETWORKS (D?>NN)

The author uses several transmissive and/or reflective layers. Each layer comprises of
multiple artificial neurons that function as either transmitters or reflectors for the in-
coming waves. The connectivity between neurons within a layer is achieved through
optical diffraction. Additionally, each unit in a given layer serves as a secondary source
for waves. The amplitude and phase of the resultant wave are determined by the mul-
tiplication of the input wave with the corresponding complex-valued transmission or
reflection coefficient at that particular point. [13]

The "bias" term of a neuron, which is a learnable parameter of the network, represents
the transmission or reflection coefficient at that point. The iterative modification of this
parameter during training allows the network to adapt and improve its performance.
Furthermore, the author states that the phase and amplitude of each neuron as addi-
tional learnable parameters. In the author’s scenario, coherent transmissive networks
with phase-only modulation are employed, and each layer can be approximated as a
thin optical element.[13]

The diffractive neural network operates by feeding training data into the input layer,
and subsequently generating output through optical diffraction. Through this process,
each layer of neurons within the network is trained iteratively to perform specific func-
tions. To optimize the network’s performance, an error back-propagation algorithm is
employed, which adjusts the network’s topology and neuron phase based on the dis-
crepancy between the target and actual output. The algorithm aims to minimize this
error and enhance the network’s performance in predicting the output. [13]

2.2. NEURAL ARCHITECTURE SEARCH (NAS) 13

"« Secondary
Waves

Diffractive Layers

Imaging

Weight Bias | X'+ = F(WAX' + B) Weight Bias
Y W v B i — X w X' B
i ayer X

- M RLKRARS

] | b | w- |

= “1ilfre [oLyerg 50 Dx = |+
H (,% = ///
B/ LW
{*} — Complex Value Matrix (L!Zin)r “Hxm {-} — Rectifier
Diffractive Optical Neural Network Electronic Neural Network

Figure 2.4: (A)A D?NN is a network that consists of several layers, each with transmissive or reflective prop-
erties. Each point on a layer functions as a neuron and has a complex-valued transmission or reflection co-
efficient. By using deep learning techniques, the transmission or reflection coefficients of each layer can be
trained to perform specific functions between the input and output planes of the network. Once this learning
phase is complete, the design of the D?NN becomes fixed. It can then be fabricated or 3D-printed and will
perform its learned function at lightning-fast speeds equivalent to that of light. L in the graph represents each
layer in this type of network design. (B and C) Various types of D> NN have been trained and experimentally
implemented, including (B) a classifier for handwritten digits and fashion products and (C) an imager that
utilizes distance. (d for distance) (D) Comparison between a D2NN and a conventional neural network. The
D?NN is a neural network that operates on complex-valued inputs using coherent waves and includes mul-
tiplicative bias terms. The weights in this network are determined by free-space diffraction and control the
interference of secondary waves that have been phase- or amplitude-modulated by previous layers. “o” de-
notes a Hadamard product operation. “Electronic neural network” refers to the conventional neural network
virtually implemented in a computer. Y, optical field at a given layer;'¥, phase of the optical field; X, amplitude

of the optical field; F, nonlinear rectifier function [13]

2.2. NEURAL ARCHITECTURE SEARCH (NAS)

2.2.1. OVERVIEW

Deep learning has demonstrated powerful learning capabilities in many fields, such as
image classification, object detection, and speech recognition. Much of this success is
due to the continuous emergence of new neural network architectures like ResNet [14]
and DenseNet [15]. However, designing high-performance neural network architectures
requires a great deal of experience and iterations, which is extremely time-consuming.
As for optical neural networks, since ONNs have significantly lower tunability than tra-
ditional ANNSs, for example, after designing and manufacturing a designated structure,
if the structure needs to be changed, it needs to be rebuilt from scratch. Therefore, Neu-
ral Architecture Search (NAS), a technique for automatically designing the architecture

14 2. LITERATURE REVIEW

for neural networks, can be introduced into this work to help us minimize this effect. In
NAS, there are three main components: search space, search strategy, and performance
estimation strategy. These three components are highly bounded, so we will explain
them from the classification perspective on search strategies.

2.2.2. SEARCH STRATEGY BASED ON REINFORCEMENT LEARNING

The symbolic event in the design of neural network architectures from manual design to
automatic design occurred in 2016. The author from [16] applies reinforcement learn-
ing to neural architecture search (NAS-RL) and outperforms manual-designed network
architectures previously on image classification and language modeling tasks. The au-
thor uses RNNs as the controller to generate child networks, then train and evaluates to
get the network performance as a reward for reinforcement learning. According to this
reward, the optimal RNN and network structure can be obtained by means of gradient
optimization. However, this approach has a fatal shortcoming: due to its discrete search
strategy, it is very computationally intensive.

Sample architecture A
with probability p

['

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

1 J

Compute gradient of p and
scale it by R to update
the controller

Figure 2.5: An overview of Neural Architecture search from [16]

Based on ideas from [16], motivated by skip connections [14] and repeat motifs [17],
the author innovatively designed a new search space called NASNet search space [18].
NASNet [16] does not search the whole architecture. Instead, the author uses the idea of
stacking convolution cells, which means the normal cell output is the same size as the
input, and the reduction cell performs a down-sampling to output a reduced-resolution
feature map. The controller only needs to learn two types of cells, and the final candidate
architecture is obtained by stacking these cells. By using this approach, the size of the
search space can be greatly reduced and can be better adapted to other datasets.

2.2.3. SEARCH STRATEGY BASED ON EVOLUTIONARY ALGORITHM
Genetic/Evolutionary Algorithm also plays an important role in NAS, the author [19] first
applied Evolutionary Algorithms (EA) to NAS. The author evolves a population of mod-

2.2. NEURAL ARCHITECTURE SEARCH (NAS) 15

els. Each individual is a trained architecture. The model’s accuracy on the dataset is a
measure of fitness. During each evolutionary step, a worker randomly selects two in-
dividuals and compares their fitness. The loser will be killed, and the winner will be a
parent to perform mutating and join the population through training and evaluation,
phasing out worse-performing architectures to get the best architecture. The experi-
mental results also prove the effectiveness of EA in NAS. Afterward, Regularized Evolu-
tion proposed by [20] makes an improvement to the search strategy, adding the concept
of “aging” to candidate architectures. The idea of "aging" is at the beginning, the whole
population is placed in a queue, and when a new individual is added, removing the in-
dividual at the head of the queue, this has resulted in a younger population. Finally, it
achieved a new state-of-the-art performance at that time.

2.2.4. SPEED UP RL AND EA-BASED NAS SEARCHING

Methods shown above require hundreds to thousands of GPU days to compute [6]. Al-
though these early NAS approaches have achieved good results, it is highly time-consuming
and computing-consuming, limiting the development of this field. Therefore, accelerat-
ing searching has become a very important direction. To accelerate searching, [21] pro-
posed a new approach, first, reduce search space based on NASNet, second, a heuristic
search strategy that searches the architectures from simple to complex, third, use a proxy
function to predict model accuracy, so that algorithms do not need to train the complex
model to saves time.

Efficient NAS (ENAS)

Figure 2.6: An example of a recurrent cell in ENAS with four computational nodes. Left: The computational
DAG that corresponds to the recurrent cell. The red edges represent the flow of information in the graph.
Middle: The recurrent cell. Right: The outputs of the controller RNN result in the cell in the middle and the
DAG on the left. Note that nodes 3 and 4 are never sampled by the RNN, so their results are averaged and are
treated as the cell’s output. [22]

To make the NAS algorithm more efficient, Efficient NAS [22] (ENAS) was introduced.
The sampling process of ENAS is turned into the process of sampling a subgraph inside
a Directed Acyclic Graph (DAG), where the operations (convolution, etc.) inside the sam-
pled subgraph share weights. The weights of the subgraph in ENAS are inherited from
DAG rather than reinitialized because weight-sharing greatly speeds up the NAS process,
this strategy is gradually accepted in this field. However, in order to share weights, the
number of nodes of candidate architectures must be the same, this limits the diversity of
the generated models.

16 2. LITERATURE REVIEW

Neural Architecture Search for Mobile (MnasNet) & Once-for-all (OFA)

Sample models . Mobile
Controller s search space| 1rainer phones
A
accuracy latency
reward Multi-objective

reward

Figure 2.7: An overview of Platform-Aware Neural Architecture Search for Mobile from
(23]

For most of the search strategies described in sections 2.2 and 2.4, algorithms are basi-
cally redesigning a new search space, although good performance has been achieved,
it is not suitable for model deployment. The author [23] proposed a MnasNet designing
convolutional neural networks for mobile devices, it incorporates model latency into the
main objective so that the search can identify a model that achieves a good trade-off be-
tween accuracy and latency. The author [24] proposed a once-for-all (OFA) architecture
search algorithm, which could handle multiple deployment scenarios. It decouples the
model training stage and the neural architecture search stage, designing and training a
once-for-all network that supports different architectural configurations. Depending on
the actual deployment scenario, select proper sub-architectures from OFA so that there
is no need for an additional training process.

2.2. NEURAL ARCHITECTURE SEARCH (NAS)

17

2.2.5. SEARCH STRATEGY - ONE-SHOT

Input]- -
LY
v
B A Legend
Max Pool :
e | |- 4 Edge on
’
Sum - Edge off

(a) Example building block used in a one-shot
model. The search space comprises three dif-
ferent operations, which are combined by the
one-shot model to produce their outputs. Dur-
ing the evaluation, some of the operations may
be removed or zeroed out.

:
A

(b) Example of a cell during one-shot model
evaluation. While the one-shot model consists
of four different operations, it is possible to
emulate a cell structure that contains a max-
pooling operation by eliminating the remaining
operations from the network, without the need
for weight retraining.

Ad -~ N B .
S . Choice Block o®
B =N
"""""" regend
LemtTTIIIINN 2 va REITEII] Tl
. et Le .~ S Sl —— Fixed edge
A » ¥ \ A, I \ ‘A
33 | 5x5 7x7 {77 MaxPool! {Avg.Pool! | Identity || [~=a-- » Edge selected by
; A + - YT -~ ; d 4 3 architecture search
f
3x3 5x5 na G TTnd S s . Only present when
A - X : iAVg. Pool: o solution is reduced
e b
Avg. Pool Treeeellinigh g AT
\

(c) Diagram of the one-shot architecture used in [25]. Solid lines indicate components that are
present in every architecture, while dashed lines indicate optional components that are part of the
search space.

Figure 2.8: An example of One-Shot Neural Architecture Search from [25].

The strategy based on weight sharing is still evolving, the most representative weight-
sharing method is the One-Shot method, the whole search space is built as a supernet,
and all the possible sub-architectures that be sampled with different architectures can
share weights. Many researchers continuously propose new ideas based on this method.
The author [26] proposed to use existing networks as a starting point to explore the
search space by means of network transformation instead of from scratch. Conventional
networks are time-consuming to validate, The author [27] proposed a training-assisted
network called HyperNet, which could dynamically generate model weights for different
structures. In the early stage of training, the generated weights are correlated to fully-
trained weights, so that it is possible to sort a large number of structures by using only
one epoch of training. The author [25] pre-trained a large-scale One-Shot model with all
possible candidate operations. Then continuous dropout operations and measure the
impact on the model. The experimental results show that the One-Shot model learns

18 2. LITERATURE REVIEW

which operations in the network are useful and relies on which operations so that it is
possible to efficiently identify promising architectures without RL or hypernetworks.

Besides, the ability to sort models according to their capabilities is crucial to NAS, tra-
ditional methods like Learning Curve Extrapolation [28], [29] can achieve it, however,
the cost is still high, through weights sharing, One-Shot models could reduce cost, but
weights sharing cannot be sure that it really works. It is also unclear whether the models
are selected for better performance because of those features or simplicity since they are
over-trained. The author [30] proved that the One-Shot model’s biased evaluation is due
to inherent unfairness in the supernet training. they set a constraint called strict fairness,
which ensures equal optimization opportunities for all choice blocks, the experimental
results show a steady increase in the average accuracy curve with no oscillations.

Dfferentiable architecture search (DARTS) and its variants

7 / \‘
7 /
0] ? 1
! 9 ? / \\,‘ /
- "\l /) '
o N e
(a) (b) (d)

Figure 2.9: An overview of DARTS: (a) The operations performed on the edges are unknown at the begin-
ning. (b) The search space is been continuously relaxed by placing a mixture of candidate operations on each
edge. (c) The bilevel optimization problem is solved to jointly optimize the network weights and the mixing
probabilities. (d) The final architecture is derived based on the probabilities learned from the optimization

process. [4]

What makes NAS so inefficient is that they regard NAS as a black-box optimization prob-
lem in a discrete search strategy, in order to fix this problem, DARTS [4] was developed.
Unlike previous approaches, which search in discrete search space, DARTS relaxes the
search space to be continuous, while searching, each operation in the candidate op-
eration set processes the feature map of each node and gets a weighted summation of
all results, where node is a latent representation (e.g. a feature map in convolutional
networks). For the architecture weights, repeat doing gradient descent on the loss of
validation set to update architecture weights and doing gradient descent on the loss of
training set to update operation weights. DARTS run fast since it does not need to evalu-

2.2. NEURAL ARCHITECTURE SEARCH (NAS) 19

ate large amounts of network structures. However, it takes up lots of GPU memory when
computing stack blocks on large-scale datasets. The author [31] proposed ProxylessNAS
that directly optimizes the network architecture on target task and hardware, with which
if you want the results of a dataset on certain hardware, search directly on that hard-
ware, rather than search in CIFAR-10 then transfer to a large-scale dataset. The author
[32] proposed P-DARTS that the depth of the search structure gradually grows during
the training process, meanwhile, using search space approximation and regularization
to solve heavy computational overheads and weaker search stability, this approach could
complete searching in about seven hours on single GPU.

2.2.6. A SPECIAL TYPE OF SEARCH SPACE - BENCHMARK

NAS theory has evolved rapidly, and comparison between different search algorithms for
NAS is either very different [33] For different scenarios or hardware, different strategies
may have better performance case by case.

archltecture

o o) (e ey S))
cell) ~, cell (——> zeroize

[>0 sl wemeea %/ " 7‘}

sklp-connect
/—\. cell 3X3 conv
....... = ——> 3X%3 avg pool

1X1 conv
~-@

| predefined operation set |

Figure 2.10: An overview of the architecture of NASBench201 - At the upper part of the diagram, the macro
skeleton of each architecture candidate can be observed. On the bottom-left section, examples of neural cells
comprising of four nodes are shown. It is notable that every cell is a directed acyclic graph (DAG), in which
every edge is associated with an operation selected from a predetermined set of operations, as demonstrated
in the bottom-right section. [3]

Since NAS is highly computationally intensive, which makes it difficult to reproduce
experiments, the author [34] proposed a Benchmark named NASbench101, which is
the first publicly available network architecture dataset for the research of NAS. NAS-
bench101 built a compact cell-based search space [16][18][35], exploiting graph isomor-
phisms to 423k unique convolutional architectures, they trained and evaluated CIFAR-10
and compiled over 5 million trained models into the dataset, which allows researchers
to evaluate the quality of a diverse range of models in milliseconds by querying the pre-
computed dataset. NASBench201 [3] is an extension of NASBench101, with its search
space encompassing all potential cell structures generated by four nodes and five asso-
ciated operations. The choice of four nodes is based on the minimum number needed to
enable the search space to include basic residual block-like cells. Each node in the search
space represents the sum of all feature maps transformed through the associated oper-
ations of the edges pointing to that particular node. The training logs and performance

20 2. LITERATURE REVIEW

for each candidate architecture are provided under the same settings for three datasets
(CIFAR-10, CIFAR-100, and ImageNet) and based on this the author provides an exten-
sion named NATS-bench [5]. Since the search spaces for existing tabular Benchmark
NASbench101 and NASbench201 are limited, the author [36] proposed NASbench301,
which is the first surrogate Benchmark contains 10'® architectures and 60k architec-
ture evaluations. These benchmarks can be regarded as well-designed search spaces
and show great compatibility with various kinds of search strategies with a reasonable
number of unique architectures.

NEURAL ARCHITECTURE SEARCH
AND OPTICAL NEURAL NETWORK

N this chapter, an in-depth exploration of a potential combination of two cutting-edge

techniques - NAS and ONN is conducted. Each method is examined separately to as-
sess the feasibility of effectively integrating NAS and ONN. NASLib [37, 38], a powerful
and widely used Neural Architecture Search framework, is employed to study the fun-
damental features mentioned in the proposed method of NAS. Concurrently, a powerful
ONN simulation library, PyTorch-ONN [7], is thoroughly investigated to determine the
viability of combining these two components. By conducting separate evaluations of
NAS and ONN, a comprehensive understanding of the properties of each component
and the potential advantages of their integration can be obtained within the context of
this scientific investigation. Based on the findings from the previous sections, a novel
combination of NAS and ONN is introduced, including the theoretical basics and soft-
ware implementation.

3.1. CHOOSING A PROPOSED SOLUTION
3.1.1. REASONS TO USE NAS FOR ONN

Our target is to find an ONN structure with the best accuracy under a specific implemen-
tation that partially ignores the physical limitations and manufacturability. The basic
unit to optimize for is the composition of the layer and neuron rather than the physical
parameters of each optical device that make up the layer and neuron. It is hard to man-
ually choose the optimal structure for the on-chip ONNs since the number of options
for combinations is huge. Specifically, it is important to directly generate the neural net-
work with the best structure for a specific task, for example, image classification. Even if
we only consider limiting each parameter to a small range, the selections of parameters
grow exponentially. This search volume cannot be done manually. Therefore, Neural
Architecture Search (NAS) is a natural idea to find the best structure for the neural net-

21

22 3. NEURAL ARCHITECTURE SEARCH AND OPTICAL NEURAL NETWORK

work. Hence, a theoretical best structure for an ONN with specific implementation for
the image classification task might be found.

3.1.2. PROPOSED SOLUTION AND REASONS

MZI-ONN has an intuitive implementation, and it inspired several different designs.
Theoretically, this design is relatively easy to stack since the way to make ONN deeper
and larger is to stack the basic structure. It has complete simulation code from [7] and
[9]. Here the version from [7] will be used since it’s much more efficient compared to
the other one, and it has the simulation implementation for the convolution layer. The
physical implementation of this simulation is comes from [8].

NASbench201 is a search space inspired by cell-based algorithms. It consists of a macro
skeleton with four nodes, and each node has designated operation candidates, which
provide a fixed suitable size search space. DARTS can learn high-performance archi-
tectural building blocks with complicated graph topologies. The search cell structure
in NASBench201 is a directed acyclic graph, showing the strong compatibility between
the chosen search space and the search strategy. Compared to the original search space
used in DARTS [4] and other search spaces with similar functions (like NATS-bench [5],
etc.), NASbench201 [3] has fewer operational candidates [4] and unique architectures
[5], which can improve the efficiency of the computation. Due to computational re-
source limitations, this smaller and compatible search space is suitable for our ONN
work. Moreover, NASbench201 can provide additional information, including archi-
tecture computational costs (number of parameters, FLOPs, and latency), fine-grained
training and evaluation information (changes in loss and accuracy of every architecture
after every training epoch) and parameters of optimized architecture to help us under-
stand the progress better. It is also possible to add more output information, such as the
structure change for each epoch during the search optimization progress. Thus, in this
research, NASBench201 is an ideal search space choice for searching for the best ONN
structure. [3][4]

After selecting the search space, the search strategy is one of the main considerations in
NAS. DARTS, a differentiable NAS strategy, has competitive performance and efficiency.
It’s a gradient-based optimization combined with reduced search space which can com-
pute our combined NAS and ONN problem more efficiently. Besides, the model learned
under a certain dataset can transfer to another dataset, which shows high flexibility for
our trained model. Moreover, this method can be adapted to different ONN methods,
showing a potential extension of this work.[4]

Finally, we can use gradient descent methods to optimize the validation loss for eval-
uating the algorithm’s performance, which is the same as the one used in DARTS.[4] An
approximate gradient is used to accelerate this optimization progress. Then it starts to
repeat the following two steps before it converges: gradient descent on validation loss to
update architecture and gradient descent on training loss to update weights. The biggest
advantage of this method is to use an approximate gradient method to accelerate this
optimization progress. Hence, this work can compute our ONN more efficiently. [4]

3.2. NEURAL ARCHITECTURE SEARCH ON NASLIB 23

In summary, this work chooses the NASbench201 as the search space, DARTS as the
search strategy, and the gradient descent method from DARTS as the performance esti-
mation strategy. These three parts are compatible with each other, and they can achieve
high efficiency within the limitation of the ONNs. The NAS and ONN components re-
quire prior independent research to explore the feasibility of the combination.

3.2. NEURAL ARCHITECTURE SEARCH ON NASLIB

NASLib is a flexible and modular framework designed to study Neural Architecture Search
(NAS). It offers a common codebase for the NAS, which includes high-level abstrac-

tions for designing and reusing search spaces, interfaces to benchmarks, and evaluation

pipelines. The modular structure of the framework allows for effortless modification

of individual components, such as defining a new search space while reusing an opti-

mizer and evaluation pipeline or proposing a new optimizer with existing search spaces

[37, 38]. And this is what this study intended to do in the next subsection.

As discussed in previous sections, NASBench101 consists of over 423,000 unique ar-
chitectures [34], NASBench301 has approximately 23,000 architectures [36], the origi-
nal DARTS search space contains 10'® different architectures [4]. In comparison, NAS-
Bench201 has only 15,625 architectures (after removing isomorphic ones, there are 6,466
unique architectures) [3]. This makes NASBench201 is currently one of the smallest
available cell-based search spaces [38] and a suitable choice under our conditions.

Previous studies on NASBench201 [3] in NASLib, working on CIFAR-10 [39], demon-
strated that NASBench201 could achieve greater than 80 percent classification accu-
racy on ANN, regardless of the searching method employed [40]. In the original NAS-
Bench201 paper [3], the authors evaluated ten different searching algorithms, includ-
ing DARTS, Reinforcement Learning-based, and Evolutionary Algorithm-based meth-
ods. Another study based on NASBench201 [40] utilized Bayesian optimization from
[41-43] and more Evolutionary Algorithm from [44, 45] on NASBench201 for CIFAR-10
[39], taking about 108 seconds on a single GPU for both experiments to get a similar ac-
curacy result. However, unlike the original paper [3] discuss the potential issues, a fair
result is obtained in the setup for the following experiment based on the implementation
on NASLib. The advantage of this setup is that DARTS can leverage the optimization of
all shared parameters [3, 4], allowing the task to be completed with fewer epochs when
adjusting the same number of parameters in the search space [3] comparing to some
other searching methods. In this research, the combination of search strategies from
DARTS and NASBench201 as the search space was selected, given their compatibility
and promising search efficiency. An experiment with 50 epochs (to limit computational
resource consumption) was conducted under these conditions, with the results detailed
below.

24 3. NEURAL ARCHITECTURE SEARCH AND OPTICAL NEURAL NETWORK

Search Epoch | Top 1 Train Acc. | Top 5 Train Acc. | Top 1 Eval. Acc. | Top 5 Eval. Acc.

1 28.79 83.40 29.23 83.02

5 58.87 95.69 58.87 95.54

10 70.07 97.82 69.68 97.87
20 80.22 99.10 78.10 98.80
30 86.07 99.53 81.36 98.99
40 90.10 99.79 82.86 99.22
50 91.94 99.82 83.53 99.32

Table 3.1: Results of DARTS + NASBench201 on NASLib based on epoch

The result shows that the final classification accuracy is about 83.5 percent in the exper-
iment shows above, which is within the range of the experiment reported in [40] and [3].
Thus, this setup can be considered as a reasonable approach. The structure we got at the
end of the search is all the connections become identity. The author [3] also noted that
the best architecture within CIFAR-10 [39] and NASBench?201 is the ResNet [14].

The setting for the experiment above is 50 epochs, ReLU as the activation function, with
the initial learning rate is 0.025, and the minimum learning rate is 0.001.

The table 3.1 presented above shows the Top 1 and Top 5 training and evaluation ac-
curacies for the combined DARTS and NASBench201 model over epochs. It’s evident
that the accuracy of each term in the table gradually improves with a diminishing gap
as the number of epochs increases, which indicates that the potential for accuracy im-
provement decreases as the number of epochs grows. The results clearly indicate that
more than 50 epochs could still offer a noticeable performance improvement with each
epoch, however, since the primary objective is to demonstrate the viability of this com-
bination, it is already sufficient. In this experiment, most of the authors’ recommen-
dations for avoiding overfitting were adhered [3], including avoiding regularization for
a specific operation and using the provided performance. Consequently, all these data
substantiate that the chosen combination is appropriate for subsequent research in sec-
tion 3.4.

3.3. SIMULATION OF OPTICAL NEURAL NETWORK ON TORCH-
ONN

The Optical Neural Network simulation employed in this research is based on a library
called Torch-ONN. Torch-ONN is a PyTorch-based simulation framework that integrates
neuromorphic photonics, supporting training and inference for both coherent and inco-
herent Optical Neural Networks (ONNs) on GPU. With these efficient implementations
and optimization, it can scale up to ONNs with millions of parameters. The biggest ad-
vantage to using this is that this powerful library can accelerate the computation progress
using GPU acceleration with the massive number of functions and options that may be
needed for this research and subsequent research.[7]

3.3. SIMULATION OF OPTICAL NEURAL NETWORK ON TORCH-ONN 25

Compared to other types of ONNs, the MZI-type ONNs possess significant advantages
in terms of physical structure complexity. Although it’s not the most area-sufficient one
compared to other types of ONNs such as [2] or [7], the MZI-based ONN system provides
a very clear, highly scalable, and relatively simple physical structure for each layer. The
author [8] also demonstrate the high compatibility of MZIs with other advanced pho-
tonic computational architectures. In addition, MZI-ONN has a large number of other
all-optical devices design based on this ONN principle, such as all-optical parts as dif-
ferent activation functions. Hence, by using these clear and concise physical structures,
there is a great opportunity for a deep neural network to be designed and assembled.

The baseline for the type of ONN chosen from the Torch-ONN is the MZI-ONN using
the default setting in the demo. It should be noted that the default setting is a CNN
model with two convolution layers and one linear layer. The datasets utilized in this part
are MNIST [46] and CIFAR-10 [39].

The network selected and experiment designed are closely related to the specifications
and operations with in the NAS search space designed below. To demonstrate which
mode to use for ONN (exp. 1), whether structural changes can trigger noticeably perfor-
mance changes (exp. 2), which dataset is more suitable for the search (exp. 3), and some
extensive properties evaluation.

Dataset Structure Mode Accuracy
MNIST 2 Conv(3*3)+1FC(classifier) usv 99.23
CIFAR-10 2 Conv(3*3)+1FC(classifier) usv 75.87
MNIST 3 Conv(3*3)+1FC(classifier) usv 99.23
MNIST 3 Conv(6*6)+1FC(classifier) usv 99.26
MNIST 3 Conv(3*3 3*3 4*4)+1FC(classifier) usv 99.26
MNIST 3 Conv(5*5 5*5 4*4)+1FC(classifier) usv 99.26
MNIST 3 Conv(5*5 5*5 4*4)+1FC(classifier) Phase 70.18

MNIST 2 Conv(5*54*4)+1 Hidden(12)+1 FC(classifier) = Weight 99.40
MNIST 2 Conv(5*5 4*4)+1 Hidden(12)+1 FC(classifier) usv 99.53

Table 3.2: All results of ONN experiments

The table presented above shows the results from Torch-ONN for four out of five experi-
ments conducted to explore the fundamental properties of the ONN. It should be noted
that all the data were generated under identical conditions, using the MZI-type ONN,
200 epochs, ReLU as the activation function, and a learning rate of 0.002, which is nearly
the same as the default setting in the Torch-ONN demo [7]. The results in table 3.2 can
be divided into four distinct experiments to derive the necessary conclusions.

26 3. NEURAL ARCHITECTURE SEARCH AND OPTICAL NEURAL NETWORK

3.3.1. EXPERIMENT 1 - COMPARE MODE OF MZI-ONN

Dataset Structure Mode Accuracy
MNIST 3 Conv(5*5 5*5 4*4)+1 FC(classifier) usv 99.26
MNIST 3 Conv(5*55*5 4*4)+1 FC(classifier) Phase 70.18

Table 3.3: ONN experiments 1 - USV and phase

Dataset Structure Mode Accuracy
MNIST 2 Conv(5*54*4)+1 Hidden(12)+1 FC(classifier) = Weight 99.40
MNIST 2 Conv(5*5 4*4)+1 Hidden(12)+1 FC(classifier) usv 99.53

Table 3.4: ONN experiments 1 - USV and weight

As described and explained in [10] [8], there are three options for the mode of MZI-
ONN, which include phase, weight, and USV (representing a combination of phase and
weight). The name USV is derived from the matrix SVD (singular value decomposition)
representation (U) V), as the principle of MZI-ONN operation is based on matrix com-
putation. A detailed theoretical explanation can be found in the Section 3.4. The con-
clusion that can be drawn is that both phase and weight contribute to the performance,
with weight is being relatively more important than the phase.

3.3.2. EXPERIMENT 2 - CHANGE/ADD CONV/HIDDEN LAYER

Dataset Structure Mode Accuracy
MNIST 2 Conv(3*3)+1FC(classifier) usv 99.23
MNIST 3 Conv(3*3 3*3 4*4)+1FC(classifier) usv 99.26
MNIST 3 Conv(5*5 5*5 4*4)+1FC(classifier) usv 99.26

MNIST 2 Conv(5*5 4*4)+1Hidden(12)+1FC(classifier) usv 99.53

Table 3.5: ONN experiments 2 - Change/Add Conv/Hidden layer

In this experiment, convolutional layers with 3 x 3, 4 x 4, and 5 x 5 filters and a hidden
layer consisting of 12 nodes are tested on the MNIST dataset. This experiment modifies
the network structure accordingly based on several different operations of the search
space NASBench201 within its cells. A detailed explanation and introduction can be
found in section 2.2.6 and 3.4. Hence, in this situation, it’s obvious that altering the num-
ber and design of convolutional layers and adding hidden layers does have an impact on
performance. This implies that the operations used in the search of the ANN can also be
employed into the search of the ONNs. Among all candidates within this experiment, the
best performance is achieved by the configuration with two convolutional layers using 5
x 5 and 4 x 4 filters, followed by a hidden layer with 12 nodes. This indicates that deeper
neural networks exhibit superior performance in this particular experiment.

3.3. SIMULATION OF OPTICAL NEURAL NETWORK ON TORCH-ONN 27

3.3.3. EXPERIMENT 3 - DATASET MNIST/CIFAR-10

Dataset Structure Mode Accuracy
MNIST 2 Conv(3*3)+1FC(classifier) usv 99.23
CIFAR-10 2 Conv(3*3)+1FC(classifier) USV 75.87

Table 3.6: ONN experiments 3 - Dataset MNIST/CIFAR-10

Here the two datasets used in this thesis are tested and compared to demonstrate whether
both dataset, especially the CIFAR-10 works well on our ONN settings. In comparison to

MNIST, CIFAR-10 is a more suitable option for the Neural Architecture Search task, as it

is difficult to observe a noticeable change in performance on MNIST based on the re-

sults from table 3.2 and table 3.6. Since a simple convolutional neural network on ONN

can already achieve near-perfect results on MNIST, it becomes impractical to identify

whether a performance improvement is significant or not when we combine NAS and

ONN. Consequently, CIFAR-10 is a more appropriate choice for the following NAS for

ONN tasks.

3.3.4. EXPERIMENT 4 - MZI-ONN/FFT-ONN

Dataset Method Accuracy Time Consumption
MNIST MZI [8] 99.53 77 min
MNIST FFT [11] 97.89 20 min

Table 3.7: ONN experiments 4 - Compare MZI-ONN to FFT-ONN

The structure can be found on the main table 3.2 above. (2 Conv(5*5 4*4) + 1 Hidden(12)
+ 1 FC(classifier)) In comparison to the MZI-based ONN [8], the FFT-based ONN [7][11]
shows a considerably faster computation speed in simulation but with lower accuracy on
MNIST dataset. Given that the goal of this study is to achieve the highest possible per-
formance and that there are significantly more all-optical devices design based on MZI-
ONN studies, MZI-ONN|[8] can be considered a more suitable choice than FFT-ONN|[11]
in this study.

3.3.5. EXPERIMENT 5 - ACTIVATION FUNCTION & LEARNING RATE

Ir/activation ReLU Sigmoid Tanh

0.001 99.23 99.16 99.14
0.002 98.97 99.2 99.21
0.01 99.15 99.28 99.10

Table 3.8: ONN Experiments 5 - classification Accuracy

28 3. NEURAL ARCHITECTURE SEARCH AND OPTICAL NEURAL NETWORK

Ir/activation | ReLU Sigmoid Tanh
0.001 100 99.88 100
0.002 99.96 100 100

0.01 100 100 100

Table 3.9: ONN Experiments 5 - Training Accuracy

The two tables presented above contain a basic grid search for the MZI-ONN. As a simple
parameter optimization, these tables demonstrate that adjusting the activation function
does have an impact on the performance of ONN. Therefore, the choice of the nonlinear
activation functions will be compared again in the subsequent section on combined NAS
and ONN, and the results can be found in the next section.

3.3.6. CONCLUSION

Based on the experiments above, the MZI-ONN simulation framework [7] shows promis-
ing results for the goal that this research aims to achieve. The ONN parameters associ-
ated with the optimization target in the designated Neural Architecture Search indeed
influence the ONN'’s performance, indicating that the combination of NAS and ONN has
the potential to enhance ONN performance. By using the NASLib [37, 38] as a frame-
work for NAS research and selecting a suitable search space, such as NASBench201, the
integration of these components can lead to advancements in both the understanding
and the performance of Optical Neural Networks. A search space adopted from NAS-
Bench201 that is suitable for Optical Neural Networks will be introduced in the next sec-
tion.

3.4. COMBINED NEURAL ARCHITECTURE SEARCH AND OPTI-

CAL NEURAL NETWORK

3.4.1. THE THEORETICAL BASIS FROM THE MATHEMATICAL AND PHYSICAL
IMPLEMENTATION OF MZI-ONN BLOCKS THAT CAN BE SEARCHED

BY NAS
In this section, an exploration of why the ONN linear and convolutional layer blocks can
be searched by NAS from the perspective of mathematical and physical design is pre-
sented.

The connections between artificial neurons in photonic circuits are represented by a
scalar synaptic weight, which is a primary memory element. Thus, the layout of inter-
connections can be depicted as a matrix-vector multiplication operation. In this op-
eration, the input to each neuron is calculated as the dot product of the output from
connected neurons, which is then attenuated by a weight vector. [47]

The fundamental idea for MZI-type convolutional block and linear block computation is
based on matrix computation. The photonic matrix can be built by MZIs to implement
the matrix multiplication. [8, 47, 48] Then the single value decomposition (SVD) can be

3.4. COMBINED NEURAL ARCHITECTURE SEARCH AND OPTICAL NEURAL NETWORK 29

applied to the MZI photonics matrix M:
M=UXV (3.1)

The MZI-ONN implementation can be divided into two parts, the linear part, which
is the optical interference unit (OIU) that utilizes beamsplitters and phase shifters to
parametrize the unitary matrices U and complex conjugate unitary matrix V. Optical at-
tenuators are used to implement the real diagonal matrix X in the photonic integrated
circuit. And the nonlinear part, which is mainly related to the activation. [8, 48]

Evaluation and selection of all-optical activation functions

There’s an important part that was not discussed in the previous section is the role of
the nonlinear optics components part, which typically serves as activation functions. In
this study, two different nonlinear activation functions including ReLU and Sigmoid are
incorporated into the combined NAS and ONN model. Prior research has demonstrated
the existence of all-optical activation function implementations performed in MZI-ONN
for ReLU [49] and Sigmoid [50].

The authors of [51] compared the two activation function listed above with several other
activation functions specifically available for ONN with all-optical design in a 3-layer
linear MZI-ONN for an image classification task. Among all nonlinear activation func-
tions with all-optical implementations, the selected for this study exhibit the highest
classification accuracy, which meets the goal of pursuing the best performance in this
study.

MZI Linear layer Block

6 Un

MZI, B,

Figure 3.1: The structure of a single MZI

30 3. NEURAL ARCHITECTURE SEARCH AND OPTICAL NEURAL NETWORK

Figure 3.1 shows the structure of a single MZI, which is the most basic unit of OIU. The
OIU can be formed into a triangular [52] or square [8, 10] shape using this structure to
achieve its function. Despite the different shapes, their functional principles remain the
same. Consequently, unitary matrix transformations can be achieved through architec-
tures composed of beam splitters, phase shifters, and mirrors arranged according to spe-
cific rules [53]. The subsequent discussion focuses on the triangular structure.

A Mach-Zehnder interferometer(MZI) consists of two multimode interference couplers
and two interference arms. The phase shifts on the internal phase shifters can be ex-
pressed as 0, as shown in Figure 3.1. The external phase shifters can be expressed as a,
and f3,, also shown in Figure 3.1. These phase shifters are thermally programmable [53].
Each MZI performs all rotations in the SU(2) Lie group rotation matrix:

eian (eien _ 1) ieian (eign + 1)

1
2| ielPr(eiPn+1) eiPn(1—eitn) 3.2)

Umzin=R(n) =

Theoretically, an arbitrary n x n unitary transformation matrix SU(N) can be decom-
posed into the product of a series of SU(2) rotation submatrices. Using the 4 x 4 structure
with transformation matrix SU(4) as an example:

1
Uy=R1U; = 1 U; (3.3)
R(1)
1 1
Us=Ry1RpU; = 1 R(2) U, (3.4)
R(3) 1
1 1 R(4)
Us=R31R32R33U3 = 1 R(5) 1 Us (3.5)
R(6) 1 1

Therefore, a typical 4 x 4 unitary transformation matrix SU(4) can be expressed as fol-
lows:
SU(4) =R3,1R32R33R2 1 R2 2Ry 1 (3.6)

The above calculation can also be extended into an n x n unitary transformation matrix
SU(N):
SU(N) =Rn-11RN-1,2"*RN-1,N-1""R21 R 2 R1 1 3.7)

The results indicate that when the angles are determined, the phase shifter can be ad-
justed to get the desired parameter, allowing the ONN layer to be effectively programmed
to apply the weight matrix to the input signal amplitudes.

Given that the linear layer of MZI-ONN and the linear block of ANN operate on the same
principle, both utilizing matrix multiplication computations, and we have shown in the
above proof how MZI mesh is used to represent the matrix, it is feasible to use NAS to
search the linear layer block of MZI-ONN.

3.4. COMBINED NEURAL ARCHITECTURE SEARCH AND OPTICAL NEURAL NETWORK 31

MZI Convolutional Layer Block

Kernal Matrices

o
mn - mun-- [
B N H-I

(@]

Td=1ps Td=0

Aptical

nonlinearity

Td=0 Td = 1ps Td = 2ps

40404 (6]6]6 d.

Td = 3ps Td = 4ps Td = 5ps

EBEE ElEE

Td = Gps Td =7ps Td = 8ps

l Delay line connection

B
G\

o
g &

Td = 4dps

(Sl
W

(5 16

2 3
5 6

Td =5ps

4 5
7 8

(45
(718

7 8

Td = 7ps

Figure 3.2: Convolution progress of MZI-ONN

5 6
8 9

Td = 8ps

G
8 9
516 |
EEX

32 3. NEURAL ARCHITECTURE SEARCH AND OPTICAL NEURAL NETWORK

The design of the optical MZI convolutional layer can be achieved by using optical delay
lines with different lengths. In Figure 3.2(a), the input image pixels can be grouped into
smaller patches (1 - 9 in Figure 3.2), matching the dimensions of the first layer kernels
shown in Figure 3.2(c). Each patch can be reshaped into a single data column, as shown
in Figure 3.2(b), which is then sequentially fed, patch by patch, into the Optical Interfer-
ence Unit (OIU). In the OIU, as illustrated in Figure 3.2(c), data column signal propaga-
tion through the unit implements a dot product between the first layer kernels and the
input patch vector. Then the output can be got as a time series of optical signals, with
amplitudes proportional to the dot products between the patches and kernels. Optical
nonlinearity is applied to each output port of the OIU. Each output port corresponds to a
separate time series of dot products associated with a specific kernel, as shown in Figure
3.2(d). The optical delay lines are configured to enable a sequence of kernel dot products
can be reshuffled, forming a new patch with dimensions matching those of the subse-
quent layer’s kernels. Each delay line is connected to the original signal line through
3-dB splitters, which allows for data replication and subsequent delay for synchroniza-
tion purposes. In the example shown in Figure 3.2, it is necessary to convert 9 small
patches into 4 two-by-two patches as shown in Figure 3.2(e), which will appear as a time
sequence input for the subsequent optical matrix multiplication. In Figure 3.2(d)(e), the
output from the previous layer is split into four separate waveguides and subjected to
varying delays. A one-time unit delay line is required for each two-by-two patch to en-
sure that the 4 signals arrive simultaneously in 3.2(e). The formation of new patches is
illustrated in 3.2(d) (e), where at specific times Td, the four desired patches in 3.2(e) are
created. This reshuffling process generates valid patches only at specific sampling times.
(In this case is 4/5/7/8 ps) [48]

In comparison to the convolutional layer in ANN, the optical convolutional layer uti-
lizing optical components can achieve the same target. The complex optical devices can
successfully build an ONN convolutional layer to acquire the feature equivalent to the re-
ceptive field in ANN'’s convolutional layer (Figure 3.2(a)(e)). Subsequently, this field can
be reshaped into a column, similar to the ANN’s convolutional layer. (Figure 3.2(b)) The
kernel matrices in the OIU can be considered as weights, while the nonlinear part can be
treated as the activation function. By altering the connection of optical components and
modifying the sampling times, it is possible to adjust padding and stride parameters.
Given their similar functionality, convolutional layers implemented in MZI-type ONN
can be compared to those in ANN. Since employing NAS to search ANN'’s convolutional
layer block is feasible, it is also viable to use NAS to search MZI-ONN'’s convolutional
layer block.

3.4.2. IMPLEMENTATION DETAILS

NASbench201 is a benchmark (and search space) for neural architecture search (NAS)
that provides a unified benchmark for almost any up-to-date NAS algorithms. It has a
fixed search space that includes all possible densely connected directed acyclic graphs
(DAGs) with four nodes and five associated operation options. Each architecture con-
sists of a predefined skeleton with a stack of the searched cell. MZI convolution is a
technique to implement convolution operations in optical neural networks (ONNs) us-

3.4. COMBINED NEURAL ARCHITECTURE SEARCH AND OPTICAL NEURAL NETWORK 33

ing Mach-Zehnder interferometers (MZIs), which are optical devices that can manipu-
late the phase and amplitude of light. MZI convolution can achieve high-speed, paral-
lel, and energy-efficient optical computing with reduced footprint and power consump-
tion.

In this thesis, we want to combine NASbench201 and MZI convolution for searching
the structure with the best performance on visual tasks. Our proposed way to combine
NASbench201 and MZI convolution is to use MZIs as the operation options in the NAS-
bench201 search space. Each edge in the DAG can be associated with an MZI that per-
forms a convolution operation with a certain kernel size and stride. The MZIs can be ar-
ranged in different grid structures, such as Fast Fourier Transform (FFT) grids, to realize
parallel Fourier transforms and convolutions. The performance of each architecture can
be evaluated using the provided training log and accuracy data on the desired dataset
from NASbench201. The best architecture can be selected based on the evaluation re-
sults and used for further tasks or analysis. The following pseudo-code describes our
process. A detailed flow chart that can be combined with DARTS and our search space
can be found in Appendix B with Figure B.1.

— Operations
"Identity", "Zero",

& "MZIConvBlock3x3",
"MZIConvBlock1x1",
"AvgPool1x1"

“Clhedgerz 4
cell~edge(1'4) £

Input i
- e
Block

Residual
Cell x5 Cell x5

CREIPA Output

_—

Pooling

Figure 3.3: Design of ONN Search Space
Operations: Zero: Drop the edge Identity: Only pass parameters AvgPool 1x1: Aver-
age Pooling 1-by-1 Conv 3x3/1x1: 3-by-3/1-by-1 Convolution

34 3. NEURAL ARCHITECTURE SEARCH AND OPTICAL NEURAL NETWORK

Training Architectures
In this work, the batch size is set at 128, which is a fixed parameter. The batch size per-
tains to the number of training examples utilized in one iteration.

The learning rate, which controls the step size at each iteration while moving toward a
minimum of a loss function, is initiated at 0.01. This deviates from the original Differen-
tiable Architecture Search (DARTS) [4] method, which utilizes a starting learning rate of
0.025. This adjustment was made because using 0.025 in this context led to fluctuations
in the reduction of the loss, and thus, the learning rate was decreased to 0.01 for stability.
The final learning rate is kept above 0.001 to ensure that the model continues to learn
and adjust its weights.

Stochastic Gradient Descent (SGD) is used as the optimizer with a momentum of 0.9 and
weight decay of 0.0003. These are also fixed parameters.

In terms of training duration, the models were trained for 100 epochs, consistent with
traditional DARTS, which is a fixed aspect of this approach.

Gradient clipping is also applied with a factor of 5. Gradient clipping [54] is a technique
used to prevent exploding gradients in very deep networks. By capping the gradients to
a threshold, we could ensure that the updates to the weights do not become too large,
thus maintaining the stability of the learning process.

The initialization seed was set to 99, and although multiple seeds were tested, the varia-
tion in the results was less than 1%. This suggests that the model’s performance is robust
across different initializations.

In this work, no warm-up was used for the optimizer’s scheduler, a decision based on
the observation that a learning rate of 0.01 in combination with the scheduler already
prevented any initial fluctuations in the loss.

The design of the cells was kept consistent with NASBench201, which is a fixed compo-
nent of this architecture.

Time Consumption and Saving

In the ONN scenario presented here, there are 5 operations for each connection in the
cell, resulting in 5% = 15625 possible candidates within the search space. As demon-
strated in section 3.3, training a specific simple optical neural network structure may
take 1.5 to 2 hours to complete. In a not ideal situation, this could amount to approxi-
mately 30000 hours if each structure within the search space were trained sequentially
to identify the best ONN structure. By employing NAS, the process is significantly more
efficient, taking just over a day to complete and thus greatly improving the speed of se-
lection.

3.4. COMBINED NEURAL ARCHITECTURE SEARCH AND OPTICAL NEURAL NETWORK 35

Algorithm 3.1 NASbench201 for ONN

1:

10:
11:
12:
13:
14:

Define a search space . that consists of 4 nodes and 5 operations: Identity, Zero,
MZIConvBlock3x3, MZIConvBlockl1x1, "AvgPool1x1"
Initialize a NAS algorithm «/ with a budget B
Initialize an empty set of sampled architectures </
while B >0 do
Sample an architecture a from .% using «/
if a ¢ </, then
Add a to <f
Retrieve the training log and test accuracy of a on the desired dataset from
NASbench201
Update «f with the performance of a
Update B with the cost of evaluating a
end if
end while
Select the best architecture a* from </, based on the test accuracy
Return a*

DISCUSSION

I N this chapter, an in-depth discussion and a detailed analysis and comparison of the
results for the combination of NAS and ONN from the methodology introduced in the
previous sections will be provided.

37

38 4. DISCUSSION

4.1. RESULT AND ANALYSIS FOR NAS SEARCHING MZI-ONN
s]

65 |
55 |

45

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

(a) Eval. Accuracy (Top 1) - Accuracy vs. Epochs (b) Eval. Accuracy (Top 5) - Accuracy vs. Epochs

85 |
75:
65:
55i

45

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

(c) Train Accuracy (Top 1) - Accuracy vs. Epochs (d) Train Accuracy (Top 5) - Accuracy vs. Epochs

0.9
0.7

0.5

0 10 20 30 40 50 60 70 80 90 100 0 4k 8k 12k ek 20k

(e) Train Loss - Loss vs. Searching Epochs (f) Train Loss - Loss vs. Total Steps of Training

0 10 20 30 40 50 60 70 80 90 100 0 4k 8k 12k 16k 20k

(g) Eval. Loss - Loss vs. Searching Epochs (h) Eval. Loss - Loss vs Total Steps of Training

Figure 4.1: Result for Combined NAS and ONN with activation function ReLU
(Light Orange: Raw Data, Deep Orange: Moving Average)

4.1. RESULT AND ANALYSIS FOR NAS SEARCHING MZI-ONN 39

80 - !] | ! 99 |
70 - 97
60 - 95 |
50 93 |
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

(a) Eval. Accuracy (Top 1) - Accuracy vs. Epochs (b) Eval. Accuracy (Top 5) - Accuracy vs. Epochs

80 -
70 -
60 -

50

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

(c) Train Accuracy (Top 1) - Accuracy vs. Epochs (d) Train Accuracy (Top 5) - Accuracy vs. Epochs

13
114
0.9 +

0.7

0.5 +
0 10 20 30 40 50 60 70 80 90 100 0 4k 8k 12k 16k 20k

(e) Train Loss - Loss vs. Searching Epochs (f) Train Loss - Loss vs. Total Steps of Training

14

1.2 -

0.8 -

0.6 -

0 10 20 30 40 50 60 70 80 90 100 0 4k 8k 12k 16k 20k

(g) Eval. Loss - Loss vs. Searching Epochs (h) Eval. Loss - Loss vs. Total Steps of Training

Figure 4.2: Result for Combined NAS and ONN with activation function Sigmoid
(Light Orange: Raw Data, Deep Orange: Moving Average)

40 4, DISCUSSION

Here we show the results for the combined NAS and ONN with the activation functions
mentioned in the previous part, including ReLU and Sigmoid.

Train Acc.(Top 1) Train Acc. (Top5) Eval. Acc. (Top1) Eval. Acc. (Top 5)

ReLU 83.91 99.38 77.14 98.46
Sigmoid 82.01 99.27 78.45 98.74

Table 4.1: Accuracy for NAS + ONN

There is no significant performance difference between the two chosen activation func-
tions, both have noticeable improvements over our previous CIFAR-10 baseline.

The structure differs a lot between the ReLU one and the Sigmoid one.

Final Structure ReLU Final Structure Sigmoid
(cell-edge(1,2)): Identity() (cell-edge(1,2)): SigmoidConvBN()
(cell-edge(1,3)): Identity() (cell-edge(1,3)): Identity()
(cell-edge(1,4)): Identity() (cell-edge(1,4)): SigmoidConvBN()
(cell-edge(2,3)): Identity() (cell-edge(2,3)): SigmoidConvBN()
(cell-edge(2,4)): Identity() (cell-edge(2,4)): SigmoidConvBN()
(cell-edge(3,4)): Identity() (cell-edge(3,4)): SigmoidConvBN()

Figure 4.3: Final structure for ReLU and Sigmoid

The ONN employing ReLU as the activation function achieves nearly the same perfor-
mance as the one using Sigmoid with a considerably simpler cell structure design. From
this perspective, the ReLLU-based activation function in the nonlinear part of the MZI
type ONN can be considered a more accessible approach in terms of manufacturing.

4,2, COMPARING THE RESULTS

In this section, the result from combined NAS and ONN will be compared to the results
for each part separately to evaluate the performance between our new structure with the
ANN and some simple ONN shows in the previous parts and evaluate the performance
and properties of our NASBench201 for ONN search space. The result and analysis of
structure optimization during the search progress can be found in Appendix A.

4.2. COMPARING THE RESULTS 41

4.2.1. COMBINED NAS AND MZI-ONN & MZI-ONN ONLY

Method Mode Activation Function Accuracy
NAS + ONN USV ReLU 77.14
ONN usv ReLU 75.87

Table 4.2: Accuracy Comparison between NAS + ONN and ONN only

A noticeable performance improvement can be noted for our combined NAS and ONN
architecture compared to a simple CNN with two convolutional layers in ONN. Demon-
strate that we have met and proven our primary goal that NAS can improve the perfor-
mance of existing ONN architectures.

4.,2.2. COMBINED NAS AND MZI-ONN & NAS AND ANN IN RELU

Method Search Epoch Activation Function Accuracy
NAS + ONN 100 (Complete) ReLU 77.14
NAS + ONN 50 ReLU 74.62
NAS + ANN 50 (Complete) ReLU 83.53

Table 4.3: Accuracy Comparison between NAS + ONN and NAS + ANN

The results presented above demonstrate that the experiments conducted using the com-
bination of NAS and ONN yield the same cell structure as those performed with the com-
bination of NAS and ANN. However, the convergence in the ONN case is slower than that
in the ANN case. And the difference in performance and accuracy may be attributed to
the distinct network features of each system. Detailed cell structures can be found in
Appendix A.

4,2.3. COMBINED NASAND MZI-ONN & ONN RESNET FOR CIFAR

Type Accuracy
NAS + ONN ONN 77.14
ResNet-20 ONN 85.81
ResNet-32 ONN 86.23
ResNet-44 ONN 86.65
ResNet-56 ONN 87.45

Table 4.4: Compare ONN ResNet with NAS + ONN Result

In this section, the results obtained from combining NAS and ONN are compared with
those of some well-known CNN architectures in ANN implemented into ONN. As the
structure of the combined NAS and ONN approach is significantly simpler than that of
ResNet-20, this outcome aligns with expectations. A more comprehensive analysis of the
ONN ResNet is provided in Appendix C.

CONCLUSION

T HIS chapter focuses on the conclusion and recommendations, presenting a com-
prehensive summary of the main findings and suggestions for various directions of
future research.

5.1. CONCLUSION

In this study, the primary goal is to integrate Neural Architecture Search (NAS) with Op-
tical Neural Networks (ONNs). A minor simplification is predefined, which is to ignore
the physical manufacturing limitation. Moreover, the feasibility of this integration is dis-
cussed from a theoretical perspective to demonstrate the similarities between ONN and
ANN layers. An extra experiment to prove this can be found in Appendix C. This similar-
ity suggests that ONNSs can be searched by NAS similar to ANNs, with each main compo-
nent possessing its own optical solutions.

Independent research on NAS (on CIFAR-10) and ONN (primarily on MNIST, with a small
portion on CIFAR-10) reveals that tuning specific structures in the ONN, corresponding
to the targets optimally tuned by the desired NAS, can have a positive or negative impact
on ONN performance. Therefore, employing NAS instead of manually tuning the same
targets can yield equivalent results. These studies provide a robust theoretical and prac-
tical foundation for the combination of NAS and ONN.

The results for NAS combined with ONN demonstrate that this combination achieves
the predefined goal of enhancing ONN performance in visual image classification tasks.
In this thesis, a cell-based search space explicitly designed for ONN is developed, based
on the popular small cell-based search space, NASBench201 [3], and combined with a
widely-used differentiable architecture search strategy, DARTS [4], to obtain the desired
results.

43

44 5. CONCLUSION

Compared to the CNN with 2 convolution layers, the larger ONN model searched by
our algorithm exhibits a performance improvement of approximately 2%, which demon-
strates the effectiveness of our method for combining NAS and ONN. The evaluation of
the activation functions has been discussed, with ReLU-based and Sigmoid-based re-
sults displaying their own characteristics. Sigmoid-based ONN and ReLU-based ONN
exhibits comparable performance, while the ReLU-based ONN has a considerably sim-
pler structure.

As the structure of the ONN cell evolves during the optimization process, the similarity
between ONN and ANN structures suggests the possibility of transferring high-performance
structures from ANNs to ONNSs in order to achieve good results. We approved this finding

in Appendix C.

5.2. LIMITATION AND FUTURE RESEARCH

5.2.1. PHYSICAL MANUFACTURE LIMITATION AND NAS SEARCHING

In this thesis, the physical manufacturing limitations are not considered during the search
process. To account for these limitations, various approaches can be explored. For in-
stance, different foundries may have distinct design specifications, which could include
varying criteria for waveguides. As the ONN structure necessitates a substantial number
of waveguides, splitters, crossings, etc., even minor changes may significantly impact
manufacturability. It remains unknown how NAS can be adapted based on these spe-
cific physical theories and external constraints.

Manufacturing accuracy is also known to substantially influence performance, partic-
ularly when individual layer blocks are cascaded, leading to deeper neural networks.
In this context, optimizing cumulative errors in manufacturing is far more critical than
structural optimization and it’s important for us to balance the relationship between the
depth of the optical neural network and the cumulative error.

5.2.2. TRANSFER TO DIFFERENT DATASET/TASKS

Additional datasets can be used for image classification tasks, including CIFAR-100, Im-
ageNet, Fashion-MNIST, etc. ONNs can also be applied to other tasks; for example, the
authors of [8] used ONN for vowel recognition, demonstrating its potential for various
applications, similar to ANN.

5.2.3. OTHER ONN IMPLEMENTATION

The ONN type employed in this thesis is based on MZI [8], which is one of the most
fundamental ONN implementations available. In comparison, FFT-ONN [11] offers a
more chip area-efficient solution with slightly lower performance. Moreover, recently,
advanced MZI-ONN techniques have been developed, such as hardware error correction
on MZI by [55] to minimize errors. These advanced ONN techniques could potentially
improve image classification performance.

5.2. LIMITATION AND FUTURE RESEARCH 45

5.2.4. OTHER LEARNING ARCHITECTURE

The Transformer [56] is a highly influential deep learning model. In the vision classifi-
cation task discussed in this paper, the Vision Transformer exhibits notably better per-
formance than ResNet, which has the best performance in NASBench201 on CIFAR-10
[3, 57]. Recently, the Optical Transformer [58] has been introduced in the Optical Neural
Network field, offering the possibility to utilize this impressive architecture and combine
it with superior optical performance to accomplish the same task. It is important to note
that the NAS searching algorithm developed in this thesis can only be used on CNN and
is not compatible with the Transformer.

(1]

(2]

(3]

(4]

REFERENCES

T. Wang, S.-Y. Ma, L. G. Wright, T. Onodera, B. C. Richard, and P. L. McMahon, An
optical neural network using less than 1 photon per multiplication, Nature Commu-
nications 13, 1 (2022).

E Ashtiani, A. J. Geers, and E Aflatouni, An on-chip photonic deep neural network
for image classification, Nature , 1 (2022).

X. Dong and Y. Yang, Nas-bench-201: Extending the scope of reproducible neural
architecture search, arXiv preprint arXiv:2001.00326 (2020).

H. Liu, K. Simonyan, and Y. Yang, Darts: Differentiable architecture search, arXiv
preprint arXiv:1806.09055 (2018).

X. Dong, L. Liu, K. Musial, and B. Gabrys, Nats-bench: Benchmarking nas algo-
rithms for architecture topology and size, IEEE transactions on pattern analysis and
machine intelligence (2021).

P. Ren, Y. Xiao, X. Chang, P-Y. Huang, Z. Li, X. Chen, and X. Wang, A comprehen-
sive survey of neural architecture search: Challenges and solutions, ACM Computing
Surveys (CSUR) 54, 1 (2021).

J. Gu, H. Zhu, C. Feng, Z. Jiang, R. Chen, and D. Pan, L2ight: Enabling on-chip learn-
ing for optical neural networks via efficient in-situ subspace optimization, Advances
in Neural Information Processing Systems 34, 8649 (2021).

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun,
S.Zhao, H. Larochelle, D. Englund, et al., Deep learning with coherent nanophotonic
circuits, Nature photonics 11, 441 (2017).

I. A. Williamson, T. W. Hughes, M. Minkov, B. Bartlett, S. Pai, and S. Fan, Repro-
grammable electro-optic nonlinear activation functions for optical neural networks,
IEEE Journal of Selected Topics in Quantum Electronics 26, 1 (2019).

W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walms-
ley, Optimal design for universal multiport interferometers, Optica 3, 1460 (2016).

J. Gu, Z. Zhao, C. Feng, M. Liu, R. T. Chen, and D. Z. Pan, Towards area-efficient op-
tical neural networks: an fft-based architecture, in 2020 25th Asia and South Pacific
Design Automation Conference (ASP-DAC) (IEEE, 2020) pp. 476-481.

Y. Qu, H. Zhu, Y. Shen, J. Zhang, C. Tao, P. Ghosh, and M. Qiu, Inverse design of an
integrated-nanophotonics optical neural network, Science Bulletin 65, 1177 (2020).

47

48

REFERENCES

(13]

(18]

(19]

X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, All-
optical machine learning using diffractive deep neural networks, Science 361, 1004
(2018).

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition,
in Proceedings of the IEEE conference on computer vision and pattern recognition
(2016) pp. 770-778.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, Densely connected con-
volutional networks, in Proceedings of the IEEE conference on computer vision and
pattern recognition (2017) pp. 4700-4708.

B. Zoph and Q. V. Le, Neural architecture search with reinforcement learning, arXiv
preprint arXiv:1611.01578 (2016).

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the inception
architecture for computer vision, in Proceedings of the IEEE conference on computer
vision and pattern recognition (2016) pp. 2818-2826.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, Learning transferable architectures
for scalable image recognition, in Proceedings of the IEEE conference on computer
vision and pattern recognition (2018) pp. 8697-8710.

E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin,
Large-scale evolution of image classifiers, in International Conference on Machine
Learning (PMLR, 2017) pp. 2902-2911.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, Regularized evolution for image clas-
sifier architecture search, in Proceedings of the aaai conference on artificial intelli-
gence, Vol. 33 (2019) pp. 4780-4789.

C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-]. Li, L. Fei-Fei, A. Yuille, J. Huang,
and K. Murphy, Progressive neural architecture search, in Proceedings of the Euro-
pean conference on computer vision (ECCV) (2018) pp. 19-34.

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, Efficient neural architecture search
via parameters sharing, in International conference on machine learning (PMLR,
2018) pp. 4095-4104.

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le,
Mnasnet: Platform-aware neural architecture search for mobile, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019) pp.
2820-2828.

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, Once-for-all: Train one network and
specialize it for efficient deployment, arXiv preprint arXiv:1908.09791 (2019).

G. Bender, P-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, Understanding and
simplifying one-shot architecture search, in International conference on machine
learning (PMLR, 2018) pp. 550-559.

REFERENCES 49

(26]

(37]

H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, Efficient architecture search by net-
work transformation, in Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 32 (2018).

A. Brock, T. Lim, J. M. Ritchie, and N. Weston, Smash: one-shot model architecture
search through hypernetworks, arXiv preprint arXiv:1708.05344 (2017).

B. Baker, O. Gupta, R. Raskar, and N. Naik, Accelerating neural architecture search
using performance prediction, arXiv preprint arXiv:1705.10823 (2017).

T. Domhan, J. T. Springenberg, and E Hutter, Speeding up automatic hyperparam-
eter optimization of deep neural networks by extrapolation of learning curves, in
Twenty-fourth international joint conference on artificial intelligence (2015).

X. Chu, B. Zhang, and R. Xu, Fairnas: Rethinking evaluation fairness of weight shar-
ing neural architecture search, in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (2021) pp. 12239-12248.

H. Cai, L. Zhu, and S. Han, Proxylessnas: Direct neural architecture search on target
task and hardware, arXiv preprint arXiv:1812.00332 (2018).

X. Chen, L. Xie, J]. Wu, and Q. Tian, Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation, in Proceedings of the
IEEE/CVF international conference on computer vision (2019) pp. 1294-1303.

A. Yang, P. M. Esperanca, and E M. Carlucci, Nas evaluation is frustratingly hard,
arXiv preprint arXiv:1912.12522 (2019).

C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and E Hutter, Nas-bench-
101: Towards reproducible neural architecture search, in International Conference
on Machine Learning (PMLR, 2019) pp. 7105-7114.

C. Liu, L.-C. Chen, E Schroff, H. Adam, W. Hua, A. L. Yuille, and L. Fei-Fei, Auto-
deeplab: Hierarchical neural architecture search for semantic image segmentation,
in Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion (2019) pp. 82-92.

]. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and E Hutter, Nas-bench-301
and the case for surrogate benchmarks for neural architecture search, arXiv preprint
arXiv:2008.09777 (2020).

M. Ruchte, A. Zela, J. Siems, J. Grabocka, and E Hutter, Naslib: A modular and
flexible neural architecture search library, https://github.com/automl/NASLib
(2020).

Y. Mehta, C. White, A. Zela, A. Krishnakumar, G. Zabergja, S. Moradian, M. Safari,
K. Yu, and E Hutter, Nas-bench-suite: Nas evaluation is (now) surprisingly easy, in
International Conference on Learning Representations (2022).

https://github.com/automl/NASLib

50

REFERENCES

(39]

(43]

(50]

A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny images,
(2009).

C. White, A. Zela, R. Ry, Y. Liu, and E Hutter, How powerful are performance pre-
dictors in neural architecture search? Advances in Neural Information Processing
Systems 34 (2021).

K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P. Xing, Neural ar-
chitecture search with bayesian optimisation and optimal transport, Advances in
neural information processing systems 31 (2018).

L. Ma, J. Cui, and B. Yang, Deep neural architecture search with deep graph bayesian
optimization, in IEEE/WIC/ACM International Conference on Web Intelligence (2019)
pp. 500-507.

H. Shi, R. Pi, H. Xu, Z. Li,]. Kwok, and T. Zhang, Bridging the gap between sample-
based and one-shot neural architecture search with bonas, Advances in Neural In-
formation Processing Systems 33, 1808 (2020).

Y. Sun, X. Sun, Y. Fang, G. G. Yen, and Y. Liu, A novel training protocol for perfor-
mance predictors of evolutionary neural architecture search algorithms, IEEE Trans-
actions on Evolutionary Computation 25, 524 (2021).

C. Wei, C. Niu, Y. Tang, Y. Wang, H. Hu, and J. Liang, Npenas: Neural predictor
guided evolution for neural architecture search, IEEE Transactions on Neural Net-
works and Learning Systems (2022).

L. Deng, The mnist database of handwritten digit images for machine learning re-
search [best of the web], IEEE signal processing magazine 29, 141 (2012).

B.J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. Pernice, H. Bhaskaran, C. D. Wright,
and P. R. Prucnal, Photonics for artificial intelligence and neuromorphic computing,
Nature Photonics 15, 102 (2021).

H. Bagherian, S. Skirlo, Y. Shen, H. Meng, V. Ceperic, and M. Soljacic, On-chip opti-
cal convolutional neural networks, arXiv preprint arXiv:1808.03303 (2018).

G. H. Li, R. Sekine, R. Nehra, R. M. Gray, L. Ledezma, Q. Guo, and A. Marandi,
All-optical ultrafast relu function for energy-efficient nanophotonic deep learning,
Nanophotonics (2022).

G. Mourgias-Alexandris, A. Tsakyridis, N. Passalis, A. Tefas, K. Vyrsokinos, and
N. Pleros, An all-optical neuron with sigmoid activation function, Optics express
27,9620 (2019).

M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V. Kildishev, M. Pel-
ton, and V.]. Sorger, All-optical nonlinear activation function for photonic neural
networks, Optical Materials Express 8, 3851 (2018).

REFERENCES 51

[52]

[53]

[54]

[55]

[56]

[57]

(58]

(59]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Experimental realization of any
discrete unitary operator, Physical review letters 73, 58 (1994).

J. Cheng, H. Zhou, and J. Dong, Photonic matrix computing: from fundamentals to
applications, Nanomaterials 11, 1683 (2021).

R. Pascanu, T. Mikolov, and Y. Bengio, On the difficulty of training recurrent neural
networks, in International conference on machine learning (Pmlr, 2013) pp. 1310-
1318.

R. Hamerly, S. Bandyopadhyay, and D. Englund, Asymptotically fault-tolerant pro-
grammable photonics, Nature Communications 13, 6831 (2022).

A.Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
L. Polosukhin, Attention is all you need, Advances in neural information processing
systems 30 (2017).

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,, An image is worth 16x16
words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929
(2020).

M. G. Anderson, S.-Y. Ma, T. Wang, L. G. Wright, and P. L. McMahon, Optical trans-
formers, arXiv preprint arXiv:2302.10360 (2023).

Y. Idelbayev, Proper ResNet implementation for CIFARIO/CIFARIO0 in PyTorch,
https://github.com/akamaster/pytorch_resnet_cifar10.

https://github.com/akamaster/pytorch_resnet_cifar10

APPENDIX A

ONN CELL STRUCTURE SEARCHING
OPTIMIZATION PROCESS USING
NAS

T HIS section will discover the optimization process of combining the NAS and ONN.
Here show the structural changes for ONN during the NAS searching optimization progress.
Below shows the result from the ReLU activation function experiment in section 4. (NAS

for ONN) The algorithm and process can be found in section 3.4.

53

o4

A. APPENDIX A
ONN CELL STRUCTURE SEARCHING OPTIMIZATION PROCESS USING NAS

Epoch 0:

(cell-edge(1,2)): ReLUConvBN()
(cell-edge(1,3)): ReLUConvBN()
(cell-edge(1,4)): Identity()
(cell-edge(2,3)): ReLUConvBN[)
(cell-edge(2,4)): ReLUConvBN[)
(cell-edge(3,4)): ReLUConvBN()

Epoch 5:

(cell-edge(1,2)): Zero
(cell-edge(1,3)): ReLUConvBN()
(cell-edge(1,4)): ReLUConvBN[)
(cell-edge(2,3)): ReLUConvBN()
(cell-edge(2,4)): Zero
(cell-edge(3,4)): ReLUConvBN()

Epoch 8:

(cell-edge(1,2)): Zero
(cell-edge(1,3)): Zero
(cell-edge(1,4)): ReLUConvBN()
(cell-edge(2,3)): ReLUConvBN[)
(cell-edge(2,4)): Zero
(cell-edge(3,4)): ReLUConvBN()

Epoch 29:

(cell-edge(1,2)): ReLUConvBN()
(cell-edge(1,3)): Zero
(cell-edge(1,4)): Identity()
(cell-edge(2,3)): ReLUConvBN()
(cell-edge(2,4)): Identity()
(cell-edge(3,4)): ReLUConvBN()

Epoch 66:

(cell-edge(1,2)): ReLUConvBN[)
(cell-edge(1,3)): ReLUConvBN()
(cell-edge(1,4)): Identity()
(cell-edge(2,3)): ReLUConvBN[)
(cell-edge(2,4)): Identity()
(cell-edge(3,4)): ReLUConvBN()

Epoch 71:

(cell-edge(1,2)): Identity()
(cell-edge(1,3)): ReLUConvBN()
(cell-edge(1,4)): Identity()
(cell-edge(2,3)): Identity()
(cell-edge(2,4)): Identity()
(cell-edge(3,4)): Identity()

Epoch 1-2:

[cell-edge(1,2)): ReLUConvBN()
(cell-edge(1,3)): ReLUConvEN()
(cell-edge(1,4)): ReLUConvBN()
[cell-edge(2,3)): ReLUConvBN()
(cell-edge(2,4)): Zero
(cell-edge(3,4)): ReLUConvEN()

Epoch 6:

(cell-edge(1,2)): Zero
(cell-edge(1,3)): Zero
|cell-edge(1,4)): ReLUConvBN()
(cell-edge(2,3)): ReLUConvEN()
(cell-edge(2,4)): Zero
(cell-edge(3,4)): ReLUConvEN()

Epoch 9-23:

{cell-edge(1,2)): ReLUConvBN()
(cell-edge(1,3)): Zero
(cell-edge(1,4)): ReLUConvBN()
(cell-edge(2,3)): ReLUConvBN()
|cell-edge(2,4)): Zero
(cell-edge(3,4)): ReLUConvEN()

Epoch 30-64:

(cell-edge(1,2)): ReLUConvBN()
(cell-edge(1,3)): ReLUConvBN()
(cell-edge(1,4)): Identity()
(cell-edge(2,3)): ReLUConvBN()
(cell-edge(2,4)): Identity()
(cell-edge(3,4)): ReLUConvBN()

Epoch 67-69:

(cell-edge(1,2)): ReLUConvBNI()
(cell-edge(1,3)): ReLUConvBN()
(cell-edge(1,4)): Identity()
(cell-edge(2,3)): Identity()
(cell-edge(2,4)): Identity()
(cell-edge(3,4)): ReLUConvBN()

Epoch 72:

(cell-edge(1,2)): Identity()
(cell-edge(1,3)): ReLUConvBN()
(cell-edge(1,4)): Identity()
(cell-edge(2,3)): Identity()
(cell-edge(2,4)): Identity()
(cell-edge(3,4)): ReLUConvBN()

Epoch 3-4:

[cell-edge(1,2)): ReLUConvBN()
[cell-edge(1,3)): Zero
(cell-edge(1,4)): ReLUConvBN()
[cell-edge(2,3)): ReLUConvBN()
(cell-edge(2,4)): Zero
(cell-edge(3,4)): ReLUConvEN()

Epoch 7:

(cell-edge(1,2)): ReLUConvEN()
(cell-edge(1,3)): Zero
[cell-edge(1,4)): ReLUConvBN()
(cell-edge(2,3)): ReLUConvEN()
(cell-edge(2,4)): Zero
(cell-edge(3,4)): ReLUConvEN()

Epoch 24-28:

{cell-edge(1,2)): ReLUConvBN()
(cell-edge(1,3)): Zero
(cell-edge(1,4)): ReLUConvBN()
[cell-edge(2,3)): ReLUConvBN()
[cell-edge(2,4)): Identity()
[cell-edge(3,4)): ReLUConvEN()

Epoch 65:

(cell-edge(1,2)): ReLUConvEN()
(cell-edge(1,3)): ReLUConvBN()
[cell-edge(1,4)): Identity()
(cell-edge(2,3)): Identity()
[cell-edge(2,4)): Identity()
[cell-edge(3,4)): ReLUConvEN()

Epoch 70:

[cell-edge(1,2)): Identity()
[cell-edge(1,3)): ReLUConvEN()
(cell-edge(1,4)): Identity()
[cell-edge(2,3)): Identity()
(cell-edge(2,4)): Identity()
(cell-edge(3,4)): ReLUConvEN()

Epoch 73-82:

[cell-edge(1,2)): Identity()
[cell-edge(1,3)): ReLUConvBN()
[cell-edge(1,4)): Identity()
(cell-edge(2,3)): Identity()
(cell-edge(2,4)): Identity()
(cell-edge(3,4)): Identity()

35

Epoch 83-99: (Finish)

(cell-edge(1,2)): Identity()
(cell-edge(1,3)): Identity()
(cell-edge(1,4])): Identity()
(cell-edge(2,3)): Identity()
(cell-edge(2,4])): Identity()
(cell-edge(3,4])): Identity()

Figure A.1: Structure of all ONN Cells during the searching progress

. ResNet
Identity x 5 Basic Block

ResNet .
Basic Block Identity x 5

Figure A.2: Structure of the network with the searched final ONN Cell

It is quite straightforward that the structure of the ONN cell becomes increasingly sim-
pler during the search process. Beginning with five MZI convolution connections and
one identity connection, it eventually converges to identity connections for all connec-
tions. This means that the cell passes the value from the previous node to the next node
without performing any additional operations. For the first 24 epochs, the search process
seems to favor zero connections over convolution connections. As the epoch number in-
creases, identity connections appear as a better choice than both zero and convolution
connections. Identity connections replace all zero connections first (at 30 epochs) and
then all convolution connections (at 83 epochs), until all connections in the cells be-
come identity connections. The overall trend for the structure of the cells is to simplify
gradually until the simplest structure configuration is reached.

During the search progress, this step-like’ improvement in structure is quite similar to
the findings presented in [3] and [40]. Furthermore, the structure of the ONN final search
result is identical to the optimal structure for ANN-based NASBench201 on the CIFAR10
dataset, implying a potential architectural property similarity between ANN and ONN.
Consequently, it can be hypothesized that structures yielding relatively better perfor-
mance in ANN may also achieve comparable performance improvements under spe-
cific ONN implementations. An experiment to prove this can be found in the Appendix
C.

B

APPENDIX B
FLOW CHART OF NEURAL
ARCHITECTURE SEARCH FOR ONN

57

B. APPENDIX B
58 FLOW CHART OF NEURAL ARCHITECTURE SEARCH FOR ONN

b

CDefine search space S]

v

Initialize NAS algorithm A (DARTS) with budget B

v

Initialize empty set of sampled architectures As

v

(Initialize architecture parameters alpha)

v

B>0 <

yes

no

[Sample architecture a from S using A (DARTS) and aIpha)

v

a not in As

yes

Add a to As
CRetrieve training log and test accuracy of a from NASbench201)

Y i A

[Update A with performance of a) Y

v

[Update B with cost of evaluating a)

v

(Update alpha by differentiable optimization)

v

(Select best architecture a* from As)

®

Figure B.1: Flow chart of the combination of DARTS and NASBench 201 for ONN

APPENDIX C

WELL-KNOWN CNN IMPLEMENTED
ON ONN WITH RESNET AS AN
EXAMPLE

In the main sections, we obtained a finding by comparing NAS search results on ANN
and ONN, that there are some similarities in the performance, shows a possibility of
transferring high-performance structures from ANNs to ONNs in order to achieve good
performance. In this appendix, a ResNet for ONN is created based on the original ResNet
for CIFAR from [14] to compare the relation of performance between ONN and ANN.
Here 4 ResNet for CIFAR-10 will be discussed including ResNet-20/32/44/56 based on
impementation from [59].

59

C. APPENDIX C

60 WELL-KNOWN CNN IMPLEMENTED ON ONN WITH RESNET AS AN EXAMPLE
14
1
0.6
0.2
0 10k 20k 30k 40k 50k 60k 70k 80k 0 10k 20k 30k 40k 50k 60k 70k 80k
(a) Training Loss ONN ResNet-20 (b) Training Accuracy ONN ResNet-20
Loss vs. Mini-Batch Loss vs. Mini-Batch
1
90
0.8
80
0.6
0.4 70
0.2 60
0 10k 20k 30k 40k 50k 60k 70k 80k 0 10k 20k 30k 40k 50k 60k 70k 80k
(c) Training Loss ONN ResNet-32 (d) Training Accuracy ONN ResNet-32
Loss vs. Mini-Batch Loss vs. Mini-Batch
14
1
0.6
0.2
0 10k 20k 30k 40k 50k 60k 70k 80k 0 10k 20k 30k 40k 50k 60k 70k 80k
(e) Training Loss ONN ResNet-44 (f) Training Accuracy ONN ResNet-44
Loss vs. Mini-Batch Loss vs. Mini-Batch
90
18
14 70
1
50
0.6
0.2 30
O 10k 20k 30k 40k 50k 60k 70k 8Ok 0 10k 20k 30k 40k 50k 60k 70k 80k
(g) Training Loss ONN ResNet-56 (h) Training Accuracy ONN ResNet-56
Loss vs. Mini-Batch Loss vs. Mini-Batch

Figure C.1: Result for ONN ResNet on CIFAR-10
(Light Orange: Raw Data, Deep Orange: Moving Average)

61

100
0.55
96
0.45
0.35 .
0.25 88
0.15 84
0.05 80
0 10k 20k 30k 40k 50k 60k 70k 8Ok 0 10k 20k 30k 40k 50k 60k 70k 8Ok
(a) Training Loss ResNet-20 (b) Training Accuracy ResNet-20
Loss vs. Mini-Batch Loss vs. Mini-Batch
0.6 100
0.5 %
04
92
0.3
88
0.2
01 84
0 80
0 10k 20k 30k 40k 50k 60k 70k 80k 0 10k 20k 30k 40k 50k 60k 70k 80k
(c) Training Loss ResNet-32 (d) Training Accuracy ResNet-32
Loss vs. Mini-Batch Loss vs. Mini-Batch
100
0.5
96
04
0.3 2
0.2 88
0.1 84
0 80
0 10k 20k 30k 40k 50k 60k 70k 80k 0 10k 20k 30k 40k 50k 60k 70k 80k
(e) Training Loss ResNet-44 (f) Training Accuracy ResNet-44
Loss vs. Mini-Batch Loss vs. Mini-Batch
04
94
0.3
90
0.2
01 86
0 fety 82
0 10k 20k 30k 40k 50k 60k 70k 80k 0 10k 20k 30k 40k 50k 60k 70k 80k
(g) Training Loss ResNet-56 (h) Training Accuracy ResNet-56
Loss vs. Mini-Batch Loss vs. Mini-Batch

Figure C.2: Result for ANN ResNet on CIFAR-10
(Light Orange: Raw Data, Deep Orange: Moving Average)

C. APPENDIX C
62 WELL-KNOWN CNN IMPLEMENTED ON ONN WITH RESNET AS AN EXAMPLE

Layers Type Accuracy Time Consumption

ResNet 20 ANN 89.34 22 min
ResNet 32 ANN 89.76 30 min
ResNet 44 ANN 90.18 41 min
ResNet 56 ANN 90.45 50 min
ResNet 20 ONN 85.81 30 min
ResNet 32 ONN 86.23 46 min
ResNet 44 ONN 86.65 61 min
ResNet 56 ONN 87.45 70 min

Table C.1: ResNet Accuracy on ONN and ANN

A comparison is made between ANN and ONN ResNet structures with 20, 32, 44, and
56-layer as proposed by [14]. For ANNs, Figure C.2 and Table C.1 above demonstrate
that with increasing network depth, deeper networks yield lower training errors and im-
proved accuracy. The convergence in the ONN case is slower than that in the ANN case
and the loss for ONN is bigger than ANN. Compared to the ANNs, our ONN ResNet shows
the almost idential properties to those in ANN ResNet. As expected, there’s an accuracy
gap between the ANN and the ONN experiment. And the difference in performance and
accuracy can be attributed to the unique network characteristics of each system. Also
ONN models takes longer time to compute than ANN’s. Hence our main conclusion is
proved.

Training Architectures

For both ONN and ANN cases, parameters are set into identical. In this work, the batch
size is set at 128, which is a fixed parameter. The batch size pertains to the number of
training examples utilized in one iteration.

In terms of training duration, the models were trained for 200 epochs, consistent with
traditional DARTS, which is a fixed aspect of this approach.

The learning rate, which controls the step size at each iteration while moving toward a
minimum of a loss function, is initiated at 0.01 and drops to one-tenth of its previous
learning rate at 100 and 150 epochs respectively. The final learning rate is 0.0001. In our
case, we find that the initial learning rate of 0.1 from ResNet [14] is too large for ONN
to start converging. So we set the initial learning rate to 0.01 for both ANN and ONN
cases.

Stochastic Gradient Descent (SGD) is used as the optimizer with a momentum of 0.9 and
weight decay of 0.0001. These are also fixed parameters.

	Cover
	Main Part
	Summary
	Introduction
	Purpose, Goals and Their Justificatiions
	Proposed Methods and theoretical basics
	Outline

	Literature review
	Optical Neural Network
	The advantages of Optical Neural Networks
	Some typical types of optical neural networks
	Mach-Zehnder Interferometer Optical Neural Network (MZI-ONN)
	Photonic Deep neural Network (PDNN)
	Diffractive Deep Neural Networks (D2NN)

	Neural Architecture Search (NAS)
	Overview
	Search Strategy based on Reinforcement Learning
	Search Strategy based on Evolutionary Algorithm
	Speed up RL and EA-based NAS searching
	Search Strategy - One-Shot
	A special type of search space - Benchmark

	Neural Architecture Search and Optical Neural Network
	Choosing a proposed solution
	Reasons to use NAS for ONN
	Proposed solution and reasons

	Neural Architecture Search on NASLib
	Simulation of Optical Neural Network on Torch-ONN
	Experiment 1 - Compare mode of MZI-ONN
	Experiment 2 - Change/Add Conv/Hidden layer
	Experiment 3 - Dataset MNIST/CIFAR-10
	Experiment 4 - MZI-ONN/FFT-ONN
	Experiment 5 - Activation function & Learning Rate
	Conclusion

	Combined Neural Architecture Search and Optical Neural Network
	The theoretical basis from the mathematical and physical implementation of MZI-ONN blocks that can be searched by NAS
	Implementation details

	Discussion
	Result and analysis for NAS searching MZI-ONN
	Comparing the results
	Combined NAS and MZI-ONN & MZI-ONN only
	Combined NAS and MZI-ONN & NAS and ANN in ReLU
	Combined NAS and MZI-ONN & ONN ResNet for CIFAR

	Conclusion
	Conclusion
	Limitation and Future Research
	Physical manufacture limitation and NAS searching
	Transfer to different dataset/tasks
	Other ONN implementation
	Other Learning architecture

	titleReferences
	Appendix AONN cell structure searching optimization process using NAS
	Appendix BFlow chart of Neural Architecture Search for ONN
	Appendix CWell-known CNN implemented on ONN with ResNet as an example

