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Abstract 
 

First/second-order reliability method (FORM/SORM) is considered to be one of the most 

reliable computational methods for structural reliability. A relative advantage of such 

analytical methods is that they provide physical interpretations and do not require much 

computation time. Designs based on FORM/SORM are usually performed using commercial 

software packages in which the underlying concept of the Reliability method is hidden. Also, 

the available literature is not easy to read and the basic concept is buried in complex 

mathematical equations. This document aims to give a comprehensive understanding of First 

Order Reliability Methods.  

In this document, practical application of FORM is demonstrated with a retaining wall and 

slope stability problem, both analysed using a spreadsheet model developed by Low (2003). 

Both applications presented are existing examples by Low (2003, 2005). These are briefly 

explained, and later modified to understand the efficiency of the model, and to investigate the 

effect of geometrical uncertainties in a slope’s stability. 

The efficiency of spreadsheet model is investigated by considering uncertainty of geometrical 

parameters. Taking advantage of FORM’s ability to reflect sensitivity of the parameters, a 

sensitivity interpretation of the parameters involved in the slope stability problem is made. 

The influence of uncertainty of soil layering on the stability of the slope is analysed. 

Additional investigation on the effect of one dimensional spatial variation on the outcome of 

slope reliability is made. 

The spreadsheet model uses intuitive First Order Reliability approach and MS Excels’s inbuilt 

solver with constrained optimisation to compute Reliability index and probability of failure. It 

was found to be relatively less user friendly when compared to the existing commercial 

software packages but it serves as a very efficient tool to understand the concepts of FORM 

better.  

The major disadvantage of Monte Carlo regarding its high computational cost has triggered 

the need to find better alternatives. In most applications, FORM only needs a small number of 

iterations for convergence, making it more computationally efficient than MCS. This is 

particularly so when the failure probabilities are low. With the limited research here, it is safe 

to say that FORM could serve as a first step in Reliability based design to study the relative 

importance of parameters.  
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Chapter 1  

1 First order reliability methods 
 

 

 

1.1 Introduction  

In this chapter, the underlying concepts of first order reliability method are described. The 

advantages of FORM are discussed to understand its potential to be used as an alternative to 

the cumbersome Monte Carlo Process. It is a popular reliability method among academicians 

but remains less used in industry owing to its mathematical complexity to understand the 

concepts. This chapter gives an introduction to the concepts involved in FORM. The intent of 

this chapter is to break down the complex equations and explain it in a practical context. 

There are different approaches of FORM. These different approaches are explored.   

 

In a nutshell, this chapter gives 

1. The concept of risk based design 

2. The basic concepts of reliability analysis 

3. Theory behind FORM 

1.2 Risk and Safety Factors Concept 

The most basic criteria in the design of a structure is to make sure that the strength of the 

structure is greater than the impact of the loads applied. It is well known that geotechnical 

engineering is associated with many uncertain parameters mainly owing to the soil variability.  

The purpose of risk and reliability based design is to incorporate the information on 

uncertainty into actual design problems.  
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Figure 1 Fundamentals of Risk Evaluation 

Figure 1 is a simple case considering two variables R, Resistance of the structure and S, Load 

on the structure. S and R are stochastic variables, meaning they are random in nature. These 

stochastic variables are defined by their probability density functions and statistical 

parameters are used to characterise their randomness. µR and µS are the respective means, 𝜎𝑅 

and 𝜎𝑆, their standard deviations and 𝑓𝑆(𝑠) and  𝑓𝑅(𝑠) their corresponding probability density 

functions. Referring to Figure 1, design safety is ensured in a deterministic approach by 

requiring that RN be greater than SN with a specified margin of safety.  

𝑵𝒐𝒎𝒊𝒏𝒂𝒍 𝑺𝑭 = 𝑹𝑵 𝑺𝑵⁄                                                                                                                                          Equation 1                                                                                                                                                      

SF is the safety factor. In a deterministic design, the uncertainty of all the parameters is taken 

into account by a single number i.e the safety factor. There are different approaches or 

methods based on how he safety factor is applied, i.e. it can be applied to the load, resistance 

or both. 

 Working stress method: Safety factor applied to resistance alone 

 Ultimate Strength method: Safety factor applied to loads alone 

 Concrete or steel (LRDF): Safety factors applied to both resistance and loads 

Haldar and Mahadevan explains the intent of these conventional approaches by considering 

the area of overlap between the two curves. This area of overlap provides a qualitative 

measure of the probability of failure. The area of overlap depends on the following factors 

1. The mean of the input parameters are a measure of the relative positions of the curves. 

More distance between the curves implies less overlap area which reduces the probability 

of failure.  

2. Standard deviation is a measure of the dispersion of the curves. Narrow curves lead to 

small overlap area reducing the probability of failure and vice versa 

3. The probability density function is a measure of the shapes of the curves. The shape of the 

curve plays a role in the area of overlap. 



First Order Reliability Methods 

 

5 

 

 

Ensuring safety in a deterministic design is achieved by selecting the design variables with the 

least area of overlap. Safety factors are employed to shift the positions of the curves. But such 

a design does not take into account all the overlap factors. Risk based design is a more 

rational approach as it minimises the overlap area by considering all the design variables to 

achieve an acceptable level of risk. 

In terms of probability of failure, risk can be defined as: 

𝑝𝑓 = 𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒) = 𝑃(𝑅 < 𝑆) 

     = ∫ [∫ 𝒇𝑹(𝒓)𝒅𝒓
𝒔

𝟎
]𝒇𝑺(𝒔)

∞

𝟎
𝒅𝒔                                                                                                                  Equation 2                                                                                                                              

       = ∫ 𝑭𝑹(𝒔)𝒇𝒔(𝒔)𝒅𝒔
∞

𝟎
 

1.3 Basic Concepts of Reliability Analysis 

The reliability of an engineering design is the probability that it meets certain demands under 

certain conditions. In geotechnics, an example of shallow foundation is often used to illustrate 

this. For the stability of a foundation, it should be designed such that it satisfies certain 

demands towards vertical loads. The bearing capacity (R) of the soil should exceed the total 

vertical load (S) acting on it, for the foundation to be stable. Mathematically, this can be 

represented as R>S.  

This is mathematically expressed as  

𝒁 =  𝑹 – 𝑺                                                                                                                                                                Equation 3     

Here Z is the performance function or limit state function of the foundation. This function 

differentiates the unsafe and safe zones with respect to R and S. This example has two 

stochastic variables R and S. This equation can be generalised as: 

𝒁 = 𝒈(𝒙)                                                                                                                                                                   Equation 4 

where g(x) constitutes the n basic variables x1, x2,..  xn of the performance function. The 

performance function owes it’s name to the fact that it is a measure of the performance of any 

structure. Like any mathematical equation, the performance function could have three 

outcomes as follows: 

 (𝑥)  >  0:  Safe region  

 𝑔(𝑥)  =  0: Limit state  

 𝑔(𝑥)  <  0: Failure region  

In figure, the curve is the performance function. The region to the right of the curve is unsafe 

where g(x)<0 while the region to the left of the curve is the  safe region (g(X)>0). The 

boundary or the curve represents the combination of the variables that are on the verge of 

failure i.e. at limit state.   
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Figure 2 Limit State Concept 

Figure 3 shows the joint probability density function and the corresponding contours. The 

contours are projections of the surface of fx (x1, x2) on x1 - x2 plane. All the points on the 

contours have the same values of f (x) or the same probability density.  

 

Figure 3 Safe and Unsafe Regions (Du, 2005) 

1.4 First Order Reliability Methods (FORM) 

This section gives some insight into the theory behind FORM; the underlying mathematical 

equations involved in it and identifies the advantages of FORM. FORM is considered as a 

good alternative to the cumbersome Monte Carlo Analysis. It’s accuracy with lesser 
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computations makes up for its mathematical complexity.  FORM was initially proposed by 

Hasofer et al. (1974). It is capable of handling non linear performance functions, and 

correlated non-normal variables.   

FORM is also referred to as Mean Value First order second moment method (MVFOSM) 

FORM linearizes the performance function using Taylor series approximation. Hence it’s a 

first order approximation. FORM uses only mean and standard deviation of the variables. 

The performance / limit state function is given by  

𝒁 =  𝑹 –  𝑺                                                                                                                                                                Equation 5 

As both R and S are assumed as normal random variables, Z can also be inferred as a random 

variable, that is 𝑁(𝜇𝑅 − 𝜇𝑠, √𝜎𝑅
2 + 𝜎𝑠

2). Then probability of failure can be defined as 

𝑝𝑓 = 𝑃(𝑍 < 0)                                                                                                                                                        Equation 6 

𝑝𝑓 = 𝜙 [
0−(𝜇𝑅−𝜇𝑆)

√𝜎𝑅
2+𝜎𝑆

2
]                                                                                                                                           Equation 7     

𝑝𝑓 = 1 − 𝜙 [
𝜇𝑅−𝜇𝑆

√𝜎𝑅
2+𝜎𝑆

2
]                                                                                                                                       Equation 8 

𝜙 is the CDF of the standard normal variate 

Thus, the probability of failure is a function of the mean value of Z to its standard deviation. 

𝛽 =
𝜇𝑧

𝜎𝑧
=

𝜇𝑅−𝜇𝑆

√𝜎𝑅
2+𝜎𝑆

2
                                                                                                                                                Equation 9 

The probability of failure can be expressed in terms of the safety index as follows.  

𝑝𝑓 = 𝜑(−𝛽) = 1 − 𝜑(𝛽)                                                                                                                           Equation 10 

These variables are restricted to positive values. Hence log normally distribution is assumed. 

The generalized formulation of the performance function can be written as: 

𝑍 = 𝑔(𝑋) = 𝑔(𝑋1, 𝑋2 … , 𝑋𝑛)                                                                                                             Equation 11 

X1, X2..Xn represents the random variables in the limit state function as mentioned before.  

 A Taylor series expansion of the limit state function about the mean gives 

𝐺 = 𝑔(𝜇𝑋) + ∑
𝜕𝑔

𝜕𝑋𝑖
(𝑋𝑖 − 𝜇𝑋𝑖

) +
1

2
∑ ∑

𝜕2𝑔

𝜕𝑋𝑖𝜕𝑋𝑗
(𝑋𝑖 −

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑖=1

𝜇𝑋𝑖
) (𝑋𝑗 − 𝜇𝑋𝑗

) + ⋯ 

  Equation 12 

The gradient is evaluated at the mean values. These calculations make FORM less attractive 

for practical use, although it is much less complicated than it is assumed to be.  To lessen the 
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assumed mathematical complexity, new FORM methods use iterative constrained 

optimisation algorithms that do not require evaluation of the gradient. 

The Taylor series expansion is truncated for linear terms to obtain a first order approximate 

The mean and variance obtained from the truncated expansion is given by: 

𝜇𝑍 ≈ 𝑔(𝜇𝑋1
, 𝜇𝑋2

, … . . 𝜇𝑋𝑛
)    and                                                                                                               Equation 13 

𝜎𝑧
2 ≈ ∑ ∑

𝜕𝑔

𝜕𝑋𝑖

𝜕𝑔

𝜕𝑋𝑗
𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)𝑛

𝑗=1
𝑛
𝑖=1                                                                                                        Equation 14 

𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗) is the covariance of Xi and Xj. 

This explains the concept behind MVFOSM, which basically a Taylor Series Approximation 

or rather, linearization of the performance function at the mean values of the random 

variables. But this linearization was later identified as a limitation. Later, a second order 

approximation of the Taylor Series Approximation was defined, and is referred to as SORM – 

Second order reliability method. The limitations of MVFOSM is summarized here:  

Limitations of MVFOSM 

1. Information regarding distribution of the variables is completely ignored 

2. Truncation errors due to linearization at mean point for non-linear limit state function. 

3. Different though mechanically equivalent equations did not give the same safety index. In 

other words, the safety indices depend on the how the limit state equation is formulated. 

This was commonly called the invariance problem. 

To overcome the invariance problem, Hasofer and Lind proposed an advanced First Order 

Reliability method. This is discussed in the next section. 

1.5 Advanced First Order Reliability Method or the Hasofer Lind Method 

As the name says, this method is an advanced version of FORM which compensates for the 

non-invariance of the reliability index in FORM. This method transforms the variables to a 

standardized space of Normal variables. As it is known, standard normal variables have  zero 

mean and standard deviation of 1. This transformation of the coordinate space is performed to 

aid in the computation of reliability Index. A random variable Xi is reduced as:  

𝑋′𝑖 =
𝑋𝑖−𝜇𝑋𝑖

𝜎𝑋𝑖

   (𝑖 = 1,2, . . , 𝑛)                                                                                                Equation 15 

Xi’ is a random variable characterized by a probability density function having zero mean and 

unit standard deviation. Equation 15 is implemented in the limit state equation to obtain the 

limit state in the new space – the reduced coordinate space. Each variable in the limit state 

equation is substituted by the respective reduced equation and the corresponding limit state 

equation is obtained. This is referred to as transformation of the coordinate space from the 

original coordinates to the reduced coordinates as shown in Figure 4. The limit state surface in 

the reduced coordinate system is referred as g(X’) = 0. 
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Now the reliability index is defined in this new reduced space. The Hasofer-Lind reliability 

index βHL  is defined as the minimum possible distance between the origin and the limit state 

surface. Thus the determination of this point has two important aspects – Optimisation of the 

distance to find the right minimum distance point, with the Constraint that the point lies on the 

limit state surface. This minimum distance point on the limit state surface is called the ‘design 

point (x*)’. Hasofer – Lind index can be mathematically written as  

𝛽𝐻𝐿 = √(𝑥′∗)𝑇(𝑥′∗)                                                                                                                                      Equation 16 

The design point represents the most probabable point of failure - MPP 

 

Figure 4 Original Coordinates, Reduced Coordinates (Haldar and Mahadevan)  

Figure 4 shows the transformation of the random variables of a limit state function from the  

original coordinate system to the reduced coordinate system. Here, it is explained why the 

minimum distance as defined earlier is the reliability index.  

The transformation of the variables, R and S is as follows: 

𝑅′ =
𝑅𝑖−𝜇𝑅

𝜎𝑅
 ;        𝑆′ =

𝑆𝑖−𝜇𝑆

𝜎𝑆
                                                                                                                           Equation 17 

Now the reduced equations of R and S are substituted into the limit state equation to obtain 

the new limit state surface in the standard space of coordinates. 

𝑍 = 𝜎𝑅𝑅′ − 𝜎𝑆𝑆′ + 𝜇𝑅 − 𝜇𝑆                                                                                                                              Equation 18 

The reliability index is calculated using Equation 16. Reliability index can be estimated as: 

𝛽 =
𝜇𝑧

𝜎𝑧
=

𝜇𝑅−𝜇𝑆

√𝜎𝑅
2+𝜎𝑆

2
                                                                                                                                              Equation 19 

Probability of failure can be calculated from the reliability index. 

 𝑃𝑓  =  𝛷(– 𝛽𝐻𝐿)                                                                                                                                            Equation 20 
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Φ [ ] is the standard normal distribution function.  

The physical meaning of reliability index in this definition is the minimum distance between 

the origin to the limit state surface in the reduced space of random variables. This point on the 

limit state surface is the most probable point of failure or the design point. It is aptly named 

because the design point represents the combination of stochastic variables that has the 

highest probability of failure. In other words, it is the worst possible combination of the input 

parameters. 

Unlike FOSM reliability index, Hasofer-Lind reliability index is invariant. This is because the 

reliability index does not vary for mechanically equivalent limit states.  

The actual problem here is to determine the design point that leads to the least distance 

between the origin and the limit state surface. This becomes a constrained optimisation 

problem where the distance between the origin and the limit state surface is optimised / 

minimised by constraining the design point to lie on the limit state. 

 Minimise 𝐷 = √(𝑥′∗)𝑡(𝑥′∗)   

 Subjecting to constraint  𝑔(𝑋’) = 0. 

 

Lagrange’s multipliers is used to estimate the minimum distance as: 

𝛽𝐻𝐿 = −

∑ 𝒙𝒊
′∗∗

 (
𝝏𝒈

𝝏𝑿𝒊
′′

 
)

∗

𝒏
𝒊=𝟏

√∑  (
𝝏𝒈

𝝏𝑿𝒊
′′

 
)

𝟐∗

𝒏
𝒊=𝟏

                                                                                                                                Equation 21 

(∂g/∂X
’
i)

*
 is the i

th
 partial derivative at the design point (x1

’*
 , x2

’*
 ,…, xn

’*
).  

The design point in the reduced coordinates is:  

𝑥𝑖
′∗′∗

= −𝛼𝑖𝛽𝐻𝐿                                                                                                                                                 Equation 22 

αi are the direction cosines along the coordinate axes X
’
i.  

𝛼𝒊 =

(
𝝏𝒈

𝝏𝑿𝒊
′′

 
)

√∑  (
𝝏𝒈

𝝏𝑿𝒊
′′

 
)

𝟐∗

𝒏
𝒊=𝟏

                                                                                                                                          Equation 23 

Direction cosines give an estimate of the sensitivity of each variable. It represents the 

contribution of the parameter in the probability of failure. The direction cosines of all the 

variables together should add up to 1. 

Substituting 𝛼 in the design point of original equation gives: 

𝑥𝑖
∗ = 𝜇𝑋𝑖

− 𝛼𝑖𝜎𝑋𝑖
𝛽𝐻𝐿                                                                                                                                    Equation 24 
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Algorithm to compute the Hasofer – Lind Reliability Index (Rackwitz, 1976) 

For nonlinear performance functions, an iterative algorithm proposed by Rackwitz (1976) is 

utilized. This is shown in Figure 5.  

 

 

Figure 5 Algorithm to compute βHL 

Finally, the reliability index is used t compute the probability of failure as: 

𝑝𝑓 = 𝜑(−𝛽𝐻𝐿). 

 

1.5.1 A different perspective of Hasofer – Lind Reliability Index 

Hasofer - Lind rewrote the reliability index in a matrix formulation, as 

𝛽 = 𝑚𝑖𝑛√(𝑥 − 𝑚)𝑇𝐶−1(𝑥 − 𝑚)                                                                                                         Equation 25 

Or  

𝛽𝐻𝐿 = 𝑚𝑖𝑛√(
𝑥𝑖−𝑚𝑖

𝜎𝑖
)

𝑇
𝑅−1 (

𝑥𝑖−𝑚𝑖

𝜎𝑖
)                                                                                                      Equation 26 

x represents the input stochastic variables, m is the mean values of the variables, C is the 

covariance matrix that considers the negative or positive correlation between different input 

parameters and R is the correlation matrix. 

In general, reliability index is the distance between the performance function and the the mean 

value point of the variables in units of standard deviation. There are computational barriers in 

reliability analysis by the classical methods. This is because the classical approaches require 

rotation of frame of reference and co-ordinate transformation.  
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To overcome these disadvantages, Low and Tang (2005) proposed a different interpretation 

with the perspective of an expanding ellipsoid. This does not require the transformation of the 

original space to the reduced or standardised space of variables.  

The ellipsoidal approach is based on the fact that the quadratic form in Equation 25 is similar 

to the negative exponent of the multivariate normal probability density function. The iso 

density locus of a multivariate normal probability density function is an ellipse, which is the 

reason why Equation 25 can be represented by an ellipse. Minimising beta is equivalent to 

maximising the value of the multivariate normal pdf. Thus the design point or the most 

probable point of failure can be found as the smallest ellipsoid tangent to the limit state 

surface. For non-normal variables, Rackwitz Fiessler transformation is used.  

 

 

Figure 6 Ellipsoid approach for computing Hasofer Lind Reliability Index 
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Chapter 2  

2 Reliability-based Retaining wall 
design  
(B. K. Low, 2005) 

 

 

2.1 Introduction 

In this chapter, Reliability-based design of a retaining wall using constrained optimization 

approach in spreadsheet (Low, 2005) is discussed. The spreadsheet model is based on intuitive 

expanding dispersion ellipsoid perspective, as described in the previous chapter. Using this 

approach simplifies the computations and interpretations. Sensitivity information conveyed in 

a reliability analysis is discussed. 

2.2 Reliability design 

This design explicitly considers uncertainty in the design and gives the reliability index and 

probability of failure. Here, the retaining wall is designed using the ellipsoidal approach of 

FORM. The reliability index, probability of failure and the design points are obtained. The 

probability of failure (Pf) can be estimated from the reliability index, β using  

𝑷𝒇  =  𝟏 −  𝜱(𝜷) = 𝜱(−𝜷)                                                                                                                    Equation 27 

2.2.1 Reliability-based approach and factor-of-safety approach 

In figure 8a, A and B has the same of factor of safety, but clearly, A is safer than B. On the 

other hand, figure 8b shows a slope and foundation with different factor of safety but a 

reliability analysis shows that both structures had similar levels of reliability. This shows that 

a reliability based design gives a better measure of safety that lumped factor of safety 

approach.  
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Figure 7 Reliability analysis of overturning failure mode and sliding mode, for correlated normal random 

variables using spreadsheet model (B K Low, 2005) 
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Figure 8a, b Limitations of lumped FoS (B K Low, 2005) 

2.3 Limit State function  

Performance Function or the limit state function is defined based on the input variables and 

failure limits. The performance functions (PerFn1 and PerFn2) are written for the rotational 

mode of failure and sliding failure mode:  

𝑃𝑒𝑟𝐹𝑛1: =  𝑊1  𝐴𝑟𝑚1  +  𝑊2𝐴𝑟𝑚2  +  𝑃𝑎𝑣𝐴𝑟𝑚𝑎𝑣  −  𝑃𝑎ℎ𝐴𝑟𝑚𝑎ℎ 

𝑃𝑒𝑟𝐹𝑛2: = 𝑏 × 𝑐𝑎 − 𝑃𝑎ℎ 

𝑃𝑎𝑣  =  𝑃𝑎 𝑠𝑖𝑛𝛿,  𝐴𝑟𝑚𝑎𝑣  =  𝑏, 𝑊1  =  0.5𝛾𝑤𝑎𝑙𝑙(𝑏 −  𝑎) 𝐻, 𝐴𝑟𝑚1  =  
2

3
(𝑏 −  𝑎)𝐻  

𝑊2  = 𝛾𝑤𝑎𝑙𝑙𝑎𝐻 , 𝐴𝑟𝑚2  =  𝑏 −  
𝑎

2
,  𝑃𝑎ℎ  =  𝑃𝑎 𝑐𝑜𝑠𝛿, 𝐴𝑟𝑚𝑎ℎ  =  

𝐻

3
  

2.4 Determination of Reliability Index 

Equation 26 is used to compute the reliability index. The soil properties that are randomized 

are soil friction angle φ
’
, the interface friction angle δ, and the base adhesion ca. The statistical 

inputs of the variables are defined. The correlation matrix is set up based on the expected 

correlations between the parameters.  

The design values of the parameters are initialized with the mean values and the solver is 

invoked. The solver is set to minimize the cell containing the reliability index by changing the 

design values and the values dependent on the design values by subjecting to the constraint 

that the respective performance function PerFn < = 0 . This is to make sure that the design 

point lies on the limit state surface. This optimizes the reliability index and searches for the 

most probable point of failure.  

2.5 Results and Interpretation 

 Design point   

Design point lies on the failure surface and determines the value of the reliability index. As 

the design point lies on the limit state surface given by PerFn, it satisfies the corresponding 

limit state equation. The mean value points of (φ’, δ, ca) indicates points that can be called 
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‘safe’, against sliding /overturning  but failure occurs when the mean  values  (φ’, δ, ca) are 

decreased to the design values  (φ’, δ, ca).  

 Parametric Sensitivity: 

The column nx shows how much the design point x* deviates from the mean. In other words, 

nx reflects the sensitivity of each parameter to sliding / overturning failure. For example, in 

Figure 7, nx corresponding to ca is 0 for Perfn1. This implies that ca is insensitive to 

overturning failure whereas for sliding limit stat the values of nx show that ca is the most 

sensitive. This ability to reflect parametric sensitivity is unique to FORM 

 Partial factors 

Low (2005) has shown that the ratio of the mean values to the design point is similar to 

the partial factors in the limit state approach in the Eurocode7, although partial factors 

have not been used in this Reliability based design here.  

 

 

 

.  

 

Figure 9 Design point and normal dispersion ellipsoids in φ’ – δ space. Correlation coefficient is non zero. (B 

K Low, 2005) 

 Significance of correlation  

To investigate the significance of correlation, Low(2005) assumed the parameters as 

uncorrelated by giving a null correlation matrix. As expected, the reliability was a higher 

value, showing that a ignoring positive correlations leads to an unconservative estimate of 
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reliability. Also it was observed that the two ellipses in Figure 10 are non-tilted when 

compared to the tilted ellipses in Figure 9.  

 

Table 1 Results of Reliability Analysis performed by Low, 2005 

 Overturning mode(Perfn1) Sliding mode (Perfn2) 

Reliability Index 2.49 3.102 

Parametric Sensitivity 

nx Sensitivity Scale nx Sensitivity Scale 

-2.449 Highest -1.67 Sensitive 

-2.23 High -1.39 Sensitive 

0 Insensitive -2.60 Highest 

 

 

 

 

Figure 10 Design point and normal dispersion ellipsoids in φ’ – δ space. Correlation coefficient is 0 (Low, 

2005) 

 

Table 1 gives the results of the reliability analysis of the retaining wall. The retaining wall has 

a higher reliability index for the sliding mode when compared to the overturning mode. This 

implies that the probability of failure of the retaining wall due to overturning is greater than its 

probability of failure by sliding. The reason could be due to the insensitivity of one of the 

parameters, the base adhesion to overturning. The results also show the sensitivity of each 
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parameter for the respective failure modes. Overturning failure mode is insensitive to base 

adhesion, as expected, whereas it is highly sensitive to the sliding failure mode.  

2.6 Conclusions 

This chapter gives an insight into Reliability based design of a retaining wall by Low (2005). 

The usefulness of the ellipsoidal approach of the Hasofer - Lind reliability index is shown. 

The design values are computed automatically using iterative constrained optimization. This 

approach considers correlation between variables and also gives an estimate of the importance 

of each parameter.  Low (2005) proves that this approach could play a supplementary 

verification and comparison role to a design based on Eurocode7.  

A similar example by Low (2005) shows the design of a retaining wall by back calculating the 

parameter design values by assuming a required level of reliability index.  
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Chapter 3  

3 Probabilistic slope stability 
analysis 

 

3.1 Introduction 

One of the most common geotechnical problems is the slope stability problems. This chapter 

gives an insight into Reliability-based analysis of a slope stability problem using an intuitive 

First Order Method. For this purpose, a spreadsheet model developed by Low (2003) is used. 

Low (2003) analysed a clay slope using the intuitive first order reliability method. In this 

chapter, the example of the clay slope analysed by Low (2003) is briefly explained. Further 

investigation on the uncertainty of the depth levels that define the soil layers is performed. 

The effect of one dimensional spatial variation on the outcome of slope reliability is analyzed 

by altering the autocorrelation distance. Sensitivity analysis in FORM is discussed and an 

interpretation of the sensitivity of each parameter is made. The advantages and shortcomings 

of using the spreadsheet model to implement FORM are studied.   

3.2 Methodology 

 

                       Figure 11 Schematic representation of Low’s spreadsheet set up. 
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The flowchart is a basic representation of the scheme used by Low (2003) to set up the 

spreadsheet model.  

3.3 Slope Stability Spreadsheet Model (Low, 2003)  

Low (2003) uses reformulated spencer method that is compatible for being implemented in a 

spreadsheet. A deterministic analysis is first made which is then extended probabilistically to 

include parameter uncertainties. The principles of the reformulated spencer method are not 

discussed here, but it can be found in Low (2003). Different methods can be explored in the 

by varying the constraints of optimization. 

 

 

Figure 12 Deterministic analysis of a 5 m high embankment on soft ground with depth-dependent undrained 

shear strength (Low, 2003) 

Figure 12 shows the spreadsheet set up for the deterministic analysis of 5m embankment 

geometry. The undrained shear strength is depth dependent and distinguishes 5 soil layers. 

The user defined VBA function computes the co-ordinate values of the embankment 

geometry. The slip surface co-ordinates defined by the center of rotation (xc and yc) and its 
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radius is initialized as seen in the Figure 12. The factor of safety is set to 1 and Microsoft 

Excel’s built in Solver is invoked.  The solver asks for targets, variables and constraints. The 

target here is to minimize the cell having the factor of safety. The cells that are allowed to 

change values every iteration are the ones containing the factor of safety and the slip surface 

geometry. The changing cells are giving constraints to make sure that they are within their 

permissible limits. On invoking the solver, the model gives a minimized factor of safety and 

the slip surface of the slope (circular or non-circular depending on the constraints).  

A reliability analysis of the same slope is performed by extending the deterministic analysis 

probabilistically. This considers uncertainties in the undrained shear strength of the soft clay 

layers, cohesion, friction angle and unit weight of the embankment. Only normal or log 

normal variables are considered. A VBA function converts the mean and standard deviation to 

the respective normal values by Rackwitz-Fiessler equivalent normal transformation.  A 

correlation matrix models the spatial variation in the soft ground. An autocorrelation distance 

(δ) of 3 m is assumed in the following negative exponential model: 

𝝆𝒊𝒋 = 𝒆−
𝑫𝒆𝒑𝒕𝒉(𝒊)−𝑫𝒆𝒑𝒕𝒉(𝒋)

𝜹                                                                                                                                   Equation 28 

The design values are initialized with mean values, and the solver is set. The target cell is the 

cell having the Reliability index which is a quadratic form (9 dimensional ellipsoid in original 

space). As the solver is invoked, the reliability index is minimized as the design values are 

updated.  This process of optimizing the reliability index by subjecting the model to a certain 

set of constraints is referred as constrained optimization. During each iteration, the equivalent 

normal mean (mN) and standard deviation (σN) are computed automatically for each trial 

design point. As mentioned in previous sections, the design point represents the worst 

possible combination of the random variables that can potentially lead to failure. The design 

values of the parameters are linked to the deterministic computations, which in turn compute 

the co-ordinates of the slip circle. The analysis was performed with both normal and log-

normal variates. The critical slip surface of both cases with normal and lognormal variates 

was the same. However it is different from that of the deterministic slip surface.  

3.4 Uncertainty in soil layering and the height of the embankment 

In this section, the spreadsheet model discussed in the previous section is modified to include 

uncertainties in slope geometry. This section further investigates the uncertainty in the depth 

levels and slope geometry (embankment height). In this chapter, depth levels refer to the 

depth at which soil layers are distinguished with their shear strength parameter, as indicated in 

Figure 13. The depth level is highly uncertain as it is often hard to distinctly define the 

different soil layers. The uncertainty in slope geometry is often ignored as it is considered 

negligible. Here, the parameter defining slope height is randomized and the model response is 

studied.  
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Figure 13 Slope geometry and Depth Levels 

The upper most and lowermost depth levels were kept constant, and the depth levels in 

between were randomized. The depth levels were called D2, D3, D4, and D5 and the height of 

the embankment is referred as H. They were given a log normal distribution with mean values 

of 1.5, 3, 5, 7 and 5m respectively. The standard deviations are computed and the correlation 

matrix is updated. The embankment height is assumed to be uncorrelated. Adjacent depth 

levels are assumed to have a correlation coefficient of 0.5, and a correlation coefficient of 0.3 

and 0.2 are assumed for the next layers. The design values of the variables are initialized with 

the mean values and the reliability index is computed using the Hasofer-Lind Matrix equation 

(Equation 25). The solver is then invoked to minimize the reliability index and compute the 

design value of the variables. These design values are linked to the deterministic computations 

to obtain the slip circle. Figure 14 shows the spreadsheet set up to compute the reliability 

index and the probability of failure.  

Table 2 shows the reliability indices and the probability of failure as the number of uncertain 

parameters is increased. It is only logical to expect the reliability index decreasing and the 

corresponding probability of failure increasing with more uncertainty being considered. It can 

be seen that the inclusion of the embankment height does show a significant decrease in 

reliability. But the inclusion of depth levels does not influence the reliability index. The 

design values of the depth levels are very close to their mean values. This could be due to the 

respective shear strengths in the soil layers also being randomized. 
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Figure 14 Spreadsheet set up - Reliability computation 

 

Table 2 Reliability computation for different cases 

 Random Variables β pf 

Case 1 cm,φm,γm,cu1,cu2,cu3,cu4,cu5,cu6 1.961  0.0249 

Case 2 cm,φm,γm,cu1,cu2,cu3,cu4,cu5,cu6,H 1.387 0.0827 

Case 3 cm,φm,γm,cu1,cu2,cu3,cu4,cu5,cu6,H,D2,D3,D4,D5 1.363 0.0864 

 

 

           

 

Figure 15 Comparison of reliability-based critical noncircular slip surface with deterministic critical 

noncircular slip surface (the lower dotted line) for Case1, Case2, and Case3 (clockwise) 

Figure 15 shows that the reliability based non circular slip surface and deterministic critical 

non circular slip surfaces are indistinguishable for case 1, while case 2 shows that inclusion of 
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embankment height affects the lower end of the slip surface. Case 3 shows that as the depth 

levels are included, upper end of the reliability based critical slip surface is different from the 

deterministic slip surface.  

3.5 Sensitivity Interpretation 

A very important advantage of using the ellipsoidal approach of FORM is its ability to reflect 

sensitivities. The design values reflect the sensitivities of the parameters. In Figure 16, vi 

refers to the design values of the parameters. The embankment height, H seems to be the most 

sensitive parameter with a vn value of 0.987 (vn shows how much the design value, vi 

deviates from the mean). Among the soil layers, it is to be noted that the fourth depth level D4 

with shear strength of cu4 is the most sensitive, as the vn values of D4 and cu4 are 

comparatively on the higher side. The mid layer of the soft clay seems to be the most sensitive 

to the sliding of the slope.  

 

Figure 16 Sensitivity interpretation using FORM 

3.6 Vertical autocorrelation distance  

To analyze the influence of the auto correlation distance on the slope reliability, a series of 

slope reliability analysis is carried out by varying the auto correlation distance (δ) from 0.5 to 

5m.  
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Figure 17 Slope Reliability Analysis for different correlation values 

 

Figure 18 Reliability trend with Vertical Auto correlation distance 

The design point is significant in the design as it gives the combination of parameters with the 

most failure probability. Thus the behavior of random variables at this design point was 

investigated. Figure 17 shows that the profiles of design point does not vary significantly at 

with slight increases in δ. Figure 18 shows that reliability index decreases with increase in 

auto correlation distance as expected.  
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3.7 Conclusions 

This model allows any number of variables to be randomized and their effect on the reliability 

index could be studied. A spreadsheet model for a slope stability problem developed by Low 

(2003) was used to investigate the uncertainties in slope geometry and depth levels of the 

embankment.  One of the most important advantages of using the spreadsheet model is the 

ease with which any number of parameters could be randomized. The slope geometry 

(embankment height) was found to have a major influence on the Reliability index while the 

inclusion of depth levels did not have a big impact on the reliability index. This lesser 

influence of depth levels on reliability index is probably due to their respective shear strengths 

also being randomized.  

The spreadsheet model is not as user friendly as the commercial softwares but it provides a 

better understanding of the concept unlike commercial softwares where the underlying 

concept is hidden.  
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