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Abstract

First/second-order reliability method (FORM/SORM) is considered to be one of the most
reliable computational methods for structural reliability. A relative advantage of such
analytical methods is that they provide physical interpretations and do not require much
computation time. Designs based on FORM/SORM are usually performed using commercial
software packages in which the underlying concept of the Reliability method is hidden. Also,
the available literature is not easy to read and the basic concept is buried in complex
mathematical equations. This document aims to give a comprehensive understanding of First
Order Reliability Methods.

In this document, practical application of FORM is demonstrated with a retaining wall and
slope stability problem, both analysed using a spreadsheet model developed by Low (2003).
Both applications presented are existing examples by Low (2003, 2005). These are briefly
explained, and later modified to understand the efficiency of the model, and to investigate the
effect of geometrical uncertainties in a slope’s stability.

The efficiency of spreadsheet model is investigated by considering uncertainty of geometrical
parameters. Taking advantage of FORM’s ability to reflect sensitivity of the parameters, a
sensitivity interpretation of the parameters involved in the slope stability problem is made.
The influence of uncertainty of soil layering on the stability of the slope is analysed.
Additional investigation on the effect of one dimensional spatial variation on the outcome of
slope reliability is made.

The spreadsheet model uses intuitive First Order Reliability approach and MS Excels’s inbuilt
solver with constrained optimisation to compute Reliability index and probability of failure. It
was found to be relatively less user friendly when compared to the existing commercial
software packages but it serves as a very efficient tool to understand the concepts of FORM
better.

The major disadvantage of Monte Carlo regarding its high computational cost has triggered
the need to find better alternatives. In most applications, FORM only needs a small number of
iterations for convergence, making it more computationally efficient than MCS. This is
particularly so when the failure probabilities are low. With the limited research here, it is safe
to say that FORM could serve as a first step in Reliability based design to study the relative
importance of parameters.
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Chapter 1

First order reliability methods

1.1 Introduction

In this chapter, the underlying concepts of first order reliability method are described. The
advantages of FORM are discussed to understand its potential to be used as an alternative to
the cumbersome Monte Carlo Process. It is a popular reliability method among academicians
but remains less used in industry owing to its mathematical complexity to understand the
concepts. This chapter gives an introduction to the concepts involved in FORM. The intent of
this chapter is to break down the complex equations and explain it in a practical context.
There are different approaches of FORM. These different approaches are explored.

In a nutshell, this chapter gives

1. The concept of risk based design
2. The basic concepts of reliability analysis
3. Theory behind FORM

1.2 Risk and Safety Factors Concept

The most basic criteria in the design of a structure is to make sure that the strength of the
structure is greater than the impact of the loads applied. It is well known that geotechnical
engineering is associated with many uncertain parameters mainly owing to the soil variability.
The purpose of risk and reliability based design is to incorporate the information on
uncertainty into actual design problems.
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Figure 1 Fundamentals of Risk Evaluation

Figure 1 is a simple case considering two variables R, Resistance of the structure and S, Load
on the structure. S and R are stochastic variables, meaning they are random in nature. These
stochastic variables are defined by their probability density functions and statistical
parameters are used to characterise their randomness. pr and ps are the respective means, oy
and ag, their standard deviations and fs(s) and fz(s) their corresponding probability density
functions. Referring to Figure 1, design safety is ensured in a deterministic approach by
requiring that Ry be greater than Sy with a specified margin of safety.

Nominal Sy = Ry /Sy Equation 1

Sk is the safety factor. In a deterministic design, the uncertainty of all the parameters is taken
into account by a single number i.e the safety factor. There are different approaches or
methods based on how he safety factor is applied, i.e. it can be applied to the load, resistance
or both.

e Working stress method: Safety factor applied to resistance alone
e Ultimate Strength method: Safety factor applied to loads alone
e Concrete or steel (LRDF): Safety factors applied to both resistance and loads

Haldar and Mahadevan explains the intent of these conventional approaches by considering

the area of overlap between the two curves. This area of overlap provides a qualitative

measure of the probability of failure. The area of overlap depends on the following factors

1. The mean of the input parameters are a measure of the relative positions of the curves.
More distance between the curves implies less overlap area which reduces the probability
of failure.

2. Standard deviation is a measure of the dispersion of the curves. Narrow curves lead to
small overlap area reducing the probability of failure and vice versa

3. The probability density function is a measure of the shapes of the curves. The shape of the
curve plays a role in the area of overlap.
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Ensuring safety in a deterministic design is achieved by selecting the design variables with the
least area of overlap. Safety factors are employed to shift the positions of the curves. But such
a design does not take into account all the overlap factors. Risk based design is a more
rational approach as it minimises the overlap area by considering all the design variables to
achieve an acceptable level of risk.

In terms of probability of failure, risk can be defined as:

ps = P(failure) = P(R<S)

= [y Fr@)dr]fs(s) ds Equation 2

= [" Fr(s)fs(s)ds

1.3 Basic Concepts of Reliability Analysis

The reliability of an engineering design is the probability that it meets certain demands under
certain conditions. In geotechnics, an example of shallow foundation is often used to illustrate
this. For the stability of a foundation, it should be designed such that it satisfies certain
demands towards vertical loads. The bearing capacity (R) of the soil should exceed the total
vertical load (S) acting on it, for the foundation to be stable. Mathematically, this can be
represented as R>S.

This is mathematically expressed as

Z =R-S Equation 3

Here Z is the performance function or limit state function of the foundation. This function
differentiates the unsafe and safe zones with respect to R and S. This example has two
stochastic variables R and S. This equation can be generalised as:

Z=g(x) Equation 4

where g(x) constitutes the n basic variables x;, X»,.. X, of the performance function. The
performance function owes it’s name to the fact that it is a measure of the performance of any
structure. Like any mathematical equation, the performance function could have three
outcomes as follows:

= (x) > 0: Saferegion

= g(x) = 0:Limit state

= g(x) < 0: Failure region
In figure, the curve is the performance function. The region to the right of the curve is unsafe
where g(x)<0 while the region to the left of the curve is the safe region (g(X)>0). The
boundary or the curve represents the combination of the variables that are on the verge of
failure i.e. at limit state.
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Safe g(X) >0

2(X) =0

Figure 2 Limit State Concept

Figure 3 shows the joint probability density function and the corresponding contours. The
contours are projections of the surface of fx (X1, X2) on x1 - x2 plane. All the points on the
contours have the same values of f (x) or the same probability density.

R

gLy KPP0 g Xl
Q.qntpur'ﬁ'fjohu\g\:if"--.__ Sale region /

Figure 3 Safe and Unsafe Regions (Du, 2005)

1.4 First Order Reliability Methods (FORM)

This section gives some insight into the theory behind FORM; the underlying mathematical
equations involved in it and identifies the advantages of FORM. FORM is considered as a
good alternative to the cumbersome Monte Carlo Analysis. It’s accuracy with lesser

6
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computations makes up for its mathematical complexity. FORM was initially proposed by
Hasofer et al. (1974). It is capable of handling non linear performance functions, and
correlated non-normal variables.

FORM is also referred to as Mean Value First order second moment method (MVFOSM)
FORM linearizes the performance function using Taylor series approximation. Hence it’s a
first order approximation. FORM uses only mean and standard deviation of the variables.

The performance / limit state function is given by

Z=R-S Equation 5
As both R and S are assumed as normal random variables, Z can also be inferred as a random
variable, that is N(ug — us, /04 + o). Then probability of failure can be defined as

pr=P(Z <0) Equation 6
0—
pr = 0-(up—tts) Equation 7
/O’R+O'S
pr=1—¢ LRES Equation 8

2 2
O'R+O'S

¢ is the CDF of the standard normal variate

Thus, the probability of failure is a function of the mean value of Z to its standard deviation.

B = Pz _ Lrols Equation 9
Iz /0122+0§

The probability of failure can be expressed in terms of the safety index as follows.
pr = (=) =1-9(p) Equation 10

These variables are restricted to positive values. Hence log normally distribution is assumed.
The generalized formulation of the performance function can be written as:

Z=gX)=9gX,X;....,X) Equation 11
X1, X2..X, represents the random variables in the limit state function as mentioned before.
A Taylor series expansion of the limit state function about the mean gives

¢= g(”X)+ZaX(X bx) +%iiaaz A =) (%) = 1) + -

i=1 j=1

Equation 12

The gradient is evaluated at the mean values. These calculations make FORM less attractive
for practical use, although it is much less complicated than it is assumed to be. To lessen the
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assumed mathematical complexity, new FORM methods use iterative constrained
optimisation algorithms that do not require evaluation of the gradient.

The Taylor series expansion is truncated for linear terms to obtain a first order approximate
The mean and variance obtained from the truncated expansion is given by:

Uz = g(#xl' Hx,y oo .an) and Equation 13
dg 0dg .
07 ~ Xiz Xj=15x; ax; COV (X0 X)) Equation 14

Cov(X;, X;) is the covariance of X; and X;

This explains the concept behind MVVFOSM, which basically a Taylor Series Approximation
or rather, linearization of the performance function at the mean values of the random
variables. But this linearization was later identified as a limitation. Later, a second order
approximation of the Taylor Series Approximation was defined, and is referred to as SORM —
Second order reliability method. The limitations of MVFOSM is summarized here:

Limitations of MVFOSM

1. Information regarding distribution of the variables is completely ignored

2. Truncation errors due to linearization at mean point for non-linear limit state function.

3. Different though mechanically equivalent equations did not give the same safety index. In
other words, the safety indices depend on the how the limit state equation is formulated.
This was commonly called the invariance problem.

To overcome the invariance problem, Hasofer and Lind proposed an advanced First Order

Reliability method. This is discussed in the next section.

1.5 Advanced First Order Reliability Method or the Hasofer Lind Method

As the name says, this method is an advanced version of FORM which compensates for the
non-invariance of the reliability index in FORM. This method transforms the variables to a
standardized space of Normal variables. As it is known, standard normal variables have zero
mean and standard deviation of 1. This transformation of the coordinate space is performed to
aid in the computation of reliability Index. A random variable X is reduced as:

Xi—Ux;

X' = (i=1.2,..,n) Equation 15

O'Xl.

Xi’ is a random variable characterized by a probability density function having zero mean and
unit standard deviation. Equation 15 is implemented in the limit state equation to obtain the
limit state in the new space — the reduced coordinate space. Each variable in the limit state
equation is substituted by the respective reduced equation and the corresponding limit state
equation is obtained. This is referred to as transformation of the coordinate space from the
original coordinates to the reduced coordinates as shown in Figure 4. The limit state surface in
the reduced coordinate system is referred as g(X”) = 0.
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Now the reliability index is defined in this new reduced space. The Hasofer-Lind reliability
index By Is defined as the minimum possible distance between the origin and the limit state
surface. Thus the determination of this point has two important aspects — Optimisation of the
distance to find the right minimum distance point, with the Constraint that the point lies on the
limit state surface. This minimum distance point on the limit state surface is called the ‘design
point (x*)’. Hasofer — Lind index can be mathematically written as

BuL =+ (x,*)T(x'*) Equation 16

The design point represents the most probabable point of failure - MPP
S A :
Design point / 4
(r*, s*)
o R-S=0
Unsafe region 0. “r—Hs
Z<0 O
Unsafe region
(Mg, Ks)
b bs Safe
% Design point region
""""""""""""""" : (r'*,5'%) Z>0
)
Safe region i
1
|
! o
! e

Yy

AR o
s g

Figure 4 Original Coordinates, Reduced Coordinates (Haldar and Mahadevan)

Figure 4 shows the transformation of the random variables of a limit state function from the
original coordinate system to the reduced coordinate system. Here, it is explained why the
minimum distance as defined earlier is the reliability index.

The transformation of the variables, R and S is as follows:

Ri— Si—
R =ZLER, g =27k Equation 17
OR gs

Now the reduced equations of R and S are substituted into the limit state equation to obtain
the new limit state surface in the standard space of coordinates.

Z = ogR' — 0¢S’ + ug — Us Equation 18
The reliability index is calculated using Equation 16. Reliability index can be estimated as:

g = Bz _ HRTHS Equation 19
9z /0123+0§

Probability of failure can be calculated from the reliability index.

Pr = &(-PBur) Equation 20



First Order Reliability Methods

® [ ] is the standard normal distribution function.
The physical meaning of reliability index in this definition is the minimum distance between
the origin to the limit state surface in the reduced space of random variables. This point on the
limit state surface is the most probable point of failure or the design point. It is aptly named
because the design point represents the combination of stochastic variables that has the
highest probability of failure. In other words, it is the worst possible combination of the input
parameters.
Unlike FOSM reliability index, Hasofer-Lind reliability index is invariant. This is because the
reliability index does not vary for mechanically equivalent limit states.
The actual problem here is to determine the design point that leads to the least distance
between the origin and the limit state surface. This becomes a constrained optimisation
problem where the distance between the origin and the limit state surface is optimised /
minimised by constraining the design point to lie on the limit state.

» Minimise D = /(x"™)t(x"*)

» Subjecting to constraint g(X’) = 0.

Lagrange’s multipliers is used to estimate the minimum distance as:

*
n 1% ag
i=1%i P

ax;

BuL = — Equation 21
2%
n <6_9>
i=1 P
axX;

(0g/0X)" is the i™ partial derivative at the design point (X, , X2 ..., Xn ).
The design point in the reduced coordinates is:
xi" =-—a;fy, Equation 22

o; are the direction cosines along the coordinate axes X .

ag
ox]

Q= ———— Equation 23

2%
n dg
i=1 ’
axi

Direction cosines give an estimate of the sensitivity of each variable. It represents the
contribution of the parameter in the probability of failure. The direction cosines of all the
variables together should add up to 1.

Substituting a in the design point of original equation gives:

x; = Ux;, — “iaxiﬂHL Equation 24

10
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Algorithm to compute the Hasofer - Lind Reliability Index (Rackwitz, 1976)
For nonlinear performance functions, an iterative algorithm proposed by Rackwitz (1976) is
utilized. This is shown in Figure 5.

1. Define the Limit State Equation

/

2. Assume initial values of x;" (typically, mean) and obtain reduced variates ;" = (x;" — py, )/ 0x,

[

3. Evaluate (dg /aXi’)*and a; atx;"”"
/

4. Obtain the new design point x;"" in terms of By

N/

5. Substitute the new X;'* in the limit state equation g(x"") = 0 and solve for

[

6. Using the Sy value obtained in step 5, re-evaluate x;'* = —a; iy

N/

7. Repeat steps 3 through 6 until S, converges.

Figure 5 Algorithm to compute f;

Finally, the reliability index is used t compute the probability of failure as:
pr = ©(—Buw)-

1.5.1 A different perspective of Hasofer — Lind Reliability Index

Hasofer - Lind rewrote the reliability index in a matrix formulation, as

B = min/(x —m)TC~1(x — m) Equation 25
Or
oNT -
BuL = min\/(%) R-1 (%) Equation 26
L l

X represents the input stochastic variables, m is the mean values of the variables, C is the
covariance matrix that considers the negative or positive correlation between different input
parameters and R is the correlation matrix.

In general, reliability index is the distance between the performance function and the the mean
value point of the variables in units of standard deviation. There are computational barriers in
reliability analysis by the classical methods. This is because the classical approaches require
rotation of frame of reference and co-ordinate transformation.

11
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To overcome these disadvantages, Low and Tang (2005) proposed a different interpretation
with the perspective of an expanding ellipsoid. This does not require the transformation of the

original space to the reduced or standardised space of variables.

The ellipsoidal approach is based on the fact that the quadratic form in Equation 25 is similar
to the negative exponent of the multivariate normal probability density function. The iso
density locus of a multivariate normal probability density function is an ellipse, which is the
reason why Equation 25 can be represented by an ellipse. Minimising beta is equivalent to
maximising the value of the multivariate normal pdf. Thus the design point or the most
probable point of failure can be found as the smallest ellipsoid tangent to the limit state
surface. For non-normal variables, Rackwitz Fiessler transformation is used.

45
40 + Limit state surface
35 1 p-ellipse Design point
30 + - R
1-o d|sper5|0n ﬁ = — .
ellipse P Failure
25 + domain
P N 1
P2 N (¢ L :
15
T sAFE D
. 1(0' )a
- N
(m"Yq
0 J I i |'
0 5 10 15 20 25
Q

Figure 6 Ellipsoid approach for computing Hasofer Lind Reliability Index

30

12
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Chapter 2

Reliability-based Retaining wall
design

(B. K. Low, 2005)

2.1 Introduction

In this chapter, Reliability-based design of a retaining wall using constrained optimization
approach in spreadsheet (Low, 2005) is discussed. The spreadsheet model is based on intuitive
expanding dispersion ellipsoid perspective, as described in the previous chapter. Using this
approach simplifies the computations and interpretations. Sensitivity information conveyed in
a reliability analysis is discussed.

2.2 Reliability design

This design explicitly considers uncertainty in the design and gives the reliability index and
probability of failure. Here, the retaining wall is designed using the ellipsoidal approach of
FORM. The reliability index, probability of failure and the design points are obtained. The
probability of failure (Pf) can be estimated from the reliability index, B using

P =1 — ®(p)=D(—p) Equation 27

2.2.1 Reliability-based approach and factor-of-safety approach

In figure 8a, A and B has the same of factor of safety, but clearly, A is safer than B. On the
other hand, figure 8b shows a slope and foundation with different factor of safety but a
reliability analysis shows that both structures had similar levels of reliability. This shows that
a reliability based design gives a better measure of safety that lumped factor of safety
approach.

13
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Figure 7 Reliability analysis of overturning failure mode and sliding mode, for correlated normal random
variables using spreadsheet model (B K Low, 2005)
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Figure 8a, b Limitations of lumped FoS (B K Low, 2005)

2.3 Limit State function

Performance Function or the limit state function is defined based on the input variables and
failure limits. The performance functions (PerFnl and PerFn2) are written for the rotational
mode of failure and sliding failure mode:

PerFnl:= W; Army + W,Arm, + P,,Armgy, — P, Armg,

PerFn2:=b X c, — Py,

P,, = P,sind, Armg,, = b,W; = 0.5y,,u(b — a) H, Arm; = g(b — a)H

Wy =vYwauaH , Arm, = b — %, Py, = P,cosd, Armg, = g

2.4 Determination of Reliability Index

Equation 26 is used to compute the reliability index. The soil properties that are randomized
are soil friction angle ¢ , the interface friction angle &, and the base adhesion c,. The statistical
inputs of the variables are defined. The correlation matrix is set up based on the expected
correlations between the parameters.

The design values of the parameters are initialized with the mean values and the solver is
invoked. The solver is set to minimize the cell containing the reliability index by changing the
design values and the values dependent on the design values by subjecting to the constraint
that the respective performance function PerFn < =0 . This is to make sure that the design
point lies on the limit state surface. This optimizes the reliability index and searches for the
most probable point of failure.

2.5 Results and Interpretation

¢ Design point
Design point lies on the failure surface and determines the value of the reliability index. As
the design point lies on the limit state surface given by PerFn, it satisfies the corresponding
limit state equation. The mean value points of (¢’, d, cq indicates points that can be called
15
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‘safe’, against sliding /overturning but failure occurs when the mean values (¢’, d, c,) are
decreased to the design values (¢’, 9, c,).

e Parametric Sensitivity:
The column nx shows how much the design point x* deviates from the mean. In other words,
nx reflects the sensitivity of each parameter to sliding / overturning failure. For example, in
Figure 7, nx corresponding to c, is O for Perfnl. This implies that c, is insensitive to
overturning failure whereas for sliding limit stat the values of nx show that c, is the most
sensitive. This ability to reflect parametric sensitivity is unique to FORM

e Partial factors

Low (2005) has shown that the ratio of the mean values to the design point is similar to

the partial factors in the limit state approach in the Eurocode7, although partial factors

have not been used in this Reliability based design here.

F. — 175 One-standard-deviation
s =1
45 ~ dispersion ellipse
40
35 - T e B-ellipse
30 T
~
I
@ 25 Design point :
% \ Safe
©° : domain
B 20 1 Limit state surface i
(Fs = 1-0, or PerFn1 = 0) :
I
15 T :
I
. Failure
10 - B = Rir=249 : .
:
51 '.
Mg
0+ } |
0 10 20 30

&: degrees

Figure 9 Design point and normal dispersion ellipsoids in ¢’ — & space. Correlation coefficient is non zero. (B
K Low, 2005)

e Significance of correlation
To investigate the significance of correlation, Low(2005) assumed the parameters as
uncorrelated by giving a null correlation matrix. As expected, the reliability was a higher
value, showing that a ignoring positive correlations leads to an unconservative estimate of
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reliability. Also it was observed that the two ellipses in Figure 10 are non-tilted when
compared to the tilted ellipses in Figure 9.

Table 1 Results of Reliability Analysis performed by Low, 2005

Overturning mode(Perfnl) Sliding mode (Perfn2)

Reliability Index 2.49 3.102
nx Sensitivity Scale nx Sensitivity Scale
. o -2.449 Highest -1.67 Sensitive
Parametric Sensitivity - —
-2.23 High -1.39 Sensitive
0 Insensitive -2.60 Highest

One-standard-deviation

50T dispersion ellipse

Pl F, =175 B-elipse
40—
35—+ gy
30+ ~
@ ~
e
> 25— .
b Limit state surfi
.9 Imit slale suriace Safe
E=S (Fo=10) ! domain
20+ |
]
]
154 : Failure
Design point ' domain
I
)
10— H
B=Rir=313 i
1
5_ Ll
)
0 f f {
0 10 20 30

o: degrees

Figure 10 Design point and normal dispersion ellipsoids in ¢’ — 6 space. Correlation coefficient is 0 (Low,
2005)

Table 1 gives the results of the reliability analysis of the retaining wall. The retaining wall has
a higher reliability index for the sliding mode when compared to the overturning mode. This
implies that the probability of failure of the retaining wall due to overturning is greater than its
probability of failure by sliding. The reason could be due to the insensitivity of one of the
parameters, the base adhesion to overturning. The results also show the sensitivity of each
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parameter for the respective failure modes. Overturning failure mode is insensitive to base
adhesion, as expected, whereas it is highly sensitive to the sliding failure mode.

2.6 Conclusions

This chapter gives an insight into Reliability based design of a retaining wall by Low (2005).
The usefulness of the ellipsoidal approach of the Hasofer - Lind reliability index is shown.
The design values are computed automatically using iterative constrained optimization. This
approach considers correlation between variables and also gives an estimate of the importance
of each parameter. Low (2005) proves that this approach could play a supplementary
verification and comparison role to a design based on Eurocode?.

A similar example by Low (2005) shows the design of a retaining wall by back calculating the
parameter design values by assuming a required level of reliability index.
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Chapter 3

Probabilistic slope stability
analysis

3.1 Introduction

One of the most common geotechnical problems is the slope stability problems. This chapter
gives an insight into Reliability-based analysis of a slope stability problem using an intuitive
First Order Method. For this purpose, a spreadsheet model developed by Low (2003) is used.
Low (2003) analysed a clay slope using the intuitive first order reliability method. In this
chapter, the example of the clay slope analysed by Low (2003) is briefly explained. Further
investigation on the uncertainty of the depth levels that define the soil layers is performed.
The effect of one dimensional spatial variation on the outcome of slope reliability is analyzed
by altering the autocorrelation distance. Sensitivity analysis in FORM is discussed and an
interpretation of the sensitivity of each parameter is made. The advantages and shortcomings
of using the spreadsheet model to implement FORM are studied.

3.2 Methodology

[ Specify the slope geometry

]

r N
Search for eritical slip surfaces and associated factor

of safety using Reformulated spencer method
\, y

]

e ™)
Specify the probability distribution for uncertain

soil parameters and set the correlation matrix

B s (T .
I’ + Reliability analysis *

[ Implement Ellipsoidal FORM. ""]‘*--*' """""" ’
|

Optimise Reliability Index, obtain probability of
failure, design points and slip surface

Figure 11 Schematic representation of Low’s spreadsheet set up.
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The flowchart is a basic representation of the scheme used by Low (2003) to set up the

spreadsheet model.

3.3 Slope Stability Spreadsheet Model (Low, 2003)

Low (2003) uses reformulated spencer method that is compatible for being implemented in a
spreadsheet. A deterministic analysis is first made which is then extended probabilistically to
include parameter uncertainties. The principles of the reformulated spencer method are not
discussed here, but it can be found in Low (2003). Different methods can be explored in the
by varying the constraints of optimization.
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Figure 12 Deterministic analysis of a 5 m high embankment on soft ground with depth-dependent undrained

shear strength (Low, 2003)

Figure 12 shows the spreadsheet set up for the deterministic analysis of 5m embankment
geometry. The undrained shear strength is depth dependent and distinguishes 5 soil layers.
The user defined VBA function computes the co-ordinate values of the embankment
geometry. The slip surface co-ordinates defined by the center of rotation (x; and y.) and its
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radius is initialized as seen in the Figure 12. The factor of safety is set to 1 and Microsoft
Excel’s built in Solver is invoked. The solver asks for targets, variables and constraints. The
target here is to minimize the cell having the factor of safety. The cells that are allowed to
change values every iteration are the ones containing the factor of safety and the slip surface
geometry. The changing cells are giving constraints to make sure that they are within their
permissible limits. On invoking the solver, the model gives a minimized factor of safety and
the slip surface of the slope (circular or non-circular depending on the constraints).

A reliability analysis of the same slope is performed by extending the deterministic analysis
probabilistically. This considers uncertainties in the undrained shear strength of the soft clay
layers, cohesion, friction angle and unit weight of the embankment. Only normal or log
normal variables are considered. A VBA function converts the mean and standard deviation to
the respective normal values by Rackwitz-Fiessler equivalent normal transformation. A
correlation matrix models the spatial variation in the soft ground. An autocorrelation distance
(6) of 3 mis assumed in the following negative exponential model:

_ Depth(i)—Depth(j)

pij=¢€ s Equation 28
The design values are initialized with mean values, and the solver is set. The target cell is the
cell having the Reliability index which is a quadratic form (9 dimensional ellipsoid in original
space). As the solver is invoked, the reliability index is minimized as the design values are
updated. This process of optimizing the reliability index by subjecting the model to a certain
set of constraints is referred as constrained optimization. During each iteration, the equivalent
normal mean (my) and standard deviation (on) are computed automatically for each trial
design point. As mentioned in previous sections, the design point represents the worst
possible combination of the random variables that can potentially lead to failure. The design
values of the parameters are linked to the deterministic computations, which in turn compute
the co-ordinates of the slip circle. The analysis was performed with both normal and log-
normal variates. The critical slip surface of both cases with normal and lognormal variates
was the same. However it is different from that of the deterministic slip surface.

3.4 Uncertainty in soil layering and the height of the embankment

In this section, the spreadsheet model discussed in the previous section is modified to include
uncertainties in slope geometry. This section further investigates the uncertainty in the depth
levels and slope geometry (embankment height). In this chapter, depth levels refer to the
depth at which soil layers are distinguished with their shear strength parameter, as indicated in
Figure 13. The depth level is highly uncertain as it is often hard to distinctly define the
different soil layers. The uncertainty in slope geometry is often ignored as it is considered
negligible. Here, the parameter defining slope height is randomized and the model response is
studied.
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Figure 13 Slope geometry and Depth Levels

The upper most and lowermost depth levels were kept constant, and the depth levels in
between were randomized. The depth levels were called D2, D3, D4, and D5 and the height of
the embankment is referred as H. They were given a log normal distribution with mean values
of 1.5, 3, 5, 7 and 5m respectively. The standard deviations are computed and the correlation
matrix is updated. The embankment height is assumed to be uncorrelated. Adjacent depth
levels are assumed to have a correlation coefficient of 0.5, and a correlation coefficient of 0.3
and 0.2 are assumed for the next layers. The design values of the variables are initialized with
the mean values and the reliability index is computed using the Hasofer-Lind Matrix equation
(Equation 25). The solver is then invoked to minimize the reliability index and compute the
design value of the variables. These design values are linked to the deterministic computations
to obtain the slip circle. Figure 14 shows the spreadsheet set up to compute the reliability
index and the probability of failure.

Table 2 shows the reliability indices and the probability of failure as the number of uncertain
parameters is increased. It is only logical to expect the reliability index decreasing and the
corresponding probability of failure increasing with more uncertainty being considered. It can
be seen that the inclusion of the embankment height does show a significant decrease in
reliability. But the inclusion of depth levels does not influence the reliability index. The
design values of the depth levels are very close to their mean values. This could be due to the
respective shear strengths in the soil layers also being randomized.
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mean StDev vh Correlation matrix, "crmat”
DistName V; m s m' & vmMs" en On Ym Gy Cp CG3 Cy G Cg H D2 D3 D4 D5
lognormal Cm 10.158074 10 150 | 9886 | 1515 0.180 1 0.3 05 0 0 0 0 0 0 0 0 0 0 0
lognormal ¢m 30343898 30 300 | 29847 | 3027 0164 03 1 05 0 0 0 0 0 0 0 0 0 0 0
lognormal Ym 20336246 20 100 | 19.972 | 1.016 0.359 05 05 1 0 0 0 0 0 0 0 0 0 0 0
lognormal Cu1 37.000355 40 6.00 | 39473 | 5519 | 0448 0 0 0 1 06117 0.3708 0.1828 0.0935 0.0357| O 0 0 0 o
lognormal Cy2 25316775 28 420 | 27585 | 3776 | 0601 0 0 0 |0617 1 06061 02989 01529 00583 O 0 0 0 0
lognormal Cuz 17012028 20 300 | 19688 | 2672 | -0665 0 0 0 03708 06061 1 04931 02522 00962| Q 0 0 0 0
lognomal €, 17.830734 20 300 | 19679 | 2660 | 0695 0 0 0 |01828 02989 04931 1 05115 0.1951| O 0 0 0 0
lognormal Cus 24 00851 26 300 | 25855 | 3581 0460 0 0 0 |00935 01529 02522 05115 1 03815| O 0 0 0 0
lognormal Cys 35646365 37 555 | 36.578 | 5317 | 0175 0 0 0 |0.0357 0.0583 0.0962 0.1951 03815 1 0 0 0 0 o
lognormal H 572168 5 075| 4887 | 0853 0978 0 0 0 0 0 0 0 0 0 1 0 0 0 0
lognormal D2 147465 15 023| 1483 | 0220 | -0.040 0 0 0 0 0 0 0 0 0 0 1 05 03 02
lognormal D3 297666 3 045| 2967 | 0444 0022 0 0 0 0 0 0 0 0 0 0 05 1 05 03
lognormal D4 509799 5 075| 4942 | 0760 0205 0 0 0 0 0 0 0 0 0 0 03 05 1 05
lognormal D5 710943 7 105 6920 | 1.060 | 0179 0 0 0 0 0 0 0 0 0 0 0.2 0.3 0.5 1
Reliability Index 1.363
Probability of failure 0.0864
Figure 14 Spreadsheet set up - Reliability computation
Table 2 Reliability computation for different cases
Random Variables B pf

Casel  Cm®mYmCu1;Cu2,Cu3,Cus Cus Cus 1.961 0.0249
Case2  Cm®mYmCu1,Cu2,Cu3,Cus,Cus Cus,H 1.387 0.0827
Case3  Cm®mYm Cu1,Cu2,Cu3,Cus,Cus Cus H,D2,D03,D4,D5 1.363 0.0864
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> .

] Yo
critical
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Figure 15 Comparison of reliability-based critical noncircular slip surface with deterministic critical
noncircular slip surface (the lower dotted line) for Casel, Case2, and Case3 (clockwise)

Figure 15 shows that the reliability based non circular slip surface and deterministic critical
non circular slip surfaces are indistinguishable for case 1, while case 2 shows that inclusion of
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embankment height affects the lower end of the slip surface. Case 3 shows that as the depth
levels are included, upper end of the reliability based critical slip surface is different from the
deterministic slip surface.

3.5 Sensitivity Interpretation

A very important advantage of using the ellipsoidal approach of FORM is its ability to reflect
sensitivities. The design values reflect the sensitivities of the parameters. In Figure 16, v;
refers to the design values of the parameters. The embankment height, H seems to be the most
sensitive parameter with a vn value of 0.987 (vn shows how much the design value, v;
deviates from the mean). Among the soil layers, it is to be noted that the fourth depth level D4
with shear strength of cu, is the most sensitive, as the vn values of D4 and cu, are
comparatively on the higher side. The mid layer of the soft clay seems to be the most sensitive
to the sliding of the slope.

mean StDev vn
DistName v m; s mN sN (V-mN)fsN
lognormal Ch 10.155782 10 150 | 9.886 1.515 0.178

lognormal ¢m 30338167 30 300 | 29847 | 3.028 0.162
lognormal Tm 20332924 20 100 | 19972 | 1.016 0.355
lognormal  C€,q 37025732 40 600 | 39475 | 5523 | 0443
lognormal  C,» 25341992 28 420 | 27.588 | 3.780 | -0.504
lognormal Cy3 17931483 20 300 | 19690 | 2675 | 0657
lognormal C, 17847338 20 300 | 19681 | 2662 | 0689
lognormal €,z 24019102 26 390 | 25655 | 3583 | 0457
lognormal C,s; 358651585 37 555 | 36578 | 5318 | 0174
lognormal H 572932 5 075| 4885 | 0855 | 0987

lognormal D2 147485 15 023| 1483 | 0220 | 0039

lognormal D3 297666 3 045| 2967 | 0444 | 0022
lognormal D4 509598 5 075| 4942 | 0760 | 0.202
lognormal D5 71083 7 105| 69820 | 1060 | 0178
Reliability Index 1.363

Probability of failure 0.0864

Figure 16 Sensitivity interpretation using FORM

3.6 Vertical autocorrelation distance

To analyze the influence of the auto correlation distance on the slope reliability, a series of
slope reliability analysis is carried out by varying the auto correlation distance (6) from 0.5 to
om.
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Figure 17 Slope Reliability Analysis for different correlation values
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Figure 18 Reliability trend with Vertical Auto correlation distance

The design point is significant in the design as it gives the combination of parameters with the
most failure probability. Thus the behavior of random variables at this design point was
investigated. Figure 17 shows that the profiles of design point does not vary significantly at
with slight increases in 8. Figure 18 shows that reliability index decreases with increase in
auto correlation distance as expected.
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3.7 Conclusions

This model allows any number of variables to be randomized and their effect on the reliability
index could be studied. A spreadsheet model for a slope stability problem developed by Low
(2003) was used to investigate the uncertainties in slope geometry and depth levels of the
embankment. One of the most important advantages of using the spreadsheet model is the
ease with which any number of parameters could be randomized. The slope geometry
(embankment height) was found to have a major influence on the Reliability index while the
inclusion of depth levels did not have a big impact on the reliability index. This lesser
influence of depth levels on reliability index is probably due to their respective shear strengths
also being randomized.

The spreadsheet model is not as user friendly as the commercial softwares but it provides a
better understanding of the concept unlike commercial softwares where the underlying
concept is hidden.
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APPENDIX

FIRST ORDER RELIABILITY METHODS

CONCEPTS AND APPLICATION

TR

* Opverlapped area gives the measure of the
Probability of failure.

* Area of overlap factors: relative positions
(u), dispersion (0) and shapes of the curves
(pdfs).

* Objective of safe designs: To control the
size of overlapped area.

* Conventional design approach achieve this
by shifting position of the curves using S;

* Riskbased design accounts for all overlap
factors.

RELIABILITY BASED DESIGN CONCEPT

A

Probability density function

/.

Julr)

Hs

kso's kgag

A=

S — Load on the structure

R — Resistance of the structure
Ry and Sy — Deterministic / Nominal values
Nominal Safety factor , S = Ry /Sy
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/

PROBABILITY OF FAILURE

Basic equation qf the risk based design concept:

pr=P(R <S)
= [1S5 fa(dr]fs(s) ds
= fooo Fr(s)fs(s)ds

Fg(s) - CDF of R evaluated at s

e

Pr= J] fx(xl‘xz, ...,xn)dxldx2 ..dx,

* fxis thejoint probability density function
*  Integration performed over the failure region g(.)<0

*  “Full distributional approach”

Analytical approximations of the integral

FORM SORM $

* Non linear limit state

* Limit state function

linearized at mean values
* First order Taylor series
approximation
* Based on second moment
statistics.

function

* Second order

approx:matlon

LIMIT STATE CONCEPT

s

e

Unsafe g(X) <0
Safe g(X) > 0

R
2(X) =0

Performance function : Z = g(X, X;.-..,X,)
Limit state or failure surface: Z = g(X) = 0

* Failure event: g(X)<0

I -k BP
" 325 3EI
G=R-5S

A
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First Order Second - Moment Method (FOSM) or MVFOSM

method
Case 1: R & S are Independent Normal
Probability of failure is G<0 G>0
pPr= P(G <0) '_ =%
Or fag)
_ (00— g _ -
pr=¢ =) = 1—p(f)
9

~

o, (,/GRZ +052)

g 0 Mg
P is the reliability index "l gX) TGl R 8
@ is the CDF of the standard normal variate > G~ N(p‘R —Us,y GRz fif GSZ)
.
4 .
FirstOrder Second - Moment Method (FOSM) or MVFOSM
method
Case 2: R & S are Independent Log Normal
Probability of failure is G<0
P K <1 fi
= = o(g)
br S 49
Or
In “R
pr=1-9¢ # =1-9(B) pr\
[62+62
R S A
0 M
ﬁ is the reliability index *  Limitstate function: ¥ = */s (r)
: * InY=G =InR-InS
@ is the CDF of the standard normal variate
© G~ N(AR — s, ’(Rz - (52)
-

J
~
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First Order Second - Moment Method (FOSM)or MVFOSM
method

Limit State function: Z = g(X4, X5 ..., Xp)

Taylor series expansion qf the limit state function about the mean gives

Gi= g(llx)-l'ZaX(X HX‘)+ZZZ¢3X6X(X llxl)(X Iix,)

i=1 j=

Truncating the series at linear terms, first order approximate mean and variance of G is
- 9g 99
Uz~ g(ﬂxl;ﬂle "#Xn) and 0— 12] =1 aX aX COV(Xi,}(j)
Reliability index: B = ¥"%/5,

Probability of failure: p; = @(—)

Limit state function is linearized at the mean values of the random variables

N

Limitations of FOSM

Highl}‘ unlikely to have statisticallyindependentnormal or lognormal variables or limit state
functions that are simple additive or multiplicative function of the variables.

1. Distribution information of variables ignored

2. Truncation errors due to linearization at mean point for non linear limit state
function.
3. Safety index is not constant for different but mechanically equivalent

formulations of the same limit state.

Eg. Safety margins defined as R-S<0 and R/S<1 are mechanically equivalent yet gives
different probabilities of failure.

THIS LACK OF INVARINCE PROBLEM OVERCOME BY ADVANCED FOSM BY
HASOFER AND LIND.

A

31



First Order Reliability Methods

4 AFOSM Method for Normal Variables (Hasofer -
Lind Method)

Transform original limit state g(X) = 0 to reduced limit state g(X") = 0

x/ =Tk X;~N(1,0) and X,/ ~N(0,1)
X;
Original coordinate Reduced coordinate
Random variables RS R = Rizer ST — Sizks
G'R O'S
Limit State function G=R—-S5=0 GO =0aR —0:SEFlip— s
Reliability Index g =(Hr_bs (e OS
VOg? + 052 Vg2 + 052

Reliabilityindex is the shortest distance of the linearised limit state from the origin in the

reduced coordinate system.

K¢
AN

HASOFER- LIND RELIABILITY INDEX: LINEAR LIMIT STATE FUNCTION

S A .
Design point / i
(r*,s®)
. R-S=0
Unsafe region 0. Lr—Hs
Z<0 Ts
Unsafe region
(Up. Ks)
Hr: Hs Safe
% Design point region
------------------------- i (I"*. .\"’)
i
Safe region !
i
3
g .
= » o
r R _ MK
s s
(a)Original coordinates =D (b) Reduced coordinates
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/

Hasofer - Lind Reliability Index : Non Linear Limit
State function

i
Bur = (™)) & pr= @(—Bur) v g(X’) = 0:Safe state
(x” - coordinates of the design point) g(X’) < 0:Failure state
OPTMISATION OF X”* g(X) < 0
® Minimise D = \/(x"*)*(x"*) by subjecting to constraint
g(X) = g(Xx’) = 0. X'* (Design point)
® Using Lagrange multiplier method, minimum distance is Biiz
le;l """"i'k (3_913
BuL= RS conf 1 8 =~ valuatedat design gX) > 0 giX)=0
ag oints X '*,x oo ’
. . . ;. "
o Thedrsignpomtiss, "ty X'*- Minimum distance point on limit
o . (af{%) state surface
® The direction cosines, &; = e | Smaller x"*+— Larger failure probability
T (ax‘.’ ) x"* — Most Probable Point of failure

\

S

T

ALGORITHM TO COMPUTE By & x;'*

1. Define the Limit State Equation

N/
2. Assume initial values of X;" (typically, mean) and obtain reduced variates X;"* = (x;* — 1 X; )/o. X;
3. Evaluate (0g/0X,')"and a; at x;"*
N/
4. Obtain the new design point X;'" in terms of By
N/
5. Substitute the new X;"* in the limit state equation g(x") = 0 andsolve for B
N8
6. Using the Br1 value obtained in step 5, re-evaluate x;"* = —a; By,
RS

7. Repeat steps 3 through 6 until B converges.
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GEOMETRICAL INTEPRETATION OF ALGORITHM TO
COMPUTE By,

At every search point,

* A linear approximation to the limit
state is constructed

* The distance from origin to the limit
state is found.

U Point B: Initial design point.
(| Tangent at B, BC is drawn.
Q AD gives the By, in the first iteration

\

T

* Inconsistency due to identical f; but different
reliabilities

* Generalizedreliability index, 8, to overcome
inconsistency (Ditlevsen 1979)

Bg=9¢7" f J O, NP(x,") ... p () )dxy "dxy” ... dxy

(integration over g(x”) = 0)

Polyhedral surface with tangent hyperplanes to approximate
the non linear limit state.

GENERALIZED RELIABILITY INDEX

g(X) <0

x"* (Design point)

Bue
g(X) > 0 Bk =0
X
*  Tiwo limit state surfaces: Flat and
Curved
* Shaded portion indicates failure
region

S
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ERROR ELLIPSE : AN INTRODUCTION TO THE
ELLIPSOID APPRAOCH

/ N\ Standard ellipse
LA\
AN

...... -

10

Ty

Parameters of error ellipse

" Cross sectiox,‘/k

'
'
'
l
L |
'
'
% o
'

|
'

A 2D Gaussian distribution function . A cross section gives the uncertainty in a certain direction, its
standard deviation corresponding to the intersections with the (one-sigma) error ellipse.

N

ELLIPSOID APPROACH TO COMPUTE RELIABILITY INDEX

Matrix formulation of the Hasofer— Lind index B is

Bui = minJ(x —-m)TC1(x—m)

Or equivalently,

T
BnL =minj(x—i-mi) R (—xi—m,->
g; g;

x — Random variables vector, C — covariance matrix
R — corr

0 ;- Standard deviation

>l ation iy G n valnec
elation matrix, M;— mean values

10 dispersion ellipse is centred at mean and
corresponds to Sy, = 1

Expand or contract the ellipse to determine the
smallest ellipse tangent to the limit state surface,
which gives the most probable failure point/ design
point.

45

40 |

A

Limit state surface
pellipse p= L]
y
| 1-gdispersion
ellipse
(WNpr-=meemmen
Safe
domain
JCH™ o
:(J‘ Ja
; Wa
0 5 10 15 20 25 30
Q
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| 23 |NOTATIONS

Reliability analysis of Al Bl c] Db JEJEIJIGIBIIIIIRK]T L I M N JO
1 | Initially, enter mean values for x* column, followed by using Excel
correlated non normals T Solver to automatically minimize reliability index £,
: : |_< | by changing x* column, subject to g(x) = 0.
using constrained = -] — _
or..3 . —— N Per function:
opumlsatmn. 4 x* m' o Correlation Matrix nx,” o(x) = Y°Z-M
5 | Y 337853922819 4.2068 HEE R VR T
SPREADSHEET METHOD 1 |6 | Z  47.758|49.88933 23864 ‘04 1 0 |08 9(x) B
(Low and Tang 2004) [ 7| M 1613.5)666.0249 4132 4 {0 o 1 |22 7E-05 | 2.6646
T | 8 | =CTE7TD0 A
* Initialize X" with values ) [zc- | [Fromdisi(020,0,1FALSENC20] [FSarT(mmui mmlt se(CRMat),nx)))
5 4 10 [
of mean [ of original |—{ |Boxed colls = -
n : g 11| |contain equations. SRIGIHAL Variates Y and Z are lognormals:
random variables. |— 1 (Iny—Af
. . 12 (4 A Q i o SO) = ———
* Rackwitz — Fiessler ] Wl 2
il ) 1 13| Y |0.1245|3681127) 0125 | 40 5 WG %
SuvalcEnonma 14 z | 0050 [3010775] 0050 | s0 25 7Y A=In(u)-05¢?
8 — ¢ =A/ln{l+Q .
transformation 15
-1 = ;
v oV =2 F@L | 16| Bu  Oum m® =yx(l-lny+2) o =yx{
7 17 1000 200
v mVN=x—0"x q)‘l[F (x)] EQ (similar expressions for lognormal Z)
$ & s a | -1
*  Minimise f cell by | 19| ,_F(!L'_'(!L'o_(ﬂﬂll)
cha.ngmg x* values, % 0.9691 | 7€-08 2'2931-\; i (Bzo)l Variate M: Type 1 Extreme (Gumbel)
subject to constraint that 22| gart=olBBS oo o (ORI
i) | 22 | F(M):cxd—e mpn] S(M)=ae ) F(M) J6o O = Hu p
gG) =0 [2]
/ . Al 8 JcT D TET FTGMH[ I TIJTKIUUMINJO]T P Jof R [ s [T
Rehablht} anal.\ 518 1 | Initially, enter mean values for x*col followed by invoking o ’L] g
; : : [, | Excel Solver, to automatically minimize reliability index f, B = min ['—-L] R '[;]
o T
usmé ObJeCt oriented -;— by changing x* column, subject to g(x) = 0. i % g
constrained — N Correlation
S < 4 |Distributions  Paral Para2 Para3 Parad x m' o matrix [R]_
optimisation 5| Lognomal Y 40 5 33785(39.228[42088] 1 1 04
- 3 6 Lognormal Z 50 25 47.757[49.889] 2.3864] | 04 1
(Low and Tang 2004) 7] Exvalvet M 1000 200 16135[E5605[41318] | 0 0
B o sosuiannin oo Tt s A A SRS s S A RN SRS S ST
9 Meaning of : Prob.Fail
E OPTIONS  Paral Para2 Para3 Parad  Input mean for initial x* values ! [0.00365)
11 Normal mean StDev Parat : W
| 12| Lognormal mean StDev Paratl
13| Extvaluet  mean StDev Parat Boxadcells ::"“”' formulas.
; . : : Them" and o" cells contain
14 =0.5°
| 14| Umfo@ Use BetaDist(1,1,min,max) mean=0.5(min+max) oo user-defed finction
| 15] Exponential  mean Para1 EQVN(...) of Fig. 4, as follows:
| 16| Gamma « A mean=a‘i
7] Weibw e % mean=MasT(la) Cell J5: "=EquN(B5, D5:GS, 15, 1)°
™ ’ . Autofill to cell J7
| 18]  Triangular min  mode max mean=(min+mode+max)/3
_ﬁ BetaDist a A min  max mean=min+(max-min)*a/(a+1) Cell K5: "=EqVN(BS5, D5:G5, 15, 2)"
20 min  mode max Autofill to cell K7

A
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(Low and Tang 2007)

A B C D E F G HI|J|KIWE M N
1 Correlation
2 Distibuon ParalPara2Para3Parad x* matixR]  p; g(x') g "
3 Lognormal Y 40 5 3378|[ 1 04 0|1.294[7E-08[26646] =
4 Lognomal Z 50 25 4776[/04 1 0 |-0.893 Y-vZ-M
5 Extvaluet M 1000 200 1613/ 0 0 12293 [(x'values)

More efficient reliability analyses (Low and Tang 2007)

* B =miny{[n]T[R]*[n]
xi—lliN -1

ny =58 oo1[F ()

.« x=F o)

n — Column vector of ni

Xi- original non normal variate

@[ ]- Inverse CDF of a standard normal distribution
F (x;) - Original non normal CDF

SPREADSHEET METHOD 2: NEW EFFICIENT FORM ALGORITHM

Differences from 2004 aPProach:

Equivalent /1)y and Oy not computed.
During constrained optimisation,
» Dimensionless numbers N; is varied.
» Each X; is computed as a function of
n;.
The objective is to find the value X; such
that the nonnormal cdf F (X;) at X; is
equal to the standard normal cdf [@(n;)].
F(x;) = [o(ny)]
x € F imposedas a constraint g(x*) = 0
in Excel Solver.
When g(x*) = 0 and £ is minimum, x*

becomes design values.

\

e

Method 1: minimize Bby varying x; Method 2:

It N
X, — p [ G| X — A
L 1 R 1 g [}
\/{ o ] ] [ o) ]

by changing x, (via Excel's Solver).
R o )
/)
u" =x-c" xo™ [F(x)]
Subjectto g(x) =0

/8= min

xefF

COMPARISON OF 2 METHODS

minimize B by varying n;

p=min Il T

by changing n, (via Excel's Solver).
For a trial n, get X, = h(n,)
Functions h(n) as in Figure 5.
Subject to g(x) = 0
(More efficient and robust than method 1)

Method 1 requires computation of equivalentnormal means and equivalent normal standard

deviations. Method 2 does not.

7
\
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RETAINING WALL- DIFFERENT SAFETY APPROACHES

I_umped Factor of safet)’ approach

Wi X Army + W, X Arm,
Pon X Armg, — Py, X Armg,

=f(¢',6,..)

s =

Limit state approach using partial factors

Z (Resisting moments, factored) = y (Overturning moments, factored)

Reliabih’ty - based design

Py = 1— @(f) =®(-f)

W

Merits of reliability-based approach over the
lumped factor-of-safety approach

One-standard-deviation T — Slope
F=14  dispersion ellipsoid T s Fouridation

Unsafe, F, < 1-0

J
\
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(- RELIABILITY ANALYSIS OF A SEMI-GRAVITY h
RETAINING WALL USING SPREADSHEET MODEL

L Yout ) a ¢ & Yem @ [
0 24 10 %0 (x", in rackans) 18 04 18
I 0.1745 I 15708 | 0.4613 l 02711
X, Py
1 3
-l KoM =
o [ o | nepn | |, eow
Force Am Moment
p | 52| 12 62136 [_=sorTomanc
w,| 1008 | 09333 | 9408
w,| 516 | 18 92.16 Pk
1929 2484 ™ |J x w"l

T

Fy, = 1.76 One-standard-deviation
% o= dispersion ellipse
40
35 By =D g o
30
g 25
g 20 Limit state surface

(F, = 1:0, or PerFn1 = 0)

10 B ~ Rir - 249

\
Vs

J
Design point and normal dispersion k
ellipsoids in ¢’ - 0 space

Failure
domain

&: degrees

Correlation coefficient = 0.8

30

v
V
H
'
15 ) Fallure
Design point : domain
10— :
p=Rr=313 H
'
5- )
e
o 10 20 30
¥ degrees

Correlation coefficient =0
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Probabilistic Slope stability analysis

® Deterministic analysis, extended probabilistically in the
spreadsheet.

® Robustness of non circular critical slip surface.

¢ Effects of auto correlation distance on slopc rcliability results

N

Deterministic Spencer Method
T; = [c/l; + (P, — w;l;)tang; '] /F [SPENCER method |

Ei = Ei—l + Pisina,- - Ticosai
_ lWl-—(Ai—/li_l)Ei_l—Il—:(cl-'ll-—ul-litantbi)(sinai—licosai)]

=

[lll-sinal-+cosai +;':-tan<pil(sin a; —Aicosai]

Y [T;cosa; — P;sina;] — B, = 0

Z[(Tisinai + P;cosa; — W;) X Ly; + (Tjcosa; — Pisina;) X Lyi] -M, =0

Ly = 0.50; +x-4) —x,
Ly; =¥ — 050 +¥yi-1)

A
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HRERERERSEEEARNEE!

AlBJCJDJEJFJGIH]TJIJJIKJLIMINJO]JPJQ]R
1f[70 = o & 10 15 20| [[SPENCER method A’ F DumEq e - .
; 1 Emotmen ots 120 [1aar] Deterministic stabilitv analvsis of
L ; s .
[l & ° - : IM Xforces  Vayingd] Sm hlgh embankment
5 (o —Eu [0 ] ow | TRUE
— SoRclay ettt Amay formulas
8 -0 I ® Depth dependent undrained
| 81 siope angle
(o] H he w Pu My 1 Xe Yo R Yon Yos shear strength
M]z s 10 | 15 |erss] o2 491 785 1340 | 589 | 17.467 Xn Xo . DT I =
lm‘:m-l kNIm’.kNImI'.kN.I s11] 5 CesJue] — Im.tl‘ahze1.:he centre,radlui of
o other consistent set of unis: b= critical slip surface and F =1
|framed cells contain equations | —= =

Yoot Yiop Yawe C© & W apg u [

¢ ol 2z critical slip surface and FoS
m 72| 8 0012 1298 | 1212 5.63)
2| 1s.0f w.nl 33| 963 | o0zs | was| 1124 7
3 112.01] 4214 1557 | 0.038 | 5094 10. 8.54)
¢, (kPa)
Undrained shear strength profile of soft clay 0 25 50 Embankment
depth o 15 s 5 7 1w (m 04 Cn ¥m Tm
o w2 2 2 % ¥(kPa) 2 0 % 2
£ 4 () () (KN
e
1 (kNm) 8
10 4

P T E { o L L * Invokesolver to obtain the

\

N

Testing the robustness of search for critical non circular slip surface

-==== Circular, initial
Noncircular critical

A2 F.=1251.26
Different optimization settings for implementing different limit equilibrium
methods
Method Assumption for 4 or A By changing cclls Solver constraints regarding equilibrium
Spencer with varying side-force inchination Varying £ AR XForces =0; EMoments =0
Spencer with constant side-foree inclination Constant £ P f LT EForces =0; EMoments =0
Bishop simplified method (crcular ship surface) Set 2/ =0 B IMoments =0
Wedge method Example: £ =(tan $)F s IForces =0

R
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mean StDev n Correlation matrix, "crmat”
DistName Vi B G N oM @pyoM Gm fm Ym G G Go Cus Cs G
lognomal  Cm 10482 10 150 | 9572 [ 1.%3 [ 03% 1 03 05 0 0 0 0 0 0 *  Spatial Correlation
lognomnal  $m 0976 30 300 | 2080 | 3080 | 037 93 1 05 0 0 0 0 O 0O _Depth(i)—Depth(j)
lognommal  Tm 2773 20 100 | 19.%59 | 1.8 | 0784 05 05 1 0 0 0 0 0 0 Pij = € s
lognonnal  Cyy 34269 40 600 | 39887 | 5112 | 0962 0 0 o 051_037_018_01 _ong| 0 *  Minimize the quadratic form
lognonnal Gz 2879 28 420 | 2746 | 3413 | 1279 0 0 0 081, 1 081 031 096 06615 (;i.e.cell“p”
]
lognomal  Cu3 15988 20 300 | 19.390 | 2385 | 1426 0 0 0 037,081 1 051 0% 013 * By changing the nine random
lognonnal  Cug 15338 20 300 | 19.357 | 2362 | 1490 0 0 0 0.19: 31051 1 05 013] § vatiables v thie N and the 25
lognomnal  Gys 2077 26 390 | 25.442 | 393 | 1022 0 0 0 01,006 0% 051 1 0377 dinate val
lognomal  Cus 34595 37 555 | 36.535 | 560 | -0376 0 0 0 0Da0K 01 019 07 1 |10 coordinate values Xy, X, X4,
I 0 15\3 5 T 10 depth Yo1s Ypaiybas of the slip
E s - i
Et) B3] \ 5/ surface.
Aray formuta: Clri+Shit, then Enter| =normsdict (-8) *  Fremains at 1, i.e. at failure,
[FSORT(MMULT (TRANSP OSE () MMULT(MINVERSE (b)) | P robaility of failure *  Subject to the constraints
5 > 1<) <1,
F unction EqvN(DistributionName, v, mean, StDev, code) > x,>H/tan(radians(Q)),
Select Case UCase(Trim(DistributionName)) ‘trim leadingitrailing spaces & convert to uppercase > > : :
Case "NORMAL": If code= 1 Then EqvN = mean Xo= X,
If code = 2 Then EqvN = StDev > x,,<0
Case "LOGNORMAL": Ify < 0.000001 Thenv = 0.000001 R T - O .
lamda = Log{mean) - 0.5 * Loa(1 + (StDev / mean) * 2) YP3:Y¥P23 = Yt3:Ytz3
If code= 1 Then EqvN=v * (1 - Log(v) + lamda) » ¥M = 0,and
If code = 2 Then EqvN = v * Sqr(Log(1 + (StDev / mean) * 2)) > "6..'>0
End Select 0,102, =0.
End Function

~

N

Comparison of reliability based critical non circular slip surface
with the deterministic critical non circular slip surface

(m)
s -
4 :
2 ,*
: - i : \
-10 5~ 2 20 (m)
\_4.
_8 R
8 Deterministic critical
Lognormal variates Normal variates
Reliability index 1.96 (1.97)* 1.86 (1.87)*
Probability of failure 2.5% (24%)* 3.2% (3.1%)*

N
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EFFECT OF AUTOCORELATION DISTANCE ON h
SLOPE RELIABILITY
35 s \
gzo %23
g 22,1 \\
g,, 5 ‘_Y ) Te—g
. i’erh‘cal Azutocone:lb'on d.i:tznce () )
’ 1 :bsicca ofdisign poin:value, x (mi) )
\ e i Sor 5 e A3 S aeed Sin oS /
4 I
Pros of the Spreadsheet Model
JThat the enhanced participation will give rise to improved
understanding and appreciation of the principles,
dVersatile because unique features (e.g. anisotropy) can be
modeled by simplc programming in the VBA programming
environment of the spreadsheet software
dThe ease with which the deterministic analysis can be
extended into a first-order rcljabih'ty analysis.
N J
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