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Summary

Reducing carbon emissions and greenhouse gases in the transportation sector is crucial, given its
significant contribution to environmental degradation. While fossil fuel-based machinery has been per-
fected over the past century, efforts towards improving hybrid electric and fully electric powertrains is
promising in addressing the environmental challenges. For hybrid powertrains, achieving greener trans-
portation involves developing efficient energy management strategies to distribute operational time and
load between the system’s multiple power sources. Among real-time strategies, optimization-based
approaches have proven highly effective in minimizing energy consumption for specific scenarios. In
particular, hierarchical optimization, with a focus on Model Predictive Control, has emerged as a logical
and promising solution based on the existing literature.

Three control strategies were created in this study to be tested on a power plant modelled based on the
H2C boat. The boat has a hybrid powertrain with a parallel architecture, powered by a low-temperature
proton exchange membrane fuel cells and lithium ion batteries, rated at 50kW and 55kW respectively.
The two power sources were mathematically modelled to balance computational simplicity with suffi-
cient accuracy, closely reflecting the actual system. The study implemented three control strategies:
a rule-based control, an offline optimization-based strategy, and Hierarchical Model Predictive Control
(HMPC). They were evaluated based on their hydrogen consumption over the operational cycle, which
was used as the key performance indicator (KPI). The rule-based control served as the upper bound for
hydrogen consumption, while the offline optimization strategy, using Quadratic Programming, provided
a benchmark for the lowest hydrogen consumption. This allowed for a comprehensive comparison to
assess the competence of the Hierarchical MPC.

All three controls were designed with key considerations: maintaining the battery’s state of charge
within a safe and controllable range, meeting power demand as much as possible, and minimizing
fuel cell power fluctuations while allowing the battery to handle transient changes. The objective of
the Quadratic Programming (QP) problem was to minimize fuel cell power throughout the drive cycle
and keep the fuel cell operating as close to its highest efficiency point as possible when active. The
Hierarchical MPC’s mathematical formulation was inspired by the Quadratic Programming approach.
The HMPC consisted of two levels of optimization. The upper level computed the global optimal solution
based on predicted power demand profiles, considering future operational plans, and passed it on to
the lower level to be used as reference variables. The lower level featured an MPC that operated in real-
time, managing disturbances in power demand to address the actual power profile. The objectives of
the MPC were minimizing fuel cell power and the squared error between instantaneous fuel cell power
and its highest efficiency point, similar to the QP problem. Additionally, it tracked the reference state
from the upper level to bring the solution closer to global optimality.

The results showed that the Hierarchical MPC outperforms the rule-based control in all scenarios, while
achieving performance close to the global optimal solution provided by the Quadratic Programming
problem in terms of the KPI. Additionally, it showed strong results in reference tracking, reinforcing
the effectiveness of the multi-level strategy and the information flow between the levels in improving
real-time control. While further research is necessary to adapt the control strategy for real-world imple-
mentation due to the simplifications made during this study, the structure of the novel control strategy
has proven to be highly competent.

In summary, this research presents a real-time control strategy that performs exceptionally well in sys-
tems where partial knowledge of a marine vessel’s future operation is available. The basic framework
introduced here can be further scaled to develop more accurate control strategies, capable of address-
ing additional objectives such as minimizing component degradation alongside energy management.
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1
Introduction

The study of energy resources and climate change is critical to building a sustainable future. According
to the World Meteorological Organization (WMO) [2], a specialized agency of the United Nations, 2023
has officially been recorded as the warmest year on record, with the average global temperature rising
by 1.45 ° C above preindustrial levels. In addition to that, concentrations of the three main greenhouse
gases, carbon dioxide, methane, and nitrous oxide, have increased to unprecedented levels. Given
these alarming trends, there is a need to shift from fossil fuels to renewable energy sources. This
transition is the key to reducing the adverse impacts of climate change.

The transportation sector contributes approximately 30 % to the total global greenhouse gas (GHG)
emissions [3]. Recognizing this issue, the International Maritime Organization (IMO) has proposed a
strategic plan aimed at achieving a 40 % reduction in GHG emissions by 2030 and a net-zero emission
target by 2050 in the maritime sector [4]. Countries leading this effort include the EU, USA, Japan,
China, and Korea. To enforce these targets, the IMO has implemented MARPOL regulations [5], which
set strict limits on emissions from the engines of marine vessels. It is important to note that these
regulations focus mainly on emissions rather than the power consumption of marine vessels [6].

The first step toward meeting these targets is the development and implementation of energy-efficient
systems that can effectively manage both power consumption and emissions, while also addressing the
challenges posed by the transition of the transportation sector to sustainability. Although electric and
hybrid propulsion technologies hold great promise, significant obstacles remain, especially in improving
fuel efficiency, optimizing energy storage systems, and perfecting the energy conversion processes
between mechanical and electrical subsystems.

Fuel cell-powered hybrid powertrains have emerged as a good alternative, which couples electric
propulsion driven by a fuel-cell system with an auxiliary battery. This configuration not only leads
to reductions in emissions, but also minimizes environmental impact, with water and heat being the
primary by-products of the propulsion process. The auxiliary battery plays a crucial role in ensuring ad-
equate power delivery. Its charging and discharging cycles are closely related to the overall powertrain
architecture and charge-sustenance characteristics.

Hybrid powertrain architectures vary depending on how energy contributions from different sources are
managed. Passive architectures rely mainly on intermittent switching between power sources, whereas
active systems use advanced energy management strategies to dynamically distribute and manage
power across available sources [7]. Passive systems often face challenges related to system sizing
and control, occasionally breaching safe operating limits and risking potential system breakdowns. As
a result, active systems, which optimize the energy management, have become the focus of attention.
Energy Management Systems (EMS) tailored to specific powertrain architecture, power sources, and
energy storage systems are critical to maintaining system variables within predefined safety thresh-
olds, thereby preventing catastrophic failures and enhancing overall performance. Addressing these
challenges often requires the formulation and implementation of optimal control strategies tailored to
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specific applications and configurations, which can improve the efficiency and reliability of hybrid sys-
tems.

Research efforts focused on optimizing strategies for energy management, system sizing and con-
trol, and trajectory planning, can offer insights into reducing emissions. By prioritizing innovation in
these areas, the maritime sector can move closer to achieving its new regulations. This study focused
on identifying and evaluating the capabilities of 3 different control strategies for energy management,
specifically designed to minimize the fuel consumption of marine vessels. The three types of strate-
gies explored are rule-based control, global optimization, and online optimization-based methods. A
novel online optimization-based strategy, refered to as Hierarchical MPC was created for the system.
The global optimization strategy was Quadratic Programming. The primary focus of this thesis was
therefore, answering the following research question:

”How efficiently can a Hierarchical MPC perform in real-time for the energy management of a hybrid
marine powertrain?”

To investigate this, the Rule-based control and Quadratic programming strategies were developed first.
The Hierarchical Model Predictive Control (HMPC) strategy was created using an approach similar to
Quadratic programming. Finally, the performance of the Hierarchical MPCwas compared with the other
two control strategies to assess its effectiveness in real-time energy management. This was done by
looking into the following sub-questions:

• Is the solution given by the Hierarchical MPC more optimal than that provided by the Rule-based
control?

• How close is the solution of the Hierarchical MPC to the global optimal solution?

Through these questions, the thesis aimed to assess the competence of Hierarchical Model Predictive
Control strategy for the energy management of marine hybrid powertrains.

In this report, Chapter 2 provides an overview of the state-of-the-art energy management strategies that
currently exist in the field and offers a brief background on how the concept for this research originated.
Chapter 3 details the methodology, including the modelling of the powerplant and the specifications
of the marine vessel used in the study. Chapter 4 explains the three Energy Management Strategies,
discussing each in detail and covering the mathematical formulations for the optimization problems as
well as the rules governing the rule-based control strategy. Chapter 5 presents the results, observa-
tions, and answers to the research questions. It includes a comparison of the strategies using fuel
consumption as the key performance indicator, along with constraint feasibility and robustness tests.



2
Literature Review

This chapter introduces the different energy management systems available in the literature, focusing
primarily on the control strategies for hybrid powertrains in the automotive, marine and aviation indus-
tries. The literature gap, the need for efficient control, and the basis for their formulation are discussed.

2.1. Energy Management Systems
Energy Management Systems regulate the power distribution among the various components of a
powertrain by carefully modeling powertrain dynamics and establishing relationships that define power
flow. While the primary objective of most EMSs is to minimize fuel consumption, these strategies often
encompass additional goals, such as optimizing the sizing of key powertrain components, mitigating
battery degradation, and reducing pollutants and emissions.

EMSs are typically classified into twomain categories: offline and real-time. A common sub-classification
for real-time EMSs includes rule-based, optimization-based, and learning-based strategies [8]. The fol-
lowing sections provide an overview of these EMS classifications, their operational mechanisms, and
discusses the scenarios in which each method is most effective.

2.2. Offline EMS

Strategies which optimize energymanagement using prior knowledge of the drive cycle and relevant en-
ergy variables’ trajectories (such as speed, torque or power) are classified as Offline strategies. These
include Dynamic programming (DP), Pontryagin Minimum Principle (PMP), Linear Programming (LP),
Quadratic Programming (QP) and Convex Programming. Offline strategies can be further categorized
based on their applications: they may serve as benchmarks, form part of a multi-level EMS, or act as
the foundation for online EMS development.

• Benchmark: The work of Li et al. [9] illustrates how offline strategies, such as Dynamic Program-
ming (DP), are used as benchmarks to evaluate the performance of real-time strategies. Due to
the availability of prior knowledge, offline strategies provide globally optimized solutions, offering
the best possible outcome for a given situation. This helps in using it as a benchmark for com-
paring other control strategies. A variant of DP, known as Stochastic Dynamic Programming, is
employed by Moura et al. [10] and Johannesson et al. [11] for comparison with other strategies.
Other offline optimization methods, such as the Mixed-Integer Optimal Control Problem [12], Con-
vex Optimization [13], and Slope-weighted Energy-based Rapid Control Analysis (SERCA) [14],
are also used as benchmarks. The choice of an offline optimization strategy depends on factors
such as the specifications of the plant being controlled, the computational complexity, and the
acceptable error tolerance in the optimization process.

• Part of Multi-level EMS: The offline strategies have often been used as the part of a bigger system.

3



2.3. Real-time EMS 4

It acts as an optimizer at the cloud level, providing information and data for a real-time control at
the lower level. The computational complexity of the global optimization being an issue for working
in real time is surpassed by having it in the cloud level, taking its time to run the optimization, and
finally providing the guidance for the real-time strategy to arrive at better solutions. Often, for
managing multiple vehicles together in a system, this layered architecture is used for cloud-to-
vehicle connectivity [15]. For energy management in a single vehicle, a two-layer EMS can be
used where the first layer that utilizes an offline optimization-based strategy, makes the day-ahead
energy dispatching plans with minimal fuel consumption [16].

• Base for online EMS: The offline optimizers are often used as a foundation for developing real-time
strategies. For example, an offline control strategy based on Pontryagin’s Minimum Principle [17]
is used to develop the Equivalent Consumption Minimization Strategy (ECMS), which functions
as a real-time control. Similarly, a Dynamic Programming-based EMS for a fuel-cell/battery hybrid
energy storage system has been proposed and implemented as a real-time solution [18].

As stated above,offline strategies can deliver a global optimum for any feasible optimization problem.
However, their limitation lies in the inability to provide solutions in real-time.

2.3. Real-time EMS

Real-time strategies are characterized by their simplicity, reduced computation time, predictive capa-
bilities, and instantaneous implementation. These strategies can be broadly classified into three cate-
gories: rule-based, online optimization-based, and learning-based control strategies.

2.3.1. Rule-based EMS
These strategies are based on pre-calculated rules, that cannot be altered or reprogrammed during
operation without human intervention [19]. They may use deterministic or fuzzy rules, or utilize look-up
tables. Owing to their simplicity, Rule-based (RB) EMSs can be implemented in real-time. However,
they have several drawbacks, the most significant being their inability to provide optimal solutions. The
calibration effort required to guarantee satisfactory performance is high, and the rules are not scalable
to accommodate different powertrain architectures or different component sizes [8].

RB EMSs can be further categorized into Deterministic and Fuzzy logic control strategies. A deter-
ministic RB-EMS operates on predetermined rules derived from experience. The control strategy is
designed to make the power system operate in regions of minimal energy consumption, high efficiency
power-torque delivery, minimal energy transmission losses, or achieving an overall optimal operational
point.

Fuzzy Logic Control on the other hand can be considered as an extension of binary logic, where instead
of a strict ON-OFF criteria or a binary (1 and 0) value, multiple values or fuzzy partition of the inputs
are considered. An input-output relation is established in each fuzzy subspace. Fuzzy logic consists of
three stages; fuzzification, rule-base system and defuzzification process. There are two types of Fuzzy
methods; Mamdani type and Takagi-Sugeno-Kang (TSK) type. In the TSK fuzzy logic [20], the model
assumes the form, ”If SoC is High and Pload is high, C = y (SoC, Pload)” where y represents a variable
of consequence whose value is inferred from the variables of premise, SoC and Pload. Mamdani fuzzy
logic method regards the output as a fuzzy partition, much like the input variables. Outputs can be
tabulated relative to the input values for each of their combinations. The strategies used by the fuzzy
logic controls in [21] and [22], and the fuzzy component of the Fuzzy state machine (FSM) strategy in
[23] use Mamdani’s fuzzy inference approach.

2.3.2. Online Optimization-based EMS
Optimization-based strategies which can be implemented online are characterized by their causal na-
ture, local optimization, and independence from prior knowledge of the drive cycle. In real-time opti-
mization methods, the control variable is determined by minimising a predefined cost function based on
future equivalence assumption of the electric energy consumption [24]. Themost widely used strategies
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in this category are ECMS (Equivalent Consumption Minimisation Strategy) andMPC (Model Predictive
Control).

ECMS operates on the principles of static optimization, wherein the cost function that consists of engine
and battery-related costs, is minimised instantaneously. The power demand need not be known in
advance, which therefore enables real-time application. PMP is reformulated into a local optimisation
problem to obtain ECMS, by minimising the equivalence factor, analogous to the role of costate in
PMP. The equivalence factor accounts for the fuel consumption for battery recharging and regenerative
braking energy [8]. Diniz et al.[25] proposes an enhanced version of this technique, called Adaptive-
ECMS (A-ECMS), where a variable equivalence factor is defined by a battery penalty factor, which is
dependant on the battery SoC range and charging/discharging efficiency.

Model Predictive Control determines the local optimal solution through prediction over a specified hori-
zon. It has widespread applications, ranging from Robotics to Supply chains. Based on the initial inputs
at a given instant, it computes the inputs over a predictive horizon to minimise the objective function
subject to constraints. However, only the first set of inputs in the immediate time step is executed. The
prediction horizon then progresses forward to the next time step, and the process is repeated until the
end [26]. MPC is capable of handling multivariable processes, managing extended time delays, and
integrating disturbance response knowledge [27].

In addition to classic ECMS and MPC, there are variations such as dual-state adaptive ECMS and
double-layer fuzzy adaptive nonlinear MPC, as well as other real-time optimization strategies like tran-
sient process optimization control [28].

2.3.3. Learning-based EMS
In a Learning-based EMS, the necessity for precise model information diminishes, as control decisions
are made based on learning through interactions with the environment. A reinforcement learning (RL)
system consists of a learning agent and studies its interaction with the environment. At each time step,
the learning agent receives an observation of the environment, selects an action based on the observed
state, transitions to a new state as a result of the action, and then computes the reward associated with
the transition. This reward is then provided as a feedback to the learning agent. Over time, through
the iterative process, the optimal policy can guide the learning agent to take the best series of actions
to maximise the cumulated reward.

Variations of the reinforcement learning method can be seen in the works of Hu et al.[29] and Gao et
al.[30], who utilize deep RL and safe RL methods, respectively.

2.4. Discussion
This chapter leads to several key conclusions. First, the inability of rule-based control strategies to
provide optimal solution means they can serve as an upper bound of minimization control problems for
real-time strategies, which should not be easily surpassed. Second, offline optimization strategies can
serve both as benchmarks for real-time strategies and as foundational elements for their development.
Third, combining various strategies, each focusing on its unique strengths, may offer the most effective
approach in terms of creating a control strategy. A well-balanced mix of strategies to address specific
objectives, such as fuel consumption, emissions, and battery degradation could lead to optimal perfor-
mance. In this regard, a Model Predictive Control (MPC) operating in a hierarchical manner appears
promising. These three findings from the literature have been used in this research to come up with
a good hierarchical MPC strategy and a process to compare and assess its capabilities, which are
detailed later in this thesis.



3
Methodology

In this chapter, the specifications of the boat for which the EMSs are created are described in section 3.1.
This is followed by a description of the mathematical modelling of the hybrid powertrain of the boat in
section 3.2. Based on plant modelling, powertrain architecture and power balance relations, the state-
space equations are then formulated in section 3.3.

3.1. Plant Description
The marine vessel utilized in this research is an H2C boat, a hydrogen-powered rigid-hull inflatable
boat (RIB or RHIB) with a hull made of either polyester or aluminium [31]. Such boats are typically
equipped with powerful onboard engines. This particular vessel is powered by hydrogen fuel cells and
lithium-ion batteries.

Figure 3.1: H2C boat. Photo by Nikos Vasilikis.

The powertrain architecture of the boat is illustrated in Figure 3.2. It is a parallel configuration with
a unidirectional flow of energy from the fuel cell to the DC converters and a bidirectional flow for the
battery, to accommodate charging and discharging of the Lithium-ion batteries. The DC converters are
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3.1. Plant Description 7

connected to the DC bus and then to a motor which propels the boat forward. Regenerative braking is
not considered in this study.

Figure 3.2: Powertrain architecture of the boat

A ’Deep Blue’ electric drive system from the company Torqeedo [32] is used on the boat. The Lithium-
ion battery has a usable capacity of 38 kWh with a 2 kWh reserve, a nominal voltage of 360 V, and can
deliver a continuous maximum power of 55 kW. Fuel cell serves as a range extender. Although specific
details of the fuel cell and hydrogen storage are not available, it is known that a low-temperature proton-
exchange membrane fuel cell (LT-PEMFC) is used. For the purposes of this research, it is assumed
that the fuel cell can deliver a maximum power of 50 kW and that the hydrogen storage has unlimited
capacity. Due to time constraints and the specific focus of the optimization strategies on the power-
split between sources, the propulsion motor and DC-DC converters have been excluded from the plant
model.

(a) Power profile (b) Motor speed profile

Figure 3.3: Operational profiles of the H2C boat

The profiles in Figure 3.3 are based on real data retrieved from the boat’s operations. Figure 3.3b shows
the speed of the motor in the boat’s powertrain over the time period. The profile illustrated in Figure 3.3a
is the fundamental drive cycle data with a maximum power demand of 60.91 kW, from which most of the
power profiles for the experiments were created. Disturbances in power were introduced to the profile
as a stochastic variable with a limited rate of change, simulating uncertainties typically encountered in
real-world conditions. Since this research focuses on the power balance and power-split among the
components, drive cycle data other than power profiles were not considered for experimentation.
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3.2. Plant Modelling

3.2.1. Fuel cell

Fuel cells are electrochemical devices which convert energy from chemical reactions into electrical
energy. They can be categorised based on the type of fuel being used and the operational temperatures.
The main types include alkaline fuel cells (AFC), solid oxide fuel cells (SOFC), phosphoric acid fuel cells
(PAFC), molten carbonate fuel cells (MCFC) and proton-exchange membrane fuel cells (PEMFC). For
the system in question, a low-temperature PEMFC is used aboard the boat. A PEMFC offers several
superior features over the others, like low operating temperatures, fast start-up, high power density,
long lifespan and minimal corrosion.

The PEM fuel cell is made up of two electrodes coated with a platinum catalyst, separated by a proton
exchange membrane. During operation, humidified hydrogen or a hydrocarbon-based fuel enters the
anode side of the fuel cell, while an oxygen stream enters the cathode side [33]. At the anode, the fuel
is oxidized in the presence of the catalyst, producingH+ ions and releasing electrons. These electrons
travel through an external circuit to the cathode. Meanwhile, the proton exchange membrane allows
only the positively charged hydrogen ions (protons) to pass from the anode to the cathode [34].

The electrochemical reactions are as follows:

at anode:
2H2 → 4H+ + 4e− (3.1)

at cathode:
O2 + 4H+ + 4e− → 2H2O (3.2)

overall reaction:
2H2 +O2 → 2H2O (3.3)

The reaction in addition to producing electricity, is exothermic in nature. For one cell, the reversible
electric potential is calculated as follows:

Ecell = −∆G

zF
(3.4)

where ∆G is the change in Gibb’s free energy and F (96485.33 C/mol) is Faraday’s constant, which
is computed as the product of elementary charge (in coulombs) and the Avagadro’s constant. z is the
number of moving electrons or the number of electrons released by each molecule of hydrogen (z = 2).
The maximum electrical work done by a fuel cell at constant temperature and pressure is given by the
change in Gibb’s free energy. This can also be given as follows:

∆G = ∆G0 −RT ln

[
PH2

· (PO2
)0.5

PH2O

]
(3.5)

where ∆G0 change in Gibb’s free energy at standard operating conditions, R is the universal gas
constant, T is the stack temperature, and PH2

, PO2
and PH2O are the partial pressures (in atm) of

hydrogen, oxygen and water respectively. Upon substituting Equation 3.4 in Equation 3.5, Nernst
potential of one cell is obtained as follows:

En = E0 +RT ln

[
PH2

· (PO2
)0.5

PH2O

]
(3.6)

The detailed fuel cell model is based on the works of Njoya et. al [1] and Xun et al. [35]. It considers
parameters such as pressures, temperature, compositions, and flow rates of fuel and air. Considering
the kinetics of the reactions, the fuel cell voltage can be given as follows:

Vfc = Eoc − Vact − IfcRohm (3.7)
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Eoc = NKcEn (3.8)

Vact = NA ln

[
Ifc
I0

]
· 1

sTd/3 + 1
(3.9)

Figure 3.4: Detailed fuel cell stack model replicating the work of [1]

where Eoc is the open circuit voltage (V), Vact is the voltage due to activation losses (V), Ifc is the
fuel cell current (A), Rohm is the internal resistance (Ω), N is the number of cells, Kc is the voltage
constant at nominal condition of operation, A is the Tafel slope (V), I0 is the exchange current (A), and
Td is the stack settling time or response time (at 95% of the final value). The activation losses, which
characterises the delayed response due to the rate of chemical reactions at the electrode surfaces,
is represented by the first order transfer function 1

sTd/3+1 , with s being the frequency variable in the
Laplace domain.

The model is illustrated in detail in the Figure 3.4. Using the blocks A, B and C, where Eoc, I0 and A
are updated based on the varying parameters νfuel (fuel flow rate in litres/min), νair (air flow rate in
litres/min), Pfuel (absolute supply pressure of fuel in atm), Pair (absolute supply pressure of air in atm),
T , x% (percentage of hydrogen in the fuel) and y% (percentage of oxygen in the oxidant) . Using these
inputs into Block A, the rate of utilization of hydrogen and oxygen are calculated as follows:

UfH2
=

60000RTIfc
zFPfuelνfuelx%

(3.10)

UfO2
=

60000RTIfc
2zFPairνairy%

(3.11)

In the block B, to calculate the Nernst voltage and exchange current, the partial pressures are computed
as follows:

PH2 = (1− UfH2)x%Pfuel (3.12)
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PO2 = (1− UfO2)y%Pair (3.13)
PH2O = (w + 2y%UfO2

)Pair (3.14)

In the Nernst equation, PH2O becomes 1 if T<373K. Finally, using the values of partial pressures and
the Nernst voltage, block B and C computes I0 and A as follows:

I0 =
zFk (PH2 + PO2)

Rh
· exp

(
−∆G

RT

)
(3.15)

A =
RT

zαF
(3.16)

where k is the Boltzmann’s constant (1.38 × 10−23 J/K) and h is the Planck’s constant (6.626 × 10−34

Js).

(a) Efficiency of fuel cells as given in [36]
(b) Normalized generated power with respect to the output power

of fuel cell systems

Figure 3.5: Determining output power of fuel cells

The energy management strategies are designed to optimize the power split between energy sources.
While the fuel cell can provide reliable power at steady state conditions, some of the power it generates
is wasted and cannot be delivered to the load due to activation losses, ohmic losses, mass transfer
or concentration losses, and thermal losses. As illustrated in the Figure 3.5a [36], these losses vary
with the power generated by the fuel cell. The efficiency is therefore dependent on the amount of
power generated by it. Using the data from this graph, the relationship between the normalized values
of generated power and the actual power output is established in the Figure 3.5b. The actual output
power is the product of fuel cell’s efficiency and generated power (denoted in Figure 3.5a as power(%)).
By performing curve fitting, the normalized power curve can be defined as a quadratic function, given
by:

Pfcgen

kfc
= 0.9131 ·

(
Pfcout

kfc

)2

+ 0.8451 ·
(
Pfcout

kfc

)
+ 0.0700 (3.17)

Pfcgen = Eoc · Ifc (3.18)

where kfc is the maximum rated power output of the fuel cell, considering all the losses.

The objective of the EMSs is to minimise the fuel consumption over the drive cycle. 1 kg of Hydrogen
contains 33.33 kWh of usable energy. Thus, to calculate the instantaneous hydrogen consumption, the
following relation is used:

mH2(t) = Pfcgen(t) ·∆t · µ (3.19)



3.2. Plant Modelling 11

where mH2 (kg) is the mass of hydrogen consumed and µ (kg/kWh) is the reciprocal of usable energy
of Hydrogen.

The following assumptions were made when the fuel cell model was designed by Njoya et. al [1]:

• The gases behave ideally.
• The cooling system in the fuel cell is able to manage the stack temperature which is assumed to
be equal to the temperature at the cathode and anode.

• Water management system in the fuel cell is able to manage the humidity inside it at any load.
• The pressure drops across channels are negligible.
• The cell resistance is assumed to be constant even in varying temperature and humidity.
• Fluid flow through the membranes are not taken into account.

3.2.2. Battery

The second power source for the H2C boat is a Lithium-ion battery. These batteries are widely used in
the automotive industry and for energy storage applications due to their electrochemical stability, high
energy density, and long cycle life.

To accurately model the working characteristics of this battery, an equivalent circuit modelling concept is
used. An equivalent circuit model uses a semi-mechanical and semi-empirical approach to describe the
battery [37]. Commonly used models include the Rint and Thevenin models. While the Thevenin model
accounts for the polarization effects of the lithium-ion battery and provides a more precise behavioural
representation, this research utilizes the Rint model due to its computational simplicity andminimal-data
approach.

Figure 3.6: Rint equivalent circuit model

The Equivalent circuit consists of an ideal voltage source and a resistanceR0, as illustrated in the Figure
3.6. The resistance R0 characterizes the internal ohmic resistance of the battery. Using Kirchoff’s law,
we obtain the relation:

Vbat = Voc − IbatR0 (3.20)

where Voc is the battery’s open circuit voltage (which assumed to be a constant) and Ibat is the current
flowing through the circuit. The only loss in power in this scenario is due to the internal resistance. The
power drawn and the power losses from the battery can thus be defined as follows:

Pbat = VocIbat (3.21)
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Ploss = I2batR0 (3.22)

An important property of the battery on which its performance depends is the State of Charge (SoC).
It is a unitless quantity which represents the remaining useful charge inside the battery and can be
expressed as follows [38]:

SoC(t+∆t) = SoC(t)− Pbat(t) ·∆t

Ebat
(3.23)

where Ebat is the energy rating of the battery.

3.3. State-Space Model
The relationship between the models of fuel cell and battery created in the previous sections was
established by a power balance equation 3.24 to represent the hybrid marine powertrain.

Pdem = Pfcout
+ Pbat − Ploss (3.24)

The relationship governing the power-split between the two power sources dictates that the power
demand Pdem is met by the fuel cell output Pfcout and the battery power Pbat at every instant. If the
battery is discharging, Pbat is positive and if charging, Pbat is negative. Referring again to Equation 3.24,
this implies that during the battery’s charging phase, both the power required for charging and the power
demand are supplied by the fuel cell output.

Equation 3.23 was transformed into a state-space representation of the system in the discrete-time
domain. The battery state of charge was chosen as the state variable, while the ratio of the fuel cell’s
power output at any given instant to themaximum output power of the fuel cell, referred to as normalized
fuel cell power ufc defined in Equation 3.28, served as the manipulated or control variable. To derive
the state-space model, Equation 3.24 was substituted into Equation 3.23. This substitution resulted in
the formulation of the following state-space model for the energy management system:

x(k + 1) = Ax(k) +Bu(k) + Ed(k) (3.25)

y(k) = Cx(k) +Du(k) + Fd(k) (3.26)

where the state variable x denotes the state of charge, u denotes the input variables, and d represents
the disturbances. Specifically for this system, the coefficients and the variables are defined as follows:

u(k) =

[
ufc

Pdem

]
, d(k) =

[
Ploss

Pd

]
,

A = 1, B =
[
kfc·τs
Ebat

−τs
Ebat

]
, E =

[ −τs
Ebat

−τs
Ebat

]
, C = 1, D =

[
0 0

]
, F =

[
0 0

]
This can be rewritten as:

SoC(k + 1) = SoC(k) +

[
kfc · τs
Ebat

]
ufc(k)−

[
τs

Ebat

]
Pdem(k)−

[
τs

Ebat

]
Ploss(k)−

[
τs

Ebat

]
Pd(k) (3.27)

ufc(k) =
Pfcout

(k)

kfc
(3.28)
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where kfc is the maximum output power of the fuel cell, ufc is the normalized fuel cell power, Ebat

is the energy rating of the battery, Pdem is the power demand which is considered as an exogenous
input, Ploss is the power loss from the battery, Pd is any variations in the power demand, and τs is the
sample time. Considering the power balance and battery dynamics alone, approaching the problem
with minimal data, this single state-space equation is used to represent the system.

3.4. Control Strategies
In this research, three distinct control strategies were developed for managing energy and power distri-
bution among the power sources of the H2C boat: Rule-Based (RB) Control, Global Optimization using
Quadratic Programming (QP), and Hierarchical Model Predictive Control (HMPC). QP was chosen for
its similarity to classical Model Predictive Control (MPC) in formulation and structure. The Rule-based
control and HMPC works in real-time, while the QP is an offline control strategy. The RB and QP
strategies were utilized to compare performance and assess the potential of the HMPC.

RB was designed based on predefined rules that do not adapt dynamically. It was anticipated that
QP would provide the most optimized results, while RB would yield the least effective performance.
Therefore, QP served as the benchmark, and RB represented the upper threshold of performance for
HMPC.

The control strategies determined the amount of power to be produced by the fuel cell and the battery
at any given moment during operation, with the goal of minimizing total hydrogen consumption over
the power profile. They were set up in such a way that the battery handled fluctuations and transient
power variations, while the fuel cell maintained a minimal rate of power change. This research did not
address degradation mechanisms or the optimization of component sizing in the powertrain.

The rule-based control was designed and implemented using Matlab and Simulink. The quadratic pro-
gramming problem and the HMPCwas formulated in python using the ’Gurobi’ package for optimization.
The performance of these strategies were evaluated based on the KPI, the total hydrogen consumption
over the entire drive cycle of a given power profile.



4
Energy Management Strategies

This chapter provides an overview of the energy management strategies and their mathematical for-
mulations. It introduces three distinct control strategies, two of which are optimization-based. All three
strategies are designed to adhere to the following core principles:

• Minimize hydrogen use
• When the fuel cell is in operation, maximize its efficiency, which inadvertently means operating the
fuel cell at or near its optimal power output, Popt. The optimal power of the fuel cell is illustrated
in Figure 3.5a by the maximum value of the curve.

• Always meet the power demand.
• Maintain the battery SoC within limits. This helps with reducing battery degradation.
• Use battery to absorb sudden changes in power demand, while the fuel cell’s power output should
be kept as stable as possible.

4.1. Rule-based Control
As illustrated in Figure 4.1, the rule-based control was designed with three inputs and two outputs.
It operates in the discrete time domain to avoid complications associated with an oscillating switch
between charging and discharging modes of the battery. Pbat, the power consumed or delivered by the
battery in the current time-step is used as an input to it. A negative value of Pbat indicates charging,
and positive value indicates the discharging mode. The other two inputs are the power demand for the
upcoming time-step and the battery state of charge of the current time-step. Determination of power-
split between the fuel cell and battery, and whether or not they should be turned off at any point are
decided by only these three inputs. The outputs are the fuel cell power and battery power requested
for the next time-step. For simplicity, Pfcout

is denoted as Pfc in this section.

The control strategy is created such that it strictly follows the following rules:

• Battery SoC is maintained in the range [SoCmin, SoCmax].
• The fuel cell, if possible, operates at Pfc = Popt

• The rate of change of Pfc is limited to [−ϵ, ϵ] to enable smooth operation of the fuel cell.

The control first compares the battery SoC to its allowable range. If the SoC is within the range
[SoCmin, SoCmax), it looks into whether the battery was charging or discharging at that instant, and
then makes a decision considering the power demand. If the SoC is below SoCmin, the battery is
charged unless the power demand is greater than the optimal power output of the fuel cell. However,
if the SoC is greater than or equal to SoCmax, the power demand is satisfied by the battery alone, as
long as it is below Popt. If the demand is more, the power is split among the power sources.

Table 4.1 gives a detailed explanation of these rules and their implementation in the control strategy.

14
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Figure 4.1: Flow chart for the Rule-based control

Pdem(t) = 0kW 0 < Pdem(t) ≤ Popt Pdem(t) > Popt

SoC(t) < SoCmin

Fuel-cell: ON Fuel-cell: ON Fuel-cell: ON
Battery: Charging Battery: Charging Battery: OFF
(until SoC reaches (until SoC reaches

SoCmin) SoCmin)
Pfc = Popt

Pfc = −Pbat = Popt Pbat = Pdem − Pfc Pfc = Pdem

SoCmin ≤ SoC(t) < SoCmax

Fuel-cell: ON Fuel-cell: ON Fuel-cell: ON
Battery mode in previous Battery: Charging Battery: Charging Battery:Discharging

time step: Charging (until SoC reaches (until SoC reaches
SoCmin) SoCmin)

Pfc = Popt Pfc = Popt

Pfc = −Pbat = Popt Pbat = Pdem − Pfc Pbat = Pdem − Pfc

Fuel-cell: OFF Fuel-cell: OFF Fuel-cell: ON
Battery: OFF Battery:Discharging Battery: Discharging

Battery mode in previous
time step:Discharging Pfc = Popt

Pbat = Pdem Pbat = Pdem − Pfc

SoC(t) ≥ SoCmax

Fuel-cell: OFF Fuel-cell: OFF Fuel-cell: ON
Battery: OFF Battery:Discharging Battery:Discharging

Pfc = Popt

Pbat = Pdem Pbat = Pdem − Pfc

Table 4.1: Rule-based control
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4.2. Quadratic Programming

Quadratic Programming is a nonlinear optimization problem with a quadratic cost function and linear
constraints of the form [39]:

Minimize J =
1

2
· zTHz + fT · z

subject to:
Aeq · z = Beq (4.1)

Aineq · z ≤ Bineq (4.2)

lb ≤ z ≤ ub (4.3)

The Quadratic Programming (QP) representation allows us to expand the energy management problem
into a detailed mathematical formulation. This formulation includes state-space equations, bounded
constraints, and specific objective functions. For this particular energymanagement problem, we define
the decision variable z as follows:

zT =
[
SoC(1) ufc(1) SoC(2) ufc(2) SoC(3) ufc(3) · · · SoC(N + 1)

]
(4.4)

where the subscripts of SoC and ufc are the time steps, and N is the total number of time steps in the
drive cycle.

This specific system’s optimization control strategy represented is represented in the form of Quadratic
Programming problem as follows:

Minimize J =

N∑
i=1

[
ω1 · ufc(i) + ω2 ·

(
ufc(i)−

Popt

kfc

)2
]

subject to:

SoC(i+ 1) = SoC(i) +
kfc · τs · ufc(i)

Ebat
− [Pdem(i) + Ploss(i) + Pd(i)] · τs

Ebat
(4.5)

y(i+ 1) = SoC(i+ 1) (4.6)

SoCmin ≤ SoC(i+ 1) ≤ SoCmax (4.7)

0 ≤ ufc(i) ≤ 1 (4.8)

−1 ≤
[
Pdem(i) + Ploss(i) + Pd(i)− (kfc · ufc(i))

kbat

]
≤ 1 (4.9)

−ϵ

kfc
≤ [ufc(i+ 1)− ufc(i)] ≤

ϵ

kfc
(4.10)

∀i ∈ [1, N ]

This is a multi-criteria single-objective optimization problem where the cost function has two main goals.
The first weighted part of this objective function minimizes the normalized fuel cell power or the control
variable over the entire power profile, thereby reducing the total fuel consumption. This is given a
weighting factor of ω1. The second part tries to minimize the error between power produced by the fuel
cell at any instant and the optimal fuel cell power Popt. Reducing this error helps the fuel cell to run at its
maximum efficiency. The weighting factor ω2 is determined such that this part of the objective function
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is active when ufc > 0, i.e., when the fuel cell is turned on. To keep the priorities of the objectives
consistent with each other, all the terms are normalized.

The problem is subject to multiple constraints, which describe the behaviour of the system. The first
two constraints, Equation 4.5 and Equation 4.6 are the state-space equations, describing the system
dynamics. Equation 4.7 limits the range of the battery state of charge to [SoCmin, SoCmax]. An SoC of 1
(or 100%) indicates a fully charged battery and 0 indicates a fully discharged one. For normal operation,
due to battery health considerations [40], the battery’s state of charge is never allowed to go to 0 or 1.
This constraint addresses that issue. Equation 4.8 restricts ufc to the range [0,1], and consequently
constrains the output power of the fuel cell to stay within its operational range. Similarly, Equation 4.9
limits the power produced by the battery to the range [−kbat,kbat], where kbat is the maximum power
that can be produced by the battery. As described in the previous section, negative values of the battery
power indicate charging and positive values, discharging.

The final constraint, Equation 4.10, limits the rate of change of the power output of fuel cell. This
ensures that significant power variations are handled by the battery and not the fuel cell. The absolute
value of change in ufc in the sampling time is limited to ϵ.

4.3. Hierarchical Model Predictive Control

The Hierarchical Model Predictive Control (HMPC) functions similarly to classical MPC by performing
real-time optimization over a prediction horizon. As shown in Figure 4.2, the reference values for
the battery state of charge is obtained from the upper level. These values are the results of global
optimization, which in this case is chosen as a Quadratic Programming problem, computed prior to the
operation of the vessel. An ideal power profile, which is created by anticipating and approximating the
upcoming drive cycle of the boat, is made available to the global optimizer as an input, and the problem
is then optimized over the entire period of operation. These globally optimized reference values for the
SoC are subsequently passed to the lower level MPC, where they serve as targets during the real-time
operation of the vessel. The reference values give the lower level MPC an idea of what it can expect
in the near future and helps in improving its predictive potential. The MPC continually compares the
real-time system behavior with these reference values and adjusts the power split between the fuel cell
and the battery accordingly.

Figure 4.2: Hierarchical MPC
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The HMPC optimizes the control problem over a prediction horizonNp, solves the values for the control
and state variables over this horizon, but implements only the first control variable. This process is then
repeated over the entire drive cycle. The control problem for every time step is defined as follows:

Minimize

J =

Np−1∑
i=0

[
ω1 · ufc(k + i) + ω2 ·

(
ufc(k + i)− Popt

kfc

)2

+ ω3 · (y(k + i+ 1)− SoCref (k + i+ 1))
2

]

subject to:

SoC(k+i+1) = SoC(k+i)+
kfc · ufc(k + i) · τs

Ebat
− (Pdem(k + i) + Ploss(k + i) + Pd(k + i)) · τs

Ebat
(4.11)

y(k + i+ 1) = SoC(k + i+ 1) (4.12)

SoCmin ≤ SoC(k + i+ 1) ≤ SoCmax (4.13)

0 ≤ ufc(k + i) ≤ 1 (4.14)

−1 ≤
[
Pdem(k + i) + Ploss(k + i) + Pd(k + i)− (kfc · ufc(k + i))

kbat

]
≤ 1 (4.15)

−ϵ

kfc
≤ [ufc(k + i)− ufc(k + i− 1)] ≤ ϵ

kfc
(4.16)

∀i ∈ [0, Np − 1]

The objective function of the HMPC focuses on three key aspects: minimizing fuel consumption, en-
suring the fuel cell operates at its optimal power, and reducing the error between the actual battery
SoC and the reference SoC value obtained from the Quadratic Programming problem in the upper
level. These are prioritized by using the weights ω1, ω2 and ω3 respectively. ω1 · ufc(k + i) minimizes
the fuel cell’s power output over the predictive horizon, thereby reducing the generated power, and
consequently, hydrogen consumption. The term ω2 ·

(
ufc(k + i)− Popt

kfc

)2

minimizes the squared error
between the fuel cell’s output and its optimal power, pushing the system to operate at maximum ef-
ficiency. Finally, ω3 · (y(k + i+ 1)− SoCref (k + i+ 1))

2 minimizes the error between the actual SoC
and the reference SoC over the horizon to keep the system aligned with the global optimizer’s solution
and follow its trend. k is the time-step during the optimization and i denotes the horizon steps.

The upper level global optimization does not consider the disturbances (winds or waves) or changes in
physical characteristics of the system (such as additional cargo or people onboard the vessel) which
are not known beforehand. However, the lower level of the HMPC, working in real-time, adjusts for
these disturbances faced by the system, while still meeting the actual power demands. Even though
the reference values represent the ideal conditions, and not the actual operational profile, the control
strategy gets a general idea of what it can expect in the future. This helps it choose when to switch on
the fuel cell and when to turn it off with minimal variations in its power production.



5
Results

In this chapter, the parameters for the optimization strategies are defined in section 5.1. The three
control strategies are then verified using tests to ensure they obey all the constraints, in section 5.2.
Robustness checks are done on the Hierarchical MPC in section 5.3. Finally, in section 5.4, the Rule-
based control, Hierarchical MPC and QP are compared based on the KPI to answer the research
questions.

To run the simulations for testing, the values of disturbances in power demand, Pd, were considered as
a random variable with a specified range and an upper and lower limit for dPd

dt . In testing, the range for
Pd was set as [−0.1Pdemmax

, 0.1Pdemmax
]. For comparing the controls however, the range was set as

[−0.2Pdemmax
, 0.2Pdemmax

], to get amore realistic power variation. The power profile was created based
on the data retrieved from the H2C boat. The characteristics of the power demand and disturbance
used in different drive cycles are described in the Table 5.2.

5.1. Parameter Tuning for QP and HMPC
The weights used in the objective function of the optimization strategies are crucial for shaping the de-
sired behavior of the control strategies. Multiple considerations in the optimal control problem had to be
combined into a single objective function, but these criteria were not diametrically opposed—improving
one did not necessarily worsen the others in terms of optimality. So, to ensure optimal performance, a
Grid search method was employed to fine-tune the weights of the various criteria in the objective func-
tion. Using the Grid search, the weights (ω) assumed by the multiple criteria in the objective function
were selected by dividing the range [0,1] into equally spaced partitions. This allowed for systematic test-
ing of different values to find the most optimal ω values. For the Quadratic Programming (QP) strategy,
the optimal values for ω1 and ω2 were determined in this way. In the Hierarchical MPC, for simplicity
and to maintain consistency between its upper and lower level, the ratio between ω1 and ω2 from the
QP was preserved, while the optimal value for ω3 was tuned with respect to the sum of the first two
weights.

Another parameter that had to be chosen carefully was the prediction horizon Np for the HMPC. A
balance had to be struck between ensuring that the fuel consumption converged to an optimal value
over the drive cycle while keeping the computational complexity manageable. This trade-off helped
determine the best value for Np, ensuring efficient yet practical control performance.

Objective function weights

For the QP problem, the weights ω1 and ω2 were defined such that their sum always equaled to 1.
In this Grid search approach, the weights were systematically varied from 0 to 1, the optimization
problem was solved for each set of values, and the corresponding normalized objective function was
calculated. Normalizing the terms within the objective function helped ensure that each term received
an appropriate weight, minimizing any bias. Since this was a multi-criteria single objective minimization
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problem, the weight combination that yielded the lowest value of the objective function was selected
as optimal.

As shown in Figure 5.1, ω1 was plotted on the x-axis and the solution for the objective function on the
y-axis, the minimum solution occured at an ω1 value of 0.78. This implied that ω2 has a value of 0.22 at
this point. Thus, for the Quadratic Programming problem, the optimal values for ω1 and ω2 were 0.78
and 0.22 respectively.

Figure 5.1: Grid search for ω determination in QP

In HMPC, since the optimization problem was similar to QP, and to make the test simple, the ratio of
ω1 to ω2 was kept the same as before. The weight for reference tracking, ω3 was varied with respect
to the sum of ω1 and ω2, getting to the relation:

ω3 = 1− (ω1 + ω2)

while maintaining the ratio,
ω1

ω1 + ω2
= 0.78

The value of ω3 was varied in a similar fashion as before, and the normalized objective function of
the HMPC problem was evaluated over the entire drive cycle. As with the grid search process for QP
method, the goal was to find the values of the weights corresponding to the lowest value of the objective
function.

Figure 5.2: Grid search for ω determination in HMPC
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Thus, from Figure 5.2, the value for ω3 was selected as 0.25. The values of ω1 and ω2 were calculated
as 0.585 and 0.165 respectively.

Prediction Horizon

Identifying the prediction horizon, Np for the HMPC involved balancing fuel consumption and computa-
tional complexity. As Np increased, the computational time and complexity of the HMPC optimization
problem increased. To find the optimal horizon, the HMPC was run multiple times for the same power
profile using different values of Np, and the total fuel consumption was plotted against Np (as shown
in Figure 5.3).

Figure 5.3: Test for Np determination

From Figure 5.3, it was clear that increase in Np led to better optimization results. However, after a
certain point, which in this case was an Np of 80 seconds, the fuel consumption started to converge,
which meant that further increase in the prediction horizon did not result in significant reductions in fuel
consumption. Therefore, a value of 80 seconds was taken as the optimal value of Np.

5.2. Constraint Feasibility Check
Feasibility of the three control strategies were tested through a series of tests designed to ensure that
they behaved as expected. These tests focused on confirming that key operational constraints were
met across different scenarios. The tests were designed to ensure that the model consistently adhered
to the following rules:

• Test 1: SoC must remain within the prescribed range of [SoCmin, SoCmax]

• Test 2: Rate of change of the fuel cell’s power output should be within the range [−ϵ, ϵ]

• Test 3: The power produced by both the fuel cell and the battery must not exceed their respective
limits.

Different power profiles were employed during the tests. These profiles were not always identical to the
one depicted in Figure 3.3a. Some were specifically crafted to check whether the controls effectively
managed the plant’s parameters, keeping them within their prescribed limits.

Test 1

This test evaluated whether the battery’s state of charge (SoC) remained within the defined limits under
various conditions. To assess this, the values of SoCmin and SoCmax were varied to ensure that the
SoC consistently stayed within the allowable bounds, regardless of the plant’s conditions or the power
demand. This flexibility in defining safe operating limits for the battery was tested for all three strategies.
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The results of this test are shown in Figure 5.4. The maximum and minimum allowable values of battery
SoC are shown by the red and green dotted lines respectively.

(a) HMPC - Run 1 (b) HMPC - Run 2

(c) QP - Run 1 (d) QP - Run 2

(e) RB - Run 1 (f) RB - Run 2

Figure 5.4: Verification Test 1

The plots confirm that the system’s behavior adheres to the constraints, as the SoC values are main-
tained within the specified range across all scenarios, whether the battery is charging, discharging, or
turned off.

Test 2

This test evaluated whether the rate of change in the power delivered by the fuel cell adhered to the
specified limit, as outlined in the beginning of chapter 4. The absolute rate of change of fuel cell power,(

dPfc

dt

)
, was constrained to be less than or equal to ϵ. A mathematical constraint for the range was used
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in the optimization problem for the two optimization-based controls, while a rate limiter was applied for
the rule-based control.

(a) QP - Run 1 (b) QP - Run 2

(c) HMPC - Run 1 (d) HMPC - Run 2

(e) RB - Run 1 (f) RB - Run 1

Figure 5.5: Verification Test 2

As shown in the Figure 5.5, all the control strategies satisfied this operational limitation of the fuel cell.
This ensured that, once the real value of ϵ is known for a particular fuel cell, the control system would
manage the power output without exceeding the specified rate of change. The battery compensated
for any necessary adjustments, maintaining power balance while adhering to the fuel cell’s operational
limits.

Test 3

This test ensured that the power requested from both the fuel cell and battery adhered to their oper-
ational capacity. The maximum power capacity of the fuel cell and battery were defined by kfc and
kbat respectively. For the fuel cell, the minimum power is 0 kW, while the battery could handle nega-
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tive values during charging, with a minimum of −kbat. Therefore, the power requested by the control
strategies must align with these capacity limits.

(a) QP - Run 1 (b) QP - Run 2

(c) HMPC - Run 1 (d) HMPC - Run 2

(e) RB - Run 1 (f) RB - Run 2

Figure 5.6: Verification Test 3 - Pfc

In this test, the working range of the fuel cell was kept between 0 and 50 kW. As illustrated in Figure 5.6,
for the QP and HMPC, Pfc did not assume the extreme values unless absolutely necessary, because
the objective function aimed to minimize the fuel cell power. When the fuel cell operated, Pfc was
pulled to the value Popt. However, for RB control, due to the lack of predictive capabilities or foresight,
the fuel cell had to take over and satisfy the demands when the battery charge was depleted. Despite
this, the test proved that the operable range of the fuel cell power is respected by it, as demonstrated
in Figure 5.6e.
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(a) HMPC - Run 1 (b) HMPC - Run 2

(c) QP - Run 1 (d) QP - Run 2

(e) RB - Run 1 (f) RB - Run 2

Figure 5.7: Verification Test 3 - Pbat

Since the battery’s power output is used to balance the power demand while the fuel cell’s power output
is more regulated, the power requested from or delivered to the battery, Pbat, varied more significantly
compared to the fuel cell power, Pfc. Regardless of whether the battery is charging or discharging, all
three controls ensured that the power levels remained within the specified limits of the battery.

These tests confirmed that the control strategies adhered to the fundamental properties and require-
ments of the system. The constraints on the parameters functioned as intended, thus verifying the
proper operation of the controls and their alignment with the modelled specifications.

5.3. Robustness Check
The entire system can be illustrated using a control diagram as shown in Figure 5.8. The closed-loop
system consists of the controller and the plant, with the plant modelled using state-space equations.
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The controller’s transfer function is denoted byK, and the plant’s transfer function is represented by P .
The reference signal is labelled r, the output signal is y, the control signal is u, and the error signal is
e. Pdem refers to the power demand (an exogenous input), and Pd represents the disturbances in the
requested power. It is assumed that there is an absence of any noise inputs.

Figure 5.8: Control Diagram

Robustness refers to a system’s ability to withstand or handle adverse conditions effectively, particularly
in a closed-loop configuration where it must remain stable and perform well despite uncertainties or
variations in the plant or controller behavior. During the modelling phase, approximations, disturbances,
noise, and other unknown factors can cause the model’s dynamics to deviate from the actual system
dynamics. To ensure that the system remains effective under these conditions, robustness tests are
performed.

The robustness of this system was evaluated through the use of sensitivity functions, which quantify the
system’s response to disturbances and noise. The sensitivity and complementary sensitivity functions
were defined for all signal inputs, and Bode plots were used to analyze these functions. This analysis
provided insight into the system’s ability to maintain performance despite uncertainties.

ẋ(t) = Acx(t) +Bcu(t) + Ecd(t) (5.1)

y(t) = Ccx(t) +Dcu(t) + Fcd(t)

u(t) =

[
ufc(t)
Pdem(t)

]
, d(t) =

[
Ploss(t)
Pd(t)

]
,

Ac = 0, Bc =
[

kfc

Ebat

−1
Ebat

]
, Ec =

[ −1
Ebat

−1
Ebat

]
, , Cc = 1 D =

[
0 0

]
, Fc =

[
0 0

]
The first step involved determining the transfer functions for all system inputs. These transfer functions
were then used to compute the loop transfer functions, which were subsequently utilized to derive
the sensitivity and complementary sensitivity functions. For this test, the plant had to be defined as a
continuous state-space equation instead of the discretemodel created for QP andMPC. The continuous
model was therefore rewritten in the continuous time domain as Equation 5.1. Based on this state-space
model, the basic transfer functions for ufc, Pdem and Pd, respectively, were calculated as follows:

Gu(s) = Cc (sI −Ac)
−1

Bc1 +Dc1 (5.2)

Gp(s) = Cc (sI −Ac)
−1

Bc2 +Dc2 (5.3)

Gd(s) = C
c
(sI −A

c
)
−1

E
c
+ F

c
(5.4)

where B
c1 and B

c2 were the first and second elements of the matrix Bc
, whileD

c1 andDc2 represented
the corresponding elements of the matrix Dc from the state-space equation.

The loop transfer functions for each input were then calculated as the product ofG, the transfer function
corresponding to the respective input, and K, the controller transfer function.

L(s) = G(s) ·K(s) (5.5)
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The sensitivity S(s) and the complementary sensitivity functions T (s) were defined from L(s) as follows:

S(s) =
1

1 + L(s)
(5.6)

T (s) = 1− S(s) =
L(s)

1 + L(s)
(5.7)

The values of G(s), L(s), S(s) and T (s) for each of the inputs are given in Table 5.1.

Input G(s) L(s) S(s) T (s)

ufc
0.0003655

s
0.0003655K(s)

s
s

s+0.0003655K(s)
0.0003655K(s)

s+0.0003655K(s)

Pdem
−0.00000000731

s
−0.00000000731K(s)

s
s

s−0.00000000731K(s)
−0.00000000731K(s)
s−0.00000000731K(s)

Pd
−0.00000000731

s
−0.00000000731K(s)

s
s

s−0.00000000731K(s)
−0.00000000731K(s)
s−0.00000000731K(s)

Table 5.1: Values of transfer functions

Two tests were conducted using the Bode plots of S(s) and T (s) to evaluate the system’s robustness.
For robustness tests, the controller was assumed to be a simple proportional controller, reducing the
transfer function K(s) to a constant. According to Bemporad et al. [41], robustness analysis of Model
Predictive Control (MPC) is inherently more complex than its synthesis. While MPC can be designed
to robustly stabilize a system, the complexity of analyzing its robustness remains a challenge. MPC
naturally stabilizes the closed-loop system, but there are no general methods available to assess its
robustness. However, with careful research, a robust MPC can be selected for specific applications.
Thus, by using a proportional controller in place of the HMPC, robustness check of the plant was
simplified.

Test 1
In the first test, the proportional controller gain, K(s), was varied, and the behaviour of the system was
observed through the Bode plot. The plant parameters were kept constant. This helped in assessing
the robustness of the system to changes in the controller. The chosen values for proportional controller
gain were 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50 and 100.

(a) Bode plot of S(s) (b) Bode plot of T (s)

Figure 5.9: Test 1 for ufc



5.3. Robustness Check 28

(a) Bode plot of S(s) (b) Bode plot of T (s)

Figure 5.10: Test 1 for Pdem

(a) Bode plot of S(s) (b) Bode plot of T (s)

Figure 5.11: Test 1 for Pd

Test 2

In the second test, K(s) was kept a constant while varying parameters in the plant, specifically B
c1,

B
c2 and E

c
. The Bode plots were then analyzed. This was used to examine how the system behaved

to uncertainties and variations in plant dynamics.

(a) Bode plot of S(s) (b) Bode plot of T (s)

Figure 5.12: Test 2 for ufc
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The parameter varied for the transfer functions of ufc was Pfc

Ebat
, with Pfc

Ebat
taking the values of 0.05 s−1,

0.1 s−1, 0.5 s−1, 1 s−1 and 5 s−1. For the inputs Pdem and Pd, Ebat was varied. The values assumed
by Ebat were 60 kWh, 30 kWh, 10 kWh, 5 kWh and 2.5 kWh.

(a) Bode plot of S(s) (b) Bode plot of T (s)

Figure 5.13: Test 2 for Pdem

(a) Bode plot of S(s) (b) Bode plot of T (s)

Figure 5.14: Test 2 for Pd

The Bode plots revealed no peaks, only monotonic changes, and the maximum magnitudes observed
were very small. These observations indicated that the system was stable with a high gain margin. The
gain margin, a crucial indicator of system stability, confirmed that the system could tolerate significant
variations in controller gain and plant dynamics without losing stability. The system effectively accom-
modated uncertainties without compromising robustness and performance. Furthermore, the absence
of peaks suggested strong noise and disturbance rejection. Overall, the test results confirmed that the
system exhibited robust performance.

5.4. Control Strategy Comparison
Multiple profiles were run for comparing the control strategies with varying levels of prior knowledge, as
shown in Table 5.2. For the first four scenarios, the power profile from the actual boat (Figure 3.3a) was
used as the ideal demand power. To simulate real-world conditions, disturbances or variations in power
demand were introduced to this profile to obtain the actual power demand. This added disturbance was
a stochastic variable with varying ranges of power, with the condition that the actual power demand as
such does not take a negative value. In the first four power profiles, the only difference was thus the
variation in Pd, quantified as a random variable with an allowable range of [−0.2Pdemmax , 0.2Pdemmax ].
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In the fifth case, the power profile was the same as the fourth, but the reference values obtained from
the upper level of HMPC (SoC reference values) were kept constant at 0.65. In the sixth case, the
actual power profile was set the same as the ideal profile (i.e., Pd = 0).

The plots of results obtained from all three controls in test case II is shown in the figures in this section.
Powers produced by the fuel cell and battery, the variation of battery SoC during the operation, and the
energy produced by the fuel cell and battery together with the energy demand are plotted for Quadratic
Programming, Hierarchical MPC and the Rule-based control.

As shown in Figure 5.15 and Figure 5.16, QP clearly gave a better result in comparison to HMPC.
Specifically, with HMPC, the fuel cell power exhibited greater variability and higher levels, leading to
increased fluctuations in battery power. The HMPC tried to follow the trend of the reference profile given
by the upper level optimizer (solved for the ideal profile). Hence, the fuel consumption was clearly more
for HMPC, but it did try to keep close to the globally optimized result. Additionally, both optimization
based controls tried to keep Pfc close to Popt for majority of the time they worked.

In comparison to the optimization-based controls, the rule-based control is far from perfect. Without
any foresight of the upcoming power demand, the fuel cell power management was a struggle after
the battery charge was drained. The power produced by the fuel cell and consequently, the energy
produced by the fuel cell was higher for the rule-based control. Moreover, it could not always keep Pfc

close to Popt.

(a) Battery power (b) Fuel cell power

(c) SoC variation (d) Energy split

Figure 5.15: Quadratic Programming
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(a) Battery power (b) Fuel cell power

(c) SoC variation (d) Energy split

Figure 5.16: Hierarchical MPC

(a) Battery power (b) Fuel cell power

(c) SoC variation (d) Energy split

Figure 5.17: Rule-based control



5.4. Control Strategy Comparison 32

Test case Fuel consumption (kg) Characteristics

RB control HMPC QP

I 1.1143 0.8067 0.7628 Pd ∈ [−0.2Pdemmax , 0.2Pdemmax ]

II 0.9912 0.8232 0.7344 Pd ∈ [−0.2Pdemmax
, 0.2Pdemmax

]

III 1.0510 0.8197 0.7476 Pd ∈ [−0.2Pdemmax , 0.2Pdemmax ]

IV 1.1202 0.8303 0.7660 Pd ∈ [−0.2Pdemmax
, 0.2Pdemmax

]

V 1.1202 0.9156 0.7660 Pdem same as Test case IV, SoCref = 0.65

VI 0.9794 0.7002 0.6915 Pdemactual
= Pdemideal

, Pd = 0

Table 5.2: Control strategy comparison

From comparing the control strategies, it could be seen that QP, the offline control strategy, performed
the best, providing a globally optimized solution to the control problem. The Hierarchical MPC had
results closer to that of QP in the first four scenarios, with a slightly higher fuel consumption. The
reference tracking using the ideal power profile played a massive role in its effectiveness. In I, II, III
and IV, although the ideal power profile was different than the actual profile at every instant, the general
sense in its trend helped the control strategy work efficiently in real-time. In V, even though HMPC was
still better than RB, the fuel consumption for HMPC increased because it kept trying to bring the battery
SoC up to 0.65 once it went down, thereby making the fuel cell produce more power and consequently
increasing the hydrogen consumption. In VI, the ideal power demand was the exact same as the actual
power demand. Therefore, the reference values passed down from the upper level of HMPC was the
globally optimized solution to the problem at the lower level. However, since the reference tracking was
only a part of the objective function for the HMPC and the prediction horizon was small in comparison
to the actual drive cycle time period, the fuel consumption was slightly more than the global minimum.
The test cases V and VI is a clear indicator of HMPC’s reference tracking capabilities.The rule-based
control was the least effective of the three in all tested scenarios.

As was discussed in section 3.4, in a real situation, assuming the rule-based control as the worst case
scenario, and the Quadratic programming problem as the benchmark, the Hierarchical MPC always
fell between the two, with the results being closer to the globally optimized solution than the rule-based
strategy.
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Conclusion

This chapter gives a short conclusion to the study and addresses the research question that was for-
mulated in chapter 1.

The literature review highlighted that Model Predictive Control is among the most effective energy man-
agement strategies for real-time applications. However, for vessels that do not operate under sustained
high-load conditions where engines are already highly efficient, integrating MPC with hierarchical con-
trol presents a more practical and viable solution. The predictive capabilities of MPC, combined with the
near-optimal reference values derived from the upper level of the hierarchical model, deliver superior
performance.

In Chapter 3, the modelling of the powertrain for the H2C boat was addressed, focusing on the fuel cell
and battery. Given the lack of detailed specifications, the modelling was approached with the necessity
that the unspecified components could be scaled accordingly when required. Due to this limitation, a
simplified state-space model was developed with the sole state of the system being the battery SoC.
This parameter was crucial across all three controls for determining the power split between the fuel
cell and the battery.

Chapter 4 detailed the creation of the three control strategies. The deterministic rule-based control was
created to make decisions based on the battery SoC, instantaneous power demand, and the current
behaviour of the system. Quadratic programming was used to minimize the hydrogen consumption,
using the state-spacemodel where the battery SoC served as the state variable and the power delivered
by the fuel cell as the control variable. The power balance equation consisting of the battery power,
fuel cell power, the power demand and the power losses integrated the model architecture into the
state-space model. The mathematical framework of QP was used as the base for Hierarchical MPC
formulation. In addition to the constraints and objectives of QP, reference tracking was implemented in
HMPC, where a pre-solved QP problem (in its upper level) for an approximate power profile was used
to guide the MPC (working at the lower level) towards the global optimal solution in real-time. However,
real-world disturbances and uncertainties could deviate the HMPC solution from the theoretical global
optimum.

Chapter 5 presented the testing process for QP and HMPC, which included parameter tuning, constraint
feasibility tests and robustness tests. Finally, the results of comparing the control strategies were
presented and interpreted. The parameter tuning focused on determining the optimal values of weights
in the multi-criteria single-objective functions of both the QP and the HMPC, as well as identifying
the best prediction horizon for running the HMPC. Feasibility tests for constraints confirmed that they
were consistently obeyed and the objectives were achieved. Robustness tests assessed the system’s
tolerance to uncertainties in modeling and operational conditions, confirming that the system had a
robust performance.

The research question introduced in this study at the beginning was:
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”How efficiently can a Hierarchical MPC perform in real-time for the energy management of a hybrid
marine powertrain?”

The focus of this question was on how effectively the strategy could reduce energy consumption, with
hydrogen consumption serving as the key performance indicator. During the design phase of the con-
trols, special consideration was given to ensure that the fuel cell operated as close to its maximum
efficiency as possible when active.

To assess the competence of the HMPC, a comparative analysis framework was established. In this
framework, the rule-based control strategy set the upper performance threshold, while Quadratic Pro-
gramming acted as the benchmark. As expected, the performance of HMPC fell between the other two
controls, with the rule-based control exhibiting the highest fuel consumption and QP achieving the low-
est. The KPI for HMPC was notably closer to QP than to the rule-based control, indicating that HMPC’s
optimization solution was nearer to the global optimum. From the results, it could be concluded that the
Hierarchical MPC operated with high efficiency for this system, effectively tracking the reference profile.
Its prior knowledge of future trends in the power profile enhanced its optimality. The performance of
the HMPC working with a complicated power profile in this study, reiterated this conclusion and the fact
that it could work well with simpler profiles with lower power variations.



7
Recommendations and Future Work

The research done in this thesis utilized a simplified model of the powertrain. The focus was primarily on
the battery and fuel cell while omitting the modelling of other components due to limited data availability.
Even with the fuel cell and battery, not all their characteristics were considered. The thermal, fluidic, and
chemical side of modelling were either excluded, simplified or linearized. Priority in this study was given
to the development and testing of the Hierarchical MPC rather than achieving the most precise model.
Since a PEM fuel cell can have about 11 or more states to develop just its state-space model[2], the
complexity and detail required to build a very accurate model is immense. This research was focused
more on the design, structure and mathematical verification phase of the controllers.

Future work could enhance the system’s accuracy by incorporating more detailed models that include
additional states, constraints, and refined objectives. This would increase the complexity of the system
but would improve its alignment with real-world applications. They would eventually make it suitable
for working well with the actual vessel. Scaling up the number of states and control variables would
increase the computational complexity, but the general idea of the implementation of the control strat-
egy remains unchallenged. Furthermore, future research could integrate component health as a KPI
alongside fuel consumption. This approach would allow the controller to account for the degradation
of the fuel cell, battery, or other components, potentially enhancing overall performance.

Although the Hierarchical MPC works well in comparison to QP and a rule-based controller, its capabil-
ities have not been compared to other online real-time strategies. While the predictive nature of MPC
usually provides better results in the long run, comparison of this control strategy to other optimization-
based real-time strategies can help make it better. Instead of the worst-case scenario being the rule-
based controller, the performance can be assessed with respect to better online optimization strategies.
This could potentially help improve the comparitive framework further. Once the plant and the controller
are more accurately designed, hardware-in-the-loop (HIL) testing could be conducted to evaluate the
controller’s performance with actual input-output components.
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Energy Management Strategies for Hybrid Marine Powertrains

Siddharth Sasidharan1 and Dr. Andrea Coraddu2

Abstract— Reduction of carbon emissions and greenhouse
gases within the transportation sector is crucial due to its
significant contribution to environmental degradation. To re-
duce this impact, it is important to develop and implement
energy efficient systems. In addition to exploring renewable
fuel alternatives, effective energy management systems are vital.
This paper presents an optimization-based control referred to as
Hierarchical Model Predictive Control along with a comparitive
framework, to evaluate its effectiveness as a real-time control
strategy. Three energy management strategies are designed
for this purpose, with the objective of minimizing the fuel
consumption of a hybrid marine powertrain, while optimizing
the power distribution among its components to achieve high
operational efficiency.

I. INTRODUCTION

The transportation sector contributes approximately 30 %
to the total global greenhouse gas (GHG) emissions [1].
Recognizing this issue, the International Maritime Organiza-
tion (IMO) has proposed a strategic plan aimed at achieving
a 40 % reduction in GHG emissions by 2030 and a net-
zero emission target by 2050 in the maritime sector [2].
Although electric and hybrid propulsion technologies hold
great promise in meeting these emission targets, significant
obstacles remain, especially in improving fuel efficiency,
optimizing energy storage systems, and perfecting energy
conversion processes between subsystems. Fuel cell-powered
hybrid powertrains have emerged as a good alternative, which
couples electric propulsion driven by a fuel-cell system with
an auxiliary battery. This configuration not only achieves
substantial emission reductions, but also minimizes environ-
mental impact, with water and heat being the primary by-
products of the propulsion process.

Hybrid powertrain architectures vary depending on how
energy contributions from different sources are managed.
As a result, optimizing energy management has become a
central focus in recent years. This has led to significant
scholarly attention on Energy Management Systems (EMS)
for hybrid powertrains across the automotive, marine, and
aviation sectors.

While the primary aim of most EMSs is to minimize
fuel consumption, these strategies often address additional
objectives, such as optimizing the sizing of key powertrain
components, mitigating battery degradation, and reducing
pollutants and emissions. EMSs are generally classified into
offline and real-time strategies based on their computational

1Siddharth Sasidharan is with Faculty of Mechanical Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
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demands, implementation timing with respect to the plant
being controlled, and the optimality of their solutions.

Offline strategies optimize energy management using prior
knowledge of the drive cycle and relevant energy variables’
trajectories (such as speed, torque or power) to deliver global
optimal solutions. They often serve as benchmarks, form
part of a multi-level EMS, or act as the foundation for
online (real-time) EMS development. Due to the availabil-
ity of prior knowledge, offline strategies provide globally
optimized solutions, offering the best possible outcome for
a given situation. This helps in using it as a benchmark
for comparing other control strategies [3], [4], [5], [6], [7],
[8]. The offline strategies have also often been used as the
part of a bigger system. They act as optimizers at the cloud
level, providing information and data for a real-time control
at the lower level. The computational complexity of the
global optimization is thus surpassed [9], [10]. They have
also been used as a foundation for developing real-time
strategies. For example, the offline control strategy based
on Pontryagin’s Minimum Principle [11] is used to develop
the Equivalent Consumption Minimization Strategy (ECMS),
which functions as a real-time control strategy.

Real-time strategies are characterized by their simplic-
ity, reduced computation time, predictive capabilities, and
instantaneous implementation. The issue, however, is that
they can only provide sub-optimal solutions and cannot reach
global optimality. These strategies can be broadly classified
into rule-based, online optimization-based, and learning-
based control strategies. Rule-based strategies are based on
precalculated rules that cannot be altered or reprogrammed
during operation without human intervention [12]. They may
use deterministic or fuzzy rules, or utilize look-up tables.
Owing to their simplicity, Rule-based (RB) EMSs can be
implemented in real-time. However, they have several draw-
backs, the most significant being their inability to provide
optimal solutions. In real-time optimization methods, the
control variable is determined by minimizing a predefined
cost function based on future equivalence assumption of the
electric energy consumption [13]. The most widely used
strategies in this category are ECMS (Equivalent Consump-
tion Minimisation Strategy) and MPC (Model Predictive
Control). In a Learning-based EMS, the necessity for precise
model information diminishes, as control decisions are made
based on learning through interactions with the environment.
A reinforcement learning (RL) system consists of a learning
agent and studies its interaction with the environment. At
each time step, the learning agent receives an observation
of the environment, selects an action based on the observed
state, transitions to a new state as a result of the action, and



then computes the reward associated with the transition. This
reward is then provided as a feedback to the learning agent.
Over time, through the iterative process, the optimal policy
can guide the learning agent to take the best series of actions
to maximise the cumulated reward.

This paper focuses on creating a Hierarchical-MPC, which
operates in real time and can provide solutions that are close
to global optimality. Additionally, a comparitive framework
is created using a rule-based control and quadratic pro-
gramming. Since rule-based control strategies cannot provide
optimal solutions, they can serve as an upper bound in
minimization control problems for real-time strategies, which
should not be easily surpassed. Quadratic programming, the
offline optimization strategy, is used both as benchmark for
Hierarchical MPC and as a foundation for its development.
This allows for a comprehensive comparison to assess the
competence of the Hierarchical MPC.

The structure of the paper is as follows: Section II presents
the description and mathematical modelling of the plant.
In section III, the three EMSs are developed and their
mathematical formulations are discussed. Following this, in
Section IV, the specifications of the three control strategies
for this specific system are defined, and they are compared.
Finally, Section V concludes this paper.

II. MATHEMATICAL MODELLING
The marine vessel utilized in this research is an H2C boat,

a hydrogen-powered rigid-hull inflatable boat (RIB or RHIB)
with a hull made of either polyester or aluminium [14]. Such
boats are typically equipped with powerful onboard engines.
This particular vessel is powered by a combination of hydro-
gen fuel cells and lithium-ion batteries. The architecture of
the powertrain follows a parallel configuration as illustrated
in Figure 1. In this setup, energy flows unidirectionally from
the fuel cell to the DC converters, while the battery features
a bidirectional energy flow to support both charging and
discharging of the lithium-ion batteries.

Fig. 1. Powertrain architecture of boat

A ’Deep Blue’ electric drive system from the company
Torqeedo [15] is used on the boat. The Lithium-ion battery
has a usable capacity of 38 kWh with a 2 kWh reserve,
a nominal voltage of 360 V, and can deliver a continuous
maximum power of 55 kW. Fuel cell serves as a range
extender. A low-temperature proton-exchange membrane fuel
cell (LT-PEMFC) is used, that can deliver a maximum power
of 50 kW.

A. Fuel cell

The detailed model of the LT-PEMFC used here is based
on the works of Njoya et. al [16] and Xun et al. [17]. It
considers parameters such as pressures, temperature, com-
positions, and flow rates of fuel and air. Considering the
kinetics of the reactions taking place at the electrodes and
inside, the fuel cell voltage can be given as follows:

Vfc = Eoc − Vact − IfcRohm (1)

Eoc = NKcEn (2)

Vact = NA ln

[
Ifc
I0

]
· 1

sTd/3 + 1
(3)

where Eoc is the open circuit voltage (V), Vact is the
voltage due to activation losses (V), Ifc is the fuel cell
current (A), Rohm is the internal resistance (Ω), N is the
number of cells, Kc is the voltage constant at nominal
condition of operation, A is the Tafel slope (V), I0 is the
exchange current (A), and Td is the stack settling time or
response time (at 95% of the final value). The activation
losses, which characterises the delayed response due to
the rate of chemical reactions at the electrode surfaces, is
represented by the first order transfer function 1

sTd/3+1 , with
s being the frequency variable in the Laplace domain.

Fig. 2. Detailed fuel cell stack model replicating the work of [16]

The model is illustrated in detail in the Figure 2. Using the
blocks A, B and C, where Eoc, I0 and A are updated based
on the varying parameters νfuel (fuel flow rate in litres/min),
νair (air flow rate in litres/min), Pfuel (absolute supply
pressure of fuel in atm), Pair (absolute supply pressure of air
in atm), T , x% (percentage of hydrogen in the fuel) and y%
(percentage of oxygen in the oxidant) . Using these inputs
into Block A, the rate of utilization of hydrogen and oxygen
are calculated as follows:

UfH2 =
60000RTIfc

zFPfuelνfuelx%
(4)



UfO2
=

60000RTIfc
2zFPairνairy%

(5)

In the block B, to calculate the Nernst voltage and ex-
change current, the partial pressures are computed as follows:

PH2 = (1− UfH2)x%Pfuel (6)

PO2
= (1− UfO2

)y%Pair (7)

PH2O = (w + 2y%UfO2
)Pair (8)

In the Nernst equation, PH2O becomes 1 if T ¡373K.
Finally, using the values of partial pressures and the Nernst
voltage, block B and C computes I0 and A as follows:

I0 =
zFk (PH2 + PO2)

Rh
· exp

(
−∆G

RT

)
(9)

A =
RT

zαF
(10)

where k is the Boltzmann’s constant (1.38 × 10−23 J/K)
and h is the Planck’s constant (6.626× 10−34 Js).

While the fuel cell can provide reliable power at steady
state conditions, some of the power it generates is wasted and
cannot be delivered to the load due to activation losses, ohmic
losses, mass transfer or concentration losses, and thermal
losses. Based on the fuel cell power-efficiency relationship
seen in Banaei et al.[18], these losses vary with the power
generated by the fuel cell. Using the data derived from that
relationship and by curve fitting, the relationship between the
normalized values of generated power and the actual power
output is established as a quadratic function, given by:

Pfcgen

kfc
= 0.9131 ·

(
Pfcout

kfc

)2

+0.8451 ·
(
Pfcout

kfc

)
+0.0700

(11)

where,

Pfcgen = Eoc · Ifc (12)

and kfc is the maximum rated power output of the fuel
cell, considering all the losses.

The KPI used for analysing and comparing the control
strategies is hydrogen consumption. To calculate the instanta-
neous hydrogen consumption, the following relation is used:

mH2(t) = Pfcgen(t) ·∆t · µ (13)

where mH2 (kg) is the mass of hydrogen consumed and
µ (kg/kWh) is the reciprocal of usable energy of Hydrogen.

Fig. 3. Rint equivalent circuit model

B. Battery

To accurately model the working characteristics of this
battery, an equivalent circuit modelling concept is used.
Commonly used models include the Rint and Thevenin mod-
els. While the Thevenin model accounts for the polarization
effects of the lithium-ion battery and provides a more precise
behavioural representation, this research utilizes the Rint
model due to its computational simplicity.

The Equivalent circuit consists of an ideal voltage source
and a resistance R0, as illustrated in the Figure 3. The
resistance R0 characterizes the internal ohmic resistance of
the battery. Using Kirchoff’s law, we obtain the relation:

Vbat = Voc − IbatR0 (14)

where Voc is the battery’s open circuit voltage (which
assumed to be a constant) and Ibat is the current flowing
through the circuit.

The only loss in power in this scenario is due to the
internal resistance. The power drawn and the power losses
from the battery can thus be defined as follows:

Pbat = VocIbat (15)

Ploss = I2batR0 (16)

An important property of the battery on which its perfor-
mance depends is the State of Charge (SoC). It is a unitless
quantity which represents the remaining useful charge inside
the battery and can be expressed as follows [19]:

SoC(t+∆t) = SoC(t)− Pbat(t) ·∆t

Ebat
(17)

where Ebat is the energy rating of the battery.

III. ENERGY MANAGEMENT SYSTEMS

Three distinct control strategies are developed for manag-
ing energy and power distribution among the power sources
of the H2C boat: Rule-Based (RB) Control, Global Opti-
mization using Quadratic Programming (QP), and Hierar-
chical Model Predictive Control (HMPC). QP is chosen for
its similarity to classical Model Predictive Control (MPC)
in formulation and structure. The Rule-based control and
HMPC work in real-time, while the QP is an offline control
strategy. The RB and QP strategies are implemented to



compare performance and assess the potential of the HMPC.
All three strategies are designed to adhere to the following
core principles:

• Minimize hydrogen use
• When the fuel cell is in operation, maximize its effi-

ciency, which inadvertently means operating the fuel
cell at or near its optimal power output, Poptimal

• Always meet the power demand
• Maintain the battery SoC within limits, in the range

[SoCmin, SoCmax]. This helps with reducing battery
degradation.

• Use battery to absorb sudden changes in power demand,
while the fuel cell’s power output should be kept as
stable as possible. The rate of change of Pfc is limited
to [−ϵ, ϵ]

A. Rule-based Control

Fig. 4. Flow chart for the Rule-based control

As illustrated in Figure 4, the rule-based control is de-
signed with three inputs and two outputs. It operates in
the discrete time domain. Pbat, the power consumed or
delivered by the battery in the current time-step is used as
an input, to help stabilise the system behaviour with regards
to being consistent with the battery modes. A negative
value of Pbat indicates charging, and positive value indicates
the discharging mode. The other two inputs are the power
demand for the upcoming time-step and the battery state of
charge of the current time-step. The outputs are the fuel cell
power and battery power requested for the next time-step.

The control strategy first compares the SoC at that instant
to its allowable range. If it is in the within the range
[SoCmin, SoCmax), it looks into whether the battery was
charging or discharging at that instant, and then makes a
decision considering the power demand. If the SoC is below
SoCmin, the battery is charged unless the power demand
is greater than the optimal power output of the fuel cell.
However, if the SoC is greater than or equal to SoCmax,
the power demand is satisfied by the battery as long as its

below Popt. If the demand is more, the power is split among
the power sources.

B. Quadratic Programming

The Quadratic Programming problem defined below is a
multi-criteria single-objective optimization problem where
the cost function has two main goals. The first weighted part
of this objective function minimizes the normalized fuel cell
power or the control variable over the entire power profile,
thereby reducing the total fuel consumption. This is given
a weighting factor of ω1. The second part tries to minimize
the error between power produced by the fuel cell at any
instant and the optimal fuel cell power Poptimal. Reducing
this error helps the fuel cell to run at its maximum efficiency.
The weighting factor ω2 is determined such that this part of
the objective function is active when ufc > 0, i.e., when the
fuel cell is turned on. To keep the priorities of the objectives
consistent with each other, all the terms are normalized.

Minimize

J =

N∑
i=1

[ω1 · ufc(i) + ω2 ·
(
ufc(i)−

Poptimal

kfc

)2

]

subject to:

SoC(i+ 1) = SoC(i) +
kfc · τs · ufc(i)

Ebat

− [Pdem(i) + Ploss(i) + Pd(i)] · τs
Ebat

(18)

y(i) = SoC(i) (19)

SoCmin ≤ SoC(i) ≤ SoCmax (20)

0 ≤ ufc(i) ≤ 1 (21)

Pbat = Pdem(i) + Ploss(i) + Pd(i)

−(kfc · ufc(i)) (22)

−1 ≤
[
Pbat(i)

kbat

]
≤ 1 (23)

−ϵ

kfc
≤ [ufc(i+ 1)− ufc(i)] ≤

ϵ

kfc
(24)

∀i ∈ [1, N ]

The problem is subject to multiple constraints, which
describe the behaviour of the system. The first two con-
straints are the state-space equations, describing the system
dynamics. Equation (20) limits the range of the battery
state of charge to [SoCmin, SoCmax]. Equation (21) restricts
ufc to the range [0,1], and consequently constrains the
output power of the fuel cell to stay within its operational
range. Similarly, Equation (23) limits the power produced
by the battery to the range [−kbat,kbat], where kbat is the
maximum power that can be produced by the battery. The



final constraint, Equation (24), limits the rate of change of
the power output of fuel cell. This ensures that significant
power variations are handled by the battery and not the fuel
cell. The absolute value of change in ufc in the sampling
time is limited to ϵ.

C. Hierarchical Model Predictive Control

Fig. 5. Hierarchical MPC

The Hierarchical Model Predictive Control (HMPC) func-
tions similarly to classical MPC by performing real-time
optimization over a prediction horizon. As shown in Figure 5,
the reference values for the battery state of charge is obtained
from the upper level. These values are the results of global
optimization, which in this case is a Quadratic Programming
problem, done prior to the operation of the vessel. An ideal
power profile, which anticipates the upcoming drive cycle
of the boat, is made available to the global optimizer as an
exogenous input, and the problem is then optimized over
the entire period of operation. These globally optimized
reference values for the SoC are subsequently passed to
the HMPC, where they serve as targets during the vessel’s
real-time operation. The HMPC continually compares the
real-time system behavior with these reference values and
adjusts the power split between the fuel cell and the battery
accordingly. The mathematical formulation of the control
problem is defined as follows:

Minimize

J =

Np∑
i=0

[ω1 · ufc(k + i) + ω2 ·
(
ufc(k + i)− Poptimal

kfc

)2

+ω3 · (SoC(k + i)− SoCref (k + i))
2
]

subject to:

SoC(k + i+ 1) = SoC(k + i) +
kfc · ufc(k + i) · τs

Ebat

− (Pdem(k + i) + Ploss(k + i) + Pd(k + i)) · τs
Ebat

(25)

y(k + i) = SoC(k + i) (26)

SoCmin ≤ SoC(k + i) ≤ SoCmax (27)

0 ≤ ufc(k + i) ≤ 1 (28)

Pbat(k + i) = Pdem(k + i) + Ploss(k + i)

+Pd(k + i)− (kfc · ufc(k + i)) (29)

−1 ≤
[
Pbat(k + i)

kbat

]
≤ 1 (30)

−ϵ

kfc
≤ [ufc(k + i)− ufc(k + i− 1)] ≤ ϵ

kfc
(31)

∀i ∈ [0, Np]

The objective function of the HMPC focuses on three
key aspects: minimizing fuel consumption, ensuring the fuel
cell operates at its optimal power, and reducing the error
between the actual battery SoC and the reference SoC value
obtained from the Quadratic Programming problem in the
upper level. These are prioritized by using the weights
ω1, ω2 and ω3 respectively. In addition to the first two
terms of the objective function similar to the QP problem,
ω3 ·(SoC(k + i)− SoCref (k + i))

2 minimizes the error be-
tween the actual SoC and the reference SoC over the horizon
to keep the system aligned with the global optimizer’s target
and follow its path. k is the time-step during the optimization
and i denotes the horizon steps.

The upper-level global optimization does not consider
the disturbances (winds or waves) or changes in physical
characteristics of the system (such as additional cargo or
people onboard the vessel) which is not known beforehand.
However, the HMPC, working in real-time, adjusts for these
disturbances faced by the system, while still meeting the
actual power demands. From the reference tracking, it gets
a general idea of what it can expect in the near future. This
helps it choose when to switch on the fuel cell and when to
turn it off with minimal variations in its power production.

IV. RESULTS

A. Objective Function Weights

The weights used in the objective function of the optimiza-
tion strategies are crucial for managing the desired behavior
of the controls. A Grid Search method is employed to adjust
the weights of the multiple criteria in the objective function.
Using the concept of Grid search, the weights (ω) assumed
by the multiple criteria in the objective function are selected
by discretizing the range [0,1] into a number of partitions of
equal equal gap between them. This allows for systematic
testing of different values to find the most optimal ω values.
For the Quadratic Programming (QP) strategy, the optimal
values for ω1 and ω2 are determined in this way. The weights
ω1 and ω2 are defined such that their sum always equals to
1. In the Hierarchical MPC (HMPC), for simplicity and to
maintain consistency, the ratio between ω1 and ω2 from the
QP is preserved, while the optimal value for ω3 is tuned with



Fig. 6. Grid search for ω determination in QP

Fig. 7. Grid search for ω determination in HMPC

respect to the first two weights. All three weights add up to
1 too.

In this Grid-search approach, the weights are systemati-
cally varied from 0 to 1, the optimization problem is solved
for each set of values, and the corresponding normalized
objective function is calculated. Since this is a multi-criteria
single objective minimization problem, the weight combina-
tion that yields the lowest value of the objective function is
selected as optimal.

As can be seen in the Figure 6, for the objective function
of QP, the values for ω1 and ω2 are 0.78 and 0.22. From the
minimum of the normalized objective function in Figure 7,
it can be seen that the optimal values for ω1, ω2 and ω3 in
HMPC are 0.585, 0.165 and 0.25 respectively.

B. Prediction Horizon

Identifying the prediction horizon, Np for the HMPC
involves balancing fuel consumption and computational com-
plexity. As Np increases, the computational time and com-
plexity of the HMPC optimization problem increase.

From Figure 8, it is clear that increase in Np leads to better
optimization results. However, after a certain point, which in
this case is an Np of 80 seconds, the fuel consumption started
to converge, and further increases in the prediction horizon
do not result in significant reductions in fuel consumption.
Therefore, a value of 80 seconds was taken as the optimal
value of Np for this case.

C. Control Strategy Comparison

Multiple profiles were run for comparing the control
strategies with varying levels of prior knowledge, as given

Fig. 8. Test for Np determination

in Table I. For the first four scenarios, an actual power
profile obtained from running the H2C boat was used as
the ideal demand power. To simulate real-world conditions,
the disturbances or variations in this power demand were
introduced to this profile to obtain the actual power demand.
This added disturbance was a stochastic variable with varying
ranges of power from the ideal profile, with the condition that
the actual power demand as such does not take a negative
value. In the first four power profiles, the only difference
was thus the variation in Pd, quantified as a random variable
with an allowable range of [−0.2Pdemmax

, 0.2Pdemmax
]. In

the fifth case, the power profile was the same as the fourth,
but the reference values obtained from the upper level of
HMPC (SoC reference values) were kept constant at 0.65.
In the sixth case, the actual power profile was set the same
as the ideal profile (with Pd = 0).

Test case Fuel consumption (kg)

RB control HMPC QP

I 1.1143 0.8067 0.7628

II 0.9912 0.8232 0.7344

III 1.0510 0.8197 0.7476

IV 1.1202 0.8303 0.7660

V 1.1202 0.9156 0.7660

VI 0.9794 0.7002 0.6915

TABLE I
CONTROL STRATEGY COMPARISON

The offline control strategy performed the best, providing
a globally optimized solution to the control problem. The
total hydrogen consumption over the entire drive cycle was
minimized while simultaneously keeping the power genera-
tion of the fuel cell at the most efficient point as much as
possible.

The Hierarchical MPC had comparable results to QP in the



first four scenarios, although always having slightly higher
fuel consumption. The reference tracking of the ideal power
profile played a massive role in its effectiveness. In I, II,
III and IV, although the ideal power profile is different
than the actual profile at every instant, the general sense of
change in the profile helped it work efficiently in real-time.
In V, even though HMPC was still better than RB, the fuel
consumption for HMPC increased because it kept trying to
bring the battery SoC up to 0.65 once it went down, thereby
making the fuel cell produce more power and consequently
increasing the Hydrogen consumption. In VI, the ideal power
demand was the exact same as the actual power demand.
Therefore, the reference values passed down from the upper
level of HMPC was the globally optimized solution to the
problem at the lower level. Thus, since the reference tracking
is only a part of the objective function for the HMPC, the fuel
consumption was very close to the global optimum, but still
slightly more due to the effect of smaller prediction horizon
in comparison to the actual drive cycle time period.

The rule-based control had the highest hydorgen consump-
tion of the three in all scenarios and acted as the upper bound
for the solutions.

V. CONCLUSION

This paper was focused on how much the HMPC strategy
could reduce the energy consumption, KPI being hydrogen
consumption. It was also considered during the creation of
the control strategies that the fuel cell needed to operate
as close to conditions of maximum efficiency as possible,
when it was turned on. To assess the capabilities of the
HMPC, a comparative analysis framework was established.
In this framework, the rule-based control strategy served as
the upper threshold and Quadratic Programming served as
the benchmark. As expected, the performance of HMPC fell
between the other two, with the KPI of HMPC being closer to
that of QP than the rule-based. It is evident that the solution
to the optimization problem provided by HMPC was closer
to the global optimum. It is able to track the reference profile
effectively. This knowledge of the future trend in the power
profile enhances its ability to obtain near-optimal solutions.
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