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Abstract
There is a rise in demand for robots that can perform complex tasks such as doing laundry or sending
a package from a warehouse to a client. To create a robot that can complete such complex tasks, a
control policy is needed that steers the robot in the environment toward its goal. For the creation of such
a control policy, the environment is often modeled as a sequential decision-making problem, which are
problems where the goal is to find a sequence of actions in an environment that complete a certain
task. Three techniques often used to solve sequential decision-making problems are formal methods,
planning, and reinforcement learning. A particularly difficult type of sequential decision-making prob-
lem to solve is one in which the environment has sparse rewards, a large state space, and where the
goal is to complete a complex task. Solely using formal methods, planning, or reinforcement learning
often does not suffice in this type of environment since all techniques have a hard time dealing with
some of the characteristics of this environment.

This research develops an approach that can solve complex tasks in sequential decision-making pro-
cesses, i.e. tasks in stochastic environments with sparse rewards, a large state space, and where
there are multiple optimization objectives. We do this by combining techniques from the three methods
mentioned above (reinforcement learning, formal methods, and planning). Specifically, we create an
approach called Multi-Objective Planning with Reinforcement Learning (MOPRL) that optimizes for two
objectives (cost and success probability) and provide a lower bound on the probability that the expected
success probability and expected average cost are within a certain range of the calculated values. In
MOPRL we manually define subtasks in the environment and use reinforcement learning to learn a
policy for each subtask. After this, multi-objective planning is used to find Pareto-optimal sequences
of subtasks to execute that complete the global task.

We show that with this approach, we are able to outperform two other state-of-the-art reinforcement
learning approaches that aim to solve complex tasks in environments, achieving a higher success prob-
ability, and having a marginally worse cost. MOPRL is most beneficial when dealing with choice tasks,
such as go to a or go to b, since it is able to evaluate both options for all objectives. We provide a 90%
confidence that the expected success probability is within 5% of the calculated success probability and
an 84% confidence that the expected cost is within 5% of the calculated cost.
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1
Introduction

There is an increasing demand in the real world for robots that can perform complex tasks. According
to a research by Harmo, Taipalus, Knuuttila, et al. (2005) [1] there is a need for robots that can do
household tasks and provide other services for elderly people. This is due to a changing population
structure in industrial nations, people are getting older and there will be fewer people available to take
care of the elderly when needed. Another sector in which automation is in high demand is agriculture
[2], [3], here the use of automated robots can have a high economic benefit, as well as help with the
shortage of farm labor. Construction is also a sector in which the use of robots can be beneficial for
productivity as well as for the enhancement of working conditions [4], [5]. One of the difficulties of
creating such robots is creating a control policy that can steer the robot such that it completes its task
in its environment. One of the main challenges of creating such a control policy is the fact that these
robots need to operate in dynamic environments in which it is not always known what will happen.
For instance, when a robot needs to do household tasks for the elderly, it needs to work in a shared
workspace, where there are both humans and robots and contact between them can be expected, this
can make the environment unpredictable [6], [7]. The challenge of creating a control policy that can
perform complex tasks in an environment is often modeled as a sequential decision-making problem.
A sequential decision-making problem is a problem where the goal is to find a sequence of actions that
completes a task in an environment. An example of a sequential decision-making process is doing
laundry, in which first, the laundry needs to be put in the washing machine, washed, taken out of the
washing machine, dried, and maybe even ironed depending on the type of clothes. Another example
is sending a package from a warehouse to a client, where one first needs to gather the package from
the warehouse, package it, put the address on it, and mail it with the post service to the client.

There are many different techniques to create control policies for sequential decision-making prob-
lems. These methods are used to find which action is the best to be performed at which state in the
environment in order to complete the task. Three of those methods are reinforcement learning (RL),
formal methods, and planning. In RL, an agent learns how to solve the problem via interaction with the
environment. The agent interacts with the environment by executing actions, collecting observations,
and receiving a reward based on a given reward function. The agent receives a positive reward when
it completes the task or a negative reward if it executes an action that has a negative effect. The agent
uses these rewards to learn which action to execute at which state of the environment to optimize
the overall long-term reward. This process results in a control policy that can be used to interact with
the environment and complete the task the agent is trained for. Planning involves finding a sequence
of actions that goes from an initial state to a goal state [8]. Most planning techniques use dynamic
programming, which takes a problem and recursively breaks it down into subproblems, solving those
subproblems and combining them together to find a solution to the main problem. Formal methods
are mathematically rigorous techniques used for the specification, design, and verification of systems.
Techniques from formal methods can be used to create a controller, given a qualitative specification
and a model of the environment. Formal methods create such a controller by exhaustive searching for
a sequence of actions that fulfills the specification, no matter what the environment does. A controller
is a system that controls a plant or device such that it fulfills the specification in the environment. It

1



2 1. Introduction

is similar to a control policy; it interacts with an environment in order to complete a certain task (the
specification) by selecting actions to execute.

A particularly difficult type of sequential decision-making problem to solve is one in which the envi-
ronment has sparse rewards and a large state space, and where the goal is to complete a complex
task. Washing the laundry is an example of such a complex task since there are many smaller tasks
that need to be completed (put clothes in the washing machine, wash the clothes, take it out, etcetera)
in order to complete the entire task. The reason that such an environment is difficult to solve is that
solely using RL, formal methods and/or planning will not suffice since certain characteristics of this en-
vironment are difficult to deal with for each method. RL has difficulties with environments with sparse
rewards and learning a policy for complex tasks. Sparse rewards can be reformulated as the likelihood
for an agent to discover a positive reward during interaction with the environment. If reaching a posi-
tive reward in the environment takes a long sequence of correct actions, and thus has a low likelihood
of being discovered, it is possible the agent never discovers the positive reward during training and
therefore fails to learn a good-performing policy [9]. Complex tasks are difficult to learn for RL since it
is hard to provide the agent with a good reward function to learn a policy that completes the task [10].
Formal methods and planning both have the same difficulty, which is dealing with large state spaces.
Both these methods need to explore the entire environment to create a controller/control policy, and
therefore scale poorly when applied to environments with large state spaces [11], [12].

Multiple works have proposed different methods of solving complex tasks in environments with sparse
rewards. A popular approach is to use Linear Temporal Logic (LTL) to specify tasks for RL [13]. These
approaches typically generate a reward function from the task specification and use an RL algorithm
to learn a policy. In particular, Li, Vasile, and Belta (2016) [14] proposes TLTL, a version of LTL that fo-
cuses on finite-time trajectories. They define quantitative semantics for TLTL and use this to transform
temporal logic formulae into real-valued reward functions. Vaezipoor, Li, Icarte, et al. (2021) [15] use
LTL to describe tasks over a domain-specific language. They label states in the environment and use
this to check if the task is completed or whether the agent has made some progression in completing
the task and use this to generate rewards. Camacho, Toro Icarte, Klassen, et al. (2019) [10] combine
a reward machine with reward shaping, they show how LTL specification can be automatically trans-
lated into a reward machine, which is a machine that generates reward functions based on the state
of the environment and combine this with reward shaping. Other approaches such as HRM by Icarte,
Klassen, Valenzano, et al. (2022) [16] and HIRO by Nachum, Gu, Lee, et al. (2018) [17] use a hierarchi-
cal approach and decompose a problem into easier subproblems, and solve those subproblems on a
low level using RL. They then use a higher-level policy that selects which subproblems to solve in order
to solve the main problem. Other works, as by Francis, Faust, Chiang, et al. (2019) [18] and Wohlke,
Schmitt, and Hoof (2021) [19] show that complex sparse reward tasks can be solved successfully in
environments by combining planning and RL. They use RL to learn a transition model and use planning
in this model to complete navigation tasks. Another idea often used to solve complex tasks, is the idea
of policy sketches [20], in which a sequence of subtasks is designed in order to achieve a goal or task.
Jothimurugan, Bastani, and Alur (2020) [21] and Eysenbach, Salakhutdinov, and Levine (2019) [22]
combine policy sketches with RL and high-level planning. They manually define subtasks for which
they train agents with RL and use high-level planning to find a sequence of subtasks that achieve a
reachability goal.

Most of the above approaches that aim to solve complex tasks in an environment optimize for a single
objective such as success probability or the reward received from the environment in order to create
a controller or policy that can complete this task. However, in many sequential decision-making pro-
cesses, there can be multiple objectives that are of importance, such as traffic control systems that
should minimize latency and maximize throughput [23] or a robot that needs to do certain tasks in a
hotel, where it needs to do them in a reasonable amount of time (cost) but also needs to be efficient
with its resource (battery) [24]. Most existing research on solving complex tasks also focuses on deter-
ministic environments, and not much is known about the influence of stochasticity in the environment
on solving complex tasks in an environment.

Inspired by the idea of using policy sketches and research by Neary, Verginis, Cubuktepe, et al. (2022)
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[25] and Jothimurugan, Bastani, and Alur (2020) [21] who divide the environments into smaller sub-
tasks, use RL to solve those subtasks and use planning to find a sequence of subtasks in order to
solve simple reachability tasks in environments with sparse rewards. We take a similar approach in
which we manually define subtasks and combine techniques from planning, RL, and formal methods
together to find a sequence of subtasks that can complete complex tasks in an environment.

1.1. Problem statement
This research’s main goal is to create a controller, or control policy that can solve complex tasks which
need to be optimized for multiple objectives in stochastic environments with sparse rewards and a large
state space by combining techniques from RL, planning, and formal methods. This is a unique setting
that has not been researched to our knowledge. When using RL to create control policies, RL optimizes
according to its reward function, this may result in a policy that gathers a lot of rewards but has a low
probability of completing the main task [26], [27]. Therefore, after we created a controller we want to
provide guarantees for all the objectives that are of importance.

In this research, we study a concrete problem setting. We consider a discrete environment with stochas-
tic moving obstacles. The goal is for the agent to complete a certain task while avoiding obstacles in
the environment. These stochastic obstacles increase the state space, making it infeasible for plan-
ning/formal methods alone. The exact environment used in this research is a grid-world room envi-
ronment, where the entire environment is divided into rooms. These rooms are connected by narrow
doors/passages, see Figure 1.1 as an example of such an environment. This type of environment is
often used for research on solving difficult tasks [28].

Figure 1.1: Example of a grid-world room environment in which the agent’s goal is to get to the green square while avoiding the
moving obstacles

The tasks considered are tasks that can be described with finite-LTL. Finite-LTL tasks are tasks that
can be completed in a finite amount of time and only need to be completed once. LTL is a formal
method often used for defining tasks with modalities referring to time, such as ”eventually” and ”never”.
Examples of LTL statements are ”eventually it will rain”, ”there will never be a crash” and ”eventually
pick up coffee and then eventually bring it to the customer”. For the multi-objective setting, this research
considers tasks with two objectives, the success probability of completing the task and the cost (number
of actions) of completing the task. The goal is to maximize the success probability and minimize the
cost.

1.2. Motivational example
As a motivating example, we use the grid in Figure 1.2. This is a discrete environment where the agent
(red square) starts at the top left corner and can move either one tile north, east, south, or west each
timestep. In this environment, there are stochastic moving obstacles (blue dots) that also move one tile
north, east, south, or west each timestep. The environment is divided into four rooms, the agent can
move from one room to another through a door, which is exactly one tile in width. The task the agent
needs to learn is ”go to the green square or go to the purple square”.
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Figure 1.2: Example of an environment in which the agent needs to go to either purple or green while avoiding the moving
obstacles.

Due to the random moving obstacles, the state space of this environment is very large since with every
added obstacle the state space grows exponentially. Therefore, using solely planning or formal meth-
ods is not applicable.

This task is difficult to learn for solely RL since the agent needs to navigate from room to room, this
requires the agent to be in front of the door and then move two steps in the same direction to go to the
next room, this requires a specific sequence of actions and makes the rewards sparse. it is possible
the agent never explores the correct sequence of actions during training and therefore fails to learn to
complete the task.

If the agent would go to the green square, it can first go to room 3, then to room 4 and in room 4
navigate to the green square. With this path the agent evades room 2, which has two obstacles, re-
sulting in a policy with a higher success probability. However, if the agent goes to the purple square,
it requires fewer steps although this path is less safe, therefore it is beneficial to evaluate the task on
multiple objectives.

1.3. Research questions
In order to achieve the main goal of solving LTL-tasks in an environment with sparse rewards while
optimizing for both cost and success probability, we define the following main research question:

How can we solve LTL-tasks which need to be optimized for multiple objectives in environments with
sparse rewards by combining ideas from RL, planning and formal methods?

To create an approach inspired by the idea of policy sketches [20] and apply it in the environment
described in section 1.1, we define the following sub-research questions:

• How can we leverage the idea of policy sketches [20] to solve LTL-tasks in an environment by
manually defining subtasks and finding a sequence of subtasks that complete the LTL-task?

• How can we solve LTL-tasks efficiently, optimizing for both success guarantee as well as cost?

• How can we deal with stochasticity in environments, while guaranteeing the global task is not
violated?

• How can we give guarantees for both the success probability, as well as the cost of the controller,
which metrics should be used?
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1.4. Thesis contributions
This research contributes by providing the following:

• An approach, called MOPRL (Multi-Objective Planning with Reinforcement Learning) that can
be used to solve LTL-tasks in environments with sparse rewards by manually defining subtasks.
RL is used to learn how to complete these subtasks, and planning is used to find sequences of
subtasks that can complete the LTL-task.

• Apply this approach in a setting where there are multiple objectives that need to be considered,
instead of having only a single objective such as reward or success probability.

• Provide guarantees on the performance of MOPRL for all the objectives that are considered.

• Empirical assessment of what the influence is of stochasticity on completing a complex LTL-task
to see if there are cases in which stochasticity can interfere with completing the LTL-task.

• Provide insights on the use of MOPRL compared to other approaches and highlight situations in
which MOPRL is more appropriate.

1.5. Outline
This thesis is organized as follows; Chapter 2 contains background information about the techniques
used in this thesis. Chapter 3 describes the approach used in this research to solve LTL-tasks in an en-
vironment. We go over every sub-question and explain how techniques from RL, planning, and formal
methods are combined to be able to solve complex tasks in environments. In chapter 4 we present an
overview of works that also aim to solve complex tasks in environments, explain the techniques they
use and highlight the difference between their and our approach. Chapter 5 presents the experimental
results of MOPRL and a comparison with other approaches, it also describes which libraries are used
to implement MOPRL. Chapter 6 goes over the advantages and limitations of MOPRL and critically
looks at the evaluation. Chapter 7 contains the conclusions and possible topics for future work.



2
Background

This chapter provides the background knowledge relevant to the techniques used in this thesis. Sec-
tion 2.1 explains Markov Decision Process (MDP), which is a model commonly used to represent se-
quential decision-making problems. Section 2.2 is about graphs, which is another technique used to
represent environments or abstractions of environments. Section 2.3 is an in-depth description of Lin-
ear Temporal Logic (LTL), the logic used to represent tasks in this research. Section 2.4 explains Büchi
automata, which is a type of automata used to represent LTL formulae. After introducing the techniques
used to represent environments and tasks, we discuss multi-objective pathfinding and the Pareto front
in section 2.5. We also discuss Martins algorithm in section 2.6, which is a planning technique used
to solve multi-objective pathfinding problems. Section 2.7 provides information about reinforcement
learning and some of its variants. Section 2.8 explains Hoeffding’s inequality, which is a technique
used to provide a confidence bound on the performance of a controller.

2.1. Markov Decision Process
Markov Decision Processes (MDP) is a framework used for modeling stochastic environments and se-
quential decision-making processes [29]. It defines the actions an agent can make in an environment,
the effect of these actions, and the states of the environment.

An MDP is represented by a Tuple (𝑆, 𝐴, 𝑃, 𝑃0, 𝑅) [30], where:

• 𝑆: A set of states
• 𝐴: A set of actions
• 𝑃(⋅|𝑠, 𝑎): A probability transition distribution over states in the next time step, based on the envi-
ronment being in state 𝑠 and the agent executing action 𝑎

• 𝑃0: A probability distribution according to the initial state
• 𝑅(𝑠, 𝑎) or 𝑅(𝑠): A reward function providing a reward when the agent takes action 𝑎 in state 𝑠 or
when it reaches state 𝑠

One important characteristic of MDPs is the Markov Property. The Markov Property means that the
next state at 𝑡 + 1 only depends on the state at time 𝑡, see Equation 2.1 for the formal definition.

𝑃𝑟(𝑅𝑡+1, 𝑆𝑡+1|𝑆𝑡 , 𝐴𝑡) = 𝑃𝑟(𝑅𝑡+1, 𝑆𝑡+1|𝑆0, 𝐴0, 𝑆1, 𝑇1, ..., 𝑆𝑡 , 𝐴𝑡) (2.1)

An example of an environment, a graphical representation of it, and the formal MDP can be found in
Figure 2.1.

6
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Figure 2.1: Example of an environment, where the red square is the agent and starts in the top left corner (A1), and needs to
navigate to the bottom right corner (B2) to get a reward of +1. A graph representation of the environment, and the MDP (𝑆, 𝐴,
𝑃, 𝑃0, 𝑅) representing the environment

Observability
There are two types of observability in environments, fully observable and partially observable. In a
fully observable environment, the RL agent has access to all information regarding the current state
of the environment. In a partially observable environment, the agent only receives partial information
from the environment. For example, it only receives information in a small area around itself instead of
the entire environment. When an environment is only partially observable, the MDP is extended with
Ω, a set of observations, and 𝑂, a set of observation probabilities 𝑃(𝑜|𝑠, 𝑎) based on the environment
being in state 𝑠 and the agent executing action 𝑎.

Labeled Markov Decision Process
in some cases, an MDP is extended with a set of atomic propositions ∏ and a labeling function
𝐿(𝑠, 𝑎) → 2∏ or 𝐿(𝑠) → 2∏. These propositions represent properties of an environment that can either
be True or False [31]. The labeling function can relate states or state-action pairs to events happening
in the environment.

Path
A path in an MDP is a sequence of transitions, 𝑝𝑎𝑡ℎ = 𝑠0

𝑎1−−→ 𝑠1
𝑎2−−→ ... 𝑎𝑛−−→ 𝑠𝑛 from state 𝑠0 to 𝑠𝑛 where

𝑎1 is the action executed in 𝑠0 to transition to the next state [32].

2.2. Graphs
Graphs are mathematical structures in which points are connected to each other via edges, in graph
theory these points are called vertices. Graphs can be used to represent or model different types of
maps/networks such as a roadmap or electronic network, see Figure 2.2.

Figure 2.2: Example of a roadmap, an electronic network, and a graph representation of these two scenarios [33]

The formal notation of a graph is 𝐺 = (𝑉, 𝐸) where 𝑉 is the set of vertices and 𝐸 is the set of edges.
An edge 𝑒 ∈ 𝐸 is a tuple of two vertices {𝑥, 𝑦} which connects the two vertices with each other, where
𝑥 ≠ 𝑦 and 𝑥, 𝑦 ∈ 𝑉. In Figure 2.2 the graph 𝐺 = (𝑉, 𝐸) exists out of the set 𝑉 = (𝑃, 𝑄, 𝑅, 𝑇, 𝑆) and
𝐸 = ({𝑃, 𝑄}, {𝑃, 𝑆}, {𝑃, 𝑇}, {𝑄, 𝑇}, {𝑄, 𝑅}, {𝑄, 𝑆}, {𝑅, 𝑆}, {𝑇, 𝑆}).

A graph can be directed or undirected, in an undirected graph it is possible to travel both ways over an
edge, in a directed graph the edges are represented by an arrow instead of a line, indicating that it is
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only possible to traverse the edge in that direction. The graph in Figure 2.2 is an undirected graph and
Figure 2.3 is an example of a directed graph.

Figure 2.3: Example of a directed graph, edges can only be traversed in the direction of the arrow

Edges can have one or multiple values assigned to them, depending on the scenario the graph is used
in. For example, when the graph is a representation of an electronic network, each edge can have a
resistance associated with them. When the graph represents a roadmap, each edge can have a value
assigned representing the length of the road between the two vertices.

2.3. Linear Temporal Logic
Linear Temporal Logic (LTL) is a modal logic with modalities referring to time, LTL is used to formally
describe tasks or requirements for a system. Modal logic is a collection of formal specifications that
are used to describe expressions such as ”eventually”, ”never” or ”possibly”. These modalities can be
used to formalize statements such as ”eventually it will rain” or ”the system will never fail”. These type
of statements resolve into either True or False and can be checked given a model of the environment
they are used in. LTL plays a big part in model checking of systems by formally defining requirements
which can then later be verified [34].

LTL is mostly used to formally describe safety and liveness requirements of a system which then can
be verified. Safety requirements are properties that say ”bad thing will never happen” and liveness
properties say ”something good will eventually happen”. LTL is only used for qualitative properties, this
means that plain LTL cannot be used to describe quantitative goals such as ”what is the probability that
it will rain in 2 hours” [11]. The LTL syntax [35] can be found in Table 2.1.
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LTL Name Meaning
𝑓 - the formula 𝑓 is True immediately
𝑋 𝑓, ○ 𝑓 next 𝑓 is True in the next step
𝐹 𝑓,♢ 𝑓 eventually 𝑓 will eventually be True
𝐺 𝑓,□ 𝑓 globally 𝑓 is always True
𝑓 𝑈 𝑔 strong until 𝑓 has to be True until 𝑔 becomes True (and 𝑔 will become True)
𝑓 𝑊 𝑔 weak until 𝑓 has to be True until 𝑔 becomes True (𝑓 should stay True if 𝑔 never

becomes True)
𝑓 𝑀 𝑔 strong release 𝑓 has to be 𝑇𝑟𝑢𝑒 until 𝑓 ∧𝑔 becomes True (and 𝑓 ∧𝑔 will become True)
𝑓 𝑅 𝑔 weak release 𝑔 has to be True until 𝑓 ∧ 𝑔 becomes True (𝑓 should stay True if 𝑓 ∧ 𝑔

never becomes True)
𝑓 ⊨ 𝑔 represented

by
𝑓 and 𝑔 are equal and can be represented by each other

¬𝑓 not 𝑓 must not be True
𝑓 ∧ 𝑔 and both 𝑓 and 𝑔 must be True
𝑓 ∨ 𝑔 or either 𝑓 or 𝑔 must be True
𝑓 → 𝑔 implication if 𝑓 is True, then 𝑔 must also be True
𝑓 ↔ 𝑔 equivalence 𝑓 and 𝑔 must be equal (if 𝑓 is True, 𝑔 must also be True and vice versa)
⊤ True symbol representing True
⊥ False symbol representing False

Table 2.1: LTL syntax and the meaning of every symbol

An example of LTL is: □¬𝑐𝑟𝑎𝑠ℎ ∧♢𝑟𝑒𝑎𝑐ℎ_𝑔𝑜𝑎𝑙. This means globally there never is a crash and even-
tually, the goal is reached. There is also LTL syntax for historical events, but since this thesis only
focuses on future paths, the syntax for these events is excluded.

Standard LTL statements evaluate to either True or False. However, a probabilistic extension of LTL,
probabilistic LTL exists, which instead of evaluating whether a certain property will be True or False,
tries to describe the probability a certain property is True in a probabilistic environment. This is useful
for environments that display stochastic behavior and where the LTL might be partially infeasible [36].
In probabilistic LTL the question isn’t whether a certain property is 𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒, but whether it is sat-
isfied with at least a certain probability, i.e. 𝑃>0.95□¬𝑐𝑟𝑎𝑠ℎ ∧♢𝑟𝑒𝑎𝑐ℎ_𝑔𝑜𝑎𝑙 is the property that requires
that in 95% of all cases, there never is a crash and eventually the goal is reached. This example is still
an assertion that resolves to either 𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒, however, it is also possible to describe numerical
properties in probabilistic LTL, i.e. 𝑃𝑚𝑎𝑥=? and 𝑃𝑚𝑖𝑛=? corresponding to the maximum and minimum
probability a certain property is 𝑇𝑟𝑢𝑒 [32].

Finite LTL (𝐿𝑇𝐿𝑓) is a special version of LTL, while regular LTL is used to describe properties that
run in infinite time, finite LTL is used for properties with finite traces. The main difference is that in finite
LTL the property only needs to be satisfied once, while in regular LTL the property needs to be satisfied
indefinitely [37].

2.4. Büchi automata

A Büchi Automata is a theoretical automata that rejects or accepts infinite inputs. Let us consider the
Büchi automata in Figure 2.4, state 1 is the start state and state 0 is the accepting state, which needs to
be visited infinitely often. This Büchi automata accept inputs in the form of 𝑔𝑔∗meaning it only accepts
inputs where g happens at least once, and only g happens.
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Figure 2.4: Example of a Büchi automata

Figure 2.4 is a complete Büchi automata, a Büchi automata that accepts the same input is represented
with the automata in Figure 2.5, which is a simpler automata. The difference between the complete
and simple representation is that in the complete representation every possible transition is displayed,
so it is always possible to move forward in the automata. In the simple representation only transitions
that potentially lead to an accepting state are represented. If a simple Büchi automata is in a state
where it receives an input for which it has no transition, the input is rejected. While complete Büchi
automata are easier to comprehend, simple Büchi automata have the advantage of having fewer states
and transitions.

Figure 2.5: Example of a Büchi automata equivalent to the Büchi automata in Figure 2.4, but represented as a simple automata

The formal description of a Büchi automata is the same as that of a standard automata, namely:
𝐴 = (𝑄, ∑, 𝛿, 𝑞0, 𝐹), where:

• 𝑄: set containing all states in A
• ∑: finite set called the alphabet of A, containing all possible characters in the input of A
• 𝛿: 𝑄 × ∑ → 𝑄: a set of transitions from one state to another
• 𝑞0: the start state of A
• 𝐹: set containing all accepting states of A

Büchi Automata can be used to represent LTL properties, since for every LTL there exist a Büchi Au-
tomata accepting all sequences that satisfy the specified LTL [38]. Büchi automata representing a
certain LTL can be used to check paths in a model and see if they satisfy the LTL property or not. The
Büchi automata in Figure 2.4 can be seen as the representation of the LTL □¬𝑐𝑟𝑎𝑠ℎ ∧ ♢𝑟𝑒𝑎𝑐ℎ_𝑔𝑜𝑎𝑙,
where 𝑐 = 𝑐𝑟𝑎𝑠ℎ and 𝑔 = 𝑟𝑒𝑎𝑐ℎ_𝑔𝑜𝑎𝑙. So every path that never crashes and eventually reaches the
goal is an input that will be accepted by the Büchi automata.

2.5. Multi-objective path finding and Pareto front
Shortest path finding is a problem that has been studied for more than 50 years. The definition of the
shortest path problem is: Given a graph 𝐺 = (𝑉, 𝐸), a start location 𝑠 ∈ 𝑉, and a destination 𝑑 ∈ 𝑉,
what is the minimum distance path in G from 𝑠 to 𝑑?

The shortest path problem can be solved in polynomial time with the Dijkstra algorithm. In the Dijk-
stra algorithm, the Bellman optimality principle is used. The Bellman optimality principle states that an
initial segment of an optimal path is in itself optimal, so if there is a shortest path from A to C in a graph
𝐺, where the path is 𝐴 → 𝐵 → 𝐶, then following the Bellman optimality principle, 𝐴 → 𝐵 is also a shortest
path, see Figure 2.6 as an example.
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𝐴 𝐵 𝐶

𝐷

2

1 2

2

Figure 2.6: The Bellman optimality principle, since 𝐴 → 𝐵 → 𝐶 is a shortest path, so is 𝐴 → 𝐵 and 𝐴 → 𝐷 → 𝐵 is sub-optimal

In single objective path-finding problems, most of the time there is only one optimal path unless there
are multiple paths that all achieve the optimal cost. When dealing with multiple objectives, it is possible
that there are multiple paths, that are so-called Pareto optimal. When dealing with multiple objectives,
there would only be one optimal path when that path provides the best value for all objectives compared
to all other paths. However, it is possible that one path is optimal for one objective, while another path
is optimal for another objective, therefore both paths can be viewed as optimal. Pareto optimality is
used to describe optimal solutions in a multi-objective setting. A solution is Pareto optimal if it gives the
best value for at least one objective, while not being worse in the other objectives compared to all other
solutions. Points that are worse in all objectives compared to any other point are called dominated and
are sub-optimal. The set of all non-dominated points is called the Pareto Front. See Figure 2.7 as an
example of a multi-objective shortest path problem where the start vertex is 𝐴 and the destination is 𝐶.
Figure 2.7b contains the Pareto optimal paths for this problem.

𝐴 𝐵 𝐶

𝐷

𝐸

{2, 2}

{3, 5} {1, 10}

{3, 3}

{1, 1} {1, 1}{3, 3}

(a) A graph with multi-objective edges. each edge has a
{𝑐𝑜𝑠𝑡, 𝑟𝑒𝑤𝑎𝑟𝑑} associated, and the goal is to maximize
the reward and minimize the cost

(b) The Pareto front associated with the graph on the left,
optimal paths are 𝐴 → 𝐸 → 𝐶, 𝐴 → 𝐵 → 𝐶 and 𝐴 → 𝐷 →
𝐵 → 𝐶

Figure 2.7: (a) A multi-objective graph. (b) values of all possible paths visualized, of which some are dominated (sub-optimal),
indicated with blue and the Pareto optimal points are in red

A subclass of the multi-objective setting is the bicriterion problem, the bicriterion problem is the case
in which there are only two objectives. The bicriterion problem and most notably the bicriterion short-
est path problem has extensively been studied and there are multiple different ways of solving it via
approximation or with exact methods [39]–[41].

2.6. Martins algorithm
Martins algorithm [42] is an algorithm designed to solve the multi-objective shortest path problem. For-
mally, the multi-objective shortest path problem can be described as:

given a graph 𝐺 = (𝑉, 𝐸), where each edge 𝑒 ∈ 𝐸 has 𝑛 objectives that are assigned to them
𝑒 = (𝑂1, 𝑂2, ..., 𝑂𝑛), a staring vertex 𝑠 ∈ 𝑉 and a goal vertex 𝑡 ∈ 𝑉. Find all non-dominated paths
from 𝑠 to 𝑡 in 𝐺 if such paths exist.

Martins algorithm main idea is as follows: Each vertex in the graph has a list of permanent and tem-
porary labels. At each iteration, the algorithm selects the minimum lexicographic label from all the sets
of temporary labels, converts it to a permanent label, and propagates the information contained in this
label to all successors, the successors check if the new label formed from this permanent label is non-
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dominated by any other label it knows about and if so, adds it to its temporary label set. The procedure
stops when there are no more temporary labels. A label 𝑙𝑗 is represented by: 𝑙𝑗 = [𝑧1, ..., 𝑧𝑛 , 𝑖, ℎ] where
𝑧1, ..., 𝑧𝑛 is a vector containing all values for the objectives that need to be optimized for, 𝑖 is the prede-
cessor vertex from which the label 𝑙𝑗 is created and ℎ is the index of the permanent label in 𝑖 that was
used to construct 𝑙𝑗 [43].

After Martins algorithm has concluded, each permanent label is a unique Pareto-optimal path. To
determine a Pareto-optimal path from the start vertex 𝑠 to the end vertex 𝑡, take a permanent label
from 𝑡 and extract the values 𝑖 and ℎ from the label. These values indicate the ℎth label from vertex 𝑖
that produced the current path, by tracing this path back to 𝑠, a Pareto-optimal path from 𝑠 to 𝑡 is found.
The pseudo-code of Martins algorithm can be found in algorithm 1.

Algorithm 1: Martins algorithm for the multi-objective shortest path problem
Require: graph 𝐺 = (𝑉, 𝐸)
Require: 𝐶, objective costs for all edges (𝑖, 𝑗) ∈ 𝐸
Require: start vertex 𝑠 ∈ 𝑉 and goal vertex t∈ 𝐸
Ensure : All Pareto-optimal paths from 𝑠 to 𝑡 in 𝐺

𝑙𝑖: is a label of vertex 𝑖;
𝑙𝑡𝑖: is the entire list of temporary labels of vertex 𝑖;
𝑙𝑝𝑖: is the entire list of permanent labels of vertex 𝑖;
𝑧𝑝𝑞,ℎ: is the 𝑝𝑡ℎ objective of a permanent label of vertex 𝑞 in position ℎ;
Δ: the dominance relation (if 𝑧Δ𝑧′ then 𝑧 is dominated by 𝑧′)
−− |𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑡𝑎𝑡𝑖𝑜𝑛;
𝑙𝑡𝑖 , 𝑙𝑝𝑖 ← ∅;
𝑙𝑡𝑠 ← {0, ..., 0.⊥, ⊥};

−− |𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛;
while (⋃𝑖∈𝑉 𝑙𝑡𝑖 ≠ ∅) do

−− |𝑓𝑖𝑛𝑑 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑙𝑒𝑥𝑖𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑙𝑎𝑏𝑒𝑙 ∈ 𝑙𝑡𝑖 , ∀𝑖 ∈ 𝑉;
𝑙𝑞 ← 𝑚𝑖𝑛𝑙𝑒𝑥{⋃𝑖∈𝑉 𝑙𝑡𝑖};
−− |𝑀𝑜𝑣𝑒 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 𝑙𝑖𝑠𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝑙𝑖𝑠𝑡;
𝑙𝑡𝑞 ← 𝑙𝑡𝑞\{𝑙𝑞}; 𝑙𝑝𝑞 ← 𝑙𝑝𝑞 ⋃{𝑙𝑞};
−− |𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙𝑙𝑞 𝑓𝑟𝑜𝑚 𝑙𝑖𝑠𝑡 𝑙𝑝𝑞;
ℎ ← 𝑐𝑎𝑟𝑑(𝑙𝑝𝑞);
−− |𝑙𝑎𝑏𝑒𝑙 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑜𝑓 𝑞;
for 𝑗 ∈ 𝑉|(𝑞, 𝑗) ∈ 𝐸 do

−− |𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑙𝑗 , 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑏𝑒𝑙 𝑜𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 𝑗;
𝑙𝑗 ← [𝑧1𝑞,ℎ + 𝑐1(𝑞, 𝑗), ..., 𝑧𝑘𝑞,ℎ + 𝑐𝑘(𝑞, 𝑗), 𝑞, ℎ]
− − |𝑣𝑒𝑟𝑖𝑓𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑙𝑎𝑏𝑒𝑙 𝑜𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 𝑗 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑙𝑗;
if ∀𝑗′∈{𝑙𝑡𝑗 ⋃𝑙𝑝𝑗}|𝑙′𝑗Δ𝑙𝑗 then

−− |𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒 𝑙𝑎𝑏𝑒𝑙 𝑙𝑗 𝑜𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 𝑗 𝑎𝑠 𝑡𝑒𝑚𝑝𝑟𝑎𝑟𝑦;
𝑙𝑡𝑗 ← 𝑙𝑡𝑗 ⋃ 𝑙𝑗;
−− |𝑑𝑒𝑙𝑒𝑡𝑒 𝑎𝑙𝑙 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 𝑙𝑎𝑏𝑒𝑙𝑠 𝑜𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 𝑗 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑏𝑦 𝑙𝑗;
𝑙𝑡𝑗 ← 𝑙𝑡𝑗\{𝑙′𝑗 ∈ 𝑙𝑡𝑗|𝑙′𝑗Δ𝑙𝑗}

end
end

end

2.7. Reinforcement learning
Reinforcement learning (RL) is an Arificial Intelligence (AI) technique addressing the problem of how
an agent can learn to approximate an optimal policy that completes a certain task via interaction with
the environment [44]. The agent interacts with the environment for a number of steps, and in each step,
the agent executes an action that changes the state of the environment. The agent then observes a
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new state and receives a reward, see Figure 2.8 for an example. The agent’s behavior should choose
actions that optimize the long-term reward it receives. It can learn such behavior over time by trial and
error [45].

Figure 2.8: RL agent interacting with an environment in the game of Pacman [46]

The RL system exists out of 4 main components; a policy, a reward signal, a value function and a model
of the environment [47].

A policy, 𝜋 ∶ 𝑆 → 𝑝(𝐴), is what defines the agent’s behavior, simply put, the policy is a mapping
of incoming states to possible actions. The policy is incrementally improved, learning what the best
action is for a certain state. Policies come in many different forms, they can be a simple look-up table
mapping all possible states to actions or it may be a neural network, which is a computing system that
aims to learn a function that outputs the best action for each possible state.

A reward signal, 𝑅 ∶ 𝑆 → R, defines the rewards in an environment. In each step, the RL agent
receives a single number from the environment, the reward. This reward indicates how good the action
the agent made is, it is the agent’s purpose to maximize the reward it receives in the long run. Reward
signals can both be positive as well as negative, positive rewards indicate an action is good, while
negative rewards indicate an action is bad.

The value function, 𝑄𝜋(𝑠), is what determines what is good in the long run. Reward signals are imme-
diate rewards of environment states, but an agent needs to learn how to reach a state that can give a
positive immediate reward, this is what the value function is for, it calculates the expected cumulative
reward. It is possible that an agent first needs to traverse a number of states with no positive reward, in
order to be able to reach the state space with positive rewards. The value function makes it so that the
agent will know that there are positive rewards in the future if it executes a certain action in that state.
An example of a value function that is often used, the Bellman Equation is given in Equation 2.2.

𝑄𝜋(𝑠) = 𝑚𝑎𝑥𝑎∈𝐴 (𝑅(𝑠) + 𝛾 ∑
𝑠𝑡+1∈𝑆

[(𝑃(𝑠𝑡+1|𝑎, 𝑠)𝑄𝜋(𝑠 + 1)]) (2.2)

This equation states that the value in state 𝑠 is the reward the agent receives in that state plus a dis-
counted future reward. The 𝛾 is the discount factor. The higher 𝛾, the more it takes future rewards into
account. The future reward is a sum of the probability of reaching state 𝑠𝑡+1 by taking step 𝑎 times the
value in 𝑠𝑡+1.

The model of an environment is something that mimics the behavior of the environment or allows in-
ferences to be made about the environment, it can for example be used to predict the next state of the
environment. These models can be used for planning, in which a plan is created, deciding the course
of future actions before they are actually experienced. RL methods that use models and planning for
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learning are called model-based, RL methods that do not, are called model-free and learn via trial and
error.

There are multiple different types of RL, model-based and model-free have been touched on shortly in
the previous paragraph, but it is important to highlight the difference between those two approaches
and highlight some other RL types.

2.7.1. Model based and model free reinforcement learning
The definition of model-based and model-free RL requires some clarification. In short, model-based RL
is the field of combining planning over a model, which is a functional representation of the environment,
with learning. This means that in model-based RL, the agent is able to use a model of the environ-
ment to reason about what will happen in the environment. There is a lot of grey area between what
is considered model-based RL and what is not. Overall, the consensus is that if an approach learns
a model from observed data, or uses a model during learning in order to gain insight into the possi-
ble future/history of states, it is seen as model-based RL. Model-free RL is seen as a trial-and-error
algorithm, where the agent learns a policy directly by interacting with the environment. A division be-
tween model-based techniques and model-free techniques when combining planning and RL is made
in model-based Reinforcement Learning; A Survey [48], they define three categories:

• Model-based RL with a learned model, where both a model and policy are learned.

• Model based RL with a known model, where there is a known model and planning is used to learn
a policy

• Planning over a learned model, where a model is learned and planned over, without learning a
policy

The last point is not consideredmodel-based RL, since it does not learn a global solution to the problem,
but instead is seen as planning-learning integration and falls in the grey area between model-free RL
and model-based RL.

2.7.2. On and off policy reinforcement learning
One of the distinctions one can make between different RLmethods is on and off-policy methods. In off-
policy methods, the algorithm used to evaluate and improve the policy is different from the policy used
to select actions during learning. An example of an off-policy RL method is Q-learning, in Q-learning,
the agent uses a greedy policy to select the actions during learning, and does not use its own policy.
In on-policy methods, the agent does use the current policy in order to select actions during training,
an example of an on-policy method is SARSA. In Equation 2.3 and Equation 2.4 the value functions
of both Q-learning and SARSA are given, in Q-learning the policy is updated by taking the action that
maximizes the post-state Q-function 𝑄(𝑠𝑡 , 𝑎). In SARSA the same policy that generated the previous
action 𝑎𝑡 is used to generate the next action 𝑎𝑡+1.

𝑄𝑛𝑒𝑤(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 𝑚𝑎𝑥𝑎∈𝐴 𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (2.3)

𝑄𝑛𝑒𝑤(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (2.4)

In both these value functions, 𝛼 is the learning rate, which indicates how much the newly acquired
information should overwrite the old information. 𝛾 is the discount factor, determining how important
future rewards are compared with the reward of the current state and 𝑟𝑡 is the reward received in that
state.

2.7.3. Deep reinforcement learning
Deep RL is the field of combining RL with deep learning. It enables RL to solve problems that used to
be intractable due to having an extremely large state space. Deep learning is a technique that uses
Neural Networks (NN) in order to create approximate functions that can be used to represent a policy.
Using plain RL does not scale very well to very large problems, plain RL uses a lookup table to store,
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index, and update all possible states and their values. When the environment is very large and there-
fore has an enormous amount of states, it may be computationally impossible to calculate a value for
every state, as well as store the entire table.

Deep RL uses NN to approximate optimal value functions and/or policies. Deep learning NN exists
out of a number of nodes that are connected by edges. These nodes are divided into layers, there are
three types of layers; an input layer, hidden layers, and an output layer. The input layer receives a state
from the environment and a number of neurons will be activated based on the state, these activations
will propagate through all hidden layers to the output layer, and the output layer outputs an action based
on the neurons activated in the output layer. A deep learning NN must have at least 3 layers, one of
each type but can have multiple hidden layers. Figure 2.9 shows a deep RL version of an RL agent,
where the agent is represented by a neural network with three layers.

Figure 2.9: example of a deep RL agent [49]

2.8. Hoëffding’s inequality
Hoëffding’s inequality is a technique from learning theory and probability theory that is used to bound
the probability that sums of bounded independent random variables deviate from their expected value
(E) more than by a certain amount [50]. When dealing with sums or averages over multiple samples
or simulations, Hoëffding’s inequality is used to provide a confidence bound that the deviation between
the calculated value from the simulation and the expected value is within a certain error margin.

Formally Hoeffding’s inequality is defined as:

Let 𝑋1, ..., 𝑋𝑛 be independent bounded random variables with 𝑋𝑖 ∈ [𝑎, 𝑏] for all 𝑖, where−∞ < 𝑎 ≤ 𝑏 ≤ ∞
and let 𝑆𝑛 = ∑

𝑛
𝑖=1 𝑋𝑖 and an error margin 𝜖 > 0 then:

P(|𝑆𝑛 − E[𝑆𝑛]| ≥ 𝜖) ≤ 𝛿 = 2𝑒
− 2𝑛𝜖2
∑𝑛𝑖=1(𝑏−𝑎)2 (2.5)

Where 𝑛 is the number of samples and 𝛿 is an upper bound on the probability that the difference be-
tween the sum and the expected value is bigger than 𝜖 [51].

Hoëffdings inequality can be rewritten such that it can be used to calculate the bound on the prob-
ability that the average of bounded independent random variables deviates from the expected average
with the following equation [52]:

P(| 1𝑛

𝑛

∑
𝑖=1
𝑋𝑖 − E[𝑋𝑖]| ≥ 𝜖) ≤ 𝛿 = 2𝑒

− 2𝑛𝜖2
(𝑏−𝑎)2 (2.6)

Hoeffding’s inequality can also be used to calculate the number of samples required to gain a probabil-
ity of at least 1− 𝛿 that the difference between the empirical mean ( 1𝑛 ∑

𝑛
𝑖=1 𝑋𝑖) and the expected mean

(E[𝑋𝑖]) is at most 𝜖, this can be calculated with Equation 2.7 [53].
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𝑛 ≥ (𝑏 − 𝑎)2
2𝜖2 log(2𝛿 ) (2.7)

In the context of RL, Hoëffding’s inequality can be used to provide confidence on the average perfor-
mance of a learned policy by simulating the policy a number of times and use the performance data
gathered from each simulation to calculate a bound on the probability that the expected average per-
formance is within a certain range of the average performance calculated from these simulations.



3
Approach

This chapter explains MOPRL, the approach created to achieve the main goal of solving LTL-tasks
with multiple objectives in environments with sparse rewards. Each sub-research question will be ad-
dressed, explaining the techniques used in order to achieve the main goal. The sub-research questions
build on each other, so RQ1 explains the general idea of how we can use the idea of policy sketches
to create a controller that can solve LTL-tasks. RQ2 builds on top of that, explaining how we can not
just create a controller using the general idea from RQ1, but also optimize this controller for multiple
objectives (cost and success probability in this research). RQ3 explains how stochasticity in the envi-
ronment can potentially violate completing LTL tasks using the ideas from RQ1 and RQ2, and how we
add functionality to prevent this from happening. RQ4 explains how we provide guarantees for both the
cost and the success probability of the final controller generated by MOPRL. At the end of this chapter,
an overview of all the steps taken to generate the controller is presented.

3.1. RQ1: How can we leverage the idea of policy sketches to solve
LTL-tasks in environments with sparse rewards?

To solve LTL-tasks in environments with sparse rewards, we take inspiration from the idea of policy
sketches [20]. In policy sketches, reachability tasks are solved in environments with sparse rewards
by defining subtasks that are easier to solve. These subtasks have overlapping start and goal states
such that once a subtask is finished, another one can be executed directly after that. Executing a
sequence of these subtasks can then solve reachability tasks in the environment. The idea of policy
sketches is often combined with RL, where RL is used to learn low-level policies that can transition
from the start state of a subtask to its goal state (i.e. complete the subtask). After RL is used to create
low-level policies which can complete the subtasks, planning is used on a high level to find a sequence
of subtasks to execute in order to complete the global reachability task. An example of this is the paper
by Eysenbach, Salakhutdinov, and Levine (2019) [22], where they use RL to learn a policy for every
subtask. They then use the subtasks to create a graph, in which each edge represents a subtask, and
use Dijkstra’s algorithm to find a sequence of subtasks that minimizes the length of the total path. In this
research, we leverage the idea of policy sketches, manually defining subtasks and finding sequences
of subtasks that can solve LTL-tasks. After defining subtasks, we use RL to train agents that can solve
these subtasks on a low level. These subtasks are used to create a graph, which we call the high-level
model (HLM), which can be used to find sequences of subtasks for reachability tasks. In contrast to
Eysenbach, Salakhutdinov, and Levine (2019) [22], who only find a sequence of subtask for reacha-
bility tasks, we use this HLM to solve more complex LTL-tasks. We combine the HLM with the Büchi
automata representing the LTL-task into a new graph, called the product graph. Combining the HLM
with the Büchi automata converts the problem of finding a sequence of subtasks that can complete the
LTL-task to a reachability problem in the product graph. Once the LTL-task is converted to a reacha-
bility problem, high-level planning can be used to find a sequence of subtasks that can complete the
LTL-task.

The advantage of using the idea of policy sketches is that planning and learning are decoupled. This
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makes it possible to plan for different tasks without needing to retrain the subtask controllers, as long
as the task can be completed by executing a sequence of already defined subtasks. Decoupling of
learning and planning also makes it possible to adjust the learning procedure for subtasks or change
the planning procedure separately, making it very flexible. A disadvantage of using the idea of policy
sketches is that, since all subtasks are solved only in a local optimal way, the global optimal policy may
be lost when they are aggregated back together [54]. In general, hierarchies constrain the policy space
and, hence, might prune optimal policies [16]. The flexibility of policy sketches makes it a good option
for solving tasks in rapidly changing environments, such as environments where the task that needs
to be completed can change since it is not necessary to retrain the subtask controllers if the new task
can be completed with a sequence of already existing subtasks. In these situations, it is only required
to find a new sequence of subtasks that can complete the new task.

In the next four subsections, we describe how we defined subtasks and use these subtasks to cre-
ate the HLM and product graph. Subsection 3.1.1 describes how subtasks for reachability tasks are
defined. Subsection 3.1.2 explains how these subtasks are used to create an HLM that can be used
to find sequences of subtasks that solve reachability tasks. We then explain how we extend this con-
cept in order to find sequences of subtasks that can solve more complex LTL-tasks. Subsection 3.1.3
describes how the subtask definition is extended such that we can combine the HLM with the Büchi
automata representing the LTL-task. Subsection 3.1.4 explains how we combine the HLM with the
Büchi automata into a product graph, which converts finding a sequence of subtasks that can complete
the LTL-task to a reachability problem in the product graph, such that we can use a planning algorithm
to find a sequence of subtasks that completes the LTL-task.

3.1.1. Subtasks for reachability tasks
To define the manually crafted subtasks we start with an adjusted version of the option framework [55].
In the option framework, an option is a closed-loop policy for taking actions over a period of time. This
option can be seen as executing a subtask, where the closed-loop policy is the agent responsible for
completing the subtask. An option exist out of three components: a policy 𝜋: 𝑆×𝐴 → [0, 1], an initiation
condition ℐ ⊆ 𝑆, and a termination condition ℬ ∶ 𝑆+ → [0, 1]. An option is available in state 𝑠𝑡 if and only
if 𝑠𝑡 ∈ ℐ. If the option is selected, 𝜋 is used to generate an action, and the environment transitions to
state 𝑠𝑡+1, where the option terminates with probability ℬ(𝑠𝑡+1), or continues and generates the next
action, 𝑎𝑡+1 and the environment transitions to state 𝑠𝑡+2 where the option terminates with probability
ℬ(𝑠𝑡+2). This will continue until the option terminates, and the agent has the opportunity to select a new
option to execute. The subtasks in this research are designed similarly as options. Each subtask has
a policy, an entry condition, and a termination condition. When the entry condition of a subtask is met,
it can be selected and its policy is used to generate actions until either the subtask is completed or the
agent has failed. Formally, in this research subtasks for reachability tasks are defined as 𝑐 = (ℐ𝑐 , 𝜋𝑐 , ℱ𝑐),
where:

• ℐ𝑐 ⊆ 𝑆: A subset of the entire state space of the environment (𝑆) representing the entry conditions
of that subtask

• 𝜋𝑐 ∶ 𝑠 → 𝑎 the policy used to complete the subtask, it selects an action 𝑎 ∈ 𝐴 to execute in state
𝑠 ∈ 𝑆

• ℱ𝑐 ⊆ 𝑆: A subset of the entire state space of the environment (𝑆) representing the goal conditions
of that subtask

The main difference between this subtask definition and the option framework is that in our subtasks,
𝐹𝑐 represents the states in which the subtask is completed, while in the option framework each state
has a probability between 0 and 1 to terminate the current option. it is possible to translate 𝐹𝑐 in our
subtasks to ℬ in the option framework by doing the following: every state 𝑠 ∈ 𝐹𝑐 has ℬ(𝑠) = 1 and
every state 𝑛𝑠 ∉ 𝐹𝑐 has ℬ(𝑛𝑠) = 0.

3.1.2. High-level model (HLM)
We use the subtasks to create a model, which we call the high-level model (HLM). This HLM expresses
the relation between subtasks and can be used to find sequences of subtasks that complete reacha-
bility tasks. The HLM is modeled as a directed graph 𝐺 = (𝑉, 𝐸). To create the HLM, first subtasks are
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manually defined in the environment. These subtasks are designed such that they have overlapping
entry (ℐ) and goal (ℱ) conditions, such that once a subtask has finished, another one can be started.
For each unique entry/goal condition in all subtasks, one unique vertex is created in the HLM. After all
vertices are created, edges are added to the HLM. To add an edge between two vertices in the HLM, we
use the fact that each subtask navigates from an entry condition to a goal condition, so each subtask
is a transition from one vertex in the HLM to another one. We add one directed edge to the HLM for
each subtask indicating from which entry condition to which goal condition that subtask navigates the
agent. Let us take Figure 3.1 as an example, which contains an example of an environment and its
corresponding HLM.

(a) Example of an environment, the green and purple
square are goal squares, which can be part of a certain
task, the red square is the agent starting location

S1

S2['d1'] S3

['d2']
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['d1'] ['d3']

['d2']
['d3']

['g']

['d3'] ['d4']

(b) The HLM, corresponding to the environment in Figure 3.1a, S1 is the starting
vertex, corresponding to the starting location in the environment

Figure 3.1: An environment with manually defined subtasks, and the composed HLM

In Figure 3.1a each two-sided arrow represents two subtasks, one subtask for navigating between the
two locations in each direction. At the end of each arrow, there is a label representing the goal condition
of that subtask. For instance, the agent being at the purple square is the goal condition of a subtask
and is labeled p.

Figure 3.1b is the HLM corresponding to the subtasks in Figure 3.1a. Each edge is accompanied
by the label of that subtask’s goal location, so an edge with a 𝑝 label has as goal condition that the
agent is at the purple square. This HLM can be used to find a sequence of subtasks that completes
reachability tasks (reach a certain state in the environment). For example, in Figure 3.1b, 𝑆1 is the
start state, and the task is to reach the green square, one can execute the subtasks that traverse the
following states: 𝑆1 → 𝑆2 → 𝑆5 → 𝑆4 → 𝑆7 to complete the task since when the subtask of edge
𝑆4 → 𝑆7 is completed the green square is reached.

To be able to find a sequence of subtasks that can solve LTL-tasks instead of only reachability tasks we
convert the problem of solving the LTL-task to a reachability problem. This can be done by combining
the Büchi automata representing the LTL-task and the HLM together in a new graph, which we call the
product graph. To create this product graph, we first need to extend the subtask definition.

3.1.3. Extending subtask definition
To convert the problem of solving the LTL-task to a reachability problem, every subtask needs to indicate
which events it triggers on completion. This is required so that it is possible to check whether an LTL-
task will progress, is completed, or is violated when executing a certain sequence of subtasks. Let us
take the LTL-task ♢𝑝∨♢𝑔 (eventually reach purple or eventually reach green) as an example, the Büchi
automata representing this task can be found in Figure 3.2.
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Figure 3.2: Büchi automata representing the task ♢𝑝 ∨ ♢𝑔

To check if a certain sequence of subtasks would complete the task we need to know whether executing
a sequence of subtasks would trigger either 𝑝 or 𝑔, such that we know that the sequence of subtasks
would traverse the büchi automata to the accepting state, and therefore is a sequence of subtasks that
completes the LTL-task. For this notion, we extend the subtask definition 𝑐 = (ℐ𝑐 , 𝜋𝑐 , ℱ𝑐) with a label
set 𝐿𝑐. 𝐿𝑐 is a label set that indicates which events are triggered when that subtask is completed. So if
a subtask ends in the green square, then 𝐿𝑐 = [𝑔]. 𝐿𝑐 can then be used to check what the influence of
a subtask is on the Büchi automata of an LTL-task, and whether a certain sequence of subtasks would
traverse the Büchi automata to the accepting state.

3.1.4. Converting LTL-task to a reachability problem
Now that we know what events are triggered by subtasks when they are completed, we can combine
the HLM and a Büchi automata representing an LTL-task together in a product graph. This reduces the
problem of solving the LTL-task to a reachability problem. First, we will explain how we create such a
product graph and afterward give an example of how a path in this product graph is a valid sequence
of subtasks that complete the LTL-task.

Creating the product graph exists out of three steps:

• Create the entire product graph

• Prune unreachable vertices

• Prune states only reachable from a goal vertex

To create the entire product graph 𝑃𝐺 = (𝑉𝑝𝑔 , 𝐸𝑝𝑔) we take a HLM 𝐻 = (𝑉ℎ , 𝐸ℎ) and the Büchi automata
𝐵 = (𝑄, ∑, 𝛿, 𝑞0, 𝐹). First, we create a new vertex 𝑣 in 𝑉𝑝𝑔 for every vertex 𝑣ℎ ∈ 𝑉ℎ and every state 𝑏 ∈ 𝑄
combination, resulting in |𝑉ℎ| ⋅ |𝑄| vertices in 𝑉𝑝𝑔. We call these states 𝑣𝑖𝑏𝑖, so if a vertex 𝑣 in 𝑉𝑝𝑔 is
created from 𝑣1 ∈ 𝑉ℎ and 𝑠1 ∈ 𝑄, the new vertex 𝑣 ∈ 𝑉𝑝𝑔 is called 𝑣1𝑠1.

After all the states are created in 𝑉𝑝𝑔, the next step is to add edges to 𝐸𝑝𝑔, connecting states in 𝑉𝑝𝑔
with each other. To do this, we check whether executing a certain subtask would traverse the Büchi
automata to a new state or not, and if so, a directed edge is added to the product graph, indicating that
executing that subtask would traverse the Büchi automata to the next state. So if we are in vertex 𝑣1𝑠1
in the product graph (𝑣1 in the HLM, and 𝑠1 in the Büchi automata) and executing the subtask that would
go from 𝑣1 to 𝑣2 in the HLM and progress the Büchi automata from 𝑠1 to 𝑠2, a directed edge is added
from 𝑣1𝑠1 to 𝑣2𝑠2 in the product graph. To see if executing a subtask will traverse the Büchi automata
to a new state or not, we use that every edge in 𝐸ℎ is a subtask. As explained in subsection 3.1.3, each
subtask 𝑐 has a set of labels (𝐿𝑐) associated with them, corresponding to the events that happen when
that subtask is completed. Each transition in 𝛿 from the Büchi automata contains an atomic proposition
that results in either 𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒, depending on the input. When the atomic proposition evaluates to
𝑇𝑟𝑢𝑒 given a certain input, the Büchi automata will transition to the next state. We use the set of labels
𝐿𝑐 as the input of a transition in 𝛿 to see if executing this subtask will transition the Büchi automata to
a new state and an edge should be added to the product graph.

Let us clarify this with an example, we take the HLM 𝐻 from Figure 3.1 and a Büchi automata 𝐵 cor-
responding to the LTL-task ♢(𝑔 ∧ ♢𝑝) (eventually reach green and afterward eventually reach purple)
in Figure 3.3. Each edge in 𝐻 is accompanied by 𝐿𝑐, the events that are triggered when the subtask
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related to that edge is completed. Each transition in 𝐵 is accompanied by a logic formula indicating
which events need to happen to transition 𝐵 from one state to another.

S1

S2['d1'] S3

['d2']

['s']

['d2']

S4['d3']

S5['p']

['s']

['d1']

S6
['d4']

['d1']

['p']

['d4']

S7['g']

['d1'] ['d3']

['d2']
['d3']

['g']

['d3'] ['d4']

(a) The HLM from the environment in Figure 3.1a

(b) A Büchi automata corresponding to the
task ♢(𝑔 ∧♢𝑝)

Figure 3.3: an HLM and a Büchi automata which are combined into a product graph

First, we create new states for every state 𝑣ℎ ∈ 𝑉ℎ and 𝑏 ∈ 𝑄𝐵 combination, resulting in 21 states
(𝑠1𝑏2, 𝑠1𝑏1, 𝑠1𝑏0, ......, 𝑠7𝑏2, 𝑠7𝑏1, 𝑠7𝑏0), where state 𝑠1𝑏1 is created from 𝑆1 in 𝑉ℎ and state 1 in 𝑄𝐵.
After the states are created, the edges of the product graph are added. To see if a new edge should be
added to the product graph, we evaluate the logic formula of each transition in 𝛿𝐵 using the labels from
the subtasks in the HLM (𝐿𝑐). For example, we are in state 𝑠1𝑏2 in the product graph (𝑆1 in 𝐻 and 𝑏2 in
𝐵). We evaluate each outgoing edge from 𝑏2 using the outgoing edges from 𝑆1. 𝑆1 has two outgoing
edges in 𝐻, 𝑆1 → 𝑆2 and 𝑆1 → 𝑆3. 𝑏2 has three transitions in 𝐵, 𝑏2 → 𝑏2 , 𝑏2 → 𝑏1 and 𝑏2 → 𝑏0.

The edge 𝑆1 → 𝑆2 has 𝐿𝑐 = [𝑑1]. We evaluate the logic formula of the transition 𝑏2 → 𝑏2 (!𝑔) us-
ing 𝐿𝑐. for !𝑔 to be 𝑇𝑟𝑢𝑒, 𝑔 must not happen, therefore we check 𝐿𝑐, the set of events that happen
when the subtasks related to the edge 𝑆1 → 𝑆2 is completed, to see if 𝑔 happens when 𝑆1 → 𝑆2 is
traversed in the HLM. 𝐿𝑐 does not contain 𝑔, so !𝑔 evaluates to 𝑇𝑟𝑢𝑒. Formally we have:

!𝑔 → 𝑇𝑟𝑢𝑒, given 𝐿𝑐 = [𝑑1]

Resulting in an edge being added from 𝑠1𝑏2 to 𝑠2𝑏2 in the product graph. The edge 𝑏2 → 𝑏1 in 𝐵
has the logic formula 𝑔 & !𝑝 and evaluates to 𝐹𝑎𝑙𝑠𝑒, since 𝑔 is not in 𝐿𝑐, formally:

𝑔 & !𝑝 → 𝐹𝑎𝑙𝑠𝑒, given 𝐿𝑐 = [𝑑1]

So the edge 𝑠1𝑏1 → 𝑠2𝑏1 is not added to the product graph. The edge 𝑏2 → 𝑏0 in 𝐵 has the logic
formula 𝑔 & 𝑝 and evaluates to 𝐹𝑎𝑙𝑠𝑒, since both 𝑔 and 𝑝 are not in 𝐿𝑐, formally:

𝑔 & 𝑝 → 𝐹𝑎𝑙𝑠𝑒, given 𝐿𝑐 = [𝑑1]

So the edge 𝑠1𝑏1 → 𝑠2𝑏0 is not added to the product graph. For the edge 𝑆1 → 𝑆3 in 𝐻 we have
𝐿𝑐 = [𝑑2], resulting into:

!𝑔 → 𝑇𝑟𝑢𝑒, given 𝐿𝑐 = [𝑑2]

𝑔 & !𝑝 → 𝐹𝑎𝑙𝑠𝑒, given 𝐿𝑐 = [𝑑2]

𝑔 & 𝑝 → 𝐹𝑎𝑙𝑠𝑒, given 𝐿𝑐 = [𝑑2]

So the edge 𝑆1𝑏2 → 𝑆3𝑏2 will be added to the product graph since the transition 𝑏2 → 𝑏2 (!𝑔) evalu-
ates to 𝑇𝑟𝑢𝑒 and both 𝑆1𝑏2 → 𝑆3𝑏1 and 𝑆1𝑏2 → 𝑆3𝑏0 will not be added to the product graph since the
transitions 𝑏2 → 𝑏1 (𝑔 & !𝑝) and 𝑏2 → 𝑏0 (𝑔 & 𝑝) evaluate to 𝐹𝑎𝑙𝑠𝑒. This process is repeated for every
possible edge combination in the product graph and results in the product graph from Figure 3.4. Each
vertex in Figure 3.4 has a name in the form of 𝑆𝑖𝑏𝑗, which is created from vertex 𝑆𝑖 from 𝐻 and state 𝑗
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from 𝐵. The start vertex in 𝐻 is 𝑆1 and the start state in 𝐵 is 𝑏1, so the start vertex in the product graph
is 𝑆1𝑏1. For the goal vertices in the product graph, every vertex in the product graph that is related to
an accepting state in 𝐵 is a goal vertex in the product graph, so every state 𝑆𝑖𝑏0 is a goal state since
𝑏0 is the accepting state in 𝐵.

Figure 3.4: Product graph from the HLM and Büchi automata in Figure 3.3

The next step is to prune unnecessary states and edges in the product graph. This will reduce the
product graph size, which will speed up finding sequences of subtasks that can solve the LTL-task.
First, all states that are unreachable are pruned, in Figure 3.4 state 𝑆5𝑏1 and 𝑠7𝑏2 are unreachable,
since they are not the starting state and have no incoming edges, so they can be removed.

Second, vertices that are only reachable after a goal vertex is visited can be pruned. This research
only evaluates finite LTL-tasks (LTL-tasks that only need to be completed once and in a finite amount
of time), so vertices in the product graph that can only be visited after a goal vertex is visited can be
pruned since the LTL-task has already been completed once if a goal vertex is visited in the product
graph. So in Figure 3.4 the states 𝑆1𝑏0, 𝑆2𝑏0, 𝑆4𝑏0, 𝑆7𝑏0, 𝑆6𝑏0, and 𝑆3𝑏0 are removed since they can
only be visited after 𝑆5𝑏0 is visited, which is an accepting vertex. After pruning all unnecessary states
and edges we gain the final product graph from Figure 3.5
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Figure 3.5: Product graph from the HLM and Büchi automata in Figure 3.3 after pruning states and edges

Any path in this product graph from the start vertex to a goal vertex is a sequence of subtasks that
complete the LTL-task. Recall that the LTL-task we want to complete is ♢(𝑔 ∧ ♢𝑝) (eventually reach
green and afterward eventually reach purple). One path in the product graph in Figure 3.5 that com-
pletes the LTL task is 𝑆1𝑏2 → 𝑆3𝑏2 → 𝑆6𝑏2 → 𝑆7𝑏1 → 𝑆4𝑏1 → 𝑆5𝑏0, which are the edges, or subtasks
𝑑2 → 𝑑4 → 𝑔 → 𝑑3 → 𝑝. If we return to the environment from Figure 3.1a and follow this path of sub-
tasks, highlighted with red arrows in Figure 3.6, we indeed see that this is a valid sequence of subtasks
that completes the LTL-task ♢(𝑔 ∧ ♢𝑝).

Figure 3.6: Example of an environment, with a sequence of subtasks that first goes to green and afterward goes to purple

3.2. RQ2: How can we solve LTL-tasks efficiently, optimizing for
both success probability as well as cost?

With the idea from RQ1, manually defining subtasks and finding sequences of subtasks that complete
the LTL-task. The next step is to solve the LTL-task efficiently, optimizing for both success probability
as well as cost, we identify two points that need to be addressed:

• How do we learn subtasks, such that we maximize the success probability and minimize the cost?

• How can we use planning to find a sequence of subtasks that optimizes for both cost and proba-
bility of success?
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3.2.1. How do we learn a policy for subtasks?
In this research, subtasks are defined as: go from one location in the environment to another while
avoiding the moving obstacles. To learn a policy for subtasks, an RL algorithm is used. To learn how
to avoid obstacles as well as efficiently move to the subtask’s goal location, accurate rewards need to
be given to the agent during training. When the agent is punished too heavily when crashing into an
obstacle, it is possible that the agent only tries to avoid obstacles and does not learn how to complete
the subtask. When the agent is not punished for taking an extra step, it may learn a policy that is very
safe but not very cost-efficient. When the agent is not punished enough for crashing with obstacles, it
may learn a policy that is very efficient when it succeeds but often collides with an obstacle.

We initially provided the agent with the following reward function:

𝑅(𝑆) = 𝐶 + 𝐸 + 𝐺 (3.1)

The three components in Equation 3.1 are defined as:

• 𝐶: A negative reward if the agent collides with an obstacle

• 𝐸: A small negative reward for each step the agent takes

• 𝐺: A positive reward when the agent reaches the goal location

With this reward function the agent is trained to reach the goal state while avoiding the obstacles and
the agent also tries to minimize the number of steps it takes to reach the goal state.

After the initial reward function, we researched if the training of an agent could be improved by lim-
iting an agent’s operation area. If a subtask is limited to one room, for example, to move from one door
in a room to another door in that room, it does not need to explore other rooms in the environment.
Therefore it may be beneficial to exclude information about other rooms outside the operation area
since those rooms never need to be visited and information from those rooms can make the agent’s
observations noisy, resulting in subpar performance. We ran some tests to see if it would be beneficial
to limit an agent’s operation area and what observation we should provide to the agent.

We tested four different types of observations (two global observations and two local observations)
in a big environment (Figure 3.7 in which the subtask was to go from the starting location (red square)
to door 1(green square).

Figure 3.7: Environment used for testing different types of operation areas and observations, the agent (red) needs to navigate
to the green square while avoiding the stochastic moving obstacle (blue)

The four different types of observations tested are:
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1. Using the entire grid of the environment as an observation (global)

2. Using the operation area, containing only tiles that are in the operation area (local)

3. Extracting the location of the agent and all obstacles from the environment (global)

4. Extracting the location of the agent and obstacles in the operation area (local)

For the results of the tests, see Table 3.1.

Experiment Observation size Average steps Succes probability
entire environment (global) 625 7.48 0.76
operation area (local) 49 7.00 0.90
agent and obstacle locations (global) 34 6.48 0.78
agents and obstacle locations, (local) 4 6.75 0.83

Table 3.1: Results from testing different types of observations for completing a subtask

These tests show that it is beneficial to limit an agent’s operation area and provide observations contain-
ing the tiles in that operation area since this resulted in the highest success probability of 90%. To limit
the agent’s operation area when learning a subtask we extend the subtask definition 𝑐 = (ℐ𝑐 , 𝜋𝑐 , ℱ𝑐 , 𝐿𝑐)
by adding 𝑂𝑐, the agent’s operation area, indicating which parts of the environment are relevant in order
to learn the subtask. For example in Figure 3.8, we limit the operation area (𝑂𝑐) of the subtask to the
8x8 squares, highlighted with light blue.

Figure 3.8: The operation area of the subtask ”go from the start location to door 1”

We also add a new variable to the reward function since the agent never needs to leave the operation
area of the subtask in order to learn it. We provide the agent with a negative reward 𝐿 when it leaves
the operation area, resulting in the final reward function:

𝑅(𝑆) = 𝐶 + 𝐸 + 𝐺 + L (3.2)

We assign 𝐶, the reward when colliding with an obstacle the value of −1. 𝐸, the reward of taking a
step is −0.03. 𝐺, the reward when an agent successfully completed the subtask is the value of 1. 𝐿,
the reward when the agent leaves its operation area is −1. These values were chosen after testing
different configurations. When the (negative) reward given to the agent for hitting an obstacle or leaving
its operation area was too large in comparison with the reward given to the agent when the subtask is
completed, the agent would get stuck in a local optimum, prioritizing avoiding the obstacles and points
near the operation area border over completing the subtask.
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3.2.2. How can we use planning to find an optimal sequence of subtasks?
Now that it is possible to learn policies for subtasks and find sequences of subtasks that can complete
an LTL-task using the product graph, the next step is to find optimal sequences of subtasks. In this
research, we want to optimize for both the cost as well as the success probability, meaning it is a multi-
objective setting. In order to be able to find an optimal sequence of subtasks in the product graph
we use Pareto optimality, see section 2.5, which is a technique used to find efficient solutions in a
multi-objective setting. To be able to find Pareto-optimal sequences of subtasks, we need to know the
success probability and cost of completing each subtask in the product graph. To gain this success
probability and cost of completing a subtask 𝑐, we train an agent for that subtask and use its policy 𝜋𝑐 to
run 600 simulations. From these simulations, the success probability and average cost of completing
subtask 𝑐 are estimated. The estimated success probability P𝑐 is calculated with Equation 3.3.

P𝑐 =
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑢𝑛𝑠

600 (3.3)

For the cost, we use all successful runs from the 600 simulations used for calculating the success
probability. Unsuccessful runs are excluded from this calculation since we want to know the average
cost of completing the subtask and not the average cost of running the subtask. Equation 3.4 is used
to calculate the cost (𝐶𝑐), where 𝑛 = # 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑢𝑛𝑠.

𝐶𝑐 =
1
𝑛

𝑛

∑
1
𝑠𝑡𝑒𝑝𝑠 (3.4)

After knowing the average success probability and cost of completing each subtask, we can calculate
the estimated success probability and cost of a sequence of subtasks (𝑆) with:

P(𝑆) = ∏
∀𝑠∈𝑆

P(𝑠) (3.5)

𝐶(𝑆) = ∑
∀𝑠∈𝑆

𝐶(𝑠) (3.6)

Now that we can calculate P(𝑆) and 𝐶(𝑆) we can find all Pareto optimal paths in a product graph. To
find all Pareto optimal paths, we define the dominate function as follows; given two paths in the product
graph (sequences of subtasks), 𝑆1 and 𝑆2 we say 𝑆1 dominates 𝑆2 (𝑆1 ≻ 𝑆2) if:

P(𝑆1) > P(𝑆2) 𝑎𝑛𝑑 𝐶(𝑆1) < 𝐶(𝑆2) (3.7)

where:

• P(𝑥): success probability of 𝑥

• 𝐶(𝑥): cost of 𝑥

With the dominate function we can use Martins algorithm (section 2.6) to find all Pareto optimal se-
quences of subtasks in the product graph from the start state to a goal state. It is possible that a
product graph has multiple goal states, for example in cases when the LTL-task is a choice task such
as ♢𝑔∨♢𝑝 (go to green or go to purple). See Figure 3.9 for the product graph created from the LTL-task
♢𝑔 𝑜𝑟 ♢𝑝 and the HLM in Figure 3.1b.
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Figure 3.9: Product graph from the HLM in Figure 3.1b and the LTL-task ♢𝑔 ∨ ♢𝑝

If there are multiple goal vertices in a product graph, Martins algorithm is used to find Pareto-optimal
paths for every possible start vertex - goal vertex combination in the product graph. When there are
multiple goal vertices in a product graph it is possible that a Pareto-optimal path to one goal vertex is
dominated by a Pareto-optimal path to another goal vertex. If we look at Figure 3.10, which is the same
product graph as in Figure 3.9, but with the success probability and average cost of completing each
subtask displayed above the edges. There are two Pareto-optimal paths from the start vertex (𝑆1𝑏1)
to the goal vertex 𝑆5𝑏0, one such path is 𝑆1𝑏1 → 𝑆2𝑏1 → 𝑆5𝑏0, resulting in a success probability of
0.73 and a cost of 18, the other is 𝑆1𝑏1 → 𝑆2𝑏1 → 𝑆4𝑏1 → 𝑆5𝑏0, resulting into a success probability
of 0.74 and a cost of 27. From the start vertex to the goal state 𝑆7𝑏0 there is one Pareto-optimal path
(𝑆1𝑏1 → 𝑆3𝑏1 → 𝑆6𝑏1 → 𝑆7𝑏0) with a success probability of 0.86 and a cost of 26. This means that
the path 𝑆1𝑏1 → 𝑆2𝑏1 → 𝑆4𝑏1 → 𝑆5𝑏0 is dominated by a path leading to another goal state since the
path 𝑆1𝑏1 → 𝑆3𝑏1 → 𝑆6𝑏1 → 𝑆7𝑏0 has a higher success probability (0.86 over 0.74) and a lower cost
(26 over 27), therefore 𝑆1𝑏1 → 𝑆2𝑏1 → 𝑆4𝑏1 → 𝑆5𝑏0 is no longer deemed to be Pareto-optimal.
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Figure 3.10: Product graph from the HLM in Figure 3.1b and the LTL-task ♢𝑔 ∨ ♢𝑝, displaying the success probability and cost
of every subtask

So in order to prevent sub-optimal paths from being found all permanent labels in all goal states are
filtered. All permanent goal state labels that are dominated by a permanent label in another goal state
are removed, such that only Pareto optimal paths remain.

3.3. RQ3: How can we deal with stochasticity in environments,
while guaranteeing the LTL-task is not violated?

In order to prevent stochasticity in the environment from violating the specification, let us first clarify in
which cases stochasticity can violate the LTL-task. If we take Figure 3.11 as an example, the task that
needs to be completed is ♢ 𝑔𝑟𝑒𝑒𝑛 ∧ □ ¬ 𝑝𝑢𝑟𝑝𝑙𝑒, or in words, eventually reach green while always
avoiding purple. The defined subtasks are presented with the yellow arrows and the agent is currently
at d2 (red square). The fastest way towards ♢𝑔𝑟𝑒𝑒𝑛 is to use the subtask to go from d2 to d1, and then
from d1 to green in order to complete it. However, the agent is only trained to avoid the obstacles and
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not to avoid purple, so if the subtask to reach d1 is executed, there is a high chance that the agent will
try to avoid the obstacles by going up and left, in which case the agent goes over purple and violates
the global task.

Figure 3.11: An example of a situation in which a global LTL-task can be violated, in this example the task is ♢𝑔𝑟𝑒𝑒𝑛∧□¬𝑝𝑢𝑟𝑝𝑙𝑒

In order to prevent agents from violating the global LTL-task in case of reach-avoid tasks, there are two
options:

• Train the subtasks with the global task in mind such that agents are trained to avoid states that
violate the global task

• Ensure that all subtasks that potentially violate the global task are excluded during the creation of
the product graph so that they will never be selected when trying to find a sequence of subtasks
that complete the global task

For this research, the choice was made to exclude all subtasks that may potentially violate the LTL-task
during the creation of the product graph. When an LTL-task includes an avoid predicate (□ ¬ 𝑥), all
subtasks that potentially trigger 𝑥 cannot be used, since they can potentially violate the LTL-task. There
were two main reasons we chose to avoid using subtasks that may potentially violate the LTL-task over
training the subtasks with the global task in mind. First, when training each subtask with the LTL-task
in mind, reward functions can become overly complex and new reward functions need to be created
for every different LTL-task. Adjusting the subtask description does not have this issue. The second
downside of training the subtask with the LTL-task in mind is that it requires all subtask controllers to be
retrained when there is a new LTL-task, so it becomes less flexible. When each subtask indicates what
events it may potentially trigger, it is possible to synthesize a controller for a new LTL-task, without the
need of retraining the subtask controllers, and instead, it is only required to generate a new product
graph and plan a new sequence of subtasks. A downside of excluding subtasks during the creation of
the product graph is that possible solutions may be pruned from the solution space since you eliminate
entire subtasks from being utilized.

To ensure that subtasks that potentially violate the global task are excluded during the creation of
the product graph, we extend the subtask definition 𝑐 = (ℐ𝑐 , 𝜋𝑐 , ℱ𝑐 , 𝑂𝑐 , 𝐿𝑐) with the field 𝐿𝑀𝑐. 𝐿𝑀𝑐 is a
set that contains all events that can potentially trigger during the execution of a subtask.

During the creation of the product graph, the set 𝐿𝑀𝑐 is used to exclude subtasks that can poten-
tially violate the LTL-task, so that they can never be selected during planning. Let us take the HLM of
Figure 3.11 and the Büchi automata from the LTL-task ♢𝑔 ∧□¬𝑝 (eventually reach green while never
visiting purple) as an example.
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S1

S2['d1'], ['p', 'r1']

S5['d4'], ['r3']

['d2'], ['p', 'r1']

S3

['d3'], ['r2']

S4['g'], ['r2']

['d1'], ['r2']

['g'], ['r2'] ['d4'], ['r4']['d1'], ['r2']

['d3'], ['r2']

['d2'], ['r3']

['d3'], ['r4']

(a) The HLM from the environment in Figure 3.11

(b) A Büchi automata corresponding
to the task ♢𝑔 ∧□¬𝑝)

Figure 3.12: an HLM and a Büchi automata of the task ♢𝑔 ∧□¬𝑝 which are combined into a product graph

In the HLM in Figure 3.12a each edge is accompanied by two sets, the first set is 𝐿𝑐, the set with events
that happen when the subtask is completed. The second set is 𝐿𝑀𝑐, the set containing events that the
subtask potentially triggers.

Since the LTL-task is a reach-avoid task, in which certain states need to be avoided, during the creation
of the product graph 𝐿𝑀𝑐 is used to check whether a subtask could potentially violate the avoid part of
the task and if so, it is not added to the product graph so that it can never be selected during planning.
To create the product graph, first, all the states (𝑠1𝑏1, 𝑠1𝑏0, ..., 𝑠5𝑏1, 𝑠5𝑏0) are created. After creating
all states, 𝐿𝑐 and 𝐿𝑀𝑐 are used to evaluate the logic formula of each edge in the Büchi automata to see
if an edge can be added to the product graph. For example, we are in state 𝑠1𝑏1 in the product graph
(𝑆1 in 𝐻𝐿𝑀 and 𝑏1 in 𝐵�̈�𝑐ℎ𝑖) and evaluate each outgoing transition from 𝑏1 using the outgoing edges
from 𝑆1. 𝑆1 has two outgoing edges in 𝐻𝐿𝑀, 𝑆1 → 𝑆2 and 𝑆1 → 𝑆3. 𝑏1 has two outgoing transitions
in 𝐵�̈�𝑐ℎ𝑖, 𝑏1 → 𝑏1 and 𝑏1 → 𝑏0. The edge 𝑆1 → 𝑆2 has 𝐿𝑐 = [𝑑1] and 𝐿𝑀𝑐 = [𝑝, 𝑟1]. We evaluate
the logic formula of the transition 𝑏1 → 𝑏1 (!𝑔 & !𝑝) using 𝐿𝑐 and 𝐿𝑀𝑐. for !𝑔 to be 𝑇𝑟𝑢𝑒, 𝑔 must never
happen, therefore we check both 𝐿𝑐 and 𝐿𝑀𝑐, to see if 𝑔 will happen or potentially can happen when
𝑆1 → 𝑆2 is traversed in the HLM. both 𝐿𝑐 and 𝐿𝑀𝑐 do not contain 𝑔, so !𝑔 evaluates to 𝑇𝑟𝑢𝑒. !𝑝, is a
negation, so 𝑝 must never happen in order for this to be 𝑇𝑟𝑢𝑒. We once again check both 𝐿𝑐 and 𝐿𝑀𝑐.
Since 𝐿𝑀𝑐 contains 𝑝, indicating 𝑝 can potentially happen when executing this subtask, !𝑝 evaluates to
𝐹𝑎𝑙𝑠𝑒. So formally we have:

!𝑔 & !𝑝 → 𝐹𝑎𝑙𝑠𝑒, given 𝐿𝑐 = [𝑑1] and 𝐿𝑀𝑐 = [𝑝, 𝑟1]

Resulting in no edge being added from 𝑠1𝑏1 to 𝑠2𝑏1 in the product graph. If we repeat this pro-
cess for all edge combinations and prune unnecessary states and edges, we gain the product graph
in Figure 3.13.

S1b1 S5b1['d4'], ['r3']
S2b1

S3b1 ['d3'], ['r2']

S4b0

['g'], ['r2']
['d1'], ['r2']

['g'], ['r2']

['d4'], ['r4']['d2'], ['r3']
['d3'], ['r4']

Figure 3.13: An example of a product graph in which the LTL-task was a reach-avoid task and some subtasks can not be used

Subtasks that have the 𝑝 event in their 𝐿𝑀𝑐 set are excluded from the product graph since they can
potentially violate the avoidance part of the LTL-task (!𝑝). Since they are not in the product graph,
they cannot be selected by the planning algorithm when searching for a sequence of subtasks that can
complete the LTL-task. This guarantees that the avoid part of the LTL-task is never violated by any
sequence of subtasks found in the product graph.
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3.4. RQ4: How can we give guarantees for both the success prob-
ability, as well as the cost of the controller, which metrics
should be used?

In order to provide guarantees for both the success probability and the cost of the controller, the choice
was made to calculate probably approximately correct (PAC) guarantees using Hoëffding’s inequality
(section 2.8). PAC-guarantees provide an upper bound to the probability (the probably part) that the
difference between the empirical mean of a number of variables is within a certain error (the approx-
imate part) of the expected mean. PAC-guarantees avoid the state explosion problem [56], which is
a phenomenon in which the state space grows exponentially in size with the number of environment
variables. Since in our environment the state space grows exponentially with the number of obsta-
cles, PAC-guarantees are very suited. PAC-guarantees are often used for mathematical analysis of AI
systems and are also used in statistical model checking to provide a bound on the probability that the
difference between the calculated mean and the expected mean is within a certain range.

To calculate the PAC-guarantees for both the cost and success probability, the following variables
are required: the error margin (𝜖), a lower (𝑎) and upper (𝑏) bound on the values the random inde-
pendent variables can take and the number of simulations used (𝑛). When 𝑛, 𝑎, 𝑏, and 𝜖 are known,
Equation 2.6 is used to calculate the probability that the difference between the calculated values and
the expected values for the success probability and cost are within the error margin. Since the success
probability and cost have different values assigned to 𝑛, 𝑎, 𝑏, and 𝜖, they are discussed in separate
subsections.

3.4.1. PAC-guarantees for success probability
For the success probability, the lower bound (𝑎) and upper bound (𝑏) are known, the lower bound is
0 (failed to complete the task), and the upper bound is 1 (the task is successfully completed). To gain
the number of simulations required to get a certain confidence (1 − 𝛿) and error margin (𝜖) we use
Equation 2.7. Based on the calculation we chose to run 600 simulations since this results in a 90%
confidence (1−𝛿 = 0.9) that the calculated mean deviates less than 0.05 (𝜖) from the expected mean,
see Equation 3.8.

𝑛 ≥ (𝑏 − 𝑎)2
2𝜖2 log(2𝛿 ) =

(1 − 0)2
2 ⋅ 0.052 log(

2
0.1) = 599.15 (3.8)

This means that once a controller is created that can complete the LTL-task, we simulate it 600 times.
Let us say 480 of those simulations are successful, so a success probability of 480600 ⋅100 = 80%, then the
probability (𝛿) that the difference between the calculated success probability and the expected success
probability is bigger than 𝜖 (0.05) is 0.099, see Equation 3.9.

P(| 1𝑛

𝑛

∑
𝑖=1
𝑋𝑖 − E[𝑋𝑖]| ≥ 𝜖) ≤ 2𝑒

− 2𝑛𝜖2
(𝑏−𝑎)2 = 2𝑒−

2⋅600⋅0.052
(1−0)2 = 0.099 (3.9)

With this we can provide a 90% confidence (1− 0.099 ≈ 0.9) that the expected success probability will
be within 0.05 of the estimated success probability (80%), so within the range of 75 till 85%.

3.4.2. PAC-guarantees for cost
To calculate the PAC-guarantees for the cost we use all successful runs out of the 600 simulations
used to calculate the PAC-guarantees for the success probability, since then we can calculate the
PAC-guarantees for both the cost and success probability with a fixed number of simulations. For the
cost, we first need to define a lower bound (𝑎), an upper bound (𝑏), and an error margin (𝜖) in order to
calculate the PAC-guarantees. In the case of calculating the success probability, the lower and upper
bound are fixed for every task, 0 if the controller failed to complete the task and 1 if the controller
successfully completed the task. However, the lower and upper bound of the cost are dependent on
the type of task that needs to be solved and the type of environment. Some tasks in an environment
will have a higher cost than others since they require more actions to be completed. For example, the
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task ♢𝑔 ∧ ♢𝑝 in Figure 3.14 has a higher cost than the task ♢𝑝 in all cases, since it is impossible to go
to green and purple with a lower cost (fewer steps) than solely going to purple.

Figure 3.14: Example of an environment in which the task ♢𝑔 ∧ ♢𝑝 has a higher cost than the task ♢𝑝

To find the lower bound on the values the cost can be, we use the fact that if we remove the stochastic
moving obstacles in the environment, the task becomes a shortest path problem, which can be solved
by the Dijkstra algorithm. In Figure 3.15 an environment with no obstacles is presented, and a minimum
cost path for the task ♢𝑔 ∧ ♢𝑝 is given, which takes a total of 34 steps. It is impossible to have a cost
lower than the minimum cost path found in the environment without obstacles, no matter if there are
obstacles present or not, therefore this minimum cost can be used as a lower bound (𝑎) for calculating
the PAC-guarantees.

Figure 3.15: Example of an environment without obstacles in which the task is ♢𝑔 ∧ ♢𝑝 and a minimal cost path that completes
this task

To determine an upper bound, two things need to be considered. First, we do not want to set the upper
bound too high because a high upper bound will weaken the guarantees we can provide. A higher
upper bound results in a lower probability (1 − 𝛿) that the difference between the calculated average
cost and the expected average cost is within the error margin (𝜖) and therefore provides a lower confi-
dence. Secondly, we do not want to set the upper bound too low. Since the cost may not exceed the
upper bound for the PAC-guarantees, when a simulation takes more than 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 steps, the sim-
ulation is terminated and it is assumed the controller has failed to complete the task. Therefore, if we
set the upper bound too low it is possible that many simulations used to calculate the PAC-guarantees
will fail due to reaching the upper bound amount of steps, which will weaken the PAC-guarantees. To
find an upper bound that gives us the best possible guarantees for an LTL-task we execute trial-and-
error experiments. In the first experiment, we start with an upper bound of 2 ⋅ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 and run
600 experiments to see how many of those experiments fail due to reaching the cost upper bound. If
too many experiments failed due to reaching the upper bound cost, we increase the upper bound to
3 ⋅ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 and run 600 simulations again. We repeat this process 𝑛 times until the difference in
the number of failed experiments due to reaching the upper bound cost between experiment 𝑛−1 and
experiment 𝑛 is negligibly small and then use 𝑛 − 1 ⋅ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 as the upper bound.



32 3. Approach

We set the error bound (𝜖) to 0.05 ⋅ 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑, since 5% of the upper bound is also the error
margin used to calculate the success probability PAC-guarantees (1 ⋅ 0.05 = 0.05).

3.5. Overview of approach
The techniques used in RQ1 till RQ4 are combined in one process which exists out of 8 steps, see
algorithm 2. This process takes as input the environment, the manually crafted subtasks, and an LTL-
task and outputs a controller that can complete the LTL-task in the environment.

In this section, we reiterate how subtasks are defined, with all extensions included. We also explain
a little more in-depth how we create a controller from a sequence of subtasks (step 7 in algorithm 2)
since this has not been discussed yet in section 3.1 till section 3.4. As last we summarize MORPL in
its entirety.

Algorithm 2: steps of MOPRL
input : Environment 𝐸
input : A set of subtasks 𝑆
input : LTL-task 𝐿
output: A controller which selects subtasks in order to complete the LTL-task 𝐿
1. 𝑇𝑟𝑎𝑖𝑛 𝑎𝑔𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑢𝑏𝑡𝑎𝑠𝑘 𝑖𝑛 𝑆;
2. 𝐶𝑜𝑙𝑙𝑒𝑐𝑡 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑛𝑑 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑎𝑔𝑒𝑛𝑡𝑠;
3. 𝐻𝐿𝑀 ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝐻𝑖𝑔ℎ 𝐿𝑒𝑣𝑒𝑙 𝑀𝑜𝑑𝑒𝑙 𝑓𝑟𝑜𝑚 𝑆;
4. 𝐵�̈�𝑐ℎ𝑖 ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝐵�̈�𝑐ℎ𝑖 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑎 𝑓𝑟𝑜𝑚 𝐿;
5. 𝐺𝑟𝑎𝑝ℎ ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐺𝑟𝑎𝑝ℎ 𝑓𝑟𝑜𝑚 𝐻𝐿𝑀 𝑎𝑛𝑑 𝐵�̈�𝑐ℎ𝑖;
6. 𝑃𝑎𝑡ℎ𝑠 ← 𝐹𝑖𝑛𝑑 𝑃𝑎𝑟𝑒𝑡𝑜 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑎𝑡ℎ𝑠 𝑖𝑛 𝐺𝑟𝑎𝑝ℎ;
7. 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑓𝑟𝑜𝑚 𝑎 𝑝𝑎𝑡ℎ, 𝑤ℎ𝑒𝑟𝑒 𝑝𝑎𝑡ℎ ∈ 𝑃𝑎𝑡ℎ𝑠;
8. 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑖𝑛 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑡𝑜 𝑝𝑟𝑜𝑣𝑖𝑑𝑒 𝑃𝐴𝐶 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒𝑠;

3.5.1. Subtask definition
To reiterate, with all extensions included, a subtask is defined as 𝑐 = (ℐ𝑐 , ℱ𝑐 , 𝜋𝑐 , 𝑂𝑐 , 𝐿𝑐 , 𝐿𝑀𝑐) where:

• ℐ𝑐 ⊆ 𝑆: A subset of the entire state pace of the environment (𝑆) representing the entry conditions
of the subtask

• ℱ𝑐 ⊆ 𝑆: A subset of the entire state space of the environment (𝑆) representing the goal conditions
of the subtask

• 𝜋𝑐 ∶ 𝑠 → 𝑎 the policy used to complete the subtask, it selects an action 𝑎 ∈ 𝐴 to execute in state
𝑠 ∈ 𝑆

• 𝑂𝑐: the operation area; the area of the environment the agent can use to learn this subtask

• 𝐿𝑐: set containing labels of events triggered when 𝑐 is completed

• 𝐿𝑀𝑐: set containing labels of events that can possibly happen when 𝑐 is executed

The goal of a subtask is to navigate from a state in the entry conditions ℐ𝑐 to a state in the goal conditions
ℱ𝑐 while avoiding the obstacles in the environment.

3.5.2. Controller generation from a sequence of subtasks
After we use Martins algorithm to find all Pareto optimal paths (sequence of subtasks) in the product
graph, we select one of these paths and use it to generate a controller. This path can be chosen based
on whether we want to have the highest possible success probability, the lowest cost, or a balance
between the two. Once a path has been chosen, a controller is generated. The controller works the
following way: it takes an observation from the environment as input and outputs an action based on
this observation and the currently loaded subtask. During the initialization of the controller, the first
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subtask in the path is loaded, this subtask’s policy is used for generating actions. Once the current
subtask is completed, the next subtask in the sequence is loaded and this is repeated until the last
subtask is completed, resulting in the completion of the LTL-task, Figure 3.16 shows an overview of
how the controller functions.

Figure 3.16: Overview of controller functionality

3.5.3. MOPRL summary
To summarize MOPRL, or the approach taken to solve LTL-tasks in stochastic environments: given an
LTL-task that needs to be solved in the environment and manually defined subtasks in the environment
of which a sequence of those subtasks can solve the LTL-task in the environment. We train agents for
every subtask using RL and simulate the policy of every subtask to estimate the success probability
and cost of every subtask. The subtasks are combined together in a graph, called the high-level model
(HLM) in which sequences of subtasks can be found that solve reachability tasks in the environment. To
be able to find sequences of subtasks for the LTL-task, the LTL-task is converted to a Büchi automata
representing this LTL-task. The HLM and the Buchi automata are combined together into a new graph
called the product graph, in which a sequence of subtasks can be found that complete the LTL-task. In
this product graph, we use the estimated success probability and cost of every subtask to find Pareto-
optimal sequences of subtasks that complete the LTL-task with Martins algorithm. One of these Pareto-
optimal paths is chosen to generate a controller. This controller is then simulated and from these
simulations, PAC-guarantees are calculated for both the success probability and average cost of using
this controller, providing a bound on the probability that the expected performance is within a certain
error margin of the estimated performance.



4
Related work

In this chapter, we highlight current research on the topic of solving complex tasks in sequential decision-
making processes. These researches are divided into three types; reward machine, task decomposi-
tion, and hierarchical RL. In each section, we explain the basics of each of these types and discuss
some of the most relevant approaches of each type. These relevant approaches are used by other
researches as comparison during evaluation [13], [21], [54] or focus on LTL-tasks specifically [10],
[15]. At the end of this chapter, we provide an overview of all approaches discussed and the type of
environment and tasks they focus on in Table 4.1.

4.1. Reward machine
One of the approaches often used to learn complex tasks is reward machines in combination with RL.
To learn optimal behavior, an RL agent interacts with the environment and learns from its experience.
To learn whether a certain action has a positive or negative impact on completing the task, the agent
is provided with a reward generated by a reward function. These reward functions receive information
about the agent’s current situation and provide the agent with a suitable reward. When dealing with
simple tasks such as reachability tasks, it is easy to provide a suitable reward function to the agent.
However, when dealing with more complex tasks where not only the current situation of the agent is
important, but also which part of the task have yet to be completed, it becomes more difficult to provide
reward functions that can be used by the agent to successfully learn the task.

A reward machine is a system that provides an agent with a suited reward function based on the
state of the task, the state of the environment, and possibly other variables. Reward machines allow
for composing different reward functions in flexible ways, including loops, conditional rules, and other
techniques. As an agent acts in the environment, moving from state to state, the reward machine can
also move to a different state, depending on whether certain events have happened in the environment
or not. After every transition, the reward machine outputs the reward function the agent should use at
that time. For example, an agent needs to learn the task ”deliver coffee and mail to the office”. When
the agent has no coffee, the agent needs to learn how to get a coffee, and once it has a coffee, how
to deliver it to the office, the same idea applies to the mail. It may be beneficial to provide the agent
with different reward functions, depending on whether the agent has acquired a coffee and/or mail or
not [16].

Reward machines are often designed as finite state machines, they take an abstracted description
of the environment as input, and output a reward function. This allows for the agent to be rewarded
differently based on the state of the reward machine. If we go back to the example of ”deliver coffee
and mail to an office”, an example of a reward machine that represents this task is in Figure 4.1. In this
reward machine, the agent can only receive a positive reward from the reward machine by visiting the
office after both the mail and the coffee have been collected.

34
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Figure 4.1: Example of a reward machine for the task ”deliver coffee and mail to an office”. c means coffee is collected, m stands
for mail is collected and o means that the office is reached [57]

Compared to the approach used in this paper, reward machines have the benefit that they are guaran-
teed to converge to an optimal policy in the case of tabular reinforcement learning [57], our approach
provides no such guarantees. A downside of reward machines is that they do scale poorly to complex
tasks that require high-level planning [13]. Therefore, reward machines are the most suited for small
to decently-sized environments and tasks.

4.1.1. Relevant reward machine approaches
A Composable Specification Language for Reinforcement Learning Tasks [58] proposes a task specifi-
cation language called SPECTRL. This language can be used to define complex tasks, which contains
the following syntax:

𝜙 ∶∶= 𝑎𝑐ℎ𝑖𝑒𝑣𝑒 𝑏 | 𝜙1𝑒𝑛𝑠𝑢𝑟𝑖𝑛𝑔 𝑏 | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2

A specification in this language is a logic formula that can be used to evaluate whether a certain se-
quence of actions in an environment 𝑆 = 𝑠0

𝑎0−−→ ... 𝑎𝑡−−→ 𝑠𝑡 accomplished the desired task. They provide
an algorithm that takes an environment and task specification as input and uses this to generate a task
monitor, which is a finite-state machine that tracks which parts of the task are completed and which
constraints have been violated. It uses this task monitor to provide an agent with partial rewards, based
on the degree to which the specification was satisfied during a run.

Reinforcement Learning With Temporal Logic Rewards [14] proposes a specification language for
robotic applications, called TLTL. TLTL operates over finite-time trajectories of an agent’s state. TLTL
formulas are evaluated against finite time sequences of events. These events are produced by the
environment. They define quantitative semantics for TLTL, which they call robustness degree. The ro-
bustness degree exists out of real-valued reward functions. These reward functions take a TLTL-task
and state trajectory as input and outputs a value indicating how far from satisfying or violating the spec-
ification the trajectory was. These rewards are used by an agent to learn a policy for how to complete
the task.

LTL2Action: Generalizing LTL Instructions for Multi-Task RL [15] uses a labeling function to assign
propositions to states in the environment MDP, then during training, these propositions are used to
check whether the LTL-task is satisfied. When the LTL-task is satisfied the agents get a reward of 1,
and when the LTL-task is falsified, the agent gets a reward of -1. To deal with the time modalities of LTL,
they use LTL progression, LTL progression is a semantics-preserving rewriting procedure that takes an
LTL formula and the current labeled state as input and returns a formula that identifies aspects of the
task that remain to be addressed.

LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning
[10] translates specifications of various formal languages into reward machines. They use a labeling
function to relate 𝑆 × 𝐴 × 𝑆 −→ 2𝑝, i.e. they relate state transitions to propositions over the alphabet



36 4. Related work

𝑝. They propose a reward machine based on mealy machines, this mealy machine takes specification
propositions over 2𝑝 as input and outputs an appropriate reward function. In order to create the mealy
machine, they require the deterministic finite automata(s) representing the specification(s).

PlanGAN: Model-based Planning With Sparse Rewards and Multiple Goals [59] aims to solve envi-
ronments with multiple tasks and sparse rewards. They use a model-based RL method in which any
goal observed during a given run can be used as an example of how to achieve that goal from states
that occurred earlier on in that same run. They generate rewards based on how far the run was from
reaching one of the multiple goals. They use this information to train an ensemble of networks (GANs)
which learn to generate plausible future trajectories conditioned on achieving a particular goal instead
of directly learning a goal-conditioned policy. After they have this ensemble of networks they use it in
combination with a planning algorithm to achieve the main goal in as few steps as possible.

Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learn-
ing [57] create a finite state machine that takes an abstract description of the environment as an input
and outputs a reward function. In this abstract description, only high-level events in the environment
can be detected by the agent. With this, the agent will be rewarded differently at different times, en-
abling rewards for temporally extended tasks. The reward machine is defined over a set of propositions
related to the high-level events that can happen in the environment. The reward machine traverses
from one state to another if a certain event happens in the environment. They decompose the reward
machine into multiple subtasks, one subtask per state in the reward machine, and learn a policy for
every subtask.

4.2. Task decomposition
Task decomposition is the type of approach most related to the approach taken in this research. In task
decomposition, a global task is seen as a sequence or composition of subtasks. When these subtasks
are executed successfully, the global task is completed. Subtasks provide information about high-level
structural relationships among them, but not how to implement each subtask or which subtasks need
to be executed to complete the main task. Task decomposition approaches define two levels, a low
level at which the policies for the subtasks function, and a high level, at which a planning algorithm is
used to make use of the structural relationships between subtasks and find the subtasks that need to
be completed and the order in which they need to be completed [13].

To create the subtasks, there are two options: design the subtasks manually or automatically generate
subtasks from the global task. When subtasks are manually designed, the subtasks are unrelated to
the global task, and the main challenge is to find which subtasks to complete and the order in which
they need to be completed. When subtasks are automatically generated from the global task, the task
specification structure is leveraged to directly create subtasks that need to be completed, and there
is almost none or very little planning to be done on a high level since all subtasks already have some
relation to the global task.

To learn a low-level policy for subtasks, RL is often used. Most subtasks are ”easy” tasks and therefore
do not require a complex reward function to learn. Some approaches first train agents for all subtasks
and after training, use the performance of every subtask’s policy to find the best sequence of subtasks
to execute in order to complete the global task [13]. Others interleave planning and training, using
planning to first find a sequence of subtasks to train, and then only train the subtasks in that sequence,
if RL fails to train a policy for one of the subtasks in the sequence, it plans for a new sequence and
trains the subtasks in the new sequence until it successfully found a sequence of subtasks it can train
agents for [25], [60].

To find a sequence of subtasks the structural relationship between subtasks needs to be modeled
in some sort of framework. To create such a model one can use a parametric MDP (pMDP) [25], a
graph, as done in Compositional Reinforcement Learning from Logical Specifications [13] and this re-
search or another type of framework. After such a model is created, a planning algorithm can be used
to find a composition of subtasks to execute that completes the global task. Figure 4.2 is an example
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of an environment in which a navigation task is divided into multiple smaller subtasks and planning is
used to find which sequence of subtasks to execute.

Figure 4.2: Example of task decomposition, in which there are twelve manually defined subtasks. Each subtask in the environ-
ment is represented by a colored path and entry. Exit conditions for the subtasks are shown as blue circles. In the HLM, each
subtask causes a transition to its successor state with probability 𝑃𝑐. Otherwise, the HLM will transition to the failure state �̃�𝑥
with probability 1 − 𝑃𝑐, visualized with red transitions [25]

Task decomposition approaches use the same main idea as this research, finding a sequence of sub-
tasks to execute to complete a global task. However, existing task decomposition approaches focus
on settings with one objective, such as success probability or reward instead of a setting with multiple
objectives.

4.2.1. Relevant task decomposition approaches
Verifiable and Compositional Reinforcement Learning Systems [25] proposes a framework that divides
an environment into subsystems and presents the relation between the subsystems as a parametric
MDP. A parametric MDP is an MDP in which the transition probabilities represent the likelihood of the
outcomes that could occur when the subsystem is executed. This allows for the decomposition of a
task specification into smaller tasks for the subsystems, which can then be trained and tested in order
to achieve the specification. They consider qualitative specification, such as there is at least a 95%
chance the goal is reached. They use Mixed Integer Linear Programming (MILP) to find which subtasks
need to be completed and the required success probability for each of these subtasks in order to satisfy
the specification and then train the selected subsystems until they achieve this success probability.

Compositional Reinforcement Learning from Logical Specifications [13] aims to learn a control pol-
icy for complex tasks given by a logical specification and use a compositional approach, called DiRL.
They reduce the problem for a given MDP 𝑀 and a specification 𝜙 to an abstract reachability problem
for𝑀 by constructing an abstract graph 𝐺𝜙 inductively from 𝜙. Each predicate 𝑝 in the specification will
be associated with a subgoal region in𝑀, where 𝑝 is True in that region. It then uses RL to find policies
for each edge in 𝐺𝜙, which can transit the system from one vertex in 𝐺𝜙 to the next. To find trajectories
that satisfy the reachability problem in 𝐺𝜙 they use Dijkstra and the success probabilities of the edges
in 𝐺𝜙 to find a path. A path then correlates with the subtasks that need to be executed to complete the
global task.

Teaching Multiple Tasks to an RL Agent using LTL [54] describes a framework, called LPOPL, that
uses LTL progression to divide a set of tasks provided in co-safe LTL, a subset of LTL for which truth of
a formula can be assured in a finite number of timesteps, into multiple subtasks and then learn a policy
for those subtasks. They support the following LTL operators:

𝜙 ∶∶= 𝑝|¬𝜙|𝜙1 ∧ 𝜙2| ○ 𝜙|𝜙1 ∪ 𝜙2 with 𝑝 ∈ 𝑃

LTL progression uses the fact that an LTL formula can progress along a sequence of truth assign-
ments, at each time step the progression operator can be applied to update the task formula to reflect
which parts are satisfied or unsatisfied. They subtract subtasks with LTL progression for each task in
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the provided set of tasks and then learn a policy for each subtask.

4.3. Hierarchal reinforcement learning
Hierarchical RL is a mechanism that allows for RL to learn a challenging long-horizon task by decom-
posing the task into simpler subtasks using a hierarchy of policies. The highest level policy chooses
the subtasks to complete and learns how to complete the main task by selecting the correct subtask to
complete given the current state. The low-level policies are trained to successfully be able to perform
the subtasks [61].

Subtasks in Hierarchical RL are formally defined as 𝜔 = [𝜋, (𝑟, 𝑔), (𝐼, 𝛽)]

• A policy 𝜋, the policy of the subtask, mapping states to primitive actions

• The objective component (𝑟, 𝑔)

– 𝑟, the reward used to train 𝜋
– 𝑔, the subgoal or set of subgoals associated with 𝜔

• the execution component (𝐼, 𝛽)

– 𝐼, the initial condition of 𝜔, a set of states of which execution of 𝜔 may start
– 𝛽 termination conditions, such as a time limit or when the subgoal is reached

There are two approaches to learning a hierarchical RL policy, one with subtask discovery and one in
which the subtasks are provided manually. When the subtask space needs to be discovered, it can
either be done simultaneously with learning the hierarchical policy or before training the hierarchical RL
agent. When the subtasks are manually crafted beforehand and supplied as input for the hierarchical
RL agent, it only needs to learn policies for solving the subtasks as well as learn a higher-level policy
that selects which subtask to execute when.

A hierarchical RL policy needs to have at least two hierarchies, one lower hierarchy, which are the
lowest subtask controllers that directly output actions that can be executed in the environment, and a
top-level policy that dictates which subtasks to execute. It is possible to have more than two hierar-
chies, resulting into a tree-like structure of policies. Figure 4.3 gives an example of a hierarchical RL
agent and its corresponding environment. In this example, the agent has 3 policy levels, the environ-
ment passes the state to the agent’s top-level policy, which selects a policy one level lower, and passes
the observation to the selected policy, this propagates until one of the lowest-level subtask policies is
selected, which generates an action that can be executed in the environment.

Figure 4.3: example of a hierarchical RL agent, in which an agent needs to pick up passengers and drop them off at a certain
location

An example of a hierarchical RL process is given in Figure 4.4. In this example, a hierarchical RL agent
decomposes and performs the complex task “Going to Hawaii” (𝐺𝑇𝐻). The hierarchical RL agent is
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composed of a hierarchy of policies, with a total of three levels. The task policy 𝜋𝐺𝑇𝐻 (highest level)
decomposes the original task 𝐺𝑇𝐻 into the two subtasks “Book Tickets” (𝐵𝑇) and “Go To Airport” (𝐺𝑇𝐴).
𝜋𝐺𝑇𝐻 initially chooses the subtask 𝐵𝑇. Then, 𝐵𝑇 is executed until its termination occurs at time 𝑇3.
During this period, the policy of the subtask BT, 𝜋𝐵𝑇, chooses different even easier subtasks to execute
on a level one below itself (lowest level). These even easier subtasks are “Open Booking Website”
(𝑂𝐵𝑊) and “Enter Flight Information” (𝐸𝐹𝐼). After 𝐵𝑇 terminates at 𝑇3, 𝜋𝐺𝑇𝐻 chooses to execute 𝐺𝑇𝐴,
which itself chooses the subtask “Go to Taxi Stand” (𝐺𝑇𝑆), one level below itself. During each timestep,
a primitive action is chosen by the lowest level subtask policy, e.g. 𝜋𝑂𝐵𝑊, 𝜋𝐸𝑊𝐼 or 𝜋𝐺𝑇𝑆. The hierarchical
RL agent receives a task reward 𝑟𝐺𝑇𝐻 in response to the primitive action, which is accumulated and
given at different time scales to different levels. The task reward may be optional for the policies below
the highest level, which can be trained using subtask-related rewards. In this manner, the hierarchical
RL process continues in time until GTH finishes. Figure 4.5 shows the hierarchy all subtasks are divided
in.

Figure 4.4: Example of a hierarchical RL process, the task is ”Go to Hawaii” (GTH), which is divided into two subtasks, ”book
tickets” (BT) and ”Go to Airport” (GTA), which themselves have other even smaller subtasks beneath them [61]

Figure 4.5: The hierarchy in which all policies from Figure 4.4 are divided

Most existing hierarchical RL approaches only work in discrete domains, or require pre-trained low-
level controllers. In standard hierarchical RL, the type of tasks that can be solved are sequential tasks
[62]. The difference between hierarchical RL methods and the approach used in this research is that
hierarchical RL methods only optimize for one objective, instead of multiple. Our approach also is able
to create policies for LTL tasks, while most hierarchical RL approaches only support sequential tasks.

4.3.1. Relevant hierarchical reinforcement learning approaches
Reward Machines: Exploiting Reward Function Structure in Reinforcement Learning [16] combines
ideas of reward machines with hierarchical RL to create a reward machine, called HRM to solve com-
plex tasks in an environment. They base their implementation on the options framework specifically, in
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which the problem is decomposed into multiple subproblems with (I, 𝜋, 𝛽)where I is the initial condition,
𝜋 is the policy for solving the subproblem and 𝛽 gives the probability that the option will terminate in
every state. They use the option framework on a cross-MDP of the environment and a reward machine
to learn how to move from one state in the reward machine to another. A higher-level policy is then
used to learn how to select among those options in order to collect rewards. With this approach, they
aim to learn a policy for every edge in the reward machine and use the higher-level policy to select
which edge to traverse in the reward machine.

Data-Efficient Hierarchical Reinforcement Learning [17] presents an approach called HIRO to learn
highly complex behaviors for simulated robots, such as pushing objects and utilizing them to reach
target locations. HIRO uses a two-layer structure, with a lower level policy 𝜇𝑙𝑜 and a higher level policy
𝜇ℎ𝑖. The higher-level policy works at a coarser layer and sets goals for the lower-level policy. There
can potentially be an infinite number of low-level policies and each is trained to match its observed state
to the desired goal. The high-level policy receives an observation from the environment and produces
a high-level action, which is then given to the low-level policy and translated into actions for the envi-
ronment, the environment provides the high-level policy with a reward, and the high-level policy uses
this reward to provide the lower-level policies with a reward using a fixed parameterized reward function.

Abstract Value Iteration for Hierarchical Reinforcement Learning [21] is a hierarchical approach using
model-based RL for continuous state and action spaces. The user provides a set of subgoal regions
and their approach learns options that serve as transitions between these subgoal regions, the writers
create A-avi, an algorithm that alternates between learning a policy for each subtask and estimating the
transition probabilities and the expected reward, and finally uses value iteration to compute an optimal
option policy (which options to complete).

Deep reinforcement learning with temporal logics [62] creates policies for tasks described with LTL
in continuous environments. The LTL property acts as a high-level exploration guide for the agent,
where low-level planning is handled by a deep RL architecture. They convert the LTL task to an au-
tomaton and create a product between the automaton and the MDP representing the environment in
order to synchronize them. They then use automatic task decomposition to create subtasks in the
product MDP by considering every state in the automaton a ”task divider”, so every transition in the
automaton is considered a subtask. After this, Modular Deep Deterministic Policy Gradient (Modular
DDPG) is used to learn a policy in the product MDP. In modular DDPG there are multiple neural net-
works, one for each subtask, to learn a policy in the product MDP. The set of neural nets acts as a
global modular actor-critic deep RL architecture, which allows the agent to jump from one sub-task to
another by just switching between the set of neural nets.
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5
Implementation and evaluation

In this chapter, we discuss how the environment and MOPRL are implemented and evaluate the use
of MOPRL. The code of this thesis can be found at https://github.com/casoku/thesis.

5.1. Implementation
In this section, we go over the libraries used to implement MOPRL and the environment. We first go
over the libraries used to create the environment, followed by the libraries used to convert LTL-tasks
to Büchi-automata and the last subsection is about the RL algorithm used to learn policies for the
subtasks.

5.1.1. Environment
To implement the environment, OpenAI gym [63] and Minigrid [64] are used. OpenAI gym is a python
library that provides an application programming interface (API) between a learning algorithm and the
environment. Minigrid is a python package that comes with a few standard discrete grid environments
and allows for creating discrete grid environments that are compatible with OpenAI gym.

5.1.2. LTL-tasks and Büchi automata
The LTL-tasks are implemented with Spot automata [35]. Spot is a library that can convert LTL formulas
into Büchi automata. Spot support the following LTL operators:

• True : 1
• False : 0
• not : !
• and : &
• or : |
• implies : ->
• equivalence : <->
• xor : ∧
• next : X
• eventually : F
• globally : G
• weak until : W
• strong until : U
• weak release: V, R
• strong release: M

More information about LTL can be found in section 2.3, and more information about Büchi automata
can be found in section 2.4. The sign after the colon is the symbol that spot uses to represent that
operator.

42

https://github.com/casoku/thesis


5.2. Evaluation 43

Any LTL-task that exists out of these operators can be converted by Spot to a Büchi automata, which
is then used to create the product graph. We use the simplified representation of the Büchi automata
since we are only interested in viable paths. The simple representation removes edges and states that
would lead to states in which the LTL becomes unsatisfiable, using the simple representation leads to
smaller product graphs.

5.1.3. Training agents
In order to train the agents on how to complete the subtasks, we use Stable-Baselines3 [65] Proximal
Policy Optimization (PPO) [66] implementation. PPO is a policy gradient method, so it optimizes its
policy with respect to the expected return (long-term cumulative reward) and supports both discrete
action and state spaces. PPO is known to have a good balance between sample complexity and
simplicity, and has an overall good performance, outperforming other state-of-the-art RL algorithms in
many different environments.

5.2. Evaluation
The evaluation of MOPRL exists of three parts, in the first part MOPRL is compared to two other state-
of-the-art approaches. To be able to make the comparison, we had to make two adjustments to their
implementation. The first adjustment was made in order to make the other approaches compatible with
discrete environments. The second modification was made since both state-of-the-art approaches only
optimize for a single objective, the success probability. We added extra functionality so that we are also
able to collect the cost when using these approaches. The approaches MOPRL is compared against
are DiRL [13] and SPECTRL[58]. For each of these approaches, there will be a section explaining
what adjustments were made. The second part exists out of analyzing MOPRL when applied in a more
challenging environment. We analyze the use of multi-objective planning, how the planning procedure
scales, and we provide PAC-guarantees for a number of tasks. In the third part, we use the results of
the first and the second part to provide some insights about the use of MOPRL.

5.2.1. Comparison
The comparison is performed in an environment with four rooms, see Figure 5.1. In this environment,
the agent starts at the top left position and there are two goal locations, the purple square, and the
green square. The blue dots are moving obstacles the agent needs to evade.

Figure 5.1: Environment used for comparison with different approaches

We test five different LTL-tasks to see how MOPRL compares to SPECTRL and DiRL, these five LTL-
tasks are described in Table 5.1.
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Task Type Description
♢𝑔 ∨ ♢𝑃 Choice Eventually reach green or eventually reach pur-

ple
♢(𝑔 ∧ ♢𝑝) Sequential Eventually reach green and next eventually

reach purple
♢𝑔 Reachability Eventually reach green
♢𝑔 ∧□¬𝑟3 Reach-avoid Eventually reach green while always avoiding

room 3 (bottom left room)
♢(𝑔 ∧ ♢(𝑝 ∧ ♢(𝑔 ∧ ♢𝑠))) Difficult Eventually reach green, then eventually reach

purple, then eventually reach green, and then
eventually reach start

Table 5.1: Tasks used for comparison

Each task is trained for a total of 1,000,000 steps, so if an approach uses five subtasks, the number of
steps used to learn each subtask is 1,000,000

5 = 200, 000. When training is completed for a subtask, it is
simulated 600 times and the success probability and average cost are calculated.

For MOPRL, we evaluated two different types of subtasks, see Figure 5.2. In Figure 5.2a we use
small subtasks, which resulted in a total of 20 subtasks. In Figure 5.2b we use big subtasks, resulting
in a total of 6 subtasks.

(a) Small subtasks used for the evaluation (b) Big subtasks used for the evaluation

Figure 5.2: Different subtask sizes used for evaluation

DiRL
DiRL is designed for deterministic continuous environments and not stochastic discrete. They automat-
ically decompose the main task into subtasks instead of manually defining subtasks in the environment,
which we do for this research. They use RL algorithms suited specifically for continuous environments
to learn a policy for those subtasks. We added support for the PPO algorithm from Stable-Baselines 3
used in this research so we can train subtasks in discrete environments.

The subtasks created by DiRL can potentially require the entire environment in order to be completed,
therefore we supply the agent with global observations of the environment. The observation exists out
of the position of the agent and the location of all moving obstacles in the environment.

When training an agent, DiRL provides rewards solely based on the subtask, and not on the state
of the environment, so when dealing with moving obstacles plain DiRL would not get a negative reward
when colliding with an obstacle unless it is a part of the subtask specification. We change this such
that 50% of the reward is based on the subtask and 50% is based on the state of the environment so
that when the agent crashes with an object, it still receives a negative reward.
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SPECTRL
SPECTRL is also designed for deterministic continuous environments, just like DiRL. SPECTRL uses
a task specification and the environment MDP and combines these together into a task monitor. The
task monitor tracks how far the task has progressed and provides the agent with rewards based on
this progression. For example, if the task is ”eventually go to green and then go to purple”, once green
has been reached SPECTRL will provide the agent with a reward and then if the agent reaches purple
afterward, SPECTRL will provide the agent with another reward.

SPECTRL itself is very intertwined with the learning algorithm (ARS) they use. However, ARS is only
suited for continuous actions and state spaces, and in this thesis, the environment has discrete action
and state spaces. They also use trajectory-based learning, but openAI gym environments use step-
based rewards. In order to be able to apply SPECTRL on the discrete room environment a wrapper
was created. This wrapper has two functions; first, it is to decouple SPECTRL from the learning algo-
rithm. We want to be able to use the PPO algorithm since our environment is discrete. The second
function of the wrapper is that it keeps track of the current trajectory of the agent and the trajectory in
the previous step. SPECTRL calculates the reward based on these trajectories, and if the reward of
the current trajectory is higher than the reward of the trajectory of the previous step, we reward the
agent with a positive reward. With this change it is possible to use learning algorithms for step-based
rewards, this enables the use of the PPO algorithm or any general learning algorithm for openAI gym
environments.

Comparison results
For every task, a controller is generated and simulated. We repeated this three times and from these
three experiments, we calculate an average success probability and cost which are reported in Fig-
ure 5.3 and Figure 5.4. All data used for the comparison can be found in Appendix A.

Figure 5.3: Success probability comparison of different approaches

Figure 5.3 displays the average success probability of the tested approaches (higher is better). MOPRL
+ small subtasks has the highest success probability for all five tasks. DiRL, MOPRL + big subtasks,
and SPECTRL are fairly close in performance for task 1 and task 3, with MOPRL + big subtasks being
marginally better. SPECTRL was unable to solve task 2, task 4, and task 5. These tasks were the
most difficult to learn since they either are sequential (task 2 and task 5) or need the agent to avoid a
certain region (task 4). It seems that SPECTRL is unable to create a controller for challenging tasks
in environments with sparse rewards. This is probably because SPECTRL does not have any built-
in functionality to deal with sparse rewards. It uses a task monitor to track how much of a task is
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completed, but if it is already difficult to learn how to do the initial part of a task, it cannot learn how to
do the entire task with this approach. DiRL is unable to create a controller for task 5, this is because
DiRL creates 6 big subtasks for task 5, which gives each subtask a budget of 10000006 = 166666 steps,
which was not enough to be able to learn a policy for the subtasks defined by DiRL.

Figure 5.4: Cost comparison of different approaches

Figure 5.4 displays the average cost of the tested approaches (lower is better). DiRL has the lowest
cost for tasks 1, 2, 3, and 4. After DiRL, MOPRL + small subtasks has the second lowest cost for tasks
2, 3, and 4. We’d like to highlight the difference in cost between DiRL and MOPRL + small subtasks
for Task 1 (♢𝑔 ∨ ♢𝑝). DiRL achieves a considerably better cost for this task. This is because for the
controller of MOPRL + small subtasks the path (sequence of subtasks) in the product graph with the
highest success probability is used. However, MOPRL + small subtasks also found another path that
completes the task at a lower cost. In Figure 5.5 we made the comparison again for task 1, but in this
case, we used the path with the lowest cost instead of the path with the highest success probability to
generate the controller for MOPRL + small subtasks to see if the cost of MOPRL + small subtask would
be closer to the cost of DiRL.
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(a) Success probability comparison for task 1, when we use the path
(sequence of subtasks) with the lowest cost to create a controller

(b) Cost comparison for task 1, when we use the path (sequence of
subtasks) with the lowest cost to create a controller

Figure 5.5: Comparing different approaches for task 1, when we use the path (sequence of subtasks) with the lowest cost to
create a controller

When using the path with the lowest cost for the generation of the controller for MOPRL + small sub-
tasks, we still get the highest success probability (Figure 5.5a) of all the approaches, but now the cost
is better than MOPRL + big subtasks and SPECTRL, and closer to DiRL compared to when we used
the path with the highest success probability (Figure 5.3 and Figure 5.4). This is because when we
optimize for success probability, MOPRL chooses a sequence of subtasks that steers the agent to-
ward the green square via the bottom left room, since this path is deemed safer and results in a higher
success probability. When we optimize for cost, MOPRL sends the agent to the purple square, which
is closer to the starting location than the green square, but more challenging to reach. DiRL always
steers the agent toward the purple square.

Summary of comparison
We compared two versions of MOPRL, one in which we defined big subtasks and one in which we
defined small subtasks with two other approaches, DiRL and SPECTRL in an environment with four
rooms for five different tasks. MOPRL in combination with small subtasks has the highest success
probability for all five tasks, both when we optimize the sequence of subtasks for cost or for success
probability. DiRL has the lowest cost for all tasks, except task 5, since DiRL is unable to create a
controller that can complete that task. After DiRL, MOPRL with small subtasks achieves the lowest
cost for all tasks.

5.2.2. Performance in challenging environment
To analyze the performance of MOPRL, we apply it in a bigger environment with different types of
rooms, see Figure 5.6. A total of 68 subtasks were defined in this environment and for each subtask
an agent was trained for 40000 steps, resulting in a total of 40, 000 ∗ 68 = 2, 720, 000 training steps. In
this environment and the environment used for the comparison (Figure 5.2a) a number of tasks will be
tested in order to gain insight into the following:

• Generate Pareto paths; Find Pareto optimal paths for different tasks and compare the probability
and cost estimated during planning to the success probability and cost calculated from simulations

• Scalability of planning; Create different sizes of product graphs and measure how long it takes to
generate the product graph and find all Pareto optimal paths

• Calculate PAC-guarantees; calculate the PAC-guarantees for all tested tasks and see how strict
the bounds are it provides
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Figure 5.6: Environment used for performance evaluation, each yellow arrow is a subtask

Generated Pareto paths
To evaluate the use of multi-objective planning for finding paths (sequence of subtasks) in the product
graph, we run three different tasks in the environment in Figure 5.6. These tasks are designed to have
multiple possible paths leading toward completing the LTL-task. We plot the calculated Pareto optimal
paths found and compare the performance estimated during planning to the performance found from
simulating the entire controller. The tasks we tested can be found in Table 5.2.

Task Type Description
♢ 𝑔 ∨ ♢ 𝑦 Choice Eventually reach green or eventually reach yel-

low
♢(¬𝑅4 𝑈 𝑝 ∧ ¬𝑅7 𝑈 𝑔) Strong until Eventually reach purple while never entering

room 4 and eventually reach green while never
entering room 7

♢𝑦 ∧ ♢𝑐 ∧ ♢𝑝 ∧ ♢𝑔 Sequential
choice

Eventually reach yellow, cyan, purple and green
in any order

Table 5.2: Tasks used for generating Pareto paths

The first task is a simple choice task, which requires less than 7 subtasks to be completed. The second
task is an until task, in this task the agent cannot enter certain rooms until a condition is met, and takes
around 10 subtasks to complete. The third task is a sequential choice task in which the agent needs
to complete a number of goals, but is free to choose the order in which it completes these goals. The
third task takes more than 13 subtasks to be completed.

Figure 5.7 displays all the points on the Pareto front found by MOPRL for each task in Table 5.2.
Task 1 (Figure 5.7a) has a total of four Pareto optimal paths, of which the highest estimated success
probability is 0.82 and the lowest is 0.71. The highest estimated cost is 68 and the lowest is 31. Task
2 (Figure 5.7b) has a total of five Pareto optimal paths, the highest estimated success probability is
0.54 and the lowest is 0.47. The highest estimated cost is 84 and the lowest is 70. The third task
(Figure 5.7c) has thirteen Pareto optimal paths, the highest estimated success probability is 0.62 and
the lowest is 0.31. The highest estimated cost is 138 and the lowest is 103.
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(a) All 4 Pareto optimal paths of the task ♢𝐹 𝑔 ∨ 𝐹 𝑦 (b) All 5 Pareto optimal paths of the task ♢(¬𝑅4 𝑈 𝑝 ∧ ¬𝑅7 𝑈 𝑔)

(c) All 13 Pareto optimal of the task ♢𝑦 ∧♢𝑐 ∧♢𝑝 ∧♢𝑔

Figure 5.7: Pareto optimal paths found by martins algorithm in the product graph

In Figure 5.7a the four Pareto optimal points are spread out, meaning there is a notable difference be-
tween each possible path. For example, if we compare the point (0.82, 68) and the point (0.8, 48), we
can see that with a drop of just 0.02 in success probability it is possible to improve the estimated cost by
20. Figure 5.7b has five Pareto optimal points, however, the difference between points for this task is
not as big, for cost the biggest difference between two points is 7, (0.54, 84) and (0.52, 77). Figure 5.7c
has a total of thirteen points, with the difference between each point being fairly small. However, the
difference between the points with the highest and lowest success probability, (0.62, 138) and (0.31,
103) is 0.3, which is a notable difference.

The success probabilities of each point in Figure 5.7 is an estimation calculated by taking the prod-
uct of the success probabilities of all subtasks in the path related to that point. The cost is estimated
by taking the sum of the estimated cost of the subtasks in the path. Each of these points has a cer-
tain margin of error since the cost and success probability of a subtask is an estimation. In Table 5.3,
Table 5.4, and Table 5.5 we compare the estimated success probability and cost with the measured
success probability and cost for the three tasks. In these tables, the difference between the estimation
and measurement is noted in either green, red or black. If the difference is green, the measured suc-
cess probability or cost is better than the estimated value, if the difference is red, the measured value
is worse and if it is black they are equal. For every measured value, we also provide the standard
deviation (the number behind the ±). To gain the measured success probability the entire controller
related to a Pareto optimal point is simulated 600 times to calculate the success probability, from these
600 simulations, all successful runs are used to calculate the measured cost. The success probability
and cost are calculated with the formulas from subsection 3.2.2.
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Pareto
optimal
path

Estimated
success
probability

Measured
success
probability

Difference
success
probability

Estimated
cost

Measured
cost

Difference
cost

Path 1 0.82 0.826 ±0.015 +0.006 68 72 ±29.7 -4
Path 2 0.8 0.78 ±0.017 -0.02 48 47.7 ±3.5 +0.3
Path 3 0.78 0.788 ±0.017 +0.008 41 40.8 ±2.4 +0.2
Path 4 0.71 0.698 ±0.019 -0.012 31 30.3- ±3.6 +0.7

Table 5.3: Comparing the estimated success probability and cost to ameasured success probability and cost for the task ♢ 𝑔∨♢ 𝑦

Pareto
optimal
path

Estimated
success
probability

Measured
success
probability

Difference
success
probability

Estimated
cost

Measured
cost

Difference
cost

Path 1 0.54 0.56 ±0.02 +0.02 84 84.6 ±5 -0.4
Path 2 0.52 0.49 ±0.02 -0.03 77 76.7 ±5.9 +0.3
Path 3 0.5 0.47 ±0.02 -0.03 76 76.5 ±6.3 -0.5
Path 4 0.49 0.49 ±0.02 0 71 69.8 ±4.7 +1.2
Path 5 0.47 0.476 ±0.02 +0.006 70 70.7 ±6 -0.7

Table 5.4: Comparing the estimated success probability and cost to a measured success probability and cost for the task
♢(¬𝑅4 𝑈 𝑝 ∧ ¬𝑅7 𝑈 𝑔)

Pareto
optimal
path

Estimated
success
probability

Measured
success
probability

Difference
success
probability

Estimated
cost

Measured
cost

Difference
cost

Path 1 0.62 0.611 ±0.02 -0.009 138 142.3 ±22.9 -4.3
Path 2 0.61 0.583 ±0.02 -0.027 134 138.4 ±23.4 -4.4
Path 3 0.58 0.553 ±0.02 -0.027 131 134.7 ±24.7 -3.7
Path 4 0.56 0.54 ±0.02 -0.02 129 134.5 ±27.3 -5.5
Path 5 0.54 0.53 ±0.02 -0.01 121 121.3 ±7.2 -0.3
Path 6 0.53 0.5 ±0.02 -0.03 117 117.9 ±5.3 -0.9
Path 7 0.5 0.496 ±0.02 -0.004 114 114.1 ±5.8 -0.1
Path 8 0.45 0.453 ±0.02 +0.003 112 113 ±6.6 -1
Path 9 0.44 0.416 ±0.02 -0.024 111 112.5 ±6.3 -1.5
Path 10 0.43 0.38 ±0.02 -0.05 108 108.8 ±6 -0.8
Path 11 0.38 0.4 ±0.02 +0.02 107 107 ±6.8 0
Path 12 0.35 0.33 ±0.019 -0.02 105 105.4 ±6.7 -0.4
Path 13 0.31 0.3 ±0.019 -0.01 103 103.3 ±6.9 -0.3

Table 5.5: Comparing the estimated success probability and cost to a measured success probability and cost for the task ♢𝑦 ∧
♢𝑐 ∧ ♢𝑝 ∧ ♢𝑔

In these tables we can see that the measured success probability is lower than the estimated success
probability in most cases. The largest difference in success probability is path 10 in Table 5.5, where
the difference is 0.05 (5%). For all other paths, the difference between the measured and estimated
success probability is 0.03 or lower. For the cost, there is not a single path for which the difference is
outside of expectation, since the standard deviation is larger than the difference for every path. The
paths of the third task (Table 5.5) have a bigger difference between the estimated cost and measured
cost than the other two tasks, this is because this task requires more steps to be completed than tasks
1 and 2, and thus has a bigger margin of error. When we look at the standard deviation of the cost,
path 1 of Table 5.3 has a considerable standard deviation (29.7) for the measured cost compared to
the other paths of this task. Path 1, path 2, and path 3 in Table 5.5 also have large standard deviations,
but since these paths also require more steps it is less surprising than path 1 of Table 5.3.
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The difference between the estimated and measured success probability can go up to 5% and the
difference between the estimated and measured cost can go up to 5.5, so when Pareto optimal points
are close to each other, it may be possible that a point which is Pareto optimal during planning, is
dominated when we look at the measured values, an example of this is path 3 and path 4 in Table 5.4.
Path 3 has a higher estimated success probability (0.5 against 0.49) and a higher cost (76 against 71)
during planning, but during the measurements, path 4 has a higher success probability (0.49 vs 0.47)
and a lower cost (69.8 vs 76.5) resulting in path 4 dominating path 3 when we look at the measured
values.

Scalability of planning
In order to measure the scalability of planning we use both the environment from Figure 5.2a and Fig-
ure 5.6 and multiple LTL-tasks in order to generate product graphs of different sizes. We measure how
long it takes for each product graph to be produced and how long it takes to find the Pareto optimal
paths in these product graphs. All experiments are executed on an HP Zbook Power G9 with an Intel
core I7-12700H and 16 GB RAM.

A total of ten tests were done, in Table 5.6 we display the size of the graph of the HLM, the size of
the Büchi automata used to create the product graph, and the size of the final product graph of each
test. The sizes in this table are displayed as (number of states x number of edges).

Test HLM Size Task size Product graph size
Test 1 (7 x 20) (2 x 3) (7 x 18)
Test 2 (7 x 20) (3 x 6) (13 x 36)
Test 3 (7 x 20) (5 x 14) (25 x 72)
Test 4 (7 x 20) (32 x 243) (143 x 422)
Test 5 (7 x 20) (128 x 2187) (449 x 1282)
Test 6 (17 x 68) (4 x 9) (46 x 128)
Test 7 (17 x 68) (16 x 81) (227 x 796)
Test 8 (17 x 68) (19 x 100) (276 x 1033)
Test 9 (17 x 68) (32 x 243) (452 x 1596)
Test 10 (17 x 68) (64 x 729) (885 x 3118)

Table 5.6: Different sizes of environments and tasks tested for scalability

Each test was run 50 times to collect data on the time needed for creating the product graph and on
the time it took to find all Pareto optimal paths in the product graph. This data is used to create boxplot
graphs displaying the computation time of each of these two steps.
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Figure 5.8: Graph representing the time it takes to create different sizes of product graphs

Figure 5.8 shows the time it takes to create the product graph for different environments and task sizes.
Most of the graph is in line with the expectation, the bigger the size of the product graph, the longer
it takes to generate. All product graphs were created in under one second, so for an HLM consisting
of 68 subtasks, we are able to generate a product graph for tasks of size (64 x 729) in a reasonable
amount of time. Interesting is Test 5, Test 5 has roughly the same product graph size as Test 9 but
it takes about twice as long to create this product graph. This indicates that task size has the most
influence on the time it takes to create the product graph. If we compare Test 4 and Test 7, we see
the same behavior. Test 4 and Test 7 take roughly the same time to create the product graph, but the
product graph of Test 7 (227 x 796) is about 1.8 times the size of Test 4 (143 x 422). Test 4 does
however have a bigger task size (32 x 243) compared to Test 7 (16 x 81), so again the task size seems
the most influential factor for the time it takes to create the product graph.

Figure 5.9: Graph representing the time it takes to find all Pareto optimal paths in the product graph



5.2. Evaluation 53

Figure 5.9 shows the time it takes to find all Pareto optimal paths in product graphs of different sizes.
There is a clear relation between the size of the product graph and the time it takes to find all paths.
We are able to find all Pareto optimal paths in less than 0.15 seconds for every tested product graph
size. Interesting is that Test 7 takes longer than Test 5, even though Test 5 has a bigger product graph.
A possible explanation for this is the number of Pareto optimal paths in the product graph, if we look at
Table 5.7 we can see that test 7 has fourteen Pareto optimal paths, while test 5 only has two. Test 8
and test 5 also show this, the product graph of test 5 is larger than the product graph of test 8, but test
8 requires more time to find all Pareto optimal paths since test 8 has thirteen Pareto optimal paths and
test 5 has only two.

Test Paths found
Test 1 1
Test 2 3
Test 3 1
Test 4 2
Test 5 2
Test 6 4
Test 7 14
Test 8 13
Test 9 11
Test 10 10

Table 5.7: Number of Pareto optimal paths found for each test

PAC-guarantees
In order to provide guarantees for the entire controller we calculate PAC-guarantees. PAC-guarantees
provide an upper bound on the probability that the expected performance is within a certain error mar-
gin of the estimated performance, see section 3.4.

We calculate the PAC-guarantees for all the tasks used for the comparison and evaluating the use
of multi-objective planning. Table 5.8 provides an overview of these tasks and the environment they
are used in (either four rooms, Figure 5.2a or nine rooms, Figure 5.6). For every task, we chose the
sequence of subtasks that results in both a good success probability as well as a good cost. For test
1 and test 6, we use the sequence of subtasks with the second highest estimated success probability
since these tasks are choice tasks, and using the path with the second highest success probability
results in a substantial improvement in cost. For all other tests, we use the path with the highest suc-
cess probability, since these tasks do not gain a big cost improvement from using a path with a lower
estimated success probability.

Test Task Environment
Test 1 ♢𝑔 ∨ ♢𝑃 Four rooms
Test 2 ♢(𝑔 ∧ ♢𝑝) Four rooms
Test 3 ♢𝑔 Four rooms
Test 4 ♢𝑔 ∧□¬𝑟3 Four rooms
Test 5 ♢(𝑔 ∧ ♢(𝑝 ∧ ♢(𝑔 ∧ ♢𝑠))) Four rooms
Test 6 ♢ 𝑔 ∨ ♢ 𝑦 Nine rooms
Test 7 ♢(¬𝑅4 𝑈 𝑝 ∧ ¬𝑅7 𝑈 𝑔) Nine rooms
Test 8 ♢𝑦 ∧ ♢𝑐 ∧ ♢𝑝 ∧ ♢𝑔 Nine rooms

Table 5.8: Tasks and environments used for calculating PAC-guarantees
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To calculate the PAC-guarantees for the success probability and the cost of each task we use the
following equation, which can also be found in section 2.8:

P(| 1𝑛

𝑛

∑
𝑖=1
𝑍𝑖 − E[𝑍]| ≥ 𝜖) ≤ 𝛿 = 2𝑒−

2𝑛𝜖2
(𝑏−𝑎)2 (5.1)

Where:

• 𝑛: Number of samples used

• 𝑍𝑖 , ..., 𝑍𝑛: Bounded random variables with 𝑍𝑖 ∈ [𝑎, 𝑏] for all i and −∞ < 𝑎 ≤ 𝑏 ≤ ∞

• 𝑎: lower bound on the values the random variables can take

• 𝑏: upper bound on the values the random variables can take

• E[𝑍]: expected mean

• 𝜖: Error margin between the expected mean and the estimated mean

• 𝛿: The bound on the probability that the difference between the expected mean and the estimated
mean is bigger than 𝜖

To calculate the PAC-guarantees for success probability, the lower bound (𝑎) and upper bound (𝑏) are
0 and 1 since when a simulation is successful, it results in 1 and if a simulation fails the task, it results
into a 0. We use a total of 600 simulations in order to estimate the success probability of a controller, so
𝑛 = 600, for the error margin (𝑒) we take the value of 0.05, so the error margin between the expected
success probability and estimated success probability is at most 5%. These values result in a 𝛿 of 0.1,
see Equation 5.2.

P(| 1𝑛

𝑛

∑
𝑖=1
𝑍𝑖 − E[𝑍𝑖]| ≥ 𝜖) ≤ 𝛿 = 2𝑒

− 2⋅600⋅0.05
2

(1−0)2 = 0.1 (5.2)

So there is an upper bound (𝛿) of 0.1 (10%) on the probability that the error between the estimated
success probability and expected success probability is greater than 0.05. This holds for the success
probability of every task since the upper bound, lower bound, the number of simulations and the error
margin are always the same. In Table 5.9 we present the estimated success probability of each test, the
lower and upper bound for the expected success probability, and the probability the expected success
probability is actually within these two bounds.

Test Estimated suc-
cess probability
(P𝑡)

Lower bound suc-
cess probability
(P𝑡 − 𝜖)

Upper bound suc-
cess probability
(P𝑡 + 𝜖)

Probability ex-
pected success
probability is
within bounds
(1 − 𝛿)

Test 1 0.81 0.76 0.86 0.9
Test 2 0.63 0.58 0.68 0.9
Test 3 0.84 0.79 0.79 0.9
Test 4 0.79 0.74 0.84 0.9
Test 5 0.39 0.34 0.44 0.9
Test 6 0.77 0.72 0.83 0.9
Test 7 0.53 0.48 0.58 0.9
Test 8 0.61 0.56 0.66 0.9

Table 5.9: Estimated success probability for different tasks and their PAC-guarantees

The PAC-guarantees give us a 90% confidence that the expected success probability is within the
range given in the third and fourth column in Table 5.9.
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For the cost, we take the minimal amount of steps it takes to solve the task when there are no moving
obstacles in the environment as the lower bound (𝑎) since it is impossible to have a path with a lower
number of steps than the minimum cost path when there are no moving obstacles. For the upper bound
we set the value to 3 ⋅ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑. The reason we chose 3 ⋅ 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 for the upper bound is that
if we chose a lower value (2 ⋅ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑), multiple simulations would fail due to reaching the upper
bound on the cost, and therefore lower the success probability. Using a higher value would weaken
the PAC-guarantees we can provide. Table 5.10 shows the three upper bounds tested and the number
of simulations that failed due to reaching this upper bound.

Test Simulations reach-
ing 2 ⋅ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
upper bound

Simulations reach-
ing 3 ⋅ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
upper bound

Simulations reach-
ing 4 ⋅ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
upper bound

Test 1 2 1 0
Test 2 0 0 0
Test 3 0 0 0
Test 4 5 1 0
Test 5 0 0 0
Test 6 35 5 4
Test 7 0 1 0
Test 8 27 6 4

Table 5.10: Number of simulations that fail due to reaching the upper bound limit on the allowed number of steps

If we would use 2 ⋅ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 as the upper bound, test 6 and test 8 have a substantial number
of tasks failing due to reaching the upper bound. The difference between using an upper bound of
3 ⋅ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 and 4 ⋅ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 is negligible if we look at the number of failed simulations, so
3 ⋅ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 was chosen as upper bound.

The error margin (𝜖) for each task is 0.05 ⋅ 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 since this is also the same error margin
percentage-wise used for the success probability (0.05 ⋅ 1 = 0.05). Table 5.11 shows the cost lower
bound, upper bound, and error margin used for each test. For the number of samples (𝑛) we use all
successful runs from the 600 simulations used to calculate the success probability PAC-guarantees,
so if we have 500 successful simulations out of all 600 runs, then 𝑛 = 500.

Test Lower bound cost Upper bound cost Error margin
Test 1 16 48 2.4
Test 2 42 126 6.3
Test 3 24 72 3.6
Test 4 24 72 3.6
Test 5 84 252 12.6
Test 6 26 78 3.9
Test 7 63 189 9.45
Test 8 92 276 13.8

Table 5.11: Lower bound, upper bound and error margin for the cost used to calculate the PAC-guarantees

Table 5.12 shows the calculated PAC-guarantees for all the tests. We are able to give≥ 90% confidence
that the expected average cost is within the range given in the fourth and fifth column for 7 out of 8
tests. Only in test 5 did we gain a confidence of < 90%, namely, 84%. This is because test 5 has the
lowest amount of successful runs, weakening the bound we can provide.
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Test Number of
samples (𝑛)

Estimated
cost (𝐶𝑡)

Lower bound
cost (𝐶𝑡 − 𝜖)

Upper bound
cost (𝐶𝑡 + 𝜖)

Probability ex-
pected average
cost is within
bounds (1 − 𝛿)

Test 1 459 18.2 15.8 20.6 0.99
Test 2 385 46.4 40.1 52.7 0.97
Test 3 517 26.7 23.1 30.3 0.99
Test 4 502 26.5 22.9 30.1 0.99
Test 5 222 94.5 81.9 107.1 0.84
Test 6 457 47.7 43.8 51.6 0.99
Test 7 306 84 74.6 93.5 0.94
Test 8 337 143 129.2 156.8 0.96

Table 5.12: Estimated cost for different tasks and their PAC-guarantees

Summary of performance
We can find multiple Pareto optimal paths (sequence of subtasks) in the product graph. For the choice-
type tasks, the spread in success probability and cost is the largest. There is a difference between the
estimated performance of a path and the measured performance of a path, the largest difference be-
tween the estimated and measured success probability is 5% and the largest difference between the
estimated and the measured cost is 5.5. When two Pareto optimal points are close to each other, one
point may get dominated when we look at the measured value, while deemed Pareto optimal during
planning.

We generate a product graph from an HLM existing out of 68 subtasks and LTL-tasks, whose Büchi
automata exist out of 64 states and 729 edges in under a second. The size of the Büchi automata
seems to have the biggest influence on the time it takes to create the product graph. For product
graphs existing out of 885 states and 3118 edges and smaller, we find all Pareto optimal paths in under
0.15s, next to the size of the product graph the number of Pareto optimal paths has an influence on the
time it takes to find all paths.

For the success probability, we provide PAC-guarantees ≥ 90% that the expected success proba-
bility is within 0.05 of the measured success probability. For the cost we provide PAC-guarantees of
≥ 90% that the expected average cost is within 0.05 ⋅ 3 ⋅ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑜𝑠𝑡 of the measured cost, except
for one task, for which the number of samples was too low and we only achieved a PAC-guarantee of
84%.

5.2.3. Insights gained from evaluation
From the evaluation, we gain a number of insights on the use of MOPRL and when it can be beneficial
to use.

Insight 1: MOPRL outperforms other approaches in learning LTL-tasks in discrete stochastic
environments with sparse rewards

We outperform 2 other approaches in five different tasks in a discrete stochastic environment, be-
ing able to solve more difficult tasks and have a better success probability for all tasks while the cost is
only slightly worse compared to the other approaches.

Insight 2: The size of subtasks is important for the performance of MOPRL

Using smaller subtasks with a small training budget outperforms using big subtasks with a large train-
ing budget in environments with sparse rewards, having both a higher success probability as well as a
lower cost.
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Insight 3: Using multi-objective planning to find a sequence of subtasks is the most beneficial
in choice tasks

When using multi-objective planning to find Pareto optimal sequences of subtasks it is best if all points
on the Pareto front are spread out. When two points are close to each other it is possible that during
planning one point is seen as Pareto optimal, but during simulation is dominated by another point near
it. Choice tasks have the most spread out Pareto front.

Insight 4: MOPRL is able to find a sequence of subtasks for models with 68 subtasks and large
LTL-tasks within seconds

MOPRL is able to create a product graph and find all Pareto optimal paths within seconds for an HLM
consisting of 68 subtasks and LTL-tasks consisting of 64 states and 729 edges or smaller. The size
of the LTL-task is the most influential on the time it takes to create the product graph. When there
are more Pareto optimal paths in a product graph, it takes longer to find all those paths compared to
product graphs of the same size with fewer paths.

Insight 5: MOPRL provides PAC-guarantees, which gives a confidence of at least 90% that the
expected success probability is within a certain error margin of the estimated success proba-
bility and a confidence greater or equal to 80% for the cost

We simulate the entire controller to calculate a success probability and average cost and use PAC-
guarantees to provide a bound on the probability that the expected success probability and expected
average cost are within a certain error bound of the calculated values. These bounds are ≥ 90% for
the success probability with an error margin of 5% for all tested tasks and ≥ 80% for the cost with an
error margin of 0.05 ⋅ 3 ⋅ 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑠𝑡.
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Discussion

This chapter discusses the approach used and the results of this research. We discuss the advantages
and limitations of using MOPRL and also critically look at the evaluation.

6.1. Advantages and limitations of MOPRL
6.1.1. Advantages
The first advantage of MOPRL is that it decouples learning and planning in two stages. This makes it
possible to change the learning algorithm, so it can be applied in other environments that benefit from
using a different learning method than the one used in this research. It is also possible to use a dif-
ferent planning method, which may be desired if it is not sequences of subtasks optimized for multiple
objectives that need to be found but instead the task needs to be solved in another context.

A second advantage is that MOPRL uses subtasks that are created independently of the LTL-task
in order to create a controller. This makes it possible to solve different LTL-tasks without the need to
retrain agents for subtasks and only requires re-planning to find a new sequence of subtasks that can
complete the LTL-task, given that the LTL-task can be solved by a sequence of the already defined
subtasks. This is beneficial in an environment where a controller needs to be able to do many different
tasks.

A third advantage is that MOPRL optimizes for multiple objectives, in some environments, there are
more objectives than just reward, success probability, and/or cost, using MOPRL accounts for these
circumstances.

6.1.2. Limitations
The first limitation of using MOPRL is that it is very tailored toward the environment used in this re-
search, the rooms make it easy to design subtasks and it is easy to see what good subtasks are. It is
difficult to say how MOPRL will perform in environments with different characteristics.

A second limitation is that MOPRL requires manually defined subtasks. In some environments, it may
not be possible or difficult to determine subtasks that can efficiently be learned by RL, adding an extra
engineering step to applying MOPRL.

A third limitation is that MOPRL prunes the solution space. Every subtask is solved locally, which
means it may be possible that optimal solutions may be pruned. One step that prunes the solution
space is that we exclude subtasks that potentially may violate the global LTL-task when creating the
product graph, by removing these subtasks, a large part of the solution space is removed.
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6.2. Shortcomings evaluation
For the comparison, it can be argued that the comparison between MOPRL, DiRL, and SPECTRL is
not executed optimally since DiRL and SPECTRL are originally not designed for the type of environ-
ment used in this research, and adjustments needed to be made in order for them to be applicable in
discrete environments. It may be possible with some extra engineering to boost the performance of
DiRL or SPECTRL in discrete stochastic environments with sparse rewards.

For the scalability of planning, only two different environment sizes are used, to gain a better insight
into the influence of the size of the HLM it would be better to have used more HLMs with different sizes.

The PAC-guarantees provide a bound on the probability that the expected success probability and
expected average cost are within a certain error margin of the estimated values. However, we are only
able to provide a 90% confidence for the success probability, and for the cost, there is one measure-
ment that only gives an 84% confidence, in some settings a higher confidence may be required, and
a different method of calculating the confidence should be used or more simulations should be run to
gain a higher confidence.
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Conclusion and future work

7.1. Conclusion
Sequential decision-making problems are problems where the goal is to find a sequence of actions that
complete a task in an environment. A particularly difficult type of sequential decision-making problem
to solve is one in which the environment has sparse rewards, a large state space, and where the goal
is to complete a complex task. This thesis aims to create a controller that can be used to solve these
types of environments in cases where the task needs to be optimized for multiple objectives. We cre-
ate MOPRL, an approach that combines techniques from planning, formal methods, and reinforcement
learning to synthesize such a controller. From formal methods, we use LTL to formally define complex
tasks. We use the idea of policy sketches and manually define subtasks in the environment, use rein-
forcement learning to learn a policy for each of these subtasks, and combine these subtasks together
in a graph called a higher-level model. The higher-level model is combined with the LTL-task into a new
graph, called the product graph. Afterward, Martins algorithm is used to find all sequences of subtasks
in the product graph that complete the LTL-task and have a Pareto optimal success probability and
cost. Finally, we provide PAC-guarantees on the performance of the entire controller.

MOPRL is able to outperform two other state-of-the-art approaches that aim to solve complex tasks
when applied in a stochastic discrete environment with sparse rewards and large state space by achiev-
ing a higher success probability and only a marginal drop in cost. MOPRL is also able to complete dif-
ficult tasks, in which the other two approaches fail. We are able to find multiple solutions that optimize
for success probability and cost. Sometimes, a solution has a marginally lower success probability
but a big improvement in cost compared to the solution with the highest success probability. When
only optimizing for success probability, this solution may not be found. The planning procedure of our
approach scales well to bigger tasks, being able to find solutions for large tasks in a matter of seconds.

An advantage of MOPRL is that it separates learning and planning, enabling one to easily switch to a
different learning method or planning algorithm. It also allows completing multiple different tasks with-
out the need of relearning subtasks and only needing to replan the sequence of subtasks that need to
be completed. Limitations of MOPRL are that, first, it is very tailored toward the environment used in
this research, meaning it might not be applicable to different types of environments. Second, MOPRL
also requires the subtasks to be defined manually, in some environments it may be difficult to determine
what good subtasks would be. Lastly, MOPRL prunes the solution space, removing possible solutions
from being explored.

7.2. Future work
There are many interesting topics that can be researched in the future, we highlight some of the gen-
eral research topics that can be of interest as well as some suggestions for direct improvements to the
approach used in this research.

Both the reinforcement learning as well as the planning step have room for improvement, reducing
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the time it takes to generate the controller. The subtask agents can be trained in parallel and the
planning procedure copies data structures in some parts, which possibly can be removed, improving
execution time.

Another point for further research is to generalize the implementation more. Currently, the implemen-
tation is very tailored towards the current environment. The implementation should be made more
general so it can easily be used in other environments.

The approach used in this research can be combined with ideas from other approaches. For example,
to deal with stochasticity we only use subtasks that are guaranteed to never violate the LTL, it may be
beneficial to use a reward machine and train agents for the subtask with the global task in mind.

Research the use of multi-objective planning, it seems that multi-objective planning has the most ben-
efits of being used for choice-type tasks, but this should be researched more thoroughly to see what
type of planning would be the best to use in which instances.

A more general topic from which our approach, but also other types of research can benefit is re-
searching what feasible subtasks are that can be learned by reinforcement learning. If there is some
way to automatically find feasible subtasks in an environment, it removes one of the downsides of using
this approach, needing to manually supply the subtasks. Other hierarchical solutions can also benefit
from finding feasible subtasks.



A
Evaluation data comparison

A.1. Average of all experiments

Method Task Best
Proba-
bility

Cost Probability Highest
Cost

SPECTRL ♢𝑔 ∨ ♢𝑃 0.70 23.30
♢(𝑔 ∧ ♢𝑝) 0.00 0.00
♢𝑔 0.56 36.90
♢𝑔 ∧□¬𝑟3 0.00 0.00
♢(𝑔 ∧ ♢(𝑝 ∧ ♢(𝑔 ∧ ♢𝑠))) 0.00 0.00

DiRL ♢𝑔 ∨ ♢𝑃 0.65 17.30
♢(𝑔 ∧ ♢𝑝) 0.37 43.60
♢𝑔 0.57 24.15
♢𝑔 ∧□¬𝑟3 0.54 24.80
♢(𝑔 ∧ ♢(𝑝 ∧ ♢(𝑔 ∧ ♢𝑠))) 0.00 0.00

OM - small subtasks ♢𝑔 ∨ ♢𝑃 0.87 26.13 0. 82 18.43
♢(𝑔 ∧ ♢𝑝) 0.65 46.53
♢𝑔 0.87 25.93
♢𝑔 ∧□¬𝑟3 0.82 29.07
♢(𝑔 ∧ ♢(𝑝 ∧ ♢(𝑔 ∧ ♢𝑠))) 0.41 96.27

OM - big subtasks ♢𝑔 ∨ ♢𝑃 0.72 19.27
♢(𝑔 ∧ ♢𝑝) 0.31 58.26
♢𝑔 0.62 29.29
♢𝑔 ∧□¬𝑟3 0.56 37.58
♢(𝑔 ∧ ♢(𝑝 ∧ ♢(𝑔 ∧ ♢𝑠))) 0.13 119.50
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