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Abstract. The current study presents an online iterative adaptive dynamic pro-
gramming approach to resolve the zero-sumgame (ZSG) for nonlinear continuous-
time (CT) systems containing a partially unknown dynamic. The Hamilton-
Jacobian-Issacs (HJI) equation is solved along the state trajectory according to
the value function approximation and the policy improvement online. Relaxed
dynamic programming is utilized to ensure the algorithm’s convergence. Model
and costate networks were established to conduct the method. Computational
simulations are performed to present the efficiency of the algorithm.

Keywords: Approximation dynamic programming · Zero-sum game · Integral
reinforcement learning · Online learning · Value iteration

1 Introduction

Reinforcement Learning (RL) is an iterative process to improve the action based on
the interactions with the environment [1]. In a typical RL application, each decision
will be valued according to the current state. Based on this value, the superior decision
will be remembered, and the inferior one will be eliminated. This learning process will
finally provide a satisfactory solution [2]. Adaptive Dynamic Programming (ADP) is a
typical application of RL. To interact with the environment, the ADP method constructs
an Actor-Critic structure for approximating the value function and a proper system
controller [3]. This iterative approximation method helps researchers solve complex
problems that may not be worked out easily by traditional analytical approaches [4].

Several scholars have employed the ADP technique in the zero-sum game (ZSG)
problem. When a control system is defined as containing two players, the problem deal-
ing with optimal control is converted into a game problem, and the HJB equation is
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converted to a Hamilton-Jacobi-Isaacs (HJI) system that includes a group of first-order
Partial Differential Equations (PDEs) coping with nonlinear equations. Traditional ana-
lytical solutions cannot be easily reached. The ADP approaches can be employed to
find approximate solutions. In [5], the ADP method was presented for the online deter-
mination of the solution of the Nash equilibrium when the ZSDG (Zero Sum Differ-
ential Game) containing two players has both linear dynamics and unbounded horizon
quadratic cost. In [6], an iterative ADPmethodologywas proposed for solving a category
of CT nonlinear ZSDGs with an entire system understanding. A concurrent learning-
based ADP technique was presented in [7] for a nonlinear CT system to ensure the
uniform ultimate boundedness of the approximate HJI equation.

In this paper, expanding the result of [8], a game control algorithm of a CT nonlinear
system is proposed by resolving the HJI system with the approach called ADP/RL.
The convergence proof of the iteration process was based on the approach utilizing
the relaxation of the dynamic programming [9, 10], which ensures the iterative value
function’s convergence to the actual value. Moreover, inspired by the idea of [11–13], a
dual heuristic programming (DHP) iteration method is presented for approximating the
costate function. The convergence proof is also provided.

The essential novelties of the current study are:

(1) An online ADP/RL using the value iteration method is investigated for the ZSG of
a CT nonlinear system containing a partially unknown dynamic.

(2) Compared to [14], the current study establishes a direct approximation of the costate
function in the iteration. The DHP approach avoids the inaccuracy caused by the
derivation of the approximated value function in the HDP approach.

(3) The presented method employs the Bellman equation and iteration to attain an
exact convergence to the actual value. In contrast, in [15], only uniform ultimate
boundedness (UUB) can be guaranteed.

The remaining parts of the current study are arranged as the following. The funda-
mental problem description is given in Sect. 2. The convergence of the iteration HDP
and DHP approach is given in Sect. 3. Section 4 constructs model and critic networks
to perform the presented methodology. In the end, the numerical simulations show the
efficiency of the presented approach.

2 Preliminaries and the Statement of the Problem

The subsequent nonlinear CT system is assumed to be expressed by{
ẋ = f (x) + g(x)u + h(x)w

y = z(x)
(1)

where x ∈ R
n, u ∈ R

m, and w ∈ R
p describe the state, control, and disturbance vectors,

respectively. f (x) ∈ R
n, g(x) ∈ R

n×m, and h(x) ∈ R
n×p stand for both differentiable and

smooth mappings. The subsequent presumptions that are satisfied through this article
are assumed. The unknown inner dynamic of the system, f (x), is considered in the study.

However, subsequent paragraphs are indented.
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Assumption 1: f (0) = 0, and x = 0 denote the equilibrium standing of the system.

Assumption 2: The controllable system.

The index performance is assumed by (2):

J (x, u,w) =
∫ ∞

0

(
xTQx + uTR1u − wTR2w

)
dτ

=
∫ ∞

0
U (x, u,w)dτ (2)

where Q ∈ R
n×n, R1 ∈ R

m×m, and R2 ∈ R
p×p are positive definite. For fixed control

and disturbances policies represented by u(x) andw(x), we can define the value function
as

V (x(t)) =
∫ ∞

t
U (x, u,w)dτ (3)

The value function (3) is differentiated as follows:

U (x, u,w) + (∇V (x))T(f (x) + g(x)u + h(x)w) = 0 , V (0) = 0 (4)

where ∇V = ∂V /∂x.

H (x, u,w) = U (x, u,w) + ∇V T(x)(f (x) + g(x)u + h(x)w) (5)

A unique result of a saddle point concerning the game problem in differential form
is assumed. Thus, the Nash condition expressed below holds:

V ∗(x0) = min
u

max
w

V (x, u,w) = max
w

min
u

V (x, u,w) (6)

From Bellman’s optimality principle, we have:

0 = min
u

max
w

H
(
x,∇V ∗, u,w

)
(7)

u∗ and w∗ should satisfy ∂H (x, u,w)/∂u = 0 and ∂H (x, u,w)/∂w = 0. Then, the
optimum solution is given as

u∗ = −1

2
R−1
1 gT(x)∇V ∗(x) (8)

w∗ = 1

2
R−1
2 hT(x)∇V ∗(x) (9)

Inserting Eq. (8) and Eq. (9) into Eq. (5) gives

0 = xTQx + 1

4

(∇V ∗(x)
)T
g(x)R−1

1 gT(x)∇V ∗(x)

+ 1

4

(∇V ∗(x)
)T
h(x)R−1

2 ∇V ∗(x) + (∇V ∗(x)
)T
f (x) (10)
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Solving this nonlinear HJI equation is challenging. Since the system’s inner dynamic
is unknown for partially unknown nonlinear CT systems, it is challenging to solve this
HJI equation. To resolve this issue, the cost Eq. (3) in the following interval reinforcement
form can be rewritten [16]:

V (x(t)) =
∫ t+T

t
U (x, u,w)dτ + V (x(t + T )) (11)

For every T > 0, it is shown in [16] that Eq. (4) is entirely equivalent to an interval
reinforcement form as Eq. (11). Assume the differential game problem has a unique
result of a saddle point. Hence, the Nash expression presented below is valid:

V ∗(x(t)) = min
u

max
w

(∫ t+T

t
U (x, u,w)dτ + V ∗(x(t + T ))

)

= max
w

min
u

(∫ t+T

t
U (x, u,w)dτ + V ∗(x(t + T ))

)
(12)

The inner dynamic of the system is not involved in this form.

3 Main Results

This section presents a value iteration-based interval reinforcement learning method to
resolve the ZSGs with two players concerning partially unknown nonlinear CT systems.
The basic ideas are illustrated in the following.

Value Function Update
V0(x) = 0 and i = 0 are considered primal values, and V1 can be solved from the
subsequent equation:

Vi+1(x(t)) =
∫ t+T

t
U (x(t), ui,wi)dτ + Vi

(
xui,wi (t + T )

)
(13)

Policy Improvement
According to Eq. (8) and Eq. (9), ui and wi are defined as

ui+1(x) = −1

2
R−1
1 gT(x)∇Vi(x) (14)

wi+1(x) = 1

2
R−1
2 hT(x)∇Vi(x) (15)

Since the above mechanism is based on VI, the presented approach should be ini-
tialized with the initial value V0(x). Therefore, the control signal ui does not need to be
admissible.

Lemma 1. The Hamilton mapping, H (x, ui,wi,∇Vi), is minimized by the signal ui in
Eq. (14), namely, an iterative control one and the value function in Eq. (13). Mean-
while, the iterative control policy wi in Eq. (15) maximizes the Hamilton mapping
H (x, ui,wi,∇Vi), and so does the value function in Eq. (13).
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Proof: The detailed proof is presented in [17].

Lemma 2. Both positive mappings Ya(x), and Yb(x) meet the inequality expressed by
Ya(x) ≤ Yb(x). Now, we have

min
u

max
w

(∫ t+T

t
U (x, u,w)dτ + Ya

(
xu,w(t + T )

))

≤ min
u

max
w

(∫ t+T

t
U (x, u,w)dτ + Yb

(
xu,w(t + T )

))
(16)

Proof: The detailed proof is presented in [14].
Now, we give the value iteration approach’s convergence proof for the CT nonlin-

ear zero-sum game. The above proof’s fundamental idea is expanded from the idea of
relaxing dynamic programming first proposed in [9] and [10].

Theorem 1 Suppose the following inequality conditions.

0 ≤ V ∗(x(t + T )) ≤ θ

∫ t+T

t
U (x, u,w)dτ (17)

αV ∗ ≤ V0 ≤ βV ∗ (18)

hold uniformly for some 0 < θ < ∞, 0 ≤ α ≤ 1 ≤ β < ∞. The control policy ui,
disturbance policywi, and the value function Vi are iterated through Eq. (13) to Eq. (15).
Now, the value function Vi tends to V ∗ based on the following inequalities:(

1 + α − 1(
1 + θ−1

)i
)
V ∗ ≤ Vi ≤

(
1 + β − 1(

1 + θ−1
)i

)
V ∗ (19)

Proof: The proof will be given in two parts.

1. The left-hand side in Eq. (19) is proven by the mathematical induction, i.e.,
When i = 1, considering condition Eq. (17), we have:

�1 � α − 1

1 + θ

(
θ

∫ t+T

t
U (x, u,w)dτ − V ∗(x(t + T ))

)
≤ 0 (20)

Considering aV* ≤ V0, and Lemma 2, we have

V1(x(t)) ≥ min
u

max
w

(∫ t+T

t
U (x, u,w)dτ + αV ∗(x(t + T )) + �1

)

= min
u

max
w

{(
1 + θ

α − 1

1 + θ

) ∫ t+T

t
U (x, u,w)dτ +

(
α − α − 1

1 + θ

)
V ∗(x(t + T ))

}

=
(
1 + α − 1

1 + θ−1

)
V ∗(x(t)) (21)

Thus, the proof is provided when i = 1.
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Next, we assume that when i− 1 is taken, the left-hand side in Eq. (19) becomes
valid, and we will have

Vi(x(t)) = min
u

max
w

(∫ t+T

t
U (x, u,w)dτ + Vi−1(x(t + T ))

)

≥ min
u

max
w

{(
1 + α − 1(

1 + θ−1
)i−1

)
V ∗(x(t + T )) +

∫ t+T

t
U (x, u,w)dτ

}

= min
u

max
w

{(
1 + α − 1(

1 + θ−1
)i−1 − (α − 1)θ i−1

(1 + θ)i

)
V ∗(x(t + T ))

+
(
1 + (α − 1)θ i

(1 + θ)i

) ∫ t+T

t
U (x, u,w)dτ

}

=
(
1 + (α − 1)θ i

(1 + θ)i

)
V ∗(x(t)) (22)

This proves the left part in Eq. (19).
2. Similarly, the right part in Eq. (17) could also be proven.

When i = 1 considering the condition in Eq. (17), we have:

�2 � β − 1

1 + θ

(
θ

∫ t+T

t
U (x, u,w)dτ − V ∗(x(t + T ))

)
≥ 0 (23)

Considering V0 ≤ βV ∗ Lemma 2, we have

V1(x(t)) ≤ min
u

max
w

(∫ t+T

t
U (x, u,w)dτ + βV ∗(x(t + T )) + �2

)

=
(
1 + θ

β − 1

1 + θ

)
V ∗(x(t)) (24)

Thus, the case i = 1 is proved.
Next, the right part in the inequality Eq. (19) is valid when i − 1 applied is

assumed, and we will have

Vi(x(t)) = min
u

max
w

(∫ t+T

t
U (x, u,w)dτ + Vi−1(x(t + T ))

)

≤ min
u

max
w

{(
1 + β − 1(

1 + θ−1
)i−1

)
V ∗(x(t + T )) +

∫ t+T

t
U (x, u,w)dτ

}

=
(
1 + (β − 1)θ i

(1 + θ)i

)
V ∗(x(t)) (25)

Accordingly, the proof is finished.
According to Theorem 1, further results can be made.

Theorem 2. ui, wi, and Vi, called control, disturbance policies, and value mapping,
respectively are defined as the iterative processes represented byEqs. (13) to (15) (ui,wi),
called the control pairwill converge to the saddle point denotedby

(
u∗
i ,w

∗
i

)
when i → ∞.
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Proof: The detailed proof can be found in [18].

The DHP Iteration
To make the algorithm works more efficiently, we introduce the idea of DHP for solving
the HJI equation of the ZSG for the nonlinear CT system.

The costate is defined as

λi(x(t)) = ∂Vi(x(t))

∂x(t)
(26)

λi+1(x(t)) = 2Qx(t)T +
(

∂x(t + T )

∂x(t)

)T

λi(x(t + T )) (27)

By introducing the costate λi, the policy update algorithms in Eq. (14) and Eq. (15)
are expressed as:

ui+1(x) = −1

2
R−1
1 gT(x)λi(x(t)) (28)

wi+1(x) = 1

2
R−1
2 hT(x)λi(x(t)) (29)

Due to the unknown model of the system and the costate of the HJI equation, the
three-layer NN and the single-layer NN are established separately.

x̂(t + T ) = WT
miσ

(
Y T
mix(t)

)
+ g(xt)ui + h(xt)wi (30)

λ̂i(x(t)) = WT
λi
(x(t)) (31)

4 Implementation of the Iterative DHP Approach

In the proposed approach, each iteration stepwill need to calculate the control pair and the
value function. However, solving the equations for the nonlinear system with unknown
dynamics is challenging. Thus, the Neural Network (NN) is utilized to implement this
algorithm in the current part.

In this paper, since the system dynamic is partially unknown, we will need to con-
struct a Model NN for approximating the system dynamics. Now, the Critic NN will be
constructed for approximating the system’s costate. Consequently, the control policy is
calculated using the Critic NN. The framework diagram is presented in Fig. 1.
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Fig. 1. The algorithm’s signal flow.

5 Simulation

To demonstrate the presented approach’s efficiency, the nonlinear system (32) is chosen.

ẋ = f (x) + g(x)u + h(x)w (32)

f (x), g(x), and h(x) are described as the inner dynamic, the matrices of the control
coefficients, respectively as follows:

f (x) =
⎡
⎣ − x1 + x2

− 0.5x1 − 0.5x2
(
1 − (cos(2x1) + 2)2

)
⎤
⎦

g(x) =
[
0

cos(2x1) + 2

]
, h(x) =

[
0

sin(4x1) + 2

] (33)

The coefficients of the performance index are Q = I2×2, R1 = 0.1I , R2 = 2.5I , and
x0 = [1,−1]. The activation mapping of the Critic Network was selected as follows:


(x(t)) = [
x21 x1x2 x22 x41 x31x2 x

2
1x

2
2 x1x32 x42

]T
(34)

The interval [−0.01, 0.01] is utilized to determine primal weights randomly. The
number of neurons L = 8 is chosen by numerical simulation. It is found that a proper
number of neurons will achieve a satisfying convergence precision with acceptable time
consumption. The learning rates are αM = 0.01 and αC = 0.02. We set the simulation
time as 15 s. The simulation time step is set as 0.001s. The residual error is set as 0.001.
Since the proposed method is online, the tuning law of the weights vector runs literately
in every time step until the costate vector NN converges. Then, the converged weights
will be translated to the next step as an initial set.

Figure 2 depicts the simulation results. Figure 2(a) reveals that the weights vector is
converged. The costate vector is presented in Fig. 2(b). Figure 2(c) depicts the optimal
control pairs u,w. Figure 2(d) presents the trajectory states of the system.
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(a)  (b)

(c)  (d)

Fig. 2. Simulation results. (a) The convergence of the weight vector. (b) The costate trajectory.
(c) The control signal. (d) The state trajectory.

6 Conclusion

The current study presents an NN-based online value iteration method to resolve the
HJI system of the ZSG issue concerning the nonlinear CT systems containing a par-
tially unknown dynamic. The proposed method provides a Nash equilibrium solution
by iteration in every time step. The convergence of this method is provided by showing
the convergence of the iterative value mapping to the HJI result. Moreover, the iteration
approach of the DHP is proposed to approximate the system’s costate vector. Then,
model NN and costate NN are established to implement the presented approach. In the
end, the simulation result reflects the presented approach’s efficiency.
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