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Abstract: Soil volumetric water content (VWC) is a vital parameter to understand several
ecohydrological and environmental processes. Its cost-effective measurement can potentially drive
various technological tools to promote data-driven sustainable agriculture through supplemental
irrigation solutions, the lack of which has contributed to severe agricultural distress, particularly for
smallholder farmers. The cost of commercially available VWC sensors varies over four orders
of magnitude. A laboratory study characterizing and testing sensors from this wide range of
cost categories, which is a prerequisite to explore their applicability for irrigation management,
has not been conducted. Within this context, two low-cost capacitive sensors—SMEC300
and SM100—manufactured by Spectrum Technologies Inc. (Aurora, IL, USA), and two very
low-cost resistive sensors—the Soil Hygrometer Detection Module Soil Moisture Sensor (YL100)
by Electronicfans and the Generic Soil Moisture Sensor Module (YL69) by KitsGuru—were tested
for performance in laboratory conditions. Each sensor was calibrated in different repacked soils,
and tested to evaluate accuracy, precision and sensitivity to variations in temperature and salinity.
The capacitive sensors were additionally tested for their performance in liquids of known dielectric
constants, and a comparative analysis of the calibration equations developed in-house and provided
by the manufacturer was carried out. The value for money of the sensors is reflected in their precision
performance, i.e., the precision performance largely follows sensor costs. The other aspects of
sensor performance do not necessarily follow sensor costs. The low-cost capacitive sensors were
more accurate than manufacturer specifications, and could match the performance of the secondary
standard sensor, after soil specific calibration. SMEC300 is accurate (MAE, RMSE, and RAE of
2.12%, 2.88% and 0.28 respectively), precise, and performed well considering its price as well as
multi-purpose sensing capabilities. The less-expensive SM100 sensor had a better accuracy (MAE,
RMSE, and RAE of 1.67%, 2.36% and 0.21 respectively) but poorer precision than the SMEC300.
However, it was established as a robust, field ready, low-cost sensor due to its more consistent
performance in soils (particularly the field soil) and superior performance in fluids. Both the capacitive
sensors responded reasonably to variations in temperature and salinity conditions. Though the
resistive sensors were less accurate and precise compared to the capacitive sensors, they performed
well considering their cost category. The YL100 was more accurate (MAE, RMSE, and RAE of
3.51%, 5.21% and 0.37 respectively) than YL69 (MAE, RMSE, and RAE of 4.13%, 5.54%, and 0.41,
respectively). However, YL69 outperformed YL100 in terms of precision, and response to temperature
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and salinity variations, to emerge as a more robust resistive sensor. These very low-cost sensors
may be used in combination with more accurate sensors to better characterize the spatiotemporal
variability of field scale soil moisture. The laboratory characterization conducted in this study is
a prerequisite to estimate the effect of low- and very low-cost sensor measurements on the efficiency
of soil moisture based irrigation scheduling systems.

Keywords: volumetric water content; soil moisture; permittivity; capacitive sensor; SM100 sensor;
SMEC300 sensor; resistive sensor; off-the-shelf sensor; calibration; temperature sensitivity, salinity
dependence; low-cost sensor; irrigation management; precision agriculture

1. Introduction

The gravimetric method [1], which is the most accurate method of VWC measurement,
is destructive, laborious, and does not provide results in real-time [2]. This has led to the development
of nondestructive, indirect methods for the measurement of VWC [3–8]. Examples include neutron
thermalization [9], time domain reflectometry (TDR) [10,11], time domain transmission (TDT) (e.g.,
in [12]), electrical capacitance [13–15] and impedance sensors (e.g., in [15,16]).

The electromagnetic (EM) sensors (TDR, TDT, and capacitance sensors) work on the principle
that the EM wave propagation in bulk soil is primarily governed by liquid water that has
a substantially larger dielectric permittivity (εr) than the other soil components (gaseous air and
solid soil minerals) [3]. TDR and TDT sensors operate at higher frequencies (of the order of
GHz [12]) at which VWC measurements are less sensitive to soil electrical conductivity and
imaginary dielectric permittivity [12]. Though the TDR method is regarded as the most accurate
EM based VWC measurement technique [11,17], it is limited by its high cost and complex waveform
analysis [2]. Capacitance and frequency sensors, developed as alternatives to the TDR technique [18],
operate between 50 and 150 MHz [3]. They are similar with respect to repeatability, applicability to
a wide range of soil types, and continuous monitoring ability [19], but are further advantageous due
to significantly lower costs.

The combination of new technologies, stakeholders-cooperation and effective pro-poor
institutions, within a larger and enabling policy framework, is considered to be the ‘best chance
for lasting and sustainable impact on poverty’ [20]. These factors can result in an improvement
of the livelihoods of the the poorest smallholder farmers through a transition towards sustainable
agriculture [20,21]. The lack of supplemental irrigation facilities has been identified as a major
exacerbating factor for smallholder farmers facing severe agricultural distress [22,23]. Therefore,
there is a need for sensor based systems for VWC monitoring for applications such as irrigation
management (for instance, through wireless sensor networks (WSNs)) [24]. The utilization of such
technologies is challenged by low awareness and reluctance towards adoption in farmers, and a lack
of interest in investment due to the economic pressures of fast returns on investments, which could be
countered by developing low-cost and user-friendly systems [21].

Soil moisture sensors operating within WSNs can serve various purposes extending
beyond irrigation management, such as validating remotely sensed soil moisture products [25],
observing ecohydrological processes [26,27], or characterizing spatial soil properties [28,29]. However,
WSNs are claimed to be expensive and to require further development [30]. To maximize the number
of sensor nodes and due to the substantial quantity of VWC measurements from such networks, it is
essential to use low-cost sensors with signals which can be interpreted in a straightforward and clear
manner [3]. This has triggered an increase in the number of low-cost VWC sensors operating within
WSNs spread over larger areas [3]. The cost of commercially available VWC sensors varies over
four orders of magnitude. Capacitance sensors, being comparatively inexpensive and easy-to-use,
show promise in measuring VWC within WSNs [31–33]. However, low-cost sensors may exhibit
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sensor-to-sensor variability [34], which, if not addressed, affects measurement accuracy [3]. In this
study, two cost categories are defined: ‘low-cost’ and ‘very low-cost’. These categories are, respectively,
approximately one order and three orders of magnitude lower than an expensive, TDR-based sensor
(without considering data logger or reader costs).

Tables A1 and A2 list some representative studies from a large body of work during the past
few decades that have focused on the calibration and testing of VWC sensors. A list of publications,
which have calibrated different capacitance, Frequency Domain Reflectometry (FDR), or impedance
soil moisture sensors on various fluids or porous media, using different curve-fitting methods, is given
in Table A1. The determination of sensor accuracy, precision, sensor-to-sensor variability, volume of
influence, and temperature and salinity effects is also vital to understand sensor performance under
different conditions encountered in practice (some publications listed in Table A2). The novelty of
this study lies in characterizing and testing non-research grade soil moisture sensors (in particular
the low-cost capacitive and very-low cost resistive sensors), which is a prerequisite to assess their
irrigation management capabilities. Also, a new approach for holistic visualization of sensor accuracy
and precision for multiple sensors and soils is presented.

Partly based on the literature [35], and partly motivated by the impact that low-cost soil moisture
sensors could have on ecological research and supplemental irrigation, the following questions were
used to design the experiments conducted in the study.

1. What is the ability of the capacitive sensors to estimate the refractive index (εr) of various fluids
of known εr values?

2. What empirical equation(s) can best explain the relationships between the output of the low- and
very low-cost soil moisture sensor instruments tested in the study, and the actual VWC, across
a variety of soils?

3. What is the difference between the respective accuracies of the soil-specific calibration equations
developed in-house and the general manufacturer-provided calibration equations?

4. What is the accuracy and precision performance of different low- and very low-cost soil moisture
sensor instruments tested?

5. How is the accuracy and precision of the developed calibration curves affected by variations in
(i) temperature and (ii) electrical conductivity, within ranges that are commonly encountered in
field conditions?

The results pertaining to the above questions are addressed in Sections 3.1.1–3.1.3, 3.2 and 3.3,
respectively.

2. Materials and Methods

2.1. Soil Moisture Sensors

The sensors tested in the study are described in the subsections below. A comparison of the salient
features (including prices from quotations) and the corresponding cost-based nomenclature used in
the study are presented in Table 1. Sensor photographs are given in Figure 1.

2.1.1. Capacitance Based Low-Cost Sensors: Spectrum SM100 and SMEC300

The WaterScout SM100 Soil Moisture Sensor (manufactured by Spectrum Technologies, Inc.,
Plainfield, IL, USA) is a capacitance-based low-cost soil moisture sensor [36]. The sensor has a pair of
electrodes that operates as a capacitor and the surrounding soil functions as the charge storing dielectric
medium [36]. The WaterScout SMEC 300 Soil Moisture Sensor is also a capacitance-based low-cost
soil moisture sensor with the additional capability of measuring EC and soil temperature [37]. In both
cases, an oscillator operating at 80 MHz drives the capacitor and the generated output (voltage ratio)
is proportional to the soil’s dielectric constant (εr) [36]. However, the estimated εr is not available to
the user via data loggers or readers as both sensors are calibrated by developing relationships between



Sensors 2020, 20, 363 4 of 27

voltage ratios/raw A/D (analog to digital) values and actual VWC (θ) of a continuously drying soil
column (D. Kieffer, personal communication, 5 September 2018). Additionally, the SMEC300 sensor
measures EC with a pair of carbon ink electrodes, and temperature using a thermistor potted in
the sensor molding [37]. The SM100 has a reported accuracy of 3% VWC at an EC < 800 mS·m−1,
and an operating range of 0.5 ◦C to 80◦C [36]. The SMEC300 has reported accuracies of 3% for VWC,
±1 mS·m−1 for EC and 0.6 ◦C (0.8 ◦C) for temperatures greater than −30 ◦C (lesser than −30 ◦C),
and has ranges of operations of 0–1000 mS·m−1 for EC and −50 ◦C to 85 ◦C for temperature [37].

Table 1. Description of sensors used in the study.

Measurement
Technique Soil Moisture Sensor (Company)

Price
(Quotation)

Nomenclature Used in
Study

Capacitance
based

SMEC300 Soil Moisture, Temperature and
EC sensor (Spectrum Technologies) $219.00 Low-cost *.

SM100 Soil Moisture sensor (Spectrum
Technologies) $89.00 Low-cost.

Resistance
based

YL100 Soil Hygrometer Detection Module
soil moisture sensor (Electronicfans) $3.89 Very Low-cost.

YL69 Generic Soil Moisture Sensor
Module (Kitsguru) $2.11 Very Low-cost.

Impedance
based

ThetaProbe ML3 Soil Moisture sensor
(Delta-T Devices) $516.33 High-cost, ‘true’ secondary

standard sensor.

* Considering the additional temperature and EC sensing capabilities.

2.1.2. Generic Resistance Based Very Low-Cost Sensors: YL100 and YL69

The Soil Hygrometer Detection Module Soil Moisture Sensor provided by Electronicfans (herein
referred to as YL100) and the Generic Soil Moisture Sensor Module by KitsGuru (herein referred to as
YL69) are both resistive soil moisture sensors. Both the sensors have two pronged probes operating as
variable resistances which are a function of the soil moisture. An increasing soil moisture increases
the effective conductivity of soil [38,39]. This variation in resistance causes a variation in voltage
drop, which is then measured by the electronic module and subsequently returned as an output.
However, the measured soil resistivity is also influenced by ion concentration [40] and hence careful
calibration along with frequent recalibrations (due to variable organic and salt concentrations) are
recommended for effective application [41]. Previous studies have developed calibration curves for
estimating continuous soil moisture [38] or soil moisture categories (dry, medium, high, etc.) [39]
as a compromise between sensor accuracy and cost. No records of sensor specifications (including
accuracy and operating conditions) could be found in the literature for either of the sensors.

2.1.3. Impedance-Based Sensor: Delta-T ThetaProbe ML3

The Delta-T ThetaProbe ML3 (henceforth referred to as the ThetaProbe) measures the soil VWC
by responding to the changes in its apparent dielectric constant [42]. A 100 MHz sinusoidal signal
is applied to an internal transmission line extending into the soil by means of a sensing head [42].
This comprises of an array of four rods: three of them (connected to the instrument ground) behaving
as an electrical shield around the central, signal rod. The sensing head operates as an additional
section of transmission line and has an impedance which depends on the dielectric constant of the
soil [43]. The impedance of the rod array subsequently impacts the reflection of the 100 MHz signal at
the junction between the internal transmission line and the sensing head [42] and the interference of
the reflected component with the incident signal causes a standing wave to form on the transmission
line [43]. The output is an analog voltage proportional to the difference in amplitude of this standing
wave at two points—the junction and the starting point of the transmission line [42]. This amplitude
is related to the relative impedance of the probe, and thus the dielectric constant and VWC [43].
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The VWC sensor has a two-step calibration process; a soil specific linear calibration equation between
the actual VWC (θ) and the refractive index (

√
εr) of the dielectric medium, and a sensor specific 6th

degree polynomial calibration equation between the output voltage and the refractive index (
√

εr),
together resulting in a 6th degree polynomial calibration equation between the output voltage and
the actual VWC (θ) [44]. The ThetaProbe has a reported soil moisture accuracy of ±1%, salinity error
of ≤ 3.5% VWC over 50–500 mS·m−1 and 0–50% VWC, and soil temperature accuracy of ±0.5 ◦C
over 0 ◦C to 40 ◦C [44]. It is considered to provide a sensitive and precise measurement of VWC and
soil temperature [44], and is accepted for surface soil water content measurements [24]. Therefore,
it could be justified to be used as a secondary standard [45] for the different experiments conducted in
this study.

Figure 1. The four soil moisture sensors investigated in the study; from left to right (in the order of
ascending cost): YL69, YL100, SM100, and SMEC300. The rightmost sensor is the secondary standard
sensor, ThetaProbe.

2.2. Description of the Soils Used

The four different soils used in the study are shown in Figure 2, and a description of their
physical characteristics is tabulated in Table 2. These consisted of two Indian Standard sands from IS
650:1991 [46] and two silty-loam soils representative of agricultural landuse in the Ganga floodplains.
Among the silty-loams, Soil 3 was sampled from a local agricultural field and included without any
grading (to purposefully represent local field conditions), as opposed to Soil 4, which was graded with
a 2 mm sieve.

Figure 2. The four different soils used the study. From left to right: Soil 1: Grade I Sand [46], Soil 2:
Grade III Sand [46], Soil 3: Silty-loam soil from local field, Soil 4: Graded Silty-loam soil.
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Table 2. Description of physical properties of the 4 soils used in the study [47].

Nomenclature
Used in Study Soil Description Bulk Density [g/cc] Soil Texture

Classification

Soil 1 Grade I sand (1–2 mm) 1.82 Sand
Soil 2 Grade III sand (0.09–0.5 mm) 1.59 Sand

Soil 3 Field soil from experimental site at
IIT Kanpur (Kanpur, India) 1.23 Silty-Loam

Soil 4 Graded Silty-Loam 1.20 Silty-Loam

2.3. Sensor Calibration

2.3.1. Calibration of Capacitive Sensors with Fluids

Following the literature [2,3,48,49], fluids of known dielectric properties were used to evaluate
(i) sensor accuracy, (ii) sensor precision, and (iii) the comparative performance of the tested capacitive
sensors. The motivation behind using fluids was to minimize the variability in measurements arising
due to nonuniform contact between the sensor surface and the porous media [2]. The fluids were chosen
because their respective εr values were known and those values fall in the range generally encountered
in soils of varying VWCs. The fluids selected for the study are shown in Table 3. The deionized water
is henceforth referred to as “water”.

Table 3. Fluids of known relative permittivity (εr) used in the study.

Fluid εr at T = 25 ◦C [2]

Air 1.0
Butanol 16.8
Ethanol 24.3

Ethylene-glycol 37.0
De-ionized water (Water) 81.0

Note that as the ThetaProbe was taken to be a secondary standard, it was included as
a standard against which the investigated sensors were tested, rather than being calibrated or tested
for performance.

2.3.2. Calibration of Sensors with Repacked Soils

In addition to calibrating soil moisture sensors with fluids of different εr values (which was
relevant only for the capacitive sensors), it is essential to calibrate sensors in porous media (such as
repacked or natural soils) before effective field application. Although repacking alters the natural soil
structure [35], using repacked soils for calibration is recommended to achieve better precision [50].
The calibration methodology adopted was based on predetermined uniform soil water content regimes
for repacked soils, similar to recent studies [24,49]. Known quantities of water were added to containers
with oven dried soils. The actual VWC (θ) was determined using a weighing machine, and multiple
VWC measurements (θ̂i) were taken with multiple specimens of each of the four sensors tested in the
study. This process was repeated for each of the four soils (Table 2). The calibration methodology used
for the repacked soils is described in detail on an online database, https://www.protocols.io/ [47],
to encourage methodological reproducibility and refinement.

2.4. Performance Measures for the Sensors

2.4.1. Sensor Accuracy

Accuracy is a measure of how close the measured output is to the true value [51]. Accuracy may
also be defined as the maximum difference that exists between a measured value and the true value

https://www.protocols.io/
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determined by a standard reference procedure [52]. In this study, the true value was determined
through two approaches: a primary calibration standard (the gravimetric weight) as well as a secondary
calibration standard (the impedance-based ThetaProbe soil moisture sensor). Three measures
were used to quantify accuracy: mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
and Relative Absolute Error (RAE, σ). They are described, along with other performance measures,
in Section 3.

2.4.2. Sensor Precision

Precision describes a measurement’s repeatability, which indicates the extent to which consecutive
measurements of the same input produce the same output [53]. In this study, precision was defined
using the Pooled relative standard deviation (sr,p), which provides an overall estimate of imprecision by
combining the standard deviations around the respective means across a series of measurements [54].
The multiple series of measurements corresponded to different mean values of measured VWC
(for instance, ¯̂θm for the mth series), and the sr,p is defined in Section 3.

2.5. Sensor Sensitivity

2.5.1. Temperature Sensitivity

Multiple studies have investigated the effect of ambient and soil temperature on VWC
measurements [2,35,55–57]. Further methods have been proposed for correcting errors in VWC
measurements arising due to diurnal variations in temperature [58]. For this study, capacitive and
resistive soil moisture sensors were tested in a silty-loam soil (Soil-4, described in Table 2) with two
different values of actual VWC and ambient temperatures ranging from 10 ◦C to 40 ◦C (with an error
of ±1 ◦C), inside a temperature incubator. The soil surfaces were covered with polythene sheets to
prevent evaporation. To ensure that the electronic components of the sensors (excluding the sensing
element which is inserted in the soil) were not affected by the temperature variations, they were placed
outside the incubator.

2.5.2. Salinity Sensitivity

The dependence of the measured VWC on salinity was determined following the method
suggested in the literature [2,49]. Varying amounts of water (to cover a range from dry to saturation)
with known KCl concentrations were added to Grade III sand (Soil-2, Indian standard [46] described
in Table 2) and VWC measurements were made using the different sensors. A total of 12 samples,
as described in Table 4, were studied.

Table 4. Electrical conductivities (EC) of the water samples and corresponding VWC measurements of
the soil samples investigated in the salinity experiment.

EC of the Water Added [mS/cm] Actual VWC [%] Symbolic Representation in Figure 8

1.7 17.8 Circle (#)
1.7 32.3
1.7 48.81

3.02 20.08 Triangle(4)
3.02 31.12
3.02 47.32

6.32 34.09 Square(�)
6.32 38.5
6.32 49.53

9.69 17.59 Pentagon(D)
9.69 34.8
9.69 43.53
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3. Results and Discussion

The performance measures used in developing the results in the study are listed in Table 5 along
with their respective sources from the literature.

Table 5. The list of performance measures used in the study: θi denotes an actual VWC value;
θ̂i represents a raw value measured by the sensor; θ̄ is the average of the actual VWC values; ¯̂θ is
the average of the raw values measured by the sensor; R(x) is the rank of x and n is the number of
data points used in the computation. k, nk, m and sk are the index of the current series, number of
measurements in series k, total number of series, and corresponding standard deviation of the series,
respectively, and are used to compute sr,p.

Performance Metric Description/Equation Range
(Ideal Value)

Coefficient of Determination
(R2) [59]

R2 =

(
n ∑n

i=1 θ̂iθi

)
−
(

∑n
i=1 θ̂i

) (
∑n

i=1 θi
)√

n ∑n
i=1

ˆ(θi)2 − (∑n
i=1 θ̂i)2

√
n ∑n

i=1(θi)2 − (∑n
i=1 θi)2

0 to 1 (1)

Mean Absolute Error (MAE)
[60] MAE = (∑n

i=1

∣∣∣θi − θ̂i

∣∣∣)/n 0 to ∞ (0)

Pooled relative standard
deviation (sr,p) [54] sr,p =

√√√√∑m
k=1(nk − 1)s2

k(1/ ¯̂θ2
k )

∑m
k=1(nk − 1)

0 to ∞ (0)

Relative Absolute Error (RAE)
[60] RAE = ∑n

i=1

∣∣∣θi − θ̂i

∣∣∣ / ∑n
i=1

∣∣∣θ̂i − θ̄
∣∣∣ 0 to ∞ (0)

Root Mean Squared Error
(RMSE) [60] RMSE =

√
(∑n

i=1(θi − θ̂i)2)/n 0 to ∞ (0)

σe f f ective σe f f =
√
(σprimary)2 + (σsecondary)2 0 to ∞ (0)

σprimary RAE between in-house calibrated and actual VWC value 0 to ∞ (0)
σsecondary RAE between in-house calibrated and ThetaProbe VWC value 0 to ∞ (0)

Spearman’s Rank Correlation
Coefficient (rs) [61]

rs =
1
n ∑n

i=1(R(θ̂i)− R( ¯̂θ))(R(θi)− R(θ̄))√(
1
n ∑n

i=1(R(θ̂i)− R( ¯̂θ))2
)
( 1

n ∑n
i=1 R(θi)− R(θ̄))2

−1 to 1
(−1 or 1)

3.1. Sensor Calibration

3.1.1. Performance of Capacitive Sensors with Fluids

The capacitive sensors SM100 and SMEC300 were first tested with fluids of known εr (Table 3).
The secondary standard, ThetaProbe, provides an estimate of the Refractive Index (

√
εr), whereas the

capacitive sensors do not directly measure εr but relate raw sensor output to VWC. Therefore, first,
the VWC values of the capacitive sensors were converted to

√
εr values using the expression given by

Topp et al. [10]:

θ = −5.30× 10−2 + 2.92× 10−2εr − 5.50× 10−4ε2
r + 4.30× 10−6ε3

r

where:
θ = VWC (%)
εr = Dielectric constant (-)

Further, they was compared with the respective actual values and
√

εr values measured by the
ThetaProbe. The results of this analysis are provided in Figure 3 and Table 6. The estimated

√
εr values

(along with their standard errors) for all the three sensors are depicted on the Y-axis, and the actual√
εr (derived from known εr values at 25 ◦C) are plotted on the X-axis of Figure 3.

The ThetaProbe sensor has relatively good performance in measuring refractive indices of air,
Butanol and Ethanol compared to ethylene glycol and water. The precision values (standard deviations)
of the ThetaProbe in measuring

√
εr in air, butanol, ethanol, ethylene glycol, and water were SD = 0.003,

0.053, 0.156, 0.401, and 0.621, respectively. The overall precision of the ThetaProbe was sr,p = 0.0405.
Figure 3 indicates that the ThetaProbe sensor was more accurate than both the SMEC300 and

SM100 sensors in all the fluids except Ethylene Glycol. Both SMEC300 and SM100 have equal precision
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values when considered till the fourth decimal place (sr,p = 0.0062), and are more precise when
compared to ThetaProbe.

Figure 3. Response of the capacitive soil moisture sensors (SMEC300 and SM100) and secondary
standard (impedance-based ThetaProbe) to fluids of known εr at 25 ◦C. The X- and Y-axis depict the
actual and measured refractive indices (

√
εr), respectively. Although the ThetaProbe measures

√
εr

directly, the VWC values of SM100 and SMEC300 were converted to the corresponding
√

εr values
based on the literature [10]. n is the total number of measurements in the experiment of a fluid, and the
error bar shows the mean and standard error of the estimated values.

Table 6. Performance metrics of the capacitive (SMEC300 and SM100) and secondary standard
(impedance-based ThetaProbe) sensors, in measuring refractive indices (

√
εr) of fluids of known εr at

25 ◦C.

SMEC300 SM100 ThetaProbe

MAE 0.87 0.55 0.48
RAE 0.22 0.27 0.24

RMSE 1.08 0.74 0.75
sr,p 0.0062 0.0062 0.0405

The comparison of capacitive sensors in fluids suggests that both the sensors were equally
precise; however, the inexpensive SM100 sensor outperformed the SMEC300 sensor in terms of MAE
and RMSE. Overall, these results were encouraging realizations of the sensing abilities of both the
capacitive sensors in general, and the SM100 sensor in particular, under the conditions of uniform
contact between the sensor and the dielectric medium.

3.1.2. Calibration of All Sensors with Repacked Soils

Strength of Monotonic Relationship Between Measured (θ̂) and Actual (θ) VWC

The Spearman’s rank correlation coefficient, rs [61], was employed to assess the strength of
the relationship between θ̂ and θ. The Spearman’s rank correlation was selected because it is
a nonparametric statistic that measures the strength of a monotonic relationship between paired
data without any assumptions made on the distribution of the data or the nature of the relationship
existing between them [62–64]. The number of sensor units of the SMEC300, SM100, YL100 and YL69
sensors used for the experiment were 6, 5, 6, and 5, respectively. Table 7 illustrates the rs values for the
four different sensors tested in the study. For all the sensors and soils, the Spearman’s rank correlation
was positive and significant at the 5% level.
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Table 7. Spearman’s Rank Correlation Coefficient rs between the sensor readings and the actual soil
volumetric water content (VWC) (θ) across the different soils. All the values are significant at α = 5%.

Low-Cost Very Low-Cost
Capacitive Sensors Resistive Sensors

SMEC300 SM100 YL100 YL69

Soil 1 0.93 0.92 0.78 0.91
Soil 2 0.96 0.97 0.89 0.94
Soil 3 0.84 0.94 0.94 0.73
Soil 4 0.95 0.92 0.94 0.85

Average 0.92 0.94 0.89 0.86

The capacitive and the resistive sensors had an average rs,resistive = 0.93 and 0.87, respectively,
averaged across all soils. Among the capacitive sensors, the SM100 sensor (rs = 0.94) performed better
than the SMEC300 sensor (rs = 0.92) on average. For each soil, both the sensors had roughly same rs

(within 1 to 3% of each other) except for Soil 3, in which SM100 (rs = 0.94) substantially outperformed
SMEC300 (rs = 0.84). This difference may be attributed to soil characteristics, which was an ungraded
field soil purposefully included in the study to represent local field conditions. These results implied
that SM100 could outperform the SMEC300 sensor as a robust, field ready capacitive sensor (on the
basis of VWC measures in repacked soils). These results advanced the results obtained in Section 3.1.1,
where the SM100 sensor outperformed the SMEC300 sensor in fluids. Among the resistive sensors,
the YL100 sensor (rs = 0.89) performed marginally better on average, compared to the YL69 sensor
(rs = 0.86). The YL69 sensor performed better for both the sandy soils Soil 1 (by 16.7%) and Soil 2
(by 5.62%), compared to YL100. However, for the silty-loam soils, YL100 performed better (rs = 0.94 in
both cases) than YL69, which itself performed worse in Soil 3 (rs = 0.73) than in Soil 4 (rs = 0.85).

Overall, considering only rank correlations, the order of performance was SM100 > SMEC300 >
YL100 > YL69. This result could be expected in terms of the capacitive sensors being more accurate
compared to the resistive sensors. To further strengthen these inferences, calibration equations were
developed for each sensor.

Calibration Equations Developed between Measured (θ̂) and Actual (θ) VWC

The soil-specific calibration equations were piecewise linear regression equations based on the
least squares estimate, in which the objective function, Sum of Squared Residuals SSR = ∑n

i=1(θi− θ̂i)
2,

was minimized. The number of line segments were decided using visual inspection, while an open
source Python library, pwlf [65], was used to develop the corresponding piecewise linear equations.

The subsequent sections on sensor testing have used these calibration equations developed for
each sensor and soil. Each segment of the piecewise linear equations, outlined in Table A3 and
illustrated in Figure 4, are of the following form,

θ = β0 + (β1 × θ̂) (1)

where,
θ̂ = Raw sensor value (-),
θ = Actual VWC (%), and
βi = Calibration coefficients

The performance of the calibration equations developed for the capacitive sensors was comparable
to that of other low-cost capacitive sensors reported in the literature [66]. The SM100 sensor (average
overall R2 = 0.94) performed at par with other low-cost capacitive sensors for sandy soils (average
R2 = 0.95 compared to R2 = 0.97 from the literature [66]), and surpassed previous work for silty-loams
(average R2 = 0.93 compared to R2 = 0.88 from the literature [66]). The SMEC300 performed equally
well as the SM100 in sands (average R2 = 0.95), but not in silty-loam soils (average R2 = 0.82);
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nevertheless, being comparable to previous literature [66]. Overall, the calibration results reinforce
the inference that the SM100 sensor is more robust (due to its superior performance in a field soil)
compared to the SMEC300 sensor.

(a) SMEC300 (b) SM100

(c) YL100 (d) YL69

Figure 4. Calibration of capacitive sensors (a) SMEC300 and (b) SM100, and resistive sensors (c) YL100
and (d) YL69, in repacked soil using piecewise linear equations. The raw values correspond to either
the raw readings from the Spectrum’s FieldScout reader (for capacitive sensors), or the raw outputs
generated using the Arduino setup developed in-house (for resistive sensors). The coefficient of
determination, R2, for each soil, is illustrated adjacent to the corresponding line.

Understandably, the resistive sensors did not perform as well as the capacitive sensors. However,
considering the fact that they were very-low cost sensors, the average performances of both the YL100
(average R2 = 0.81) and the YL69 sensors (average R2 = 0.76) were notable. Though a literature-based
comparison to previous calibrations of low-cost resistive sensors was not possible, it emerged that the
YL69 sensor performed reasonably well for sands (average R2 = 0.89) and the YL100 performed well
for silty-loam soils (average R2 = 0.85).

Considering the extent to which the calibration equations could explain the variation in the
measured data (through the R2), the order of performance was SM100 > SMEC300 > YL100 > YL69.
This is identical to the order of performance based on the Spearman’s rank correlation (rs). These results
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are encouraging as all the sensors perform well compared to the results reported in the literature,
where applicable.

3.1.3. Comparison of Manufacturer and In-House Calibration Equations: Capacitive Sensors

Figure 5 compares the performance of the calibration equations developed in-house during the
study and provided by the manufacturer, for the capacitance sensors (calibration equation were not
available for the very low-cost resistive sensors). Additionally, Table 8 compares accuracy measures
MAE, RMSE and RAE for manufacturer’s and in-house calibration equations for the four soils.
The manufacturer calibration equations for the capacitance sensors were made available from Spectrum
Technologies, Inc. (D. Kieffer, personal communication, 5 September 2018). The number of SMEC300
and SM100 sensors used for this experiment are six and five, respectively.

(a) SMEC300 sensor (n = 6)

(b) SM100 sensor (n = 5)

Figure 5. Comparison of manufacturer and in-house calibration equations for capacitive sensors
(a) SMEC300 and (b) SM100 for the four different experimental soils.

From Figure 5, it was observed that for both the sensors, the manufacturer’s equations had
a tendency to underpredict the actual VWC (θ), with the exception of Soil 3 (ungraded silty-loam
soil) at higher VWC (θ) values. Sensor accuracy increased substantially, overall as well as in each
soil, after soil specific calibration equations were developed. From Table 8, it could be inferred that
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the sensor accuracy without calibration, for both the capacitive sensors, was lower than the accuracy
specified by the manufacturer, 3% (for both SMEC300 [37] and SM100 [36]). This observation was in
line with the claim that it is “optimistic” to expect such levels of accuracy for many EM sensors [67].
After soil specific calibrations, there were substantial improvements in sensor accuracy. The MAE
(and RMSE) of the calibrated SMEC300 and SM100 sensors were 2.12% and 1.67% (2.88% and 2.36%)
respectively, which were better than the manufacturer reported accuracy values.

It was hence evident that more effective overall performance can be ensured with soil-specific
calibration equation development and installation based on the soil texture established in the field,
which supports the previous literature [2]. This performance enhancement would ideally compensate
for the resources (financial, human) incurred in the exercise.

3.2. Performance Measures for the Sensors

Figure 6 illustrates the accuracy (σe f f ) and precision (sr,p) of the tested sensors together in a bubble
plot in a 2-D Euclidean space. Although the primary accuracy (σprimary) evaluates sensor performance
with actual VWC values (θ), secondary accuracy (σsecondary) compares the sensor to the ThetaProbe,
which was considered as the secondary standard due to its superior measurement technique [44].
The relevant performance indicators for effective accuracy (σe f f ), component accuracies (σprimary and
σsecondary) and precision (sr,p) are described in Table 5.

Figure 6. Accuracy (primary and secondary) and precision of different soil moisture sensors (SMEC300,
SM100, YL69, YL100), in 4 different soils (corresponding to four quadrants). Overall accuracy,
σe f f (Table 5), is the Euclidean distance of the bubble cross-hairs from the origin. The closer the
bubble is to the origin, the more accurate the sensor is. Precision is indicated by the size of the bubbles
(radius = 100× sr,p); the smaller the bubble, the more precise the sensor. ‘n’ is the number of sensor
units per sensor used in the experiment.

Each accuracy component is represented by the distance from the origin to the cross-hair centers
of the bubbles in the respective directions (σprimary along the X-axis and σsecondary along the Y-axis).
Therefore, the effective accuracy (σe f f ) can be described as the Euclidean distance of the cross-hair
centers of the bubbles (i.e. the closer the bubble center from the origin, the more accurate the sensor is).
As the σsecondary = 0 for the ThetaProbe as it is computed with respect to itself, σe f f = σprimary and its
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accuracy is defined only by the distance of the cross-hairs along the X-axis direction. The performance
of all the sensors in each soil is represented in different quadrants (i.e. each soil has a corresponding
quadrant, labeled in the figure). Precision is represented by the radius of the bubble graphs, which are
proportional to sr,p; radius = 100× sr,p). Therefore, the bubbles with smaller radii are more precise in
their VWC estimates (θ̂).

3.2.1. Sensor Accuracy

An analysis of metrics related to accuracy revealed the order of performance as SM100 >

SMEC300 > YL100 > YL69, which was identical to the results in Section 3.1.2. The metrics included
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the primary Relative Absolute
Error (σprimary values, reported in Table 8). As shown in Figure 6, the effective accuracy (σe f f ) computed
after including the secondary standard sensor measurements, gave rise to a slightly different order of
performance, i.e., SM100 > SMEC300 > YL69 & YL100. The capacitive sensors outperformed
the resistive sensors by a factor of 2 on average (MAEcapacitive = 1.90%, MAEresistive = 3.82%;
RMSEcapacitive = 2.62%, RMSEresistive = 5.38%; RAEcapacitive or σcapacitive,primary = 0.25, RAEresistive or
σresistive,primary = 0.39).

Both capacitive sensors had accuracy measures comparable to the previous literature pertaining
to low-cost capacitive sensors, in terms of MAE and RMSE [33,66]. In terms of RAE, the SMEC300
sensor was accurate across all soils (average σe f f = 0.47, Standard Error SEσe f f = 0.07) barring Soil 3,
in which the σe f f reduced to 0.69. The SM100 was also accurate across all the soil types (average σe f f =
0.43 with a lower SEσe f f of 0.03). Comparatively, the SM100 sensor outperformed the SMEC300 sensor
in terms of overall effective accuracy (σe f f ), but largely due to the substantially better performance in
Soil 3, supporting the results in Section 3.1.2. The SMEC300 was more accurate than the SM100 in both
the sands and in Soil 4.

The MAE and RMSE values of the resistive sensors could not be compared with the existing
literature on resistive sensors, but were poorer than the specified accuracy values (3%) of most EM
sensors [67]. In terms of RAE, their accuracy values were enhanced by 56% (average σprimary = 0.39,
varying between 0.32 and 0.48) when only primary accuracies were considered, which implied that
they were able to capture variations in actual VWC better than the variations taking into account the
secondary standard VWC. Comparatively, though the overall accuracies of both the resistive sensors
across all the soils were similar, it could be remarked that each sensor complemented the other’s
performance in a particular soil texture category. YL100 performed better in silty-loam soils while
YL69 performed better in sandy soils.

Overall, it can be remarked that the low-cost sensors, when calibrated, could match (or exceed)
the accuracy performance of the secondary standard sensor. YL100 was ~10% less accurate than the
secondary standard ThetaProbe in terms of MAE, while its RMSE, and both MAE and RMSE values
of YL69 were poorer when compared to the ThetaProbe.
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Table 8. Accuracy performance indicators of the tested sensors, with in-house calibration and manufacturer calibration (applicable only to capacitive sensors):
Mean Absolute Error (MAE, in % VWC), Root Mean Squared Error (RMSE, in % VWC), and Relative Absolute Error (RAE or σprimary, dimensionless). The same
performance indicators are provided for the secondary standard sensor (for which no calibration equations were developed).

Low-Cost Capacitive Sensors Very Low-Cost Resistive Sensors Secondary Standard

SMEC300 SM100 YL100 YL69 ThetaProbe

Manufacturer Calibration In-house Calibration Manufacturer Calibration In-house Calibration In-house Calibration In-house Calibration Manufacturer Calibration
MAE RMSE RAE MAE RMSE RAE MAE RMSE RAE MAE RMSE RAE MAE RMSE RAE MAE RMSE RAE MAE RMSE RAE

σprimary σprimary σprimary σprimary σprimary σprimary σprimary

Soil 1 9.63 11.76 1.01 2.28 3.34 0.24 8.17 10.22 0.84 2.27 2.97 0.23 4.31 5.88 0.47 2.58 3.53 0.28 3.79 4.84 0.40
Soil 2 7.13 8.63 0.89 0.96 1.39 0.12 6.75 8.23 0.87 1.12 1.63 0.14 3.42 4.54 0.35 2.95 3.90 0.29 2.88 4.46 0.34
Soil 3 7.17 9.99 1.00 3.33 4.20 0.47 5.82 7.74 0.80 1.54 2.55 0.21 3.41 5.99 0.35 6.38 8.09 0.61 2.98 4.29 0.39
Soil 4 6.44 7.90 0.96 1.90 2.61 0.28 4.18 5.27 0.63 1.74 2.27 0.26 2.90 4.45 0.31 4.60 6.65 0.46 3.07 4.23 0.42

Average 7.59 9.57 0.97 2.12 2.88 0.28 6.23 7.86 0.78 1.67 2.36 0.21 3.51 5.21 0.37 4.13 5.54 0.41 3.18 4.45 0.39
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3.2.2. Sensor Precision

The precision performance of each sensor across all four tested soils, along with the performance
of the secondary standard sensor, is given in Table 9. The order of overall precision (averaged across all
soils) nearly followed the order of the cost of the sensors, i.e., SMEC300 > SM100 > YL69 > YL100
with the ThetaProbe being the most precise (as well as expensive) sensor (sr,p = 0.31). Capacitive
sensors were about twice as precise as the resistive sensors (sr,p(resistive) = 0.79, sr,p(capacitive) = 0.37).
Additionally, the lowest precision achieved by the capacitive sensors was only 18% poorer than the
precision of the ThetaProbe.

Table 9. Comparison of precision performance of the tested sensors, based on pooled relative standard
deviation, sr,p (% VWC). In-house calibration equations were used for the capacitive and resistive
sensors, and Manufacturer calibration was used for the secondary standard sensor (for which no
calibration equations were developed).

Low-Cost Very Low-Cost Secondary
Capacitive Sensors Resistive Sensors Standard

SMEC300 SM100 YL100 YL69 ThetaProbe

Soil 1 0.51 0.55 1.11 0.81 0.47
Soil 2 0.05 0.44 1.13 0.63 0.30
Soil 3 0.48 0.30 0.74 0.40 0.24
Soil 4 0.28 0.35 0.78 0.72 0.24

Average 0.33 0.41 0.94 0.64 0.31

Both the capacitive sensors had a consistently high precision across all soils. The SMEC300 had
a higher precision overall than the SM100 and also across all soils barring Soil 3. However, the SM100
was more consistent in terms of its precision performance across the different soils (SDsr,p,SM100 =
0.11) when compared to SMEC300 (SDsr,p,SMEC300 = 0.21). The SMEC300 sensor was reasonably precise
compared to the ThetaProbe in Soils 1, 2, and 4, and even exceeded the ThetaProbe performance in Soil
2 (in which it had a very high precision of sr,p = 0.05). It was more precise in the soils with the finer
grained soils within the two categories (Soil 2 and Soil 4 in the sandy and silty-loam soils, respectively),
which was an indicator of the need for better packing around the sensing material during installation.
The SM100 sensor also had comparable precision performance vis-à-vis the ThetaProbe (it performed
within 31.2% of the ThetaProbe on average). Its performance increased with better packing in the
sandy soils (Soil 2 is 20% more precise than Soil 1), but it performed well in both the silty-loams,
with its performance being more precise in the ungraded silty-loam field Soil 3 than that in Soil 4 by
16.7%. The consistent precision performance of SM100 across soils in general and in the field Soil 3 in
particular suggests that SM100 is a robust and field ready sensor.

Both the resistive sensors were reasonably imprecise compared to the ThetaProbe. The YL69
sensor was a more precise sensor compared to YL100, both overall and also in each soil. YL69 was
almost as precise as the capacitive sensors in Soil 3. This was also an encouraging result for field
application. Otherwise, the YL69 is within 85.8% and 58.9% of the performance of the capacitive
sensors in sandy and silt-loam soils, respectively. YL100 also had better performance (by 32.1%) in
silt-loam soils compared to the sandy soils, but was equally imprecise in both the sands and silty-loam
soils. It was quite imprecise compared to the ThetaProbe (3 times as imprecise) as well as the capacitive
sensors (2.54 times as imprecise).

3.3. Sensor Sensitivity

3.3.1. Temperature Sensitivity

The subfigures of Figure 7 show the results of the temperature sensitivity experiments conducted
for all sensors in Soil 4 for two different values of actual VWC (θ), depicted by the dashed and solid
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horizontal lines. The hollow circles and filled squares represent the average VWC estimated by each
sensor (based on the corresponding calibration equations in Table A3) along with their respective
standard errors. The temperature variation is plotted for each sensor on the X-axis. The SMEC300,
SM100, YL69 and YL100 sensors had, on average, 6, 211, 276, and 276 data points, respectively,
for each VWC-temperature combination. The data from SM100, YL100 and YL69 sensors were
automatically read using open source Arduino (https://www.arduino.cc/) electronics while the
hand-held FieldScout soil sensor reader was used for SMEC300 readings. The lower number of
readings for the SMEC300 was a result of the effort to minimize the number of times the incubator
door was opened, to consequently lower the variation in the incubator temperature.

(a) SMEC300 capacitive sensor (b) SM100 capacitive sensor

(c) YL100 resistive sensor (d) YL69 resistive sensor

Figure 7. Temperature sensitivity of estimated VWC for different sensors: (a) capacitive SMEC300,
(b) capacitive SM100, (c) resistive YL100, and (d) resistive YL69. The horizontal lines represent the
actual VWC according to the legend. The hollow circular and solid square markers, along with their
error bars, represent the average and standard deviations of the calibrated/estimated sensor readings
corresponding to the fixed lower and higher actual VWC values, respectively. Positive temperature
effects are seen to different extents in all sensors, with the resistive sensors’ performance being limited
by relatively lower accuracy and precision.

The capacitive sensors showed a positive temperature effect (larger temperature leading to
a higher estimated VWC), which is characteristic of capacitance sensors in soils with fine textures due
to the release of bound water from clay minerals at higher temperatures [2]. The SMEC300 sensor

https://www.arduino.cc/
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followed the positive temperature effect at the lower actual VWC of 9.36%, with an overall average
estimated VWC change of 9.34% responding to a 36.8 ◦C temperature increase. However, though the
temperature effect was not visible at the higher actual VWC of 21.39%. This is justified through the
corresponding fitted calibration curve (Soil 4; indicated in dark brown in Figure 4a and Table A3) which
flattens out at higher raw values (> 1525), and subsequently limits the increase in estimated VWC as
a consequence of increasing raw values. Therefore, the positive temperature effect not being visible
at the higher actual VWC value is due to the calibration curve and not the physical changes in the
measurement. Similarly, the SM100 sensor followed an expected positive temperature effect, for both
the levels of actual VWC. At the actual VWC values of 7.63% and 18.38%, respectively, an increase of
30 ◦C resulted in an increase of estimated VWC by 7% and 2.99%, respectively. The results suggest
that the temperature response of the capacitive sensors SMEC300 and SM100 could be predicted and
consequently corrected.

The resistive sensors responded in dissimilar manners to the change in temperature at different
actual VWC conditions. The YL100 sensor showed a temperature effect which was seen across larger
temperature ranges, but there was a relatively large amount of variability which was seen at smaller
temperature differences. Since this variability in measurements dominated the temperature sensitivity,
characterizing the temperature sensitivity was difficult in the case of YL100. The YL69 sensor responded
with a positive temperature effect, which was less pronounced in the lower actual VWC compared to
the higher actual VWC. The YL69 under-estimated the lower value of the actual VWC (7.32%) for all
the temperatures. Though this was due to its low accuracy compared to the capacitive sensors and the
resultant calibration equation, which underpredicted the actual lower VWC, there was actually a small
increase of the estimated VWC by 0.36% over 30 ◦C. The sensor response to the higher actual VWC (of
17.89%) was substantially closer to what was expected, with a positive temperature effect translating
to a rise in 9.33% over the same 30 ◦C rise in temperature. If the calibration equation was not used,
the positive temperature effects were more clearly seen, with increases of 11.03 and 284.98 in the raw
values corresponding to actual VWC values of 7.32% and 17.89%, over the same rise in temperatures.
The overall behavior implied that notwithstanding the lower accuracy performance, the temperature
response of the YL69 sensor was reasonable and would hence be possible to correct.

3.3.2. Salinity Sensitivity

Figure 8 plots the calibrated VWC (based on the equations developed in Section 3.1.2, listed in
Table A3) and the actual VWC with changing salinity in water. The corresponding EC values were
1.70, 3.02, 6.32, and 9.69 mS/cm, represented by circular, triangular, square, and pentagonal shapes,
respectively.

Based on the coefficients of determination (R2 values), the order of performance was SM100 >

SMEC300 > YL69 > YL100, i.e., SM100 results were least sensitive to changes in salinity.
The corresponding R2 values were 0.85, 0.79, 0.63 and 0.13, respectively. These results are encouraging
as the SM100 sensor, despite being the relatively less-expensive capacitive sensor, outperformed
the more expensive SMEC300 by 7.6%, and the very low-cost resistive YL69 was only 20.5% less
effective compared to the performance of the SMEC300 in response to salinity variations. However,
YL100 was almost completely unable to capture any variation, and estimates more or less the same
value (SD = 0.57%) irrespective of the actual VWC or the EC of the added water. Additionally,
the bulk soil EC values measured by the SMEC300 sensors (median values based on the manufacturer
calibration) are plotted in Figure 8e. As expected, an increase in the EC of the added water led to an
increase in the bulk soil EC measured by SMEC300. The best-fit which minimized SSR was significantly
linear (at α = 5%) and had an R2 = 0.92.

However, these results were inferred from an experiment with the sandy Soil 2, and further testing
would be necessary to extend the results for each of these sensors to more generalized applications.
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(a) SMEC300 capacitive sensor (b) SM100 capacitive sensor

(c) YL100 resistive sensor (d) YL69 resistive sensor

(e) SMEC300 bulk soil EC measurement

Figure 8. Effect of water of different electrical conductivity (EC) values on VWC measured (θ̂i) by
different sensors: (a) capacitive SMEC300, (b) capacitive SM100, (c) resistive YL100, and (d) resistive
YL69. (e) shows the relationship between the median values of the bulk soil EC measured by SMEC300
and the EC of water (with the corresponding best-fit line).
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3.4. Further Discussion

The drawbacks of the experiment included and were not limited to experimental and human
errors, as well as the choice of piecewise linear calibration functions. Further, the possibilities to
represent more natural variability (by incorporating more soils), and introducing the packing density
as an experimental variable (which has shown to have an impact in similar experiments [24]) were not
integrated due to resource constraints. Moreover, it was assumed that a laboratory characterization is
an essential precursor to field trials and experiments, especially since such a laboratory study involving
these particular sensors had not been conducted earlier. Another aspect which was not tested, either in
the laboratory or field conditions, was the durability of the sensors.

Having quantified the operations of these sensors, a case can be developed, within the larger
framework of low-cost technological tools in agricultural water management, to propose the use of
such sensors based on an understanding of the required precision of the problem as well as harness the
complementary strengths of the sensors in different aspects of performance. For example, within the
resistive sensors, there was a differentiation among the sensors in accuracy estimates across the grain
size of the soils (YL69 and YL100 respectively outperformed the other resistive sensor in coarser and
finer grained soils respectively). Such a characterization is valuable in choosing the correct sensor for
a particular application case.

The efficiency of soil moisture based irrigation scheduling systems is dependent strongly on the
sensor accuracy, with 3% errors in soil moisture sensors possibly leading to ‘critical’ effects on irrigation
efficiency [67]. Therefore, although the capacitive sensors tested in this study had accuracy levels
(<2% VWC on average) possibly leading to ‘limited’ effects on irrigation efficiency, using resistive
sensors independently (with an accuracy of <4% VWC on average) could have potentially critical
effects. The actual effect of these sensors on irrigation water use efficiency can be determined with
comprehensive field experiments.

Field scale soil moisture distribution exhibits high spatial and temporal variability [68]. Instead of
a sparse network of capacitive sensors, a dense network combining capacitive and resistive sensors
could help better characterize the spatiotemporal variability of soil moisture, which may potentially
improve irrigation management. Such a characterization using a combination of low- and very-low
cost soil moisture sensors has not been attempted, as per the knowledge of the authors.

4. Summary and Conclusions

Four soil moisture sensors, i.e., two low-cost capacitive sensors (SMEC300 and SM100) and
two very low-cost resistive sensors (YL100 and YL69), were tested in laboratory conditions to
characterize their performance for application in low-cost irrigation management. Based on the
literature, five research questions were developed and addressed with specific laboratory experiments.
Piecewise linear calibration equations were developed for each sensor in four different repacked
soils to explain the relationship between sensor measurements and actual VWC values. In the case
of the capacitive sensors, the manufacturer-provided calibration equations were compared with
the calibration equations developed in-house in terms of accuracy measures. Such a comparative
analysis could not be performed for the resistive sensors due to the unavailability of manufacturer
calibration equations. An evaluation of sensor accuracy and precision was conducted for all the studied
sensors in all the tested soils and a novel approach to visually represent the combined performance
characteristics is proposed. The sensitivities of the sensors were evaluated for temperature and
salinity ranges commonly encountered in field conditions. Additionally, only for the capacitance-based
sensors, the performance of the sensors was tested in fluids of known dielectric permittivity (εr).
The impedance-based ThetaProbe sensor was used as the secondary standard to contextualize the
performance of the tested sensors in some of the experiments.

The overall value for money of the sensors is reflected in their precision performance,
i.e., the precision performance, on average, of the sensors followed the order of SMEC300 > SM100 >
YL69 > YL100, which was almost the same as that of sensor costs, particularly considering that the
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ThetaProbe sensor was highest in precision. The accuracy of the sensors, on average, followed the
order of SM100 > SMEC300 > YL100 > YL69.

It was found that the low-cost capacitive sensors, with soil-specific calibration, can match the
performance of the secondary standard and could possibly be used for irrigation management with
‘limited’ effects on irrigation efficiency (in the context of accuracy). Among the two capacitive sensors,
the less-expensive SM100 sensor can be inferred as a more robust and field ready low-cost soil moisture
sensor. This is due to its strong performance in fluids (which is a proxy to its measurement technique),
consistent precision across soils, accurate performance particularly in the field soil, and reasonable
sensitivity to variations in temperature and salinity conditions. The SMEC300 sensor was accurate
(except in field silty-loam soil), more precise than the SM100 sensor, and was reasonable in its response
to temperature and salinity variations. With its additional capabilities of measuring temperature
and electrical conductivity (the results of which have been purposely left out in lieu of being out of
the framework of soil ‘moisture’ sensor comparison), it also presents itself as a useful multipurpose
low-cost sensor.

The resistive sensors perform well considering their price category. Both the sensors are less
precise and less accurate than the capacitive sensors. The YL100 has limited accuracy and precision,
particularly when operating in temperature sensitive conditions, and fails in varying salinity conditions.
The YL69 sensor, on average, is as accurate but more precise than the YL100, and is additionally able
to operate with expected response to variability in temperature and salinity (comparable even to the
capacitive sensors), establishing it as a robust, very low-cost soil moisture sensor. Though neither of the
resistive sensors can be recommended as a standalone soil moisture sensor for irrigation management
solutions (due to their limited accuracy), they may be used in combination with more accurate soil
moisture sensors to better characterize the spatiotemporal variability of field scale soil moisture.

Despite the limitations of the current experiments and having acknowledged the need for
more comprehensive investigation (including field experiments), this study, which describes the
laboratory performance evaluation and characterization of low and very low-cost soil moisture sensors,
is a precondition for the realization of tangible progress within the larger framework of improving
low-cost data-driven agricultural water management solutions.
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Abbreviations

The following abbreviations are used in this manuscript:

A/D Analog-to-Digital value
EC Electrical Conductivity
EM Electromagnetic
FDR Frequency Domain Reflectometry
IS Indian Standard
LS Least Squares (estimate)
MAE Mean Absolute Error
RAE Relative Absolute Error
RMSE Root Mean Square Error
SD Standard Deviation
SSR Sum of Squared Residuals
TDR Time Domain Reflectometry
VWC Volumetric Water Content
WSN Wireless Sensor Network

Appendix A

Table A1. Publications relevant to sensor calibration studies.

Publication Sensor Name (Company Name) Sensor Type Soils Used Calibration Curve Details

Paltineanu and Starr
(1997) [55]

Multisensor Capacitance probe:
MCAP (Enviroscan) Capacitance sensor

Mattaplex silt loam (fine-silty,
mixed, mesic, Aquic
Hapludult)

Scaled frequency

Baumhardt et al.
(2000) [69]

Multisensor Capacitance probe:
MCAP (Enviroscan) Capacitance sensor 2 soil materials: Surface and

calcic horizons of an Olton soil Scaled frequency

Czarnomski et al.
(2005) [35]

ECH2O (Decagon), CT 1502C
(Tektronix Inc.), WCR CS615
Campbell Scientific)

Capacitance sensors
Alluvial soils of volcanic
origin (sandy loam to sandy
clay loam)

Linear (for capacitance
sensor)

Sakaki et al. (2008)
[70] ECH2O (Decagon) Capacitance sensor 4 sands Linear, quadratic, 2-point

alpha mixing model

Kargas and Soulis
(2012) [2] 10HS (Decagon Devices) Capacitance sensor Liquids and porous media of

known dielectric permittivity 2-point calibration equation

Matula et al. (2016)
[24]

ThetaProbe ML2x (Delta-T
Devices Ltd.), ECH2O EC10
(Decagon), ECH2O EC 20
(Decagon), ECH2O EC5
(Decagon), ECH2O TE (Decagon)

Impedance sensors,
FDR sensors Silica sand and loess

Comparison between
manufacturer and
developed linear
calibration equations

Kargas and Soulis
(2019) [49] CS655 (Campbell Scientific) Water Content

Reflectometer

Liquids of known dielectric
permittivity and 10 soils (sand,
sandy-loam, sandy-clay-loam,
loam, clay-loam, clay)

2-point, multi-point
calibration equations;
calibration equation for
non-conductive soils using
Kelleners’ method [71]

González-Teruel et al.
(2019) [33]

Self-developed soil moisture
sensor with SDI-12
communication

Capacitance based 3 soils (clay-loams and sand) Exponential equations

Table A2. Publications relevant to sensor testing studies.

Category Relevant publications

Sensor accuracy Czarnomski et al. (2005) [35], Kargas and Soulis (2012) [2], González-Teruel et al. (2019) [33]

Sensor precision Czarnomski et al. (2005) [35]

Sensor-to-sensor
variability

Sakaki et al. (2008) [70], Rosenbaum et al. (2010) [72], Kargas and Soulis (2012) [2],
Bogena et al. (2017) [3], González-Teruel et al. (2019) [33]

Temperature effects
Paltineanu and Starr (1997) [55], Baumhardt et al. (2000) [69], Czarnomski (2005) [35],
Chanzy (2012) [58], Kargas and Soulis (2012) [2], Fares et al. (2016) [73], Bello et al. (2019)
[56], Szypłowska et al. (2019) [57], Zhu et al. (2019) [74]

Salinity effects Baumhardt et al. (2000) [69], Kargas and Soulis (2012) [2], Matula et al. (2016) [24], Kargas
and Soulis (2019) [49]

Volume of
influence/sensitivity Paltineanu and Starr (1997) [55], Sakaki et al. (2008) [70], Sun et al. (2012) [75]
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Table A3. Coefficients of the calibration equations for repacked soil samples, of the form indicated
in Equation (1). The segment limits indicate the [lower, upper] limits of the fitted piecewise
linear segments.

Sensor Name Soil Type Equation Characteristics Segment 1 Segment 2

SMEC300

Soil-1
Segment limits [1135, 1280) [1280, 1792)
Slope (β1) 0.13 0.03
Intercept (β0) −152.65 −23.21

Soil-2
Segment limits [1200, 1451) 1451, 1707)
Slope (β1) 0.07 0.04
Intercept (β0) −85.91 −34.23

Soil-3
Segment limits [1231, 1402) [1402, 1899)
Slope (β1) 0.08 0.02
Intercept (β0) −94.19 −19.71

Soil-4
Segment limits [1275, 1525) [1525, 1685)
Slope (β1) 0.09 0.00
Intercept (β0) −112.50 23.58

SM100

Soil-1
Segment limits [1200, 1238) [1238, 1812)
Slope (β1) 0.25 0.04
Intercept (β0) −303.95 −42.88

Soil-2
Segment limits [1200, 1464) [1464, 1728)
Slope (β1) 0.07 0.03
Intercept (β0) −87.61 −32.15

Soil-3
Segment limits [1263, 1578) [1578, 1895)
Slope (β1) 0.06 0.02
Intercept (β0) −78.57 −14.80

Soil-4
Segment limits [1319, 1630) [1630, 1833)
Slope (β1) 0.06 0.01
Intercept (β0) −81.29 −3.56

YL100

Soil-1
Segment limits [2, 467.5) [467.5, 763)
Slope (β1) 0.04 0.03
Intercept (β0) −0.80 5.01

Soil-2
Segment limits [6, 615.5) [615.5, 826)
Slope (β1) 0.03 0.09
Intercept (β0) −0.81 −32.32

Soil-3
Segment limits [5, 333.5) [333.5, 709)
Slope (β1) 0.02 0.08
Intercept (β0) −0.17 −20.81

Soil-4
Segment limits [6, 418.5) [418.5, 705)
Slope (β1) 0.02 0.07
Intercept (β0) −1.08 −21.08

YL69

Soil-1
Segment limits [11, 134) [134, 724)
Slope (β1) 0.07 0.04
Intercept (β0) −1.35 3.24

Soil-2
Segment limits [7, 722]
Slope (β1) 0.05
Intercept (β0) −0.87

Soil-3
Segment limits [18, 838]
Slope (β1) 0.03
Intercept (β0) 1.48

Soil-4
Segment limits [14, 824)
Slope (β1) 0.03
Intercept (β0) −0.71



Sensors 2020, 20, 363 24 of 27

References

1. Gardner, W.H. Water Content. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 2nd ed.;
Klute, A., Ed.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986;
493–544.

2. Kargas, G.; Soulis, K.X. Performance analysis and calibration of a new low-cost capacitance soil moisture
sensor. J. Irrig. Drain. Eng. 2012, 138, 632–641. [CrossRef]

3. Bogena, H.R.; Huisman, J.A.; Schilling, B.; Weuthen, A.; Vereecken, H. Effective calibration of low-cost soil
water content sensors. Sensors 2017, 17, 208. [CrossRef]

4. Hübner, C.; Cardell-Oliver, R.; Becker, R.; Spohrer, K.; Jotter, K.; Wagenknecht, T. Wireless soil moisture sensor
networks for environmental monitoring and vineyard irrigation. In Proceedings of the 8th International
Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA 2009), Helsinki,
Finland, 1–5 June 2009; pp. 408–415.

5. Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Larson, K.M.;
Njoku, E.G.; Small, E.E.; et al. State of the art in large-scale soil moisture monitoring. Soil Sci. Soc. Am. J.
2013, 77, 1888–1919. [CrossRef]

6. Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.;
Wendroth, O. Soil moisture measurement for ecological and hydrological watershed-scale observatories:
A review. Vadose Zone J. 2008, 7, 358–389. [CrossRef]

7. Yu, X.Q.; Wu, P.T.; Han, W.T.; Zhang, Z.L. A survey on wireless sensor network infrastructure for agriculture.
Comput. Stand. Inter. 2013, 35, 59–64. [CrossRef]

8. Zhang, D.J.; Zhou, G.Q. Estimation of soil moisture from optical and thermal remote sensing: A review.
Sensors 2016, 46, 1308. [CrossRef]

9. Greacen, E.L. Soil Water Assessment by the Neutron Method; Commonwealth Science Industrial Research
Organization: Melbourne, Australia, 1981.

10. Topp, G.C.; Davis, J. L.; Annan, A. P. Electromagnetic determination of soil water content: Measurements in
coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [CrossRef]

11. Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A review of advances in dielectric and
electrical conductivity measurements in soils using time domain reflectometry. Vadose Zone J. 2003, 2,
444–475. [CrossRef]

12. Blonquist, J.M.; Jones, S.B.; Robinson, D.A. Standardizing characterization of electromagnetic water content
sensors: Part 2. Evaluation of seven sensing systems. Vadose Zone J. 2005, 4, 1059–1069. [CrossRef]

13. Fares, A.; Polyakov, V. Advances in Crop Water Management Using Capacitive Water Sensors; Sparks, D., Ed.;
Elsevier Science: New York, NY, USA, 2006; pp. 43–77.

14. Kojima, Y.; Shigeta, R.; Miyamoto, N.; Shirahama, Y.; Nishioka, K.; Mizoguchi, M.; Kawahara, Y. Low-cost
soil moisture profile probe using thin-film capacitors and a capacitive touch sensor. Sensors 2016, 16, 1292.
[CrossRef] [PubMed]

15. Ojo, E.R.; Bullock, P. R.; L’Heureux, J.; Powers, J.; McNairn, H.; Pacheco, A. Calibration and evaluation of
a frequency domain reflectometry sensor for real-time soil moisture monitoring. Vadose Zone J. 2015, 14,
574–582. [CrossRef]

16. Gaskin, G.J.; Miller, J.D. Measurement of soil water content using a simplified impedance measuring
technique. J. Agric. Eng. Res. 1996, 63, 153–159. [CrossRef]

17. Noborio, K.; McInnes, K.J.; Heilman, J.L. Field measurements of soil electrical conductivity and water content
by time-domain reflectometry. Comput. Electron. Agric. 1994, 11, 131–142. [CrossRef]

18. Seyfried, M.S.; Murdock, M.D. Measurement of soil water content with a 50-MHz soil dielectric sensor.
Soil Sci. Soc. Am. J. 2004, 68, 394–403. [CrossRef]

19. Dean, T.J.; Bell, J.P.; Baty, A.J.B. Soil moisture measurement by an improved capacitance technique, Part I.
Sensor design and performance. J. Hydrol. 1987, 93, 67–78. [CrossRef]

20. Rijsberman, F. Can development of water resources reduce poverty? Water Policy 2003, 5, 399–412. [CrossRef]
21. Srbinovska, M.; Gavrovski, C.; Dimcev, V.; Krkoleva, A.; Borozan, V. Environmental parameters monitoring

in precision agriculture using wireless sensor networks. J. Clean. Prod. 22015, 88, 297–307. [CrossRef]
22. Pande, S.; Savenije, H.H. A socio-hydrological model for smallholder farmers in Maharashtra, India.

Water Resour. Res. 2016, 52, 1923–1947. [CrossRef]

http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000449
http://dx.doi.org/10.3390/s17010208
http://dx.doi.org/10.2136/sssaj2013.03.0093
http://dx.doi.org/10.2136/vzj2007.0143
http://dx.doi.org/10.1016/j.csi.2012.05.001
http://dx.doi.org/10.3390/s16081308
http://dx.doi.org/10.1029/WR016i003p00574
http://dx.doi.org/10.2136/vzj2003.4440
http://dx.doi.org/10.2136/vzj2004.0141
http://dx.doi.org/10.3390/s16081292
http://www.ncbi.nlm.nih.gov/pubmed/27537881
http://dx.doi.org/10.2136/vzj2014.08.0114
http://dx.doi.org/10.1006/jaer.1996.0017
http://dx.doi.org/10.1016/0168-1699(94)90003-5
http://dx.doi.org/10.2136/sssaj2004.3940
http://dx.doi.org/10.1016/0022-1694(87)90194-6
http://dx.doi.org/10.2166/wp.2003.0025
http://dx.doi.org/10.1016/j.jclepro.2014.04.036
http://dx.doi.org/10.1002/2015WR017841


Sensors 2020, 20, 363 25 of 27

23. Den Besten, N. The socio-hydrology of smallholders in Marathwada, Maharashtra state (India). Master’s
Thesis, Delft University of Technology, Delft, The Netherlands, 26 August 2016.

24. Matula, S.; Bát’ková, K.; Legese, W.L. Laboratory performance of five selected soil moisture sensors applying
factory and own calibration equations for two soil media of different bulk density and salinity levels. Sensors
2016, 16, 1912. [CrossRef]

25. Cosh, M.H.; Ochsner, T.E.; McKee, L.; Dong, J.N.; Basara, J.B.; Evett, S.R.; Hatch, C.E.; Small, E.E.;
Steele-Dunne, S.C.; Zreda, M.; Sayde, C. The soil moisture active passive marena, oklahoma, in situ sensor
testbed (smap-moisst): Testbed design and evaluation of in situ sensors. Vadose Zone J. 2016, 15. [CrossRef]

26. Baatz, R.; Bogena, H.R.; Franssen, H.J.H.; Huisman, J.A.; Montzka, C.; Vereecken, H. An empirical vegetation
correction for soil water content quantification using cosmic ray probes. Water Resour. Res. 2015, 51,
2030–2046. [CrossRef]

27. Bogena, H.R.; Bol, R.; Borchard, N.; Bruggemann, N.; Diekkruger, B.; Drue, C.; Groh, J.; Gottselig, N.;
Huisman, J.A.; Lucke, A.; et al. A terrestrial observatory approach to the integrated investigation of the
effects of deforestation on water, energy, and matter fluxes. Sci. China Earth Sci. 2015, 58, 61–75. [CrossRef]

28. Qu, W.; Bogena, H.R.; Huisman, J.A.; Martinez, G.; Pachepsky, Y.A.; Vereecken, H. Effects of soil hydraulic
properties on the spatial variability of soil water content: Evidence from sensor network data and inverse.
Vadose Zone J. 2014, 13. [CrossRef]

29. Qu, W.; Bogena, H.R.; Huisman, J.A.; Vanderborght, J.; Schuh, M.; Priesack, E.; Vereecken, H. Predicting
subgrid variability of soil water content from basic soil information. Geophys. Res. Lett. 2015, 42, 789–796.
[CrossRef]

30. McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future directions of precision agriculture. Precis. Agric. 2005,
6, 7–23. [CrossRef]

31. Martini, E.; Wollschlager, U.; Kogler, S.; Behrens, T.; Dietrich, P.; Reinstorf, F.; Schmidt, K.; Weiler,
M.; Werban, U.; Zacharias, S. Spatial and temporal dynamics of hillslope-scale soil moisture patterns:
Characteristic states and transition mechanisms. Vadose Zone J. 2015, 14. [CrossRef]

32. Qu, W.; Bogena, H. R.; Huisman, J.A.; Vereecken, H. Calibration of a novel low-cost soil water content sensor
based on a ring oscillator. Vadose Zone J. 2013, 12. [CrossRef]

33. Gonzáez-Teruel, J.D.; Torres-Sánchez, R.; Blaya-Ros, P. J.; Toledo-Moreo, A.B.; Jiménez-Buendía, M.;
Soto-Valles, F. Design and Calibration of a Low-Cost SDI-12 Soil Moisture Sensor. Sensors 2019, 19, 491.
[CrossRef]

34. Rosenbaum, U.; Huisman, J.A.; Vrba, J.; Vereecken, H.; Bogena, H.R. Correction of temperature and electrical
conductivity effects on dielectric permittivity measurements with ECH2O sensors. Vadose Zone J. 2011, 10,
582–593. [CrossRef]

35. Czarnomski, N.M.; Moore, G.W.; Pypker, T.G.; Licata, J.; Bond, B.J. Precision and accuracy of three alternative
instruments for measuring soil water content in two forest soils of the Pacific Northwest. Can. J. For. Res.
2005, 35, 1867–1876. [CrossRef]

36. Spectrum Technologies. Waterscout SM100 Soil Moisture Sensor Product Manual; Spectrum Technologies, Inc.:
Plainfield, IL, USA, 2014. Available online: https://www.specmeters.com/assets/1/22/6460_SM1002.pdf
(accessed on 15 March 2012).

37. Spectrum Technologies. Waterscout SMEC 300 Soil Moisture Sensor Product Manual; Spectrum Technologies,
Inc.: Aurora, IL, USA, 2015. Available online: https://www.specmeters.com/assets/1/22/6470_SMEC3004.
pdf (accessed on 15 March 2012).

38. Saleh, M.; Elhajj, I.H.; Asmar, D.; Bashour, I.; Kidess, S. Experimental evaluation of low-cost resistive soil
moisture sensors. In Proceedings of the 2016 IEEE International Multidisciplinary Conference on Engineering
Technology (IMCET), Beirut, Lebanon, 2–4 November 2016; pp. 179–184. [CrossRef]

39. Aravind, P.; Gurav, M.; Mehta, A.; Shelar, R.; John, J.; Palaparthy, V.S.; Singh, K.K.; Sarik, S.; Baghini, M.S. A
wireless multi-sensor system for soil moisture measurement. IEEE Sens. 2015, 1–4. [CrossRef]

40. Bouyoucos, G.J.; Mick, A.H. A comparison of electric resistance units for making a continuous measurement
of soil moisture under field conditions. Plant Physiol. 1948, 23, 532. [CrossRef] [PubMed]

41. Schmugge, T. J.; Jackson, T.J.; McKim, H.L. Survey of methods for soil moisture determination. Water Resour.
Res. 1980, 16, 961-979. [CrossRef]

http://dx.doi.org/10.3390/s16111912
http://dx.doi.org/10.2136/vzj2015.09.0122
http://dx.doi.org/10.1002/2014WR016443
http://dx.doi.org/10.1007/s11430-014-4911-7
http://dx.doi.org/10.2136/vzj2014.07.0099
http://dx.doi.org/10.1002/2014GL062496
http://dx.doi.org/10.1007/s11119-005-0681-8
http://dx.doi.org/10.2136/vzj2014.10.0150
http://dx.doi.org/10.2136/vzj2012.0139
http://dx.doi.org/10.3390/s19030491
http://dx.doi.org/10.2136/vzj2010.0083
http://dx.doi.org/10.1139/x05-121
https://www.specmeters.com/assets/1/22/6460_SM1002.pdf
https://www.specmeters.com/assets/1/22/6470_SMEC3004.pdf
https://www.specmeters.com/assets/1/22/6470_SMEC3004.pdf
http://dx.doi.org/10.1109/IMCET.2016.7777448
http://dx.doi.org/10.1109/ICSENS.2015.7370444
http://dx.doi.org/10.1104/pp.23.4.532
http://www.ncbi.nlm.nih.gov/pubmed/16654182
http://dx.doi.org/10.1029/WR016i006p00961


Sensors 2020, 20, 363 26 of 27

42. Delta-T Devices Ltd. ThetaProbe Soil Moisture Sensor Type ML2x User Manual ML2-UM-1; Delta-T Devices:
Cambridge, UK, 1999. Available online: https://www.delta-t.co.uk/wp-content/uploads/2016/11/ML2-
Thetaprobe-UM.pdf (accessed on 29 August 2019).

43. Miller, J.D.; Gaskin, G.J. ThetaProbe ML2x. Principles of Operation and Applications, 2nd ed.; . Technical Note;
UK Macaulay Land Use Research Institute: Aberdeen, UK, 1998.

44. Delta-T Devices Ltd. User Manual for the ML3 ThetaProbe ML3-UM-2.1; Delta-T Devices: Cambridge, UK, 2017.
Available online: https://www.delta-t.co.uk/wp-content/uploads/2017/02/ML3-user-manual-version-
2.1.pdf (accessed on 29 August 2019).

45. Nakra, B.C.; Chaudhry, K.K. Introduction to Instruments and Their Representation. In Instrumentation,
Measurement and Analysis, 2nd ed.; Tata McGraw-Hill Publishing Company Limited: New Delhi, India, 2006;
ISBN: 0-07-048296-9.

46. Bureau of Indian Standards (BIS). Standard Sand for Testing Cement-Specifications; IS 650:1991 (Second Revision);
Bureau of Indian Standards: New Delhi, India, 2002.

47. Adla, S.; Rai, N.; Harsha, K. S.; Tripathi, S.; Disse, M.; Pande, S. Laboratory
Calibration of Soil Moisture Sensors in Porous Media (Repacked Soils). Available online:
https://www.protocols.io/view/laboratory-calibration-of-soil-moisture-sensors-in-swnefde/metadata
(accessed on 24 August 2018).

48. Rosenbaum, U.; Bogena, H.R.; Herbst, M.; Huisman, J.A.; Peterson, T.J.; Weuthen, A.; Western, A.W.;
Vereecken, H. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale.
Water Resour. Res. 2012, 48. [CrossRef]

49. Kargas, G.; Soulis, K.X. Performance evaluation of a recently developed soil water content, dielectric
permittivity, and bulk electrical conductivity electromagnetic sensor. Agric. Water Manag. 2019, 213, 568–579.
[CrossRef]

50. Starr, J.L.; Paltineanu, I.C. Methods for measurement of soil water content: Capacitance devices. In Methods of
Soil Analysis: Part 4 Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison,
WI, USA, 2002; pp. 463–474.

51. Morris, A.S.; Langari, R. Instrument Types and Performance Characteristics. In Measurement and
Instrumentation: Theory and Application; Butterworth-Heinemann: Oxford, UK, 2012; ISBN: 9780123819604;
doi:10.1016/C2009-0-63052-X. [CrossRef]

52. Carr, J.J.; Brown, J.M. Basic Theories of Measurement. In Introduction to Biomedical Equipment Technology, 4th
ed.; Pearson: London, UK, 2001; ISBN: 9780130104922.

53. Bloom, A.J. Principles of instrumentation for physiological ecology. In Plant Physiological Ecology:
Field Methods and Instrumentation, 1st ed.; Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel,
P.W., Eds.; Chapman and Hall: New York, NY, USA, 1989; pp. 1–12. ISBN: 978-94-009-2221-1;
doi:10.1007/978-94-009-2221-1. [CrossRef]

54. Compendium of Chemical Terminology, 2nd ed.; McNaught, A.D., Wilkinson, A., Eds.; Blackwell Scientific
Publications: Oxford. UK, 1997.

55. Paltineanu, I.C.; Starr, J.L. Real-time soil water dynamics using multisensor capacitance probes: Laboratory
calibration. Soil Sci. Soc. Am. J. 1997, 61, 1576-1585. [CrossRef]

56. Bello, Z.A.; Tfwala, C.M.; van Rensburg, L.D. Investigation of temperature effects and performance
evaluation of a newly developed capacitance probe. Measurement 2019, 140, 269-282. [CrossRef]

57. Szypłowska, A.; Lewandowski, A.; Jones, S.B.;Sabouroux, P.; Szerement, J.; Kafarski, M.; Wilczek, A.;
Skierucha, W. Impact of soil salinity, texture and measurement frequency on the relations between soil
moisture and 20 MHz–3 GHz dielectric permittivity spectrum for soils of medium texture. J. Hydrol. 2019,
579, 124155. [CrossRef]

58. Chanzy, A.; Gaudu, J. C.; Marloie, O. Correcting the temperature influence on soil capacitance sensors using
diurnal temperature and water content cycles. Sensors 2012, 12, 9779–9790. [CrossRef]

59. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation
guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE. 2007, 50,
885–900. [CrossRef]

60. Witten, I.H.; Frank, E.; Hall, M.A. Credibility: Evaluating What’s Been Learned. In Data Mining: Practical
Machine Learning Tools and Techniques, 3rd ed.; Elsevier: Burlington, MA, USA, 2011; p. 147. ISBN:
978-0-12-374856-0.

https://www.delta-t.co.uk/wp-content/uploads/2016/11/ML2-Thetaprobe-UM.pdf
https://www.delta-t.co.uk/wp-content/uploads/2016/11/ML2-Thetaprobe-UM.pdf
https://www.delta-t.co.uk/wp-content/uploads/2017/02/ML3-user-manual-version-2.1.pdf
https://www.delta-t.co.uk/wp-content/uploads/2017/02/ML3-user-manual-version-2.1.pdf
http://dx.doi.org/10.1029/2011WR011518
http://dx.doi.org/10.1016/j.agwat.2018.11.002
http://dx.doi.org/10.1016/C2009-0-63052-X
http://dx.doi.org/10.1007/978-94-009-2221-1
http://dx.doi.org/10.2136/sssaj1997.03615995006100060006x
http://dx.doi.org/10.1016/j.measurement.2019.03.062
http://dx.doi.org/10.1016/j.jhydrol.2019.124155
http://dx.doi.org/10.3390/s120709773
http://dx.doi.org/10.13031/2013.23153


Sensors 2020, 20, 363 27 of 27

61. Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15,
72–101. [CrossRef]

62. Zar, J.H. Spearman Rank Correlation. In Encyclopedia of Biostatistics; Armitage, P.; Colton, T. John Wiley &
Sons, Ltd.: New York, NY, USA, 2005.

63. Mukaka, M.M. A guide to appropriate use of Correlation coefficient in medical research. Malawi Med. J. 2012,
24, 69–71. [PubMed]

64. Hauke, J.; Kossowski, T. Comparison of values of Pearson’s and Spearman’s correlation coefficients on the
same sets of data. Quaest. Geogr. 2011, 30, 87–93. [CrossRef]

65. Jekel, C. Fitting a Piecewise Linear Function to Data. Github Repos. 2017. Available online: https://github.
com/cjekel/piecewise_linear_fit_py (accessed on 12 February 2019).

66. Kinzli, K.D.; Manana, N.; Oad, R. Comparison of Laboratory and Field Calibration of a Soil-Moisture
Capacitance Probe for Various Soils. J. Irrig. Drain. Eng. 2012, 138, 310–321. [CrossRef]

67. Soulis K.X.; Elmaloglou S.; Dercas N. Investigating the effects of soil moisture sensors positioning and
accuracy on soil moisture based drip irrigation scheduling systems. Agric. Water Manag. 2015, 148, 258–268.
[CrossRef]

68. Vereecken, H.; Huisman, J.A.; Pachepsky, Y.; Montzka, C.; Van Der Kruk, J.; Bogena, H.; Weihermüller, L.;
Herbst, M.; Martinez, G.; Vanderborght, J. On the spatio-temporal dynamics of soil moisture at the field
scale. J. Hydrol. 2014, 516, 76–96. [CrossRef]

69. Baumhardt, R.L.; Lascano, R.J.; Evett, S.R. Soil Material, Temperature, and Salinity Effects on Calibration of
Multisensor Capacitance Probes. Soil Sci. Soc. Am. J. 2000, 64, 1940–1946. [CrossRef]

70. Sakaki, T.; Limsuwat, A.; Smits, K.M.; Illangasekare, T.H. Empirical two-point α-mixing model for calibrating
the ECH2O EC-5 soil moisture sensor in sands. Water Resour. Res. 2008, 44. [CrossRef]

71. Kelleners, T.J.; Seyfried, M.S.; Blonquist, J.M.; Bilskie, J.; Chandler, D.G. Improved interpretation of water
content reflectometer measurements in soils. Soil Sci. Soc. Am. J. 2005, 69, 1684–1690. [CrossRef]

72. Rosenbaum, U.; Huisman, J.A.; Weuthen, A.; Vereecken, H.; Bogena, H.R. Sensor-to-sensor variability of the
ECH2O EC-5, TE, and 5TE sensors in dielectric liquids. Vadose Zone J. 2010, 9, 181–186. [CrossRef]

73. Fares, A.; Safeeq, M.; Awal, R.; Fares, S.; Dogan, A. Temperature and Probe-to-Probe Variability Effects on
the Performance of Capacitance Soil Moisture Sensors in an Oxisol. Vadose Zone J. 2016, 15. [CrossRef]

74. Zhu, Y.; Irmak, S.; Jhala, A.J.; Vuran, M.C.; Diotto, A. Time-domain and frequency-domain reflectometry type
soil moisture sensor performance and soil temperature effects in fine-and coarse-textured soils. Appl. Eng.
Agric. 2019, 35, 117–134. [CrossRef]

75. Sun, Y.; Sheng, W.; Cheng, Q.; Chai, J.; Yun, Y.; Zhao, Y.; Xue, X.; Lammers, P. S.; Damerow, L.; Cai, X.
A novel method to determine the volume of sensitivity for soil moisture sensors. Soil Sci. Soc. Am. J. 2012, 76,
1987–1991. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/1412159
http://www.ncbi.nlm.nih.gov/pubmed/23638278
http://dx.doi.org/10.2478/v10117-011-0021-1
https://github.com/cjekel/piecewise_linear_fit_py
https://github.com/cjekel/piecewise_linear_fit_py
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000418
http://dx.doi.org/10.1016/j.agwat.2014.10.015
http://dx.doi.org/10.1016/j.jhydrol.2013.11.061
http://dx.doi.org/10.2136/sssaj2000.6461940x
http://dx.doi.org/10.1029/2008WR006870
http://dx.doi.org/10.2136/sssaj2005.0023
http://dx.doi.org/10.2136/vzj2009.0036
http://dx.doi.org/10.2136/vzj2015.07.0098
http://dx.doi.org/10.13031/aea.12908
http://dx.doi.org/10.2136/sssaj2012.0063n
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Soil Moisture Sensors
	Capacitance Based Low-Cost Sensors: Spectrum SM100 and SMEC300
	Generic Resistance Based Very Low-Cost Sensors: YL100 and YL69
	Impedance-Based Sensor: Delta-T ThetaProbe ML3

	Description of the Soils Used
	Sensor Calibration
	Calibration of Capacitive Sensors with Fluids
	Calibration of Sensors with Repacked Soils

	Performance Measures for the Sensors
	Sensor Accuracy
	Sensor Precision

	Sensor Sensitivity
	Temperature Sensitivity
	Salinity Sensitivity


	Results and Discussion
	Sensor Calibration
	Performance of Capacitive Sensors with Fluids
	Calibration of All Sensors with Repacked Soils
	Comparison of Manufacturer and In-House Calibration Equations: Capacitive Sensors

	Performance Measures for the Sensors
	Sensor Accuracy
	Sensor Precision

	Sensor Sensitivity
	Temperature Sensitivity
	Salinity Sensitivity

	Further Discussion

	Summary and Conclusions
	
	References

