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Abstract
In this paper, a Simulated Annealing (SA) imple-
mentation for a Flexible Job Shop Problem (FJSP),
with change-over time, is presented. This imple-
mentation is compared to a Mixed Integer Lin-
ear Programming (MILP) optimization, to compare
performances. The SA algorithm starts with creat-
ing the first schedule with Global Selection. The
neighbourhood is created with an application of k-
insertion. Annealing is implemented with expo-
nential cooling. The SA implementation does not
consistently outperform the provided MILP imple-
mentation. However, the run-time of the simulated
annealing is shorter than the MILP. The algorithm
is then also used to discover bottlenecks in the pro-
duction line presented with the FJSP instances.

1 Introduction
In process industries, industries where the production is con-
tinuous or occurs on batches of materials, have many facto-
ries and production lines to produce their products. To make
sure these factories and production lines work as efficient as
possible, a lot of effort is put into scheduling the orders for
production.

This research looks at one production line of DSM, a
biotechnology company. This production line can be repre-
sented as a so-called Flexible Job Shop Scheduling Problem
(FJSP). An FJSP consists of n jobs, all consisting of some
operations. These operations can run on a set of m machines.
These machines differ for each operation [1]. All the ma-
chines for one operation have the same processing time. The
machines in the production line need cleaning between cer-
tain jobs.

The goal of this research is to find a suitable optimization
method for this scheduling problem so that all process indus-
tries can schedule faster and work more efficiently. The sec-
ond goal is to find bottlenecks in the DSM production line.

To test the effectiveness and efficiency of the implemen-
tation, a Mixed Integer Linear Programming (MILP) imple-
mentation is provided. The MILP is a suitable approach to
solve an FJSP [2, 3].

Besides MILP, meta-heuristic approaches are also suitable
optimization methods for the FJSP [4–6]. Meta-heuristic al-
gorithms solve a problem by creating local search spaces and
applying a heuristic to select a better solution than before.
Simulated Annealing (SA) is a meta-heuristic approach de-
rived from the annealing of metal. This method has been ap-
plied to multiple different Job shop problems before, making
it a suitable algorithm to use for this extended FJSP [4,5,7–9]

This paper investigates in what way SA is better suited
to solve the FJSP than the MILP implementation. This is
done by first establishing a baseline of the performance of
the MILP. The baseline was established in cooperation with
a group of other students, who worked on implementing dif-
ferent optimizations for this FJSP. After the baseline is estab-
lished, the application of SA to the FSJP with change-over
times is reviewed. Then the performance of the SA is com-
pared to the performance of the MILP. For the last part of the

research, bottlenecks in the DSM production line will be ex-
amined, from where the recommendations for improving the
production line with one machine will be given.

The results of the computer experiments show that the SA
implementation and the MILP are useful for the FJSP in their
specific ways.

This paper consists of six parts, starting with an extended
background of the FJSP and the SA optimization, followed
by an explanation of the SA approach for this project. Then
the Experimental setup and results will be discussed. After
that, there will be a short part on responsible research, fol-
lowed by a discussion on this research. Lastly, there will be a
conclusion and insights for future improvements that can be
made.

2 Background
To make sure that the process industries can run in the most
efficient way possible, every production line has a schedul-
ing department that attempts to tackle the complex scheduling
question for their production line.

A company that is part of the process industry is DSM.
For this research, a production line of DSM is used as a case
study. In this specific plant, the last three operations of the
downstream process are the part where the most gain of ad-
vanced optimization can be achieved.

These operations are the preparation, filtering and recep-
tion of the enzymes. The batches should be scheduled in such
a way that the make-span of the enzymes is minimized.

This optimization problem can be described as an extended
flexible job shop scheduling problem (FJSP). This research
aims to find an optimization for this problem that finds a good
balance in run time and quality of results so that DSM can
decrease the makespan of the last phase of this production
plant.

2.1 Flexible Job Shop Problem
The FJSP is an extension of the classical Job Shop Schedul-
ing Problem (JSP). The classical job shop problem consists
of several jobs that are to be processed by specified machines.
All jobs have to follow specific operations. In the JSP, every
operation has a specified machine that can process the opera-
tion. The JSP is NP-hard [10], meaning that it is not feasible
to solve a JSP optimally in polynomial time. The difference
between the JSP and the FJSP is that in a FJSP operations
can be colpleted by multiple machines. To optimize the FJSP,
it means that for every possible sequence of operations, all
possible machine assignments also should be checked to find
the optimal. This makes the FJSP more complex than the
JSP, meaning that the FJSP is also NP-Hard. [6]. This special
FJSP has change-over times between some jobs, meaning that
between some jobs, the machines have to be prepared for the
new job. During this preparation, the machines are not avail-
able for production.

2.2 Simulated Annealing
The optimization method used to optimize the FJSP is Sim-
ulated Annealing (SA) with multi-start. Multi-start is a tech-
nique where an algorithm runs more than once, after which



the best solution is selected [11–13]. For SA this is a
favourable addition because of the short run-time and the ran-
domness embedded in the algorithm. Here, the literature on
existing techniques for SA applied to an FSJP will be dis-
cussed and explained shortly.

SA is a meta-heuristic approach used for global search op-
timization. The meta-heuristic is based on the annealing of
metals in nature. This is used to avoid getting trapped in bad
local minima [14–16]. SA is used for optimizing FJSP, JSP
[7, 8], and other variants of the JSP like the Flow-Shop Prob-
lem [9, 10, 17] in the past. The meta-heuristic of SA makes
that every schedule worse than the current optimal schedule
has a probabilistic chance of still being chosen. This enables
the optimization to jump from one optimum to another, which
may be the global optimum or a better local optimum. The al-
gorithm has a starting temperature, that cools more the longer
the algorithm runs. This cooling decreases the probabilistic
chance of a lesser schedule being chosen. SA consist of three
components that can be implemented in various ways, initial-
ization, neighbourhoods and the annealing schedules.

Initialization
The initialization method used for this implementation of SA
is a method called Global Selection (GS). GS is a method
that is used for Genetic Algorithm (GA) optimizations and
Particle Swarm Optimizations (PSO) for the FJSP on multi-
ple occasions [18–20]. GS generates a schedule by randomly
choosing a job. The operations of that job are scheduled on
the machine that has the shortest processing time. This re-
peats until all jobs are scheduled. The resulting schedule then
is used to generate a neighbourhood.

Neighbourhood
To create the neighbourhood, a graph is used to make small
changes to the schedules. A graph representation is used to
represent FSJP on multiple occasions [21–23]. For this al-
gorithm, the graph is used to create a neighbourhood from
a schedule. To get new schedules, operations on the longest
path are inserted into a different machine sequence using k-
insertion [21, 22].

Annealing schedules
The meta-heuristic of annealing is based on a cooling scheme
in the algorithm. This cooling presents a probabilistic chance
to select a less optimal schedule to escape unfavourable lo-
cal optima. This chance is based on the following formula:
e−δ/T [24] where δ is the difference in make-span between
two schedules and T is the so-called temperature of the al-
gorithm. The start temperature is experimentally determined.
This temperature decreases while the algorithm runs. Due to
this cooling, the change of a less optimal solution being cho-
sen decreases the longer the algorithm runs [14, 16, 25].

3 Simulated Annealing algorithm
The SA implementation for this optimization problem fol-
lows the flowchart presented in Figure 1.

Figure 1 shows the three most important aspects of the im-
plementation identified. First, the initialization of the first

Figure 1: Flow-chart representing the simulated annealing algorithm

schedule is discussed. Then the creation of the neighbour-
hood, which presents a new search space, is explained. Lastly,
different cooling methods will be compared.

3.1 Initialization with Global Selection
For the initialization of the first schedule, Global Selection
(GS) is used. GS creates a schedule by planning jobs and all
corresponding operations sequentially. The order in which
the jobs are scheduled is determined at random. When a job
is selected, all operations are scheduled on the machine with
the lowest completion time. To keep track of the lowest com-
pletion time, a time array is created, where for each machine,
the processing times of the assigned operations are added to.
The machine with the lowest value in the time array is fin-
ished the earliest, and thus the operation is scheduled on that
machine. Figure 2 illustrates a step by step explanation of
GS [26]

Figure 2: An illustrated execution of Global selection [26].

The pseudocode for the GS depicted in Figure 2 is shown
in Algorithm 1

For the representation of the created schedule, vectors v1
and v2 are used. The first vector, v1 is a vector where each
index represents an operation. The value assigned to the op-
eration in the vector is the machine on which the operation is
executed. An example vector v1 is shown in Figure 3

Figure 3: Machine assignment vector [21].



Algorithm 1 Pseudocode for global selection

time← array with length M and values 0
v1 ← array with length of all operations
jobs← array with all jobs
while jobs ̸= empty do

job← random job from jobs
remove job from jobs
for all operations op of job do

temp← time
machines← machines that can process op
for machine m in machines do

temp[m]← processing- and changeover time of
op on m

end for
mint ← min value of temp
Ij,o ← index of mint

v1[Ij,o] += mint

end for
end while

The indices of vector v1 are numbered from zero to the
number of operation of operations. Making it more difficult
to keep track of which job and operation a certain index points
to. To solve that vector v2 is created.

v2 contains the numbering of operations for all jobs. This
means that if there is an instance with two jobs with both
three operations v2 looks like this: [0, 1, 2, 0, 1, 2] With this
representation, the job and operation of index i are found with
Algorithm 2

Algorithm 2 Get job and operation from v2

v2 ← array with length of all operation
i← index of which job and operation are to be found
job← −1
for x in range of length of v2 do

if v2[x] equals 0 then job += 1
end if
if x equals i then break out of the loop
end if

end for
op← v2[i]
return job, op

In this algorithm, the job is initialized as −1, because the
first job always is job zero. A job always starts with operation
zero. Due to this, if v2[x] equals zero, it is certainly the first
operation of a new job.

The following section, explains how vectors v1 and v2 are
used to generate a graph representation of a schedule.

3.2 Neighbourhood generation
The schedule, represented as vectors, will be rewritten to a
graph representation for creating the neighbourhood. This
graph represents the schedule. A useful property of these
graphs is that the length of the longest path is equal to the
makespan of the schedule. The neighbourhood will consist
of schedules where operations of this critical path are moved

to another machine. Neighbourhood creation through graphs
exists of the creation of the graph, moving operations of the
graph, creating a neighbourhood from moving operations and
finding the critical path and makespan. These parts will be
explained in the next sections.

Graph initialization
The vectors that are returned by the initialization method can
be converted as a directed graph G = (N,E) where E =
(Ed∪Ej ∪Em), these sets are defined later in this section. In
the graph, N are the nodes containing a start- and end node,
together with a node for each operation of each job nj,o where
j is the job and o is the operation. The graph representation
uses weighted nodes, where the weight is the processing time
of operation nj,o on the assigned machine. Ed are the so-
called dummy edges, which go from the start node to all first
operations of a job, and from the last operation of a job to the
end node. Figure 4 represents these edges.

Figure 4: Graph with dummy edges

The edges in set Ej show the precedence relations between
operations in a job. These edges span between nodes Nj,i and
Nj,i+1. A representation is shown in Figure 5.

Figure 5: Graph with job edges

Em edges represent the precedence relations of the ma-
chine order, where they connect the operations that use the
same machine in the same fashion as Ej does for the jobs.
For these edges, the changeover times are added as weight.
Figure 6 shows the machine edges.

Figure 6: Graph with machine edges

Figure 7 displays a graph with all edges. As is shown in
this figure, there are no cycles in this graph. For every feasible



graph, there are no cycles. This is because of the strict order
of the operations.

Figure 7: Graph with all edges

Determine makespan and critical path
The graph would be traversed to get the critical path, needed
for the neighbourhood creation. Since the critical path is the
path that takes the longest to complete, operations on this path
are moved to create the neighbourhood, as described in the
coming sections. The critical path is found by performing a
Breath First Search (BFS) on the graph. Because BFS tra-
verses the complete graph, the time complexity to find the
critical path is polynomial, because, for every node N, there
are E edges to be visited, resulting in a O(N ∗ E) time com-
plexity. This makes determining the critical path one of the
most expensive operations of the algorithm. The length of
this critical path is equal to the makespan of the schedule rep-
resented by the graph.

Moving operations
To be able to create a neighbourhood from the graph, an oper-
ation of the critical path is inserted on another given machine
for that operation. Such an insertion of an operation v ∈ O
on machine k ∈ Mv is called a k-insertion. When perform-
ing a k-insertion on graph G, the machine edges from- and to
the node of the operation should be removed from the graph,
resulting in a new graph G−. After that, v is inserted in the
processing order of k. For such an insertion to be feasible, the
resulting graph should be acyclic. By definition G is acyclic,
meaning that G− is also acyclic, because only edges are re-
moved, and the removal of edges cannot create any cycles
within a graph. If new edges are in the correct processing
order, again there are no cycles, because every operation can
only be visited once.

For the insertion of v in the operation sequence of k the
following process is used to ensure feasible insertions. First,
Qk is defined as the set containing the operations processed
by machine k, ordered at starting time. From Qk two more
sets are derived, Rk and Lk.

Here Rk = (x ∈ Qk|sx + px > s−v ) and Lk = (x ∈
Qk|px + tx > t−v ).

Figure 8 and 9 visualize Rk and, Lk respectively.
Figure 8 shows that Rk is the set of operations where there

is no path from any Xj,o ∈ Rk to v, and also there is no path
from v to Qk\Rk.

As depicted in Figure 9, Lk is the set of operations where
there is no path from v to any Xj,o ∈ Lk and also there is no
path from any Qk\Lk to v

A neighbourhood Fvk where the solutions are obtained by
inserting v after the operations of Lk\Rk and before every
operation of Rk\Lk is a set of feasible solutions [22].

Figure 8: Properties of Rk [22]

Figure 9: Properties of Lk [22]

Derive neighbourhood
The critical path is used to get a neighbourhood from a sin-
gle k-insertion. For every operation o on the critical path,
a k-insertion is done of all machines of o. This results in a
neighbourhood where all schedules differ at most one opera-
tion from the parenting schedule. From this neighbourhood,
one schedule is selected at random. This schedule is com-
pared to the parenting schedule, to determine whether it is se-
lected. This is done in combination with the cooling method
described next.

3.3 Cooling method
The choice of annealing method is important for getting good
results [27]. Different ways of cooling are used in other appli-
cations of SA. Such annealing schedules include linear cool-
ing, exponential cooling and logarithmic cooling.

Linear cooling is of the form T (t) = T0 − αt where t is
step-size and α is a constant number that is experimentally
found.

For the exponential cooling T (t) = T0 ∗αt where t is step-
size and α is a constant factor (0 < α < 1).

Lastly the logarithmic cooling with the equation T (t) =
c/(log(t + d)) with c being the largest energy barrier, and d
equal to one most of the time [27]

For this implementation, an exponential cooling system is
used. The main advantage of exponential cooling is that at
the start of the algorithm, the system cools faster than at the
end. As the temperature decreases, it starts to cool slower.
This makes that the more the optimum is reached, the more
iterations are done to try and improve the result.

The cooling method makes the makespan converge to a
global minimum the more the temperature cools, as shown in
Figure 10. In this figure, the mean makespan during the iter-
ation is shown for multiple runs. This results in a converging
graph to a minimum makespan.



Figure 10: Convergence of makespan plotted against temperature

4 Experimental Setup and Results
The SA algorithm was implemented and tested on an HP
ZBook Studio G5 with an Intel® Core™ i7-8750H CPU and
16 GB RAM. The SA algorithm is implemented in Python.
The MILP runs on the same computer, with the help of
Gurobi optimizer. The instances that are used on the algo-
rithm are on the project’s GitHub repository 1

4.1 Experimental hyperparameter tuning
To get the best results from the SA, some hyperparameters are
experimentally tuned. The tuned parameters are the start tem-
perature, how often the algorithm runs for the multi-start and
the variable α of the cooling system. To justify the chosen
parameters, multiple tests were run. For these experiments,
a higher temperature and a higher multi-start are expected to
give better results. A high starting temperature means more
iterations, meaning more schedules are compared. The hy-
pothesis about multi-start mainly concerns the randomness
implemented in the algorithm, making it not deterministic.
Due to that, a single run might have an unfavourable first
schedule, whereas a second run can have a close to the op-
timal starting point. Having more starts means that high out-
liers will become relatively rare, thus improving the results.

The first experiments are conducted to determine the best
starting temperature. For the first run, temperatures 1, 10,
100, and 1000, are used. Figure 11 shows the results of this
test.

Figure 11: Simulated annealing algorithm run for temperatures 1,
10, 100, 1000

From this graph, the differences between temperatures 1,
10 and 100 are not visible. Because of this, a new test is

1https://github.com/mcbak/rp dsm

created with temperatures 10, 25, 50, and 75, displayed in
Figure 12

Figure 12: Simulated annealing algorithm run for temperatures 10,
25, 50, 75

The results from this experiment are almost identical to
each other, meaning that the performance of T0 = 75 is not
significantly better than T0 = 25. A T0 of 25 is preferable,
since a lower starting temperature means a lower amount of
iterations, resulting in a shorter runtime.

For the amount of runs for the multi-start the first experi-
ment was run for 1, 5, 10 runs, shown in figure13

Figure 13: Simulated annealing algorithm run for 1, 5 and 10 runs

The main difference between the results of this experiment
is the stability results. Since the lowest make-span of all runs
is selected, the more runs are done, the less chance there is
for an accidental outlier with a high makespan. To see the
results of more runs, an experiment with 5, 10 and 25 runs is
conducted and shown in Figure 14

Figure 14: Simulated annealing algorithm run for 5, 10 and 25 runs

From this graph, the same conclusions can be drawn. In
this graph, the later instances also have a slightly lower



makespan for the highest amount of runs. This however
comes at the cost of a higher run-time.

There are a few tests run to find the best α for the cooling
of the algorithm. The results can be found in Figure 15

Figure 15: Performance of different cooling rates α

The results are so close to each other that there is no signif-
icant difference in resulting makespans. Here also, the same
is true for the runtime of a lower α for the annealing schedule.

The following hyperparameters are used for the rest of the
testing: A starting temperature of 25, multi-start with 10 runs
and an α of 0.4.

4.2 Simulated Annealing compared to MILP
For the comparison of the SA against the MILP, 20 test in-
stances are used. These test cases are ordered from smallest
to biggest. Since the MILP finds the global optimum, given
enough time, it is limited to 1800 seconds. This means that
every instance runs for this time, even if the optimum is al-
ready found. However, if no feasible solution is found in that
time, no makespan is returned. The SA, as explained, con-
verges to a minimum temperature, after which it stops and
returns the last schedule. Because of that, the runtime of the
SA varies per instance.

The results of running the MILP and the SA implementa-
tion to 20 test instances are found in Figure 16.

Figure 16: Make-spans of SA compared to MILP for 20 instances.

The first thing concluded from this graph is that from in-
stance 15 on, the MILP was not even able to find a schedule in
1800 seconds. When comparing the MILP with the SA, the
graph shows that from instance 0 to instance 12, the MILP
performs better than the SA. From instances 13 to 19, the SA
outperforms the MILP.

Figure 17: Difference between the results of the MILP and the SA.

The percentage difference between makespans of the
MILP and SA is shown in Figure 17.

When looking at the differences, it becomes clear that for
the first instances, the MILP performs better, to a point where
the makespan of the MILP is 40% lower than the one of the
SA. After instance 12, the SA starts to perform better, while
the MILP cannot find a feasible solution in the given time.

In Figure 18, the exact makespans and runtimes of the
MILP and SA are listed.

Figure 18: Results MILP and SA, with run-time.

When comparing the runtimes of the SA against the run-
times of the MILP, the SA performs significantly better.
Again, the bigger instances show a big difference in perfor-
mance. The last four instances could not be solved by the
MILP, where the SA completed them within 225 seconds.

4.3 Bottleneck testing
Since the last aim of the paper was to identify possible bottle-
necks in the production line, a few tests are conducted to find
out how much an extra machine could decrease the makespan
for the production of big batches. To identify potential bottle-
necks, three instance sets were created. Each set has an oper-
ation with an extra machine compared to the original instance



set. This allows examining for which operation an extra ma-
chine makes the most impact on the makespan. When adding
a machine, the change-over times were set equal to the worst
changeover of the existing machines.

When looking at the current division of machines over the
operations, it can be expected that an extra machine for oper-
ation 3, would give the best improvements. This is because
operations one and two have more machines that can be used.
Next to this, of the six different enzymes that can be pro-
duced, five enzymes need operation 3, whereas only four need
operation 1. Operation 2 is needed by all enzymes. Knowing
this, it is likely that after operation 3, the best improvement
comes from adding a machine for operation 2 and that adding
a machine for operation 1 leads to the smallest improvement.

The results of the experiments can be found in Figures 19,
20 and 21. In these tables, the results of the MILP and SA
are compared to each other. The decrease in makespan is
displayed as percentages, to make it equal for all instances.
To make sure that the

Figure 19: Comparison of the original results against the same in-
stances with an extra machine for operation 3

The results of adding a machine for operation 3 are dis-
played in Figure 19. These results show an average decrease
in makespan of 20% for the MILP and a decrease of 16% for
the SA. As expected, the addition of a machine to operation 3
gives a good improvement for the makespan.

Figure 20: Comparison of the original results against the same in-
stances with an extra machine for operation 2

Figures 20 and 21 show us the results of adding a machine
to operation 1 and 2. These results hardly show a decrease in
makespan, where the MILP with an extra machine for opera-
tion 2 performs worse than the original. Since these improve-
ments are less than 5% on average, it is not viable to speak of

Figure 21: Comparison of the original results against the same in-
stances with an extra machine for operation 1

improvement.

5 Responsible Research
To ensure that this research is up to the standards of modern
research, the next sections are a reflection on research data
processing and reproducibility of the research.

5.1 Research data processing
To ensure that there was no misconduct in the data gathered
in this research, all the results of the results are published
on a public GitHub repository2. The data presented in this
paper is selected in such a way that all measured variables
and outcomes are represented in the results. The results that
are not in the paper, but are in the repository, are results that
underline the shown results but present no new information.
Graphs that may not be included are for example small test
sets which have big deviations, or sets with older results.

5.2 Reproducibility
To ensure the reproducibility of this project, this paper in-
cludes extensive explanations of the developed algorithm and
tests concerning the hyperparameter tuning. Some of these
parts also include pseudocode, which can easily be imple-
mented. For tuning the hyperparameters and getting the re-
sults, all the variables are defined in the paper. This ensures
that all experiments can be redone precisely. For the MILP,
the used optimizer is mentioned, together with the used time
constraints. The used MILP representation is also present on
the GitHub repository. Also, the PC and processor used for
testing are specified. In this way, potential differences due to
the computational power of the machine can also be identified
more easily.

6 Discussion
As seen in section 4, the MILP outperforms the SA for the
lower instances. For bigger instances, the SA outperforms
the MILP in terms of make-span and runtime. This is ex-
plained because the MILP tries to find the global optimum,
without optimizing for good intermediate results. For smaller
instances, the MILP can find the optimum or gets close to
the optimum within the allocated 1800 seconds, while for the
bigger instances, it has to do too many operations to get near

2https://github.com/mcbak/rp dsm



the optimum. The SA does not aim to find the global op-
timum but to get good results from exploring some parts of
the whole search space. From the explored search spaces, the
best result is selected most of the time.

By improving the initialization and k-insertion, it is likely
to improve the performance of the SA.

Possible improvements in global selection are that the ran-
dom selection of jobs in the GS can be replaced by an edu-
cated selection based on heuristics such as expected runtime,
start- and completion times and machine availability [28].

The neighbourhood function also has room for improve-
ment. To determine where to insert the operation in the new
machine’s sequence, the algorithm compares the start and
completion times of all the jobs on that machine to the old
start and completion times of the inserted operation. These
start and completion times are now based on estimation. This
could be improved slightly by finding the exact start and com-
pletion times of the operations, giving fewer insertions and
thus a smaller and better neighbourhood.

Lastly, the results are achieved on a relatively small test set
of 20 instances. To get more results, and better insights into
the performance, bigger test sets should be used.

The improvement of adding a machine to operation three
was expected. This is because operation thee had the least
machines and was the second most used operation. The lack
of improvement for adding a machine to either operation 1 or
2 was unexpected. The main reason probably is that the most
delay is in operation 3, which in hindsight makes sense, see-
ing the improvement achieved there. For the MILP the falling
performance might be because the extra complexity of the in-
stance, with an extra machine, is bigger than the delay caused
by that operation. This means that more time is spent trying
all the different machines meaning that lesser schedules can
be explored.

These results show that if there is a possibility to add one
machine to any operation, it should be added to operation 3
to achieve the best improvement.

7 Conclusions and Future Work
In this paper, a Simulated Annealing (SA) optimization is de-
veloped for a Flexible Job Shop Scheduling Problem (FJSP),
extended with change-over times between different jobs. The
main goal of this research was to compare SA to Mixed Inte-
ger Linear Programming (MILP) optimization, which already
existed. The idea behind the different part of the implemen-
tation is thoroughly discussed, and explained.

The performance of the SA is worse than the MILP im-
plementation for small test instances. For the larger test in-
stances, the SA has a slightly better performance.

It can be concluded that, for smaller instances, the MILP
outperforms the SA, but for the larger instances, the SA has
a better makespan. Next, the MILP had a run-time of 1800
seconds, while the SA finished within 225 seconds for the
largest instance.

When improving the current production line used for the
test set, adding a machine for the third operation gives the
best results.

There are also some improvements that can be imple-
mented to improve the performance of the SA. The first im-
provement is using heuristics for the initialization method in-
stead of the random selection used now. In the k-insertion
part, start and completion times of nodes are now estimated.
Improvements can be made by implementing a better method
to find the start and completion times.
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