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How Do Neural Networks Estimate Optical Flow?
A Neuropsychology-Inspired Study

David B. de Jong"”, Federico Paredes-Vallés

, and Guido C. H. E. de Croon

, Member, IEEE

Abstract—End-to-end trained convolutional neural networks have led to a breakthrough in optical flow estimation. The most recent
advances focus on improving the optical flow estimation by improving the architecture and setting a new benchmark on the publicly available
MPI-Sintel dataset. Instead, in this article, we investigate how deep neural networks estimate optical flow. A better understanding of how
these networks function is important for (i) assessing their generalization capabilities to unseen inputs, and (ii) suggesting changes to
improve their performance. For our investigation, we focus on FlowNetS, as it is the prototype of an encoder-decoder neural network for
optical flow estimation. Furthermore, we use a filter identification method that has played a major role in uncovering the motion filters present
in animal brains in neuropsychological research. The method shows that the filters in the deepest layer of FlowNetS are sensitive to a variety
of motion patterns. Not only do we find translation filters, as demonstrated in animal brains, but thanks to the easier measurements in
artificial neural networks, we even unveil dilation, rotation, and occlusion filters. Furthermore, we find similarities in the refinement part of the
network and the perceptual filling-in process which occurs in the mammal primary visual cortex.

Index Terms—Optical flow, convolutional neural networks, Gabor filters, neuropsychology

1 INTRODUCTION

PTICAL flow is a visual cue defined as the projection of

the apparent motion of objects in a scene onto the
image plane of a biological vision system or a visual sensor
[1]. This cue is important for the behavior of animals of
varying size [2], ranging from small flying insects [3] to
humans [4], as it allows these animals to estimate their ego-
motion and to have a better understanding of the visual
scene. Optical flow is also important in computer vision and
robotics applications for tasks such as object tracking [5]
and autonomous navigation [6].

Many algorithms have been introduced to determine opti-
cal flow [7], including correlation-based matching methods
[8], [9], frequency-based methods [10], [11], and differential
methods [12], [13]. Correlation-based matching methods try
to maximize the similarity between different intensity
regions across multiple frames. Finding the best match then
corresponds to finding the shift which maximizes the simi-
larity score. Frequency-based methods exploit either the
amplitude or phase component of the complex valued
response of a Gabor quadrature filter pair [14] convolved
with an image sequence. Lastly, differential methods com-
pute optical flow based on a Taylor expansion of the image
signal, subject to the brightness constancy assumption.
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All these methods assume that the brightness of a mov-
ing pixel remains constant over time and, when applied
locally, are subject to the aperture problem [15]. Only motion
components normal to the orientation of an edge in the
image can be resolved.

A global smoothness constraint has been added for differ-
ential methods, which assumes that neighboring pixels
undergo a similar motion [12]. This has led to variational
methods that minimize a global energy function consisting
of a data and a smoothness term. These methods have played
a dominant role for many years due to their high perfor-
mance. However, a main drawback is that the iterative mini-
mization of the energy function leads to long computation
times. Moreover, the brightness constancy assumption is a
coarse approximation to reality and thus limits performance
[16]. Research has focused on extra energy terms to deal with
deviations from the brightness constancy assumption and
improve the robustness of global smoothness constraints,
leading to slow but steady progress.

As in many other computer vision areas, currently, the
best-performing algorithms are trained deep neural net-
works. Initially, training such networks was challenging
due to the lack of ground-truth optical flow data and the
excessive human effort required for manual optical flow
labeling. Dosovitskiy et al. [17] were the first to successfully
train deep neural networks to estimate optical flow by using
a synthetically generated dataset with optical flow ground
truth. Their networks, FlowNetS and FlowNetC, initially
performed slightly worse than the state-of-the-art varia-
tional methods [18]. However, trained deep neural net-
works became the new state-of-the-art method for optical
flow estimation by subsequent researchers who focused on
improving the architecture and training data [19], [20], [21].

Until now, the functioning of these networks is poorly
understood. In this article we investigate how deep neural
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Input
images

Contracting part

Expanding part

Fig. 1. Schematic of the FlowNetS architecture [17]. The contracting part
compresses spatial information through the use of strided convolutions
(c), while the expanding part uses upconvolutions (u) for refinement.
The predict-flow (pf) layers transform feature map activations into
dense flow estimates (£). The feature map corresponding to the output
of the c6 layer (gray dashed box) is studied in Sections 4 and 5, while
the flow refinement process (blue dashed box) is discussed in Section 6.

networks perform optical flow estimation. Besides satisfy-
ing curiosity, there are two main reasons why this is impor-
tant. First, understanding the method’s functioning brings
insights into its limits and robustness, for example concern-
ing generalization to test distributions. Second, it may lead
to valuable recommendations for improving the perfor-
mance, for instance, by changing properties of the architec-
ture or training data.

In our analysis of deep optical flow networks, we make
use of a method that has helped unveiling the workings of
motion-sensitive brain areas in neuropsychology [22]. Spe-
cifically, we measure the response of neurons in FlowNetS
[17] to stimuli with varying spatiotemporal frequencies and
construct a spectral response profile. The input stimuli used
are translating plane waves, as this input type proved to be
more selective in the frequency domain than moving bars
[23]. Based on the earlier findings of Gabor filters [14] in bio-
logical vision systems [24], [25] and other learning-based
methods [26], [27], we expect to find these filters in Flow-
NetS as well. Therefore, we fit a Gabor function to the spec-
tral response profile of neurons in the network and study
the residual error patterns. We find that the Gabor transla-
tional motion filter model is suitable for the majority of the
neurons. Additionally, we find neurons sensitive to motion
patterns such as dilation, rotation, and occlusion. Interest-
ingly, neurons sensitive to these motion patterns have not
been mentioned in neuropsychology. Furthermore, our
analysis strongly suggests that the resolution in the tempo-
ral frequency domain can be significantly improved if more
than two frames would be used as input to the neural net-
work. Lastly, we find that the optical flow refinement pro-
cess in the decoder part of the network behaves similarly in
function to flow refinement in biological vision systems.

The remainder of the article is structured as follows. In
Section 2, related work in neuropsychology and deep-learn-
ing is discussed. In Section 3, an explanation is given of the
architecture of FlowNetS (see Fig. 1). In Section 4, the
network’s neural responses to translating wave patterns are
studied, and compared to translational Gabor filters.
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Subsequently, Section 5 discusses the response of neurons
to dilating and rotating waves. In Section 6, it is studied
how FlowNetS resolves the aperture problem. Finally, the
results of this work are discussed in Section 7, and conclu-
sions are drawn in Section 8.

2 RELATED WORK

2.1 Dense Optical Flow Estimation With CNNs

Ever since the pioneering work of Horn et al. [12], variational
optical flow methods [28] have played a dominant role in
optical flow estimation due to their high performance. Most
modern variational optical flow estimation pipelines consist
of four stages: matching, filtering, interpolation, and varia-
tional refinement. Various improvements have been pro-
posed over time to deal with issues such as long-range
matching [29] and occlusion [30]. Furthermore, improve-
ments such as dense correspondence matching based on
convolution response maps of the reference image with the
target image [31], and supervised data-driven interpolation
of a sparse optical flow map [32] were also proposed. These
last two improvements introduced elements of deep learn-
ing into the variational optical flow estimation pipeline.

Dosovitskiy et al. [17], however, were the first to introduce
a supervised end-to-end trained Convolutional Neural Net-
work (CNN). CNNs have three major advantages when it
comes to estimating optical flow. First, CNNs outperform
variational optical flow estimation methods in terms of
accuracy [19], [20], [21]. Second, the runtime of CNN-based
optical flow algorithms, when executed on the appropriate
hardware, is significantly lower than variational methods
[19]. Third, CNN-based methods can learn from data and
can exploit statistical patterns not realized by a human
designer. This is an advantage over variational methods
which require explicit, and sometimes inaccurate, assump-
tions on the input. However, CNNs also have three disad-
vantages. First, the results depend on the quality and size of
the training data. Second, CNN-based methods face the risk
of overfitting, which is relevant for optical flow estimation
because it is difficult to obtain ground truth [18]. Third,
there is no guarantee that the trained models will generalize
to scenarios not contained in the training dataset. Due to the
“black-box” nature of the solution, it is difficult to get insight
into its workings and limitations.

In [17], Dosovitskiy et al. introduced two networks based
on the U-net architecture [33]: FlowNetS and FlowNetC.
While FlowNetS is an encoder-decoder network consisting
of simple convolutions, FlowNetC creates two separate
processing streams and combines them in a correlation-layer.
This layer performs a multiplicative patch comparison
between feature maps. Due to the explicit use of a correla-
tion-layer, it is more straightforward to understand the
workings of FlowNetC. However, not much is known about
the workings of FlowNetS. Inspired by this architecture,
Ranjan et al. [34] introduced SpyNet, a spatial image pyra-
mid with simple convolutional layers at each pyramid level
and a warping operation between pyramid levels. SpyNet’s
coarse-to-fine approach brings a higher computational and
memory efficiency at the cost of a more limited set of per-
ceivable motion types. Ranjan et al. also visualized the
weights of the first layer of their network and observe that
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these filters resemble Gabor filters [14], which provided a
glimpse into the working principle of this architecture.
Finally, Teney et al. [35] built a shallow CNN-architecture by
integrating domain knowledge, such as invariance to
brightness and in-plane rotations. On small motion their
architecture performs well, but performance declines on
large motion near occlusions. They conclude good occlusion
performance requires reasoning over a larger spatiotempo-
ral extent, which their shallow architecture is not able to do.

The generalization performance of CNN-based methods
can be evaluated for specific instances by determining the
epistemic uncertainty [36]. Indeed, IIg et al. [37] used a modi-
fied FlowNetC that produces multiple hypotheses per for-
ward pass, which are then merged to a single distributional
flow output. They showed that their network produces
highly uncertain flow estimates when optical flow estimation
is difficult (shadows, translucency, etc.). Lastly, Ranjan et al.
[38] highlighted another downside of deep neural networks,
which is the ability of adversarial examples to fool neural
networks and produce erroneous results. They showed that
especially networks using an encoder-decoder architecture
are affected, while networks using a spatial pyramid frame-
work are less vulnerable. None of the works above, however,
explain how their architecture estimates optical flow.

2.2 Receptive Field Mapping

There are two main threads of research to understand what
neural networks have learned: attribution and feature visu-
alization. Attribution methods [39], [40] are used to attribute
filter outputs, like optical flow, to parts of the input by visu-
alizing the gradient. However, it is hard to see where an
optical flow estimate comes from. Feature visualization is
concerned with understanding what neurons, filters, or
layers in a neural network are sensitive to by optimizing the
input [41]. The result is usually an image with noisy and
visually difficult to interpret high-frequency patterns [42].
Three methods of regularization can be applied to cope
with this phenomenon. First, frequency penalization dis-
courages the forming of these patterns. The downside is
that this approach also discourages the forming of legiti-
mate high-frequency patterns which are of interest for opti-
cal flow estimation. Second, small transformations like
scaling, rotation, or translation can be applied in between
optimization steps [43]. This approach is also not viable
because transformation affects the ground truth of optical
flow. Third, priors can be used which can keep the opti-
mized input interpretable. Such approaches typically
involve learning a generative model [44] or enforcing priors
based on statistics from the training data [45]. This approach
is often very complex and it may be unclear what can be
attributed to the prior and what can be attributed to what
the network has learned.

Due to these reasons, we look at the field of neuropsy-
chology and specifically study what methods researchers
have used to determine what stimuli activate neurons in
mammalian vision systems and what functions best
describe the neural responses. It was shown that Gabor
functions [14] best modeled the spatial response of simple
cells in the mammal visual cortex [24]. It can be shown that
Gabor filters are optimal for simultaneously localizing a sig-
nal in the spatial and frequency domain [46], making them
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ideal for motion estimation. Later, DeAngelis et al. [47] exam-
ined the spatiotemporal response of cells and their space-
time separability. In functional form, space-time separable
Gabor filters are frequency-tuned with a stationary Gauss-
ian envelope and space-time inseparable Gabor filters are
velocity-tuned with a moving Gaussian envelope [48]. In
this work we only consider fitting frequency-tuned Gabor
filters, due to their simplicity and the low number of input
frames used by the FlowNet architectures.

Two approaches to receptive field mapping in neuropsy-
chology can be discerned: the reverse-correlation approach
and the spectral response profile approach. The former
presents a rapid random sequence of flashing bars at vari-
ous imaging locations to the mammal. The spike train emit-
ted by the neuron in the subject is correlated to the
sequence in which the stimuli were presented. This
approach allows for a rapid measurement of the receptive
field profile in the spatiotemporal domain [25]. Instead, the
spectral response profile approach presents translating
plane waves to the mammal at varying orientations and
spatiotemporal frequencies [49], [50]. Jones et al. used both
the reverse-correlation approach to construct a spatial
receptive field profile [51] and measured the response to
plane waves to construct a spectral response profile [22].
Subsequently, the spatial and spectral responses were com-
pared to the Gabor filter model in the spatial and frequency
domain, and the filter parameters obtained from both meth-
ods proved to be highly correlated [24]. A similar corre-
spondence in outcome between the methods was found by
Deangelis et al. [47], [50] in the visual cortex of cats.

In this work we extend the approach of Jones et al. [24] to
the spatiotemporal domain and measure spectral responses
of the network to translating plane waves, to which fre-
quency-tuned spatiotemporal Gabor filters are fitted. A ben-
efit of measuring the spatiotemporal spectral responses for
optical flow is that translation is more easily described in
the frequency domain [48].

2.3 Aperture Problem

Optical flow estimations methods are only able to resolve
motion components normal to the orientation of an edge in
the intensity pattern. This is known as the aperture problem
[15]. In CNNss the size of the aperture of a neuron is referred
to as the receptive field, which is defined as the region in
the input which affects the activation of the neuron. In this
work we show that the receptive field size is related to the
aperture problem by training different versions of FlowNetS
with varying receptive field sizes.

In neuropsychology, Komatsu [52] has shown the exis-
tence of a perceptual filling-in mechanism in the mamma-
lian visual cortex for cues such as color, brightness, texture,
or motion. While the precise neural workings are still under
discussion, edge structure [53] and the interaction between
neighboring neurons play an important role in this process
[54]. In neural networks attempts have been made to imple-
ment such a mechanism as well. To allow for the interaction
between neurons, a recurrent model can be used [55]. Zweig
et al. [32], however, used an unfolded feed-forward version
of a recurrent network and a multi-layer loss to allow for
interaction between neurons. Their CNN-based motion
interpolation architecture takes a sparse flow map and edge
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structure as input. They showed their motion interpolation
method refines motion estimates similarly to the human
visual cortex by demonstrating the filling-in effect of the
network on a Kanizsa illusion. FlowNetS also features a
multi-layer loss, and, in Section 6, the ability of the expand-
ing part of FlowNetS to interpolate and refine flow maps is
highlighted.

3 MobDEL DETAILS

Fig. 1 shows a schematic representation of the FlowNetS
architecture, which takes two consecutive images as input.
Multiple versions of FlowNetS exist. Dosovitskiy et al. [17]
mention the use of the ReLU activation function in their
work. The release of their pre-trained models, however,
uses a leakyReLU activation function." In order to facilitate
interpretability of the motion filter analysis, we choose to
use the ReLU version. With the same aim, we introduce two
small adjustments. First, the bias terms are removed in the
predict-flow pf layers because the flow is assumed to be
zero-centered. Second, the kernel size in the pf layers is
reduced from 3 x 3 to 1 x 1 to allow clearer location identifi-
cation. The full details of our version of FlowNetS can be
found in Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2021.3083538.

Regarding training, as in [17], we use the same data aug-
mentation on both frames, but we do not use incremental
flow and color augmentation between frames, since the
authors do not specify the parameters of these mechanisms.
Furthermore, the network is trained for fewer iterations
(300K iterations versus 600K iterations) due to limited avail-
ability of computational resources. Evaluation on the MPI-
Sintel [56] and FlyingChairs [17] datasets shows comparable
performance between the slightly modified FlowNetS and
the original version, as can be seen in Appendix A, available
in the online supplemental material.

The synthetic dataset FlyingChairs [17], which was used
to train the original and our slightly modified FlowNetS,
consists of approximately 22k image pairs. The image pairs
are composed of a varying numbers of chairs and back-
ground images from natural scenes. Between image pairs, a
composition of translation, rotation, and scaling motion is
applied. As stated in the supplementary material of [17], the
size of the chairs” is sampled from a Gaussian with a mean
and standard deviation of 200 pixels, clamped between 50
and 640 pixels. Note that the synthetic scenes also contain
occlusion. Further details about the composition of affine
motion can be found in [17].

4 GABOR SPECTRAL RESPONSE PROFILE FITTING
FOR TRANSLATION

We investigate to what motion patterns the neurons in
FlowNetS are sensitive. In neuropsychology, the responses
of simple cells turned out to be captured very well by Gabor

1. https:/ /Imb.informatik.uni-freiburg.de/resources/binaries /
flownet/flownet-release-1.0.tar.gz

2. Note that, in [17], the authors do not specify how the size of a
chair is determined, so there is a certain ambiguity around this
parameter.
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filters [22], [24], [50], [57]. That simple cells act like Gabor fil-
ters makes sense, since Gabor filters are known to be opti-
mal in the sense that they achieve maximal resolution in
both the spatiotemporal and the associated frequency
domains. As a consequence, they require a minimal number
of filters to represent spatiotemporal information [24], [50].

Although artificial neural networks are very different in
many aspects from biological ones, they were inspired by
them and inherit similar traits. In particular, they seem suit-
able to represent spatiotemporal filters and may be subject
to a similar pressure as biological networks to succinctly
represent spatiotemporal patterns when having to estimate
optical flow. This was our motivation to first investigate
whether FlowNetS’ neural responses resemble those of
Gabor filters. In our investigation, we mainly focus on the
deepest encoding layer in the network, the c6 layer. As
shown in Fig. 1, the activations of the feature maps of these
layers are directly, linearly transformed (via pf6) into an
initial coarse-scale horizontal and vertical flow estimate
(i.e., £6), which is later used as the basis for refinement.
Hence, the coarsest, most direct representation of optical
flow is encoded in this layer. Although we focus our analy-
sis on c6, the earlier layers play an important role as well.
They do this not only by the determination of the activations
in layer c¢6 but also (in the case of c2 - ¢5) by contributing
to the refinement of optical flow via skip connections.

In this section, first the theory behind Gabor filters and
the spectral response fitting method is discussed, followed
by the results obtained. Thereafter, we discuss the resolu-
tion in the temporal frequency domain of the fitted Gabor
filters.

4.1 Methodology

As in [10], [14], [48], the spatiotemporal frequency-tuned
Gabor filter g in Cartesian coordinates centered at the origin
can be written as the product of a Gaussian w and a translat-
ing plane wave s

g(x,y,t) = s(x,y,t)w(z,y,t). 1)

The (non-normalized) Gaussian w is defined by

1 .1'2 yQ t2
t) = — (2R 2R, 2
w(z,y,t) eXp< 5 <UZ + o2 +U§ : 2

where 0,, 0,, and o, control the spread of the spatiotempo-
ral Gaussian window. To decrease the number of parame-
ters in the fitting process, it is assumed that the center of the
Gaussian coincides with the center pixel of the receptive
field. Furthermore, the subscript R denotes a rotation opera-
tion which allows the Gaussian to be aligned along orienta-
tion 6, and is defined as

xr = zcos (6y) + ysin (6y)

. 3)
yr = —xsin (6y) + ycos (6y),

where a positive value of 6, corresponds to a clockwise rota-
tion with respect to the positive z-axis. The subscript 0 indi-
cates the parameter value corresponding to the peak
response of the Gabor filter. This orientation, which
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Fig. 2. lllustration of the half-magnitude profile in the 3D frequency
domain of a spatiotemporal Gabor filter. The three ranges along which
the responses of the Gabor half-magnitude profile are evaluated for the
spectral response profile fitting process are shown in color.

corresponds to the preferred direction of motion of the filter,
is related to the spatial frequencies via 6y = tan ' (f,,/fs,)-

A translating plane wave s in the Cartesian coordinate
system can be written as

s(z,y,t) = cos (2w (Foyxg — fiyt) + ¢o)s )

where the spatial frequency magnitude £ is related to the
spatial frequencies via Fy = ( 20 + 30)1/ ?, fio indicates the
temporal frequency, and ¢, denotes the phase of the filter.
The dependence of s on y is due to xr, which is a function
of x and y (see Eq. (3)). A Gabor filter is said to be even
when ¢, = 0 and odd when ¢, = £x. Further, note that the
preferred velocity of the filter v is related to £ and the tem-
poral frequency f, via vo = fy,/Fo, as in [10]. A higher spa-
tial frequency F; allows tracking of motion of thinner image
structures. When a signal is sampled in time or space, fre-
quency components which are larger than or equal to 0.5
cycles per frame (i.e., the Nyquist frequency) become under-
sampled and aliasing occurs. Thus, if we limit ourselves to
signals which do not suffer from aliasing, the maximum
velocity a signal can have is limited by its F;. Fig. 2 shows
the 3D frequency space with the half-magnitude profile of a
Gabor filter.

Because we will fit the response of phase-sensitive Gabor
filters, we highlight three phase-dependent convolution
phenomena. Note that a valid convolution® of two tensors
with equal size corresponds to their dot product. First,
because a sine is an odd signal, the dot product of two sines
at opposite frequencies is negative. Second, the dot product
of a cosine at opposite frequencies will be positive due to
the even nature of the function. Third, sine and cosine are
decorrelated and thus the dot product will be zero between
these two signals.

Gabor Spectral Response Profile Fitting. In the Gabor spec-
tral response fitting process, translating grayscale plane
waves s are used as input to the network, and we try to min-
imize the difference in response between filters in the c6
layer of our FlowNetS and spatiotemporal Gabor filters g.

3. We use “convolution” to refer to the correlation of a filter over an
image to remain consistent with the CNN terminology.
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To better approximate the response of c6 filters, we enhance
the Gabor filter output with a gain term K, a bias term b,
and pass the response through a ReLU non-linearity. Then,
the response r to a convolution with a translating plane
wave s and a Gabor filter g is given by:

r=ReLU(K(s(z,y,1) * g(x,y,t)) +b), ®)

where r is a function of nine parameters (i.e., Fy, 6o, fi,, @0,
04,0y, 01, K, b), which are estimated in a two-step process.

First, a gridsearch is performed to determine the location
in the spatiotemporal frequency domain with the highest
response per filter in the c6 layer. We denote the response
of the filters in the network by 7, and their peak response
value by 7. Because the fitted Gabor filters are phase sensi-
tive, this amounts to estimating four parameters (i.e., £y, 6y,
ftyr ®o). Therefore, a four-dimensional grid of translating
plane waves (i.e., the input to the network) is constructed
using all combinations of these parameters within a given
range and step size (see Appendix B, available in the online
supplemental material). The range for the value of half spa-
tial wavelength A\/2 = 1/2F is chosen so that it captures the
sizes of the chairs present in the training dataset (as
explained in Section 3).

Second, once the peak response of the c6 filters is found,
we estimate the spatiotemporal spread of the Gaussian
(determined by o,,0,,0,), the gain K, and the bias b. This is
done by minimizing the difference in response between the
fitted Gabor filters r (see Eq. (5)) and the corresponding c6
filters 7 along three separate ranges in the spatiotemporal
frequency space (I, 6, and f;). These ranges are illustrated
in Fig. 2, and further described in Appendix B, available in
the online supplemental material. We define the cost func-
tion £ in response to a convolution with a translating plane
wave s as

L= (ri—f)p+ Y (rj—i)s+ > (rn— )},
J k

=Lp+ Lo+ Ly, (6)

where L, Ly, and L, denote the sum of squared errors over
the respective ranges. We constrain the bounds of the Gabor
filter parameters to obtain reasonable values, which leads to
a non-linear bounded convex optimization problem which
is solved using the robust trust-region-reflective algorithm
[58]. In order to compare the obtained cost values between
c6 filters, we construct a normalized cost value L, by
dividing the cost by the squared peak response of the filter:
Lyorm = L] 73

4.2 Results

We found 592 of the 1024 filters in the c6 layer of FlowNetS
to have an activation larger than zero when using the afore-
mentioned input waves. The location of the peak response
of the active c6 filters in terms of half spatial wavelength
Xo/2, orientation 0y, and temporal frequency f;, can be seen
in Fig. 3 (left). As shown, the locations of the peak responses
of the filters are well distributed over all angles. Radially,
there is a concentration around a half spatial wavelength of
200 pixels. Two possible explanations for this are the fact
that (i) the average size of the chairs in the training dataset
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Right 3x3 plots: Row-wise, the measured responses of three different c6 filters and their corresponding Gabor fits. The blue, green, and red c6 filters
correspond to the crosses at the median, near the 75th percentile and near the upper whisker limit of the boxplot, respectively.

is 200 pixels, or that (ii) the half of the receptive field size of
c6 filters is 192 pixels. The concentration of the peak
responses becomes even more apparent in Fig. 3 (right),
which shows the distribution along the temporal and half
spatial wavelength axes. Furthermore, we note that the dis-
tribution of the temporal frequencies is skewed toward the
Nyquist limit of 0.5 cycles per frame. A possible reason for
this is the low resolution in the temporal frequency due to
the low number frames used as input to the network. This is
further discussed in Section 4.3.

The main observation of our spectral analysis is that the
fitted modified Gabor functions (i.e., Eq. (5)) capture the
spatiotemporal frequency selectivity of the active c6 filters
of FlowNetS accurately. In order to give insight into the
goodness of fits for all neural responses in the c6 layer, we
show three example responses corresponding to different
normalized cost values L, in Fig. 4. Note that the fitted
Gabor filters correspond well to the response of the blue

and green c6 filters (with £, at 50 percent, 75 percent of
the distribution); but, in the red case (an outlier), the fitted
Gabor shows a substantial deviation from the measured c6
response near 6 = 0.

This experiment was also performed for the other con-
volutional layers of the network’s encoder segment. As
shown in Table 1, the lower the layer, the smaller the
receptive field size and hence the upper limit for the half
spatial wavelength is decreased. According to the average
(normalized) fitting error per layer L, the response of
neurons in the c3-c6 layers fits well the translational
Gabor filter model, while our methodology suggests that
neurons in ¢l and c2 are not yet as motion-selective as
Gabor filters. Table 1 also shows that c¢6 is characterized
by a higher L,., than its preceding layer. A possible
explanation for this is that, in the earlier layers, the net-
work is only able to perceive less complex motions which
better fit the Gabor filter model.
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TABLE 1
Result of the Gabor Spectral Response Fitting Procedure for
Different Convolutional Layers of the Encoder Part of FlowNetS

Layer Lorm Max. \/2 Num. active filters/filters
conv6_1 1.65 800 592/1024

conv5_1 1.42 270 372/512

conv4 1 1.44 270 408/512

conv3_1 1.67 95 234/256

conv2 3.37 47 62/128

convl 4.71 10 64/64

Coming back to c6, the good fit for the majority of neu-
rons supports the choice for the Gabor filter as opposed to
other types of models. Of course, one can argue that the
Gabor filter does not perfectly capture the response and a
more complex model may lead to a better fit. Below, we will
extensively delve into the cases in which the Gabor model
seems to fall short of explaining c6’s neural responses.
Here, it is important to note that in principle, we already
have such a complex model: the neural network itself. The
advantage of the Gabor model is that it has a low number of
parameters that can be readily interpreted. Indeed, in neu-
ropsychology, the step to more complex filters was only
made when it became necessary for characterizing
“complex” cells that did not respond to simple stimuli [57].
The fits and error patterns above the 75 percent percent
threshold (corresponding to the green cé6 filter) are very
interesting, and we visually inspected them for systematic
deviations. Visual inspection is performed instead of an
auto-correlation procedure since the latter is not possible
due to a non-uniformly spaced polar 3D frequency grid[24].
Fig. 6 contains the qualitative results used for this analysis,
while Appendix C, available in the online supplemental
material, evaluates the generalizability of the fitted Gabor
filters to more complex natural stimuli.

Similarly to the blue filter in Fig. 4, Fig. 6A shows a c6 fil-
ter whose response fits nicely in the Gabor filter framework.
On the other hand, we find three types of systematic devia-
tions (i.e., Figs. 6B, 6C, and 6E) from the Gabor model, and
also conclude that some patterns are too complex for inter-
pretation, such as the c6 filter shown in Fig. 6D.

The filter in Fig. 6B shows a deviation from the fitted
Gabor 180 degrees away from 6,. This filter is responsive
to edge structure (i.e., |¢y| ~90°) and is thus approxi-
mately odd, since the dot product of two odd signals at
opposite frequencies results in a negative value. How-
ever, this filter still produces a positive activation at the
opposite spatial frequency, corresponding to 180 degrees
away from 6. In Fig. 5 the distribution of the phase val-
ues ¢, versus orientation cost L, for all filters is depicted.
As shown, there are multiple filters responsive to edge
structure that have a high £y (e.g., the red filter in Fig. 4).
One possible reason for this systematic deviation from
the Gabor response is that the network is able to learn
flow filters that are invariant to polarity (meaning white-
black or black-white transitions).

We find two c6 filters that exhibit weak directional bias,
an example of which can be found in Fig. 6C. Moreover, we
also find filters that exhibit two or more Gaussian peaks
with similar peak response magnitudes but tuned to
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Fig. 5. Orientation cost £, per filter as a function of ¢,,.

different spatial frequencies Fy, orientations 6y, and tempo-
ral frequencies f; . An example of such a filter can be found
in Fig. 6 E, and its 2D spatiotemporal representation is
shown in Fig. 7. A possible explanation is that these filters
are sensitive to occlusion, as discussed in Section 5. Lastly,
we find filters that appear noisy and are hard to interpret
given the limitations of our methodology (further discussed
in Section 5). Such an example can be seen in Fig. 6D.

4.3 Temporal Bandwidth

For orientation 6 and temporal frequency f;, the bandwidth
is defined as the width of the filter which provides an out-
put above half the maximum response. This leads to a band-
width in degrees A6, and cycles per frame Af;, , for
orientation and temporal frequency respectively

Aftl/? = ftmax - ft’miu (7)

A91/2 = 9H1'{1X - Qmirr (8)

For spatial frequency F', the bandwidth is defined in
terms of octaves as follows:

AFI/Z = log 2 (Fmax/Enin> . (9)

Although we estimate the Gabor parameters of the
active c6 filters in the fitting process, the apparent band-
width of these filter differs due to the non-linear trans-
form in Eq. (5). The bandwidth is therefore measured
based on the fitted Gabor filter response. In Fig. 8, the
bandwidth of F, 6§, and f; can be seen. As shown, the
interquartile range for spatial frequency bandwidth is
between 1 and 2 octaves and the median orientation
bandwidth is approximately 50°. Lastly, the temporal fre-
quency bandwidth is of large extent with a median of
approximately 0.27 cycles per frame.

We note that the network is able to narrow the extent of
the filter response in the temporal domain using the non-lin-
ear transform in Eq. (5). An illustration of this mechanism
can be seen in Fig. 9. As shown, the extent of the half-magni-
tude profile is wider if the non-linear transformation is not
employed. This figure also shows what happens when
more frames are added to the input and the other parame-
ters are kept the same (see Fig. 9, bottom). This suggests
that an even narrower extent could be reached by feeding
the network with more images over time than just the two
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frequency F and orientation 6. Data shows to the measured response of a cé6 filter, Fit is the response of the corresponding fitted Gabor filter, and
Error shows their difference. Evaluations are with respect to f;, and ¢,. (A) c6 filter whose response profile is accurately captured by the Gabor
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lines correspond to the axes of the 2D representation of this filter shown in Fig. 7.
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subsequent images used in FlowNetS. A higher resolution
in the frequency domain is beneficial as it allows for a more
precise measurement of the flow.

5 NETWORK RESPONSE TO DILATION & ROTATION

In this section, the sensitivity of c6 filters to dilation and
rotation is analyzed. First, we explain the limitations of the
spectral Gabor response profile fitting process and why we
are not able to discern filters activating on translation, dila-
tion, rotation, and occlusion with this methodology. Second,
the theory used to identify filters sensitive to dilation and
rotation is presented. Lastly, our results are discussed.

Note that Gabor translation filters [14] and occlusion fil-
ters [59] already have an analytical description in both the
space-time and frequency domain. Such a description of
dilation and rotation is, to the best of the authors” knowl-
edge, missing. Therefore, fitting c6 filters to a dilation and
rotation motion filter model requires a novel mathematical
foundation which is outside of the scope of this work.

5.1 Limitations of the Spectral Response Profile
Fitting

In the first part of the spectral response fitting process, a
gridsearch is performed to find the peak response. In the
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Fig. 7. Spatiotemporal frequency representation of the measured filter
response in Fig. 6 E. The positive and negative F-axes correspond to
the blue and red lines in Fig. 6 E.
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subsequent fitting process, three response lines are gener-
ated by varying either F, f;, or 6, whilst keeping ¢ constant.
This method only allows the measurement of the relative
attenuation in amplitude with respect to the peak response
7. This is sufficient for translation, which can be defined as
a single constant phase Gaussian in the 3D frequency spec-
trum and thus produces a Gaussian in response. However,
it is insufficient for other more complex motion types.

Due to the ReLU activation function, the dot product of
two translating plane waves at the same frequency, which
are more than or equal to 90 degrees out-of-phase, is zero.
Note that a convolution in the space-time domain equals to
multiplication in the frequency domain according to the
convolution theorem[46]. Because we evaluate the convolu-
tion response only at discrete frequencies of k integer multi-
ples along the f,, f,, and f; axis, only a single frequency
component of the Fourier-transformed translating plane
wave S will contain power.* Then, if we define the kth fre-
quency component of S as the complex vector p, and the
kth frequency component of the Fourier transformation of
the filter to be analyzed as q, the phase difference between
these two complex vectors is defined as the angle ¥ and

given by:
-1(P-q
¥ = cos ! (—> ,
pllq

where the maximum value of ¥ is 7, and values of ¢ > /2
result in a zero response due to the ReLU in Eq. (5).
Convolution Response: Dilation & Rotation Filters. To deter-
mine which frequency components of dilation, rotation, and
occlusion are more than 90 degrees out of phase, the Dis-
crete Fourier Transform (DFT) [46] is used to transform a
simulated space-time signal to a representation in the fre-
quency domain. Fig. 10 shows the convolution response of a
dilation filter dw with a translating plane wave s. From this
figure, it can be observed that a diamond-like pattern
emerges in the response, due to the immeasurable out-of-
phase components of dw and s. Because we evaluate the
responses along lines orthogonal to the peak response, the
pattern perceived is indicated by the dashed lines in the

(10)

4. Not taking into account the complex conjugate component.
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the lowest L, -

right-most plot of this figure, which correspond to the col-
ored linear patterns in Fig. 2. Thus, a Gaussian will be per-
ceived along the spatial and the temporal frequency ranges.
Hence, we are not able to discern between dilation and
translation filters.

Similarly, Fig. 11 shows the convolution response of a
rotation filter cw with s. Note that the 3D power spectrum
of cw is different from a Gaussian. At high temporal fre-
quencies (i.e., 0.2 cycles per frame), the frequency compo-
nents of cw and s are out-of-phase. Thus, these frequency
components will not be detected. The pattern perceived
along the varying 6 (also shown in Fig. 2) is two Gaussian
lobes at opposite frequency. This pattern is similar to the
convolution response of a cosine Gabor filter tuned to sta-
tionary patterns (i.e., zero temporal frequency). Therefore,
our methodology is also not able to detect rotation filters.

Convolution Response: Occlusion Filters. Furthermore, we
convolve an occlusion filter, using the description of Beau-
chemin et al. [59], with translating plane waves s. Occlusion
in the spatiotemporal domain can be described as the com-
bination of a Gaussian, a Heaviside step function, and two
translating plane waves translating with different frequen-
cies, as shown in Fig. 12. The power spectrum of the Four-
ier-transformed filter can be described as two Gaussian
filter pairs with fails due to the Heaviside step function. The
angle 1 demonstrates that these tails have a large phase dif-
ference. Consequently, only the pattern above the dashed
line is detected using our methodology, which corresponds
to two different Gaussian lobes tuned to different frequen-
cies. This pattern resembles that of Figs. 6 E and 7, thus
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Fig. 9. lllustration of how the network is able to decrease the extent of the
filter response in the temporal domain. Top: Fit and measured data for
the median cé6 filter (see Fig. 4). Middle: The response of the fitted
Gabor filter without the bias term and RelLU non-linearity. Bottom:
Response of the fitted Gabor filter when the number of frames is
increased.

making it likely that the filter represented in these figures is
responsive to occlusion. However, it should be noted that
we are not able to discern such a pattern from the superpo-
sition of two regular Gabor filter pairs tuned to different
frequencies.

5.2 Methodology
In order to still assess the sensitivity of the c6 filters to dilation
and rotation, we come up with a different methodology in
which two gridsearches are performed. We assess the loca-
tions of the peak responses for filters which have a higher
response to dilation or rotation than to translation. We do not
classify a filter as either a rotation or dilation filter, since a filter
can be sensitive to a composition of these respective motions.

Dilation Parametrization. As in [11], a dilating wave d is
given by:

d(z,y,t) = cos (2nFy(x, — ax,t) + @), (11

where o denotes the dilation factor. The training dataset
used to train FlowNetS, i.e., FlyingChairs [17], defines scal-
ing motion in terms of the affine scaling factor h. Because
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Fig. 10. Convolution response of a dilation filter dw with a translating plane wave s evaluated with spatiotemporal frequencies at k integer multiples of
the fundamental frequency. In the v plot, a larger phase difference corresponds to a darker color with black being equal to or greater than /2. A red
mask is applied to frequency components with low power. The dashed lines indicate the Gaussian pattern perceived by the spectral fitting procedure.
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Fig. 12. Convolution response of an occlusion filter with a translating plane wave s evaluated with spatiotemporal frequencies at k integer multiples of
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the network only takes two frames as input, we define the The gridsearch is performed for the [0.5,2.0] range of h, as
relation between h and « as follows: it encapsulates the values encountered during training.
1 More details about this search space can be found in Appen-

h = o (12) dix B, available in the online supplemental material. In

order to mitigate the effect of temporal aliasing, the search
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Fig. 13. Location of peak response 7 per c6 filter in the spatiotemporal frequency domain in response to dilating (top) and rotating waves (bottom).
Only filters whose peak response 7, was higher than the maximum found in the translation gridsearch are shown.

space is constrained so that the velocity of a point is not
more than half its spatial wavelength (/2. For a dilating
wave, this velocity is given by:

1

Then, the temporal aliasing constraint for dilating waves
is given by:

(h =1z < %)\0- 14
Rotation Parametrization. A rotation wave cis given by:
c(x,y,t) = cos (2nFyx,(t) + ¢p), (15)
where z,(t) varies with time, and is defined as
2, (t) = z cos (Oy + wt) + ysin () + wt), (16)

where w denotes the angular velocity in radians per frame.
The search space for the rotation gridsearch can be
found in Appendix B, available in the online supplemen-
tal material. A constraint was also added to limit the
effect of temporal aliasing. @ can be related to a point at
distance m from the center of rotation by v = wm. The
maximum distance from the center of rotation to the edge

is equal to half the receptive field size, which is 383 pixels
in the c6 layer of our FlowNetS. As the wave rotates
around the center pixel, the velocity at this point should
thus be lower than half the spatial wavelength. The con-
straint is given by the following relation:

1
WIMmax < 5/\0 (17)

5.3 Results

The peak responses of c6 filters which have a higher activa-
tion to dilation than to translation (i.e., approximately 15
percent of the active filters) are shown in Fig. 13a. These fil-
ters show a radially dispersed pattern along the #-axis, and
a peak in the distribution of half spatial wavelengths near
200 pixels. Lastly, peak responses are often close to the tem-
poral aliasing limit and the maximum scaling value of the
gridsearch. This is similar to the temporal peak response
location for the translation gridsearch (see Fig. 3).

In Fig. 13b, the peak responses of the c6 filters for the
rotation gridsearch are shown. It can be observed that most
filters are active near the temporal translation and temporal
rotational aliasing limit. Also, a peak in the distribution of
half spatial wavelengths can be identified around 250 pixels,
which is slightly higher than expected. A possible explana-
tion for this discrepancy is that rotation is actually a 3D
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Fig. 14. Response of our FlowNetS and its two variations, FlowNetXS and FlowNetXXS, to diagonally translating bars with motion magnitude |u| = 64
pixels. Left: £6, £4 and £2 FlowNetS flow maps in response to downward-left diagonally translating bars of different scales, using the color-coding
scheme from [60]. The red squares highlight the output region used for evaluating the error. Right: EPE versus scale of the bar in pixel coordinates.
RF £6 indicates the diagonal receptive field size in pixel coordinates corresponding to the £6 flow map.

motion and thus the scale should also be limited along its
radial axis. Approximately 45 percent of the active c6 filters
activate more on rotation than on translation, which could
be due to the fact that we do not limit the wavelength along
the axis of rotation. The points in the motion field at the far
end of the receptive field then move with a very high veloc-
ity, and therefore, the response of the filters is higher.

6 SOLVING THE APERTURE PROBLEM

6.1 Methodology

In order to determine until what scale of input stimuli
FlowNetS can resolve the aperture problem, three different
versions of this network are trained under the same circum-
stances with varying receptive field sizes. The receptive
field size is defined as the region in the input images which
affects the value of the feature map at a particular layer and
feature map location. Therefore, we modify the filter size of
the convolutional kernels in ¢6, which is actually composed
of two layers: c6_0 and c6_1. The original (and our) Flow-
NetS uses 3x3 kernels in these layers, which leads to a recep-
tive field size of 383 pixels in the £6 flow map. We train two
additional models with kernels sizes (1x1, 3x3) and (1x1,
1x1) for c6_0 and c6_1, which we name FlowNetXS and
FlowNetXXS, and whose £6 receptive field size is 255 pixels
and 191 pixels, respectively. For the three of these networks,
the receptive field size increases in the expanding part of
the architecture due to the upconvolutional layers.

As input, we use a diagonally translating bar of different
scales with motion magnitude |u| = 64 pixels. We determine
the error at the center of the bar, and at three flow maps of
different resolutions: £6, £4, and £2 (see Fig. 1).

6.2 Results

In Fig. 14 (left), the FlowNetS response to a downward
left translating bar of varying scale is shown. First, the
flow becomes more and more refined in the expanding
part of the architecture. Second, the network is able to
extrapolate motion cues from the edges of the bar
towards the center, but only to an extent determined by
the scale of the bar.

Fig. 14 (right) shows the average End-Point-Error (EPE) of
FlowNetS, FlowNetXS, and FlowNetXXS in response to two
translating bars of different scales moving upward right and
downward left, respectively. As shown, the network’s
robustness to the aperture problem is related to the receptive
field size, and networks with larger receptive fields are able
to resolve the aperture problem at larger scales.

7 DiscussiON AND FUTURE WORK

7.1 Impact on Computer Vision

Our results show that the neural responses in the deepest
encoding layer of FlowNetS, c6, are well captured by
Gabor-like filters. This finding provides insight into the
limits and robustness of the approach. Given this core
mechanism for estimating optical flow, it is to be expected
that the network generalizes quite well to out-of-training-
set samples. However, it also raises some concerns, since
traditional Gabor filters for optical flow estimation had
certain disadvantages. They deal badly with deviations
from translation, varying contrast due to changing light-
ing conditions, and are subject to the uncertainty relation,
which corresponds to the balance between localization of
the stimuli in the spatial domain and resolution in the fre-
quency domain.

FlowNetS successfully copes with all of these issues. We
have shown that deviations from translations are dealt with
by additional filters that are sensitive to more complex
motion types. Moreover, Mayer et al. [61] showed that Flow-
Net is able to cope with varying contrast over time due to
changing lighting conditions. Lastly, we have demonstrated
that FlowNetS is able to achieve a better spatial localization
of motion cues in the expanding part of the network, thus
coping with the uncertainty relation.

In terms of accuracy, FlowNetS did not reach the levels
of state-of-the-art methods. For example, it has poor per-
formance on sub-pixel flow [19]. One reason for this
might be the large number of strides utilized before the
initial flow prediction is made. Also, our analysis shows
that a Gabor filter based on two frames results in a large
temporal frequency bandwidth, and hence limited perfor-
mance concerning flow velocity estimation. This is
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narrowed somewhat by the non-linear transformations
due to the ReLU activation function and bias term. How-
ever, our analysis indicates that this could be further
improved by using more frames and thus providing more
temporal information to the network. Please note that
there is an increasing number of multi-frame methods for
deep optical flow estimation, e.g., [62], [63], [64], [65]. As
remarked in [62], most of these methods use multiple
images in order to track flow to future frames and track
flow back to the past, in order to enhance consistency of
the flow. Methods such as StarFlow [65] additionally pass
the flow and extracted features from the previous image
pairs as input to the deep net, while other methods make
use of LSTMs [64]. However, the basic matching still hap-
pens between two frames with FlowNetC-like neural cor-
relation blocks. What we propose here is to enter multiple
images directly into a FlowNetS-like network in order to
reduce the temporal bandwidth, something which to our
knowledge has not been investigated yet.

The Gabor-like nature of the neural filters in ¢6 may also
be a reason for less accuracy; These responses are mapped
to coarse flow in a linear way by p£6. This means that opti-
cal flow velocities that are higher than the filter’s tuned
velocity, actually lead to an underestimation of the optical
flow (due to the bell-shape of the response, see, e.g., Fig. 4).
The network likely copes with this in the following ways.
First, it can narrow the response bandwidth with the nonlin-
ear activation function. To see why this helps, think of the
extreme in which a neuron would respond in a Dirac-like
way to a very specific optical flow velocity. Of course, such
a narrow response would then require a very large number
of neurons to cover all optical flow velocities. This brings us
to the second coping mechanism; The final flow is mostly
determined by the neurons in the neural filter bank that are
tuned closer to the true optical flow velocity, as they will
react more intensely. Finally, the biases in the network can
be set in a way to deal with this problem, which is biased
since it mostly involves underestimation. Still, it may be
worth investigating if different mechanisms would lead to a
better accuracy, for instance by introducing a winner-take-
all mechanism.

We observed that only 592 of the 1024 c6 filters have an
activation larger than zero. However, the high similarity of
the active filters to the Gabor model already suggests that it
would also be worth studying a hybrid FlowNetS network,
in which there is a fixed Gabor filter bank (extended with
rotation and dilation features) followed by a convolutional
multi-layer loss flow refinement. This would greatly reduce
training time, and, most probably, improve the generaliz-
ability of the network.

Finally, our findings for FlowNetS may also be rele-
vant to “PoseNets” (e.g., [66], [67]) that take as input
subsequent images and output the relative pose, i.e., an
estimate of the translation and rotation between them.
Typically, for such relative pose estimation networks a
simple encoder structure is used, which is very similar
to FlowNetS’s structure up to and including c6. We
expect that optical flow plays a large role in the estima-
tion of translation and rotation between subsequent
images, and - given the similar network structure - it is
possible that PoseNets also implicitly determine flow
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with Gabor-like filters before synthesizing the informa-
tion into a translation and rotation estimate.

7.2 Impact on Biology

We have used and extended methods from neuropsychol-
ogy for determining the types of motion filters represented
by neurons in the deep c6 layer of FlowNetS. The analysis
gave very similar results to those on neurons in the mam-
malian visual cortex. First, many filter responses fit very
accurately with Gabor filters that capture translational
motion. Second, the spatial and orientation bandwidth sta-
tistics show similarity to bandwidths of neurons found in
the mammalian visual cortex. We report a median spatial
frequency bandwidth of 1.36 octaves, while De Valois et al.
[68] report 1.4 octaves for the macaque visual cortex. Simi-
larly, we find a median orientation bandwidth of 52
degrees, while De Valois et al. [69] find 65 degrees. These
similarities may be due to similar optical flow statistics
being perceived both by the network and the animals.
Third, as in neuropsychological experiments [47], we
observed that some filters respond poorly to translating
plane waves. Our analysis shows that such poor response
may be due to the filters being sensitive to more complex
motions such as dilation and rotation. Indeed, in the human
brain, channels sensitive to dilation have been found [70].
However, this did not provide conclusive evidence of neu-
rons sensitive to dilation. Our analysis and results suggest
that it is worth looking for dilation- and rotation-sensitive
neurons in animal brains. In fact, one could even extend the
analysis to also check for shear, as this forms an additional
basis for the flow field derivatives [71].

8 CONCLUSION

We have employed a spectral response fitting approach
from neuropsychology to demonstrate that the deepest
layer of FlowNetS essentially encodes a bank of spatiotem-
poral Gabor filters. Although accurate fits were obtained,
the spectral response fitting approach is limited, since it is
not able to identify the exact motion pattern causing the
maximum activation of a filter. In this work, we have
already shown that the network also contains a large num-
ber of filters that are more sensitive to dilation and rotation
than to translation, but more complex motion filters may be
present. Finally, we have studied how FlowNetS tackles the
aperture problem. Our results suggest that, on the one
hand, the receptive field size is highly correlated to the scale
at which the network can resolve the aperture problem. On
the other hand, the expanding part of the network allows to
solve the aperture problem at slightly larger scales by per-
forming a filling-in function similar to that in mammal
vision systems.

Future work could: (i) perform a similar analysis on Spy-
Net [34], (ii) study the neural response to more complex
motion patterns like compositions of affine and 3D motion,
as present in more realistic synthetic training datasets (e.g.,
FlyingThings [72]), (iii) attempt to improve FlowNetS’ per-
formance by using smaller strides or more input images,
and (iv) employ our extended spectral response fitting
method to investigate if animal brains have dilation- and
rotation-sensitive neurons as well.
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