NARGES MIRYAZDI JULY 2019

Supervisory team Alejandro Prieto Hoces Eric van den Ham

Sources: IEA, https://www.iea.org/topics/energyefficiency/buildings/

BACKGROUND

Problems

1. Energy consumption

30% of the world delivered energy

More than 50% of electricity consumption

Up to 70% is consumed by heating and cooling

BACKGROUND

Problems

2. Use of refrigrants

Global warming and Ozone depletion potential

BACKGROUNDAlternative solution: Solar Energy

Jakob, U. (2016). Solar cooling technologies

BACKGROUND Solar cooling technologies: Thermoelectric

Peltier element

BACKGROUNDWhy thermoelectric technology

1- Sustainable Low GWP and ODP Solar energy powered

2- Facade application Silent, compact, simple to use Low maintenance Reliable Heating and cooling

3- PV integration DC current No converter

BACKGROUNDThermoelectric technology

BACKGROUND Iran-energy consumption

8th producer of CO₂ in the world

Source: International Energy Agency (IEA) via The World Bank

BACKGROUNDTehran-Global Horizontal Irradiation

The annual solar radiation is 6350 MJ/m2 in Tehran

Source: World Bank Group, https://globalsolaratlas.info/downloads/iran Masoudi Nejad, 2015

PROBLEM STATEMENT

Is the designed facade capable of providing heating and cooling with electricity only from PV panels?

CONTEXT Tehran

CONTEXT

Tehran

Large temperature swings between day and night
Four-seasons:
Mild springs and autumns
Long, hot and dry summers
Short but cold winters
Hottest month is July
Coldest Month is January

CONTEXT Tehran

Availability of sun is relatively high

THERMOELECTRIC TECHNOLOGY Mechanism

By applying electrical current difference in temperature will be created across the two junctions of TE module

Thermoelectric semi conductors

THERMOELECTRIC TECHNOLOGY Facade integration

Prototypes A Thermoelectric cooling heating unit

Low efficiency
High costs
Availability

By Ibañez-Puy, M., et al. 2017

THERMOELECTRIC TECHNOLOGY

Increasing the Performance

TE module design 1

Selection of current intensity and voltage

Decreasing temperature difference

THERMOELECTRIC TECHNOLOGY Increasing the Performance

- TE module design 1
- Selection of current intensity and voltage 2
 - Decreasing temperature difference 3

Date: 2011 - 2015 Number of floors: 7 Orientation: North-South Volume and form: simple extrusion Plot size: 340sqm (built: 21m*9.5m)

Date: 2016 Number of floors: 7 Orientation: North-South Volume and form: Playing with solid masses Plot size: 700 sqm(built: 11.4m*7.8m)

Date: 2015
Number of floors: 7
Orientation: North-South
Volume and form: simple extrusion
Plot size: 215sqm (built:)

Date: 2012 - 2016

Number of floors: 9

Orientation: North(East)-South

Volume and form: simple box

Plot size: 610 sqm (built: 26.6m*15.2m)

Date: 2007 - 2009 Number of floors: 5 Orientation: North-South Volume and form: simple extrusion Plot size: - sqm

Date: 2011 - 2012 Number of floors: 6 Orientation: North-South Volume and form: voids and floating volumes Plot size: 637.5 sqm

Date: 2012-2015

Number of floors: 9

Orientation: North-South

Volume and form: 2 connected blocks

Plot size: 478 sqm(built: 30m*13m)

Plot size: -

Date: 2012 - 2014 Number of floors: 6 Orientation: North-South Volume and form: simple extrusion Plot size: 209 sqm(built: 14m*10m)

Date: 2013-2015

Number of floors: 6.5

Orientation: North-South

Volume and form: subtractions from facade

Plot size: 250 sqm(built: 15.6m*9.4m)

A CASE STUDY A representative office

Built between 2004-2016 Number of floors: 5-9 average 90% are South-North oriented Plot size: 430 sqm on average

A CASE STUDY Azaran headquarters

South facade

Azaran Ind. Headquarter Architecture firm: Chakad Design Office + Reza Sharif Tehrani

PREDESIGN

Passive design

- 1. Reducing annual heating and cooling loads
- 2. Reducing peak loads and design capacity

PASSIVE STRATEGIES Iterations

REDUCING INFILTRATION

NATURAL VENTILATION

PASSIVE STRATEGIESResults-annual demand

PASSIVE STRATEGIES

Results-Design capacity

ACTIVE COOLING DESIGN TE element selection

Comparison between 8 module types Favorable properties:

Lower cost Higher COP

TE element selection

COP obtained for each module selection

TE element selection

Higher Q

System sizing based on Peak of demand in summer

No. of TE modules

No. of TE modules

Why is it important?
Lower Q leads to higher COP

Higher COP Less electricity is required for the same work

No. of TE modules

More electricity consumption BUT less expensive

ACTIVE COOLING DESIGN

No. of TE modules

ACTIVE COOLING DESIGN

No. of TE modules

Investment costs

Cost of modules Cost of heat sinks × 2 (1 on each side of the modules) Operating costs

Cost of electricity in 25 years

Total cost

Operating and investment costs in 25 years

ACTIVE COOLING DESIGNNo. of TE modules

180 modules

REDUCING ΔT HOW?

REDUCING ΔTWHY VENTILATION INTEGRATION?

Not ventilation integrated

REDUCING ΔTWHY VENTILATION INTEGRATION?

Ventilation integrated

FACADE DESIGN

TE integrated facade –

FACADE DESIGNTE and heat sink integration

FACADE DESIGNTE and heat sink integration

FACADE DESIGNTE and heat sink integration

FACADE DESIGNVentilation integration

Air circulation in summer

FACADE DESIGNCooling operation

Realization in final facade design

FACADE DESIGNCooling operation

Realization in final facade design

FACADE DESIGNDetailing

Section-Horizontal connection of a TE facade with a glazing unit

Connection of the main insulation line

Connection of the interior cladding-gypsum board

Connection of the second aluminum frame

Structural brackets are connected to the floors

Modules are assembled on site by crane

They slide into each other

And are then fixed with screws to the structural bracket

Original facade design

The designed TE facade

Heat sinks on as a cladding

Different widths and colors

Glazed and TE units in one facade module

FACADE DESIGNInterior

TE integrated facade -

PERFORMANCE ASSESSMENT Thermal model

PERFORMANCE ASSESSMENT Thermal model

Optimizing values of α , β and \dot{V} which results in the best COP

PERFORMANCE ASSESSMENT Thermal model

 α , β and \dot{V} , determine the amount of air flow(m³/s) that enters the cold side, hot side and the conditioned zones.

PERFORMANCE ASSESSMENT Optimization-summer

 α should be minimum β has an optimum value but increasing it helps with the efficiency

COP of the system reaches **0.65 to 0.80** in summer peak conditions

αV, providing fresh air

 $-\beta\dot{V}$, cooling the hot side

PERFORMANCE ASSESSMENT Optimization-winter

 α should be maximum = 1 β should be 0 COP of the system reaches **1.9 to 2.0** in winter peak conditions

αV, providing fresh air

- Air vents on the hot side should be closed

PERFORMANCE ASSESSMENT Optimization-annual loads

Annual electricity consumption is covered by PV panels Electricity consumption in summer highest in June to September

Summer COP: 1 - 1.3 Winter COP: 2.1 - 3.0

PERFORMANCE ASSESSMENT Optimization-annual loads

Reliance on grid electricity in June to September

Is the designed facade capable of providing heating and cooling with electricity only from PV panels?

Yes,

The electricity consumption can be annually covered by PV production

BUT;

No,

The system relies on Grid electricity in months of June to September

FEASIBILITY ANALYSISCost

Cost-effective among other solar cooling technologies More expensive than conventional vapor compression

FEASIBILITY ANALYSISSummer COP

Better performance than other solar cooling technologies Much lower COP compared to vapor compression cooling

FEASIBILITY ANALYSIS

Facade integration

Hight noise levels
High air flow rates
Air movement and distribution
9 to 14 fans required per TE facade

FEASIBILITY ANALYSIS

Facade integration

Limitations in terms of sizes Width of the facade module

FEASIBILITY ANALYSIS Weight

Heavier than normal non-functional facades Not suitable for every facade application

CONCLUSION

Pros

- 1. A sustainable operation
- 2. A relatively good performance
- 3. Flexibility in design and suitable for facade integration
- 4. Summer and winter operation
- 5. Control over ventilation air

Cons

- 1. Difficulty in heat dissipation
- 2. Releasing hot air to the environment
- 3. Low COP at peak demand and reliance on grid electricity
- 4. High air flow rates
- 5. Weight

FUTURE WORK

Better performance:

Designing special heat sinks
Other means of heat dissipation
CFD analysis of the air flow in the channels and over the heat sinks
Desining a controlling system
Integrating PCM to enhance the peak performance

Facade integration:

Reducing noise problems Reducing weight

Heat recovery:

Minimizing contribution to heat island effect

THANK YOU

NON-INTEGRATED TE SYSTEM

FACADE DESIGN PV panels

Preventing overshading on each other

July-2:00 P.M

July-7:00 P.M

ENHANCING THE PERFROMANCEPCM integration

FACADE DESIGNDetailing

Section

