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 A B S T R A C T

Dimpled surface designs are known to be effective at enhancing convective heat transfer. However, optimizing 
these surfaces can be challenging due to the large parameter space created by the different combinations 
between geometrical features. In this paper, we combine a machine learning framework with a GPU-accelerated 
DNS solver to quickly assess the performance of a very large number of surface configurations, and to identify 
optimal designs. Our neural network can be trained to predict 2-D images with the local Nusselt numbers of 
rough surfaces within a few hours (in a single GPU), based on their original height maps. During evaluation, 
our neural network coupled with our parameterized geometrical formulation can evaluate one million dimpled 
surface designs in less than 45 min using a 64-core CPU architecture; with a low RAM memory footprint per 
core. Moreover, the GPU-accelerated DNS solver can calculate the Nusselt number of a rough surface within 
a few hours as well. The study considers a diverse parameter space including dimples with multiple depth 
profiles, major radiuses, corner effects, and inclination angles. To predict optimal designs, a basic reinforcement 
loop is created. In the first stage, only randomly chosen dimpled surface designs are selected as training data. 
The Nusselt numbers for each design are extracted from Direct Numerical Simulations (DNS), performed by the 
GPU-accelerated turbulent flow solver. Then, a convolutional neural network is trained, and different surface 
designs in our parameter space are evaluated. In order to advance the reinforcement learning loop, additional 
DNS cases are run for the optimal predicted surface, and other closely related geometrical variations. After 
adding these new DNS cases to the training set, the neural network is re-trained, and the process is repeated. 
Starting from the first iteration of the reinforcement learning loop, our results shows that machine learning 
can predict remarkably optimized dimpled surface designs, with high Nusselt numbers verified through DNS. 
Moreover, we find that machine learning chooses dimple configurations that enhance the interaction between 
roughness elements, even if other dimples with shorter radius (and equal depth) have more heat transfer 
area. The optimal surface has elongated dimples with opposite inclination angles, which create a zig-zag 
pattern for the flow near the walls. Additionally, we have shown that at different Reynolds numbers, the 
optimal geometry is different as well. We analyze other plausible optimal dimpled surface designs within our 
parameter space, and we find that machine learning correctly identified the adequate parameters to maximize 
heat transfer. Therefore, we conclude that machine learning is a highly effective tool to identify optimized 
designs for convective heat transfer enhancement.
1. Introduction

Turbulent flows past rough surfaces can be found in different en-
gineering applications. In most cases, rough surfaces tend to increase 
the drag resistance of transportation systems, leading to higher energy 
losses and fuel consumption. However, certain categories of rough 
surfaces can produce favorable results, such as enhancing heat trans-
fer while only producing a modest increase in pressure losses [1,2]. 
Therefore, it is possible to design special patterns for rough surfaces 
that maximize heat transfer inside engineering equipment. Maximizing 
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the mean Nusselt number 𝑁𝑢 of a rough surface is important for 
engineering applications, since heat transfer equipment can be made 
smaller overall.  Different families of rough surfaces have been studied 
to accomplish this goal, such as riblets [3] or dimples [4]. Under special 
conditions, it has been shown that it is even possible to increase the net 
ratio between the Stanton number (𝑆𝑡) and the skin friction factor (𝐶𝑓 ) 
of a rough surface [2,4]. An extensive review of rough surface patterns 
for heat transfer enhancement can be found in [4–6]. In many studies, 
it has been noted that dimples have a high potential to increase heat 
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Nomenclature

Operators

Average over entire surface
+ Dimensionless value (scaled by 𝑅𝑒𝜏 )

Sub-indexes

0 Smooth wall reference (same 𝑅𝑒𝑏)
Variables

𝛼 Dimple global inclination
𝜃 Angular coordinate inside the dimples
𝐶𝑓 Skin friction factor
𝐶𝑎−𝑏 Corner effects for dimples
𝐷 Depth profiles for dimples
𝑑𝑟𝑒𝑓 Reference depth for dimples
𝐷𝑁𝑆 Direct numerical simulation
𝐻 Height function
𝐿 Length of the computational domain
𝑁 Number of grid points
𝑁𝑢 Nusselt number
𝑃𝑟 Prandtl number
𝑄 Heating load
𝑅 Dimple radius
𝑆𝑡 Stanton number
𝑊𝑝 Pumping power
𝑥 Streamwise direction
𝑦 Wall-normal direction
𝑧 Spanwise direction

transfer in a system [6–10]. Moreover, dimpled surfaces are easy to 
manufacture, and different modifications can be considered, such as el-
liptical elements, rotated shapes [11], vortex generators [12,13]. Other 
studies have further considered elliptical protrusions [14], trapezoidal 
geometries [15], staggered arrangements [16], teardrop shapes [17], 
tubes with large dimples or protrusions [18,19].

One challenge while optimizing dimpled surface designs is that 
the parameter space created by the combinations between all geo-
metrical features is very large. It is well-known that modifications 
in the dimple shapes can lead to substantially different results [4,6]. 
Therefore, employing machine learning is necessary to assess the heat 
transfer performance of different dimple shapes. The current study 
uses a previously developed neural network architecture [20], which is 
trained using existing DNS data, and it is capable of scanning the height 
map of a rough surface, and then predicting the local distribution 
of Nusselt numbers 𝑁𝑢(𝑥, 𝑧) or skin friction factors 𝐶𝑓 (𝑥, 𝑧). While 
traditional convolutional neural networks must process an entire image 
for each predicted scalar quantity, our neural network architecture [20] 
can recycle the results of intermediate convolutional layers, and thus 
it is capable of generating 2-D maps with all 𝑁𝑢(𝑥, 𝑧) predictions 
after processing an image only once. Theoretically, this reduces the 
time and space complexity of the problem from quadratic to linear 
complexity, during both the training and evaluation stages. In our 
practical application, we indeed observe that the wall clock times for 
the training and evaluation of the neural network are reduced by 
several orders of magnitude. An example showcasing our convolutional 
neural network architecture, together with the filtering methodology 
previously developed [20], can be found in this Github repository [21].

Thanks to the efficiency of the machine learning system, it becomes 
possible to create a reinforcement-learning study, where millions of 
2 
rough surface designs are evaluated in a short time searching for 
optimal designs. Within this context, one important advantage of ma-
chine learning over gradient-based algorithms like the discrete adjoint 
method, is that the impact of large discrete changes in surface features 
can be assessed directly, without relying on infinitesimal gradients. 
Estimating the gradients with respect to changes in surface features 
is computationally expensive [22], especially for DNS with large grid 
sizes. Moreover, gradient-based optimizers also risk running into other 
numerical issues, such as convergence to local minima close to the 
starting configuration. About the usage of other optimization methods, 
we highlight that in Section 3, our current machine learning framework 
is able to find optimized dimpled surfaces using only 20 training 
samples, which is less than the number of degrees of freedom in the 
system. Classical optimization methods would require hundreds, or 
even thousands, of surface design evaluations (through DNS) before 
converging.

To further strengthen our computational framework, we use a GPU-
accelerated DNS solver written in Fortran, allowing for fast and accu-
rate generation of high-fidelity data. The GPU-based DNS solver is used 
both for generating training data, and for verifying the heat transfer 
performance of selected dimpled surface designs. In general, GPU-based 
DNS solvers can be substantially faster than even multicore CPU algo-
rithms [23]. Therefore, this work combines for the first time the neural 
network architecture developed by Sanhueza et al. [20] with a GPU-
accelerated DNS solver to generate optimized dimple surface designs. 
This paper is organized as follows: in Section 2, the methodology of 
the study will be presented, along with the parameter-space created 
for the rough surfaces. Then, in Section 3, the results of the study are 
described, which is followed by the conclusions in Section 4.

2. Methodology

2.1. Geometrical variations

During the current study, a diverse collection of dimpled surface 
designs is considered, including variations in different types of relevant 
features. A schematic representation of the geometrical variations avail-
able for every dimple can be found in Fig.  1. In this scheme, different 
shape modifications are highlighted, such as the radial profiles (𝑅1−4), 
dimple curvature (𝐶𝑎−𝑏), inclination angle (𝛼), and depth profile (𝐷). 
The values considered for each of these parameters are listed in Table  1. 
Regarding the depth profiles shown in Fig.  1(c), each spline is internally 
controlled by an anchor point located at 𝑅(𝜃)∕2. The first profile (blue) 
is a nearly sinusoidal shape, which resembles a classical dimple study, 
whereas the second profile (red) has a sharper inclination angle. Either 
of these shapes can be chosen during the machine learning optimization 
study. As a side-note, more shape variations were initially considered. 
However, during a preliminary study, intermediate depth profiles only 
produced gradual variations in our subsequent DNS results, and the 
optimum Nusselt number 𝑁𝑢 was found for one of the two extreme 
depth profiles (round/sharp). Regarding the dimple curvature effects 
shown in Fig.  1(b), the ‘‘elliptical’’ shape is obtained by considering 
four different ellipses, with major radiuses 𝑅1−4 spaced at 90◦ intervals. 
In contrast, the ‘‘circular corner’’ effect uses the smaller dimple radius 
to draw a circular arc at 90◦. From a physical perspective, this circular 
corner effect can increase the windward area of the dimples, where the 
maximum heat transfer typically occurs. However, this profile could 
also have the opposite effect, and expand the region with recirculation 
inside the dimples, which is detrimental for heat transfer. Therefore, 
the variations in the curvature profiles pose an interesting challenge 
for the machine learning study. The inclination angle (𝛼) is physically 
relevant as well, since inclined dimples can enhance vortex genera-
tion compared to spherical dimples [24,25]. However, the machine 
learning system must determine the optimal inclination angle (𝛼), and 
how different dimple shapes will affect vortex interactions. Finally, 
regarding the depth of the dimples 𝑑 , this parameter is kept at 
𝑟𝑒𝑓
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Fig. 1. Schematic representation of the parameters considered for the dimples. The sketch (a) highlights the location of the radiuses 𝑅1−4 within the dimples and their inclination 
angle (𝛼) with respect to the 𝑥−𝑧 plane. The legend of subplot (a) indicates the different curvature effects available for the dimples. Finally, the subplot (b) shows the two possible 
depth profiles for the dimples. Within this plot, 𝑑𝑟𝑒𝑓  is the reference depth for the dimples, whereas 𝑅(𝜃) is the local dimple radius at any given angle 𝜃. Please note that 𝑅(𝜃) is 
interpolated from subplot (a) taking into consideration the local curvature effects. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
Table 1
Parameters considered for the dimpled surfaces. The variable 𝛼 is the inclination 
angle for the dimples, whereas 𝑅1−4 are the four major radiuses for each dimple. The 
parameters 𝐶𝑎−𝑏 are the two different curvature variations, and 𝐷 is the depth profile 
for every dimple. The influence of the previous parameters in the dimple geometry is 
sketched in Fig.  1.
 Variable Alternatives

 𝛼 −45◦ −30◦ −15◦ 0◦ 15◦ 30◦ 45◦ 
 𝑅1−4 30% 50% 70%  
 𝐶𝑎−𝑏 Elliptical Rounded corner  
 𝐷 Rounded Sharp  

Fig. 2. Representation of the staggered dimple arrangement for the simulations. The 
shape of each dimple (A/B) is given by the alternatives listed in Table  1.

a fixed value of 𝑑𝑟𝑒𝑓 = 𝛿∕10, where 𝛿 is the half channel height: 
𝛿 = 𝐿𝑦∕2. If 𝑑𝑟𝑒𝑓  is changed, our DNS analysis showed that the 
Nusselt number 𝑁𝑢 tends to increase monotonically, even for very 
large 𝑑𝑟𝑒𝑓∕𝛿 ratios. Such DNS cases require more grid cells, and the 
identification of adequate initial conditions to avoid divergence. Good 
initial conditions are often obtained by running preliminary DNS cases 
with less pronounced geometrical features. However, the process of 
running additional simulations is computationally expensive, and it 
requires the formulation of empirical selection criteria. Therefore, all 
DNS simulations were performed only for 𝑑𝑟𝑒𝑓 = 𝛿∕10. As a general 
note, our dimpled surfaces with 𝑑𝑟𝑒𝑓 = 𝛿∕10 can display Nusselt 
numbers up to 53% higher than smooth wall channel flows under equal 
pressure losses (at 𝑅𝑒𝜏 = 180), and the simulations can start from almost 
any initial condition.

Regarding the global dimple arrangements, the final study consists 
in optimizing two rows of staggered dimples that are periodically 
repeated, as is it shown in Fig.  2. Each row of dimples has a unique 
shape, according to the alternatives listed in Table  1. The total number 
of configurations available for the system is approximately 3.5 mil-
lion, after removing repeated entries due to periodicity and physical 
symmetry in the spanwise direction. The dimples within each row (in 
the 𝑧-direction) have identical shape, since a preliminary study showed 
that the flow across the dimples mainly interacts with other elements 
aligned in the streamwise direction. Moreover, adding more dimple 
variations in the spanwise direction (per row) exponentially increases 
3 
the number of combinations available, and it was not found the change 
the outcome of preliminary ML optimization studies. Regarding the 
spacing between the dimples, all shapes are packed as closely as pos-
sible, while preserving the staggered grid arrangement. The center of 
every dimple was chosen to be the average position of the region with 
a position deeper than 75% of the nominal depth (𝑑𝑟𝑒𝑓 ). This formula 
does not change the center of uniform dimples, and it ensures that the 
deepest parts of asymmetrical dimples follow a staggered arrangement. 
This is important to reduce flow obstruction, since the deepest area of 
the dimples has a large impact in flow circulation, and the regions with 
the highest amount of heat transfer are usually located in front of them. 
Therefore, the current formula ensures that the dimples have a good 
alignment within our dataset, although other methods could be tested 
in the future.

2.2. Machine learning framework

The overall framework of the machine learning study corresponds 
to a basic reinforcement-learning loop, as it is shown in Fig.  3. In 
this framework, a DNS database is generated first (3.A), containing 
purely random dimpled surfaces. Then, a neural network is trained 
(3.B) to predict the local Nusselt numbers 𝑁𝑢(𝑥, 𝑧) distributed across 
the rough surfaces. Using the newly trained neural network, the mean 
Nusselt numbers 𝑁𝑢 are predicted for all possible dimpled surface 
combinations (3.C) according to Table  1. Considering the best per-
forming dimpled surface (3.D), new, yet closely related designs are 
generated randomly, according to the sub-steps of (3.E). Additional 
channel flow cases are run for each of these new dimpled surfaces, and 
their results are added to the DNS database (3.F), in order to repeat 
the reinforcement-learning loop. Beyond the framework presented in 
Fig.  3, it is important to note that the size of the neural network 
trained in step (3.B) was increased starting from the third iteration 
of the reinforcement learning loop. This modification was necessary 
to fit the increasing amount of training data available, since the size 
of our DNS database approximately triples by the third stage of the 
reinforcement learning study. Otherwise, the neural network would 
display a relatively high bias even when performing predictions for 
the training dataset. The details of the neural network architecture are 
discussed at the end of this sub-section.

In steps (i-iii) of Fig.  3.E, the methodology to choose variations 
of the optimal dimpled surface configuration predicted by machine 
learning is described. In this methodology, the dimple configurations 
are changed, by picking one parameter, and giving it random values 
for both dimples. The main benefit of this approach is that the influ-
ence of each physical feature is tested separately. If more parameters 
were changed at the same time, many configurations would have a 
distorted shape, which is physically far from the optimal predicted 
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Fig. 3. Steps of the basic reinforcement-learning loop for the current study.

configuration. For example, the dimples configurations can be highly 
sensitive to changes in their depth profile, or their radii. Therefore, the 
current methodology establishes a better trade-off between exploring 
new design characteristics, and keeping a shape that is reasonably 
related to the best predicted configuration. The total number of possible 
variations is 93, according to Table  1. Only 20 of these random dimple 
configurations are sampled in every stage of the reinforcement learning 
loop. Therefore, the machine learning system must still use sparse 
information to make predictions at any given stage.

Regarding the details of the neural network architecture, the sys-
tem is based on the optimized convolutional neural network (CNN) 
architecture described in Sanhueza et al. [20]. This machine learning 
system is able to scan the height map of a rough surface 𝐻(𝑥, 𝑧) and 
predict its local Nusselt number distribution 𝑁𝑢(𝑥, 𝑧) with linear time 
complexity, during both the training and evaluation stages. In our 
target application, this is thousands of times faster than a traditional 
convolutional neural network, which must process an entire image for 
every scalar quantity predicted. Predicting the local 𝑁𝑢(𝑥, 𝑧) values can 
be beneficial, because it forces machine learning to build a predictive 
model that accounts for local flow effects. Moreover, this methodology 
also provides a one-to-one ratio between the input data (𝐻(𝑥, 𝑧)) and 
the predicted quantities (𝑁𝑢(𝑥, 𝑧)) for the neural network, which other-
wise would be very unbalanced if 𝑁𝑢 was predicted directly. Regarding 
traditional surface metrics to predict 𝑁𝑢, such as the skewness or the 
effective slope, these quantities only correspond to averaged values, 
and they do not take into account the alignment between the roughness 
elements [26] During the current study, it was observed that identical 
roughness elements with optimized alignment could substantially in-
crease heat transfer. Therefore, traditional surface metrics do not form a 
good basis for the optimization study. Our machine learning framework 
to predict local 𝑁𝑢(𝑥, 𝑧) distributions is well suited to take into account 
how local flow effects influence heat transfer.

The overall neural network architecture for the current study is 
described in Table  2. Here, two neural networks are presented. The 
4 
Table 2
Neural network architectures to predict the local Nusselt numbers 𝑁𝑢(𝑥, 𝑧). The total 
number of trainable parameters is 4461 for the initial neural network, and 8161 for 
the larger ML model.
 Layer Input 

channels
Output 
channels

Kernel 
size

Dilation Activation 
function

 

 Initial neural network
 DSC 1 20 3 1 × 1 Yes  
 DSC 20 20 3 2 × 2 Yes  
 DSC 20 20 3 4 × 4 Yes  
 DSC 20 20 3 8 × 8 Yes  
 DSC 20 20 3 16 × 16 Yes  
 DSC 20 20 3 32 × 32 Yes  
 Conv. 1D 20 1 1 – –  
 Large neural network
 DSC 1 20 3 1 × 1 Yes  
 DSC 20 20 3 1 × 1 Yes  
 DSC 20 20 3 2 × 2 Yes  
 DSC 20 20 3 2 × 2 Yes  
 DSC 20 20 3 4 × 4 Yes  
 DSC 20 20 3 4 × 4 Yes  
 DSC 20 20 3 8 × 8 Yes  
 DSC 20 20 3 8 × 8 Yes  
 DSC 20 20 3 16 × 16 Yes  
 DSC 20 20 3 16 × 16 Yes  
 DSC 20 20 3 32 × 32 Yes  
 Conv. 1D 20 1 1 – –  

first network has a reduced number of layers, which is used during the 
first two optimization stages of the study, due to the smaller amount of 
training data available in the DNS database. In the third reinforcement 
learning iteration, a larger neural network is employed, in order to fit 
the increasing amount of training data. The details of each DSC module 
mentioned in Table  2 are sketched in Fig.  4. This architecture follows 
the principles described in [20], although the number of activation 
functions inside the network was reduced. This minor modification was 
made to reduce the number of trainable parameters, and because small 
empirical differences were found in the context of the current study. 
The neural networks listed in Table  2 have a total of 4461 and 8161 
trainable parameters, for the smaller and the larger neural network 
respectively.

2.3. GPU-accelerated direct numerical simulations (DNS)

In this study, the dimpled surfaces are simulated as rough walls 
within rectangular channel flows. The numerical framework is primar-
ily based on the dimensionless form of the incompressible Navier–
Stokes equations: 

∇ ⋅ 𝐮 = 0, (1)

𝜕𝑡𝐮 + (𝐮 ⋅ ∇)𝐮 = −∇𝑝 + 1
𝑅𝑒𝜏

∇2𝐮 + 𝑆𝑓 , (2)

𝜕𝑡𝑇 + (𝐮 ⋅ ∇) 𝑇 = 1
𝑅𝑒𝜏𝑃𝑟

∇2𝑇 + 𝑆𝑞 , (3)

In Eqs. (1), (2), (3), the variables 𝐮, 𝑃 , 𝑇  refer to the fluid velocity 
vector, pressure and temperature respectively. The parameter 𝑅𝑒𝜏 is 
the friction Reynolds number of the fluid, whereas 𝑃𝑟 is the molecular 
Prandtl number. The constants 𝑆𝑓  and 𝑆𝑞 are source terms that induce 
fluid motion and heat transfer in their respective equations [27–31]. 
The geometry considered for the study is a planar channel flow with 
dimpled walls, as it is shown in Fig.  5. In this scheme, 𝐻(𝑥, 𝑧) is 
the height function for the dimpled surface, the y-coordinate is the 
wall-normal direction, and 𝐿𝑦 corresponds to the full-channel height. 
Periodic boundary conditions are considered in the streamwise (𝑥) and 
spanwise directions (𝑧). The challenge of the heat transfer optimization 
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Fig. 4. Schematic representation of the depthwise separable convolution (DSC) modules mentioned in Table  2. The abbreviation 𝐵𝑁 refers to the 2-D batch normalization operations 
applied before each PReLU activation function.
problem is to maximize the mean Nusselt number (𝑁𝑢), which is given 
by: 

𝑁𝑢 =
𝑞𝑤

𝜆 (𝑇𝑏 − 𝑇𝑤)∕𝐿𝑦
, (4)

where 𝜆 = 1∕(𝑅𝑒𝜏 𝑃𝑟) is the dimensionless conductivity of the fluid, 
𝑇𝑤 is the wall temperature, and 𝑇𝑏 is the bulk temperature of the fluid. 
As it can be observed, maximizing the Nusselt number of the system 
(𝑁𝑢) is equivalent to decreasing the temperature difference (𝑇𝑏 − 𝑇𝑤), 
since all other parameters are fixed in the current study. The mean heat 
flux 𝑞𝑤 is also fixed, because the energy balance must be in equilibrium 
with respect to the volumetric source term 𝑆𝑞 .

From the global simulation settings, it is important to highlight 
that the channel flows operate with a constant mean pressure loss 𝛥𝑃 , 
since the friction drag losses at the rough walls are compensated by 
the momentum source term 𝑆𝑓 . As a consequence, in this study, the 
Nusselt number for the channel flow is maximized without changing 
the average pressure losses. This marks a contrast with respect to other 
formulations, where the highest Nusselt number might be found for 
configurations with very high pressure losses. Another implication of 
the current settings is that the skin friction factor 𝐶𝑓  is not a direct 
target of optimization for the study.

In practical terms, our optimization study resembles cases like the 
design of a heat exchanger. We seek to provide a constant heating load 
𝑄 with fixed pressure losses 𝛥𝑃 , and the objective is to maximize the 
Nusselt number 𝑁𝑢 to ensure that the system can operate with the 
lowest temperature difference: (𝑇𝑏 − 𝑇𝑤). Here, the drag losses should 
be measured in terms of the hydraulic pumping power, which is pro-
portional to 𝛥𝑃 𝑈𝑏, among other fixed parameters (𝐿𝑥, 𝐿𝑧, etc.). Based 
on these settings, dimpled surfaces with higher hydraulic resistance will 
have a lower bulk velocity (𝑈𝑏) and Reynolds number (𝑅𝑒𝑏), and hence 
their pumping power will not be greater. Despite this fact, since the 
Nusselt number 𝑁𝑢 is highly correlated with 𝑅𝑒𝑏, surfaces with high 
hydraulic resistance will be subject to a trade-off, where their 𝑁𝑢 values 
are penalized by their lower bulk velocity. Therefore, the results of the 
optimization study are physically-relevant.

In the literature, most studies tend to address a different challenge, 
which is maximizing the thermal efficiency (𝑁𝑢∕𝑁𝑢0)∕(𝐶𝑓∕𝐶𝑓,0) with 
respect to a smooth wall (sub-index 0); for a fixed bulk Reynolds 
number (𝑅𝑒𝑏) [4,6]. While surfaces with high thermal efficiency are 
valuable, this metric is not directly applicable to this study, because 
the changes in the skin friction factor (𝐶𝑓 ) will modify the pressure 
losses 𝛥𝑃 , and hence the channel flow will reach another equilibrium 
with different 𝑅𝑒𝑏. As a result, we highlight that maximizing 𝑁𝑢 is the 
right optimization target for the current study (with fixed 𝛥𝑃  and 𝑄
values).

Regarding the discretization and simulation parameters, the study 
is performed considering air with 𝑃𝑟 = 0.71, 𝑆𝑓 = 1, 𝑆𝑞 = 1
and 𝐿𝑦 = 2. The friction Reynolds number (𝑅𝑒𝜏 ) can be either 
180 or 395, depending on the simulation settings. The grid size is 
(

𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧
)

= (800 × 256 × 400) in each spatial direction for 
the simulations at 𝑅𝑒𝜏 = 180, whereas the 𝑅𝑒𝜏 = 395 use a grid size 
of (𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧

)

= (1920 × 592 × 960). The size of the channel 
flows in the streamwise (𝐿𝑥) and spanwise directions (𝐿𝑧) varies 
between 𝐿𝑥 = [5.66, 7.50] and 𝐿𝑧 = [2.82, 4.13], depending on the size 
of the dimples simulated. These domain sizes are consistent with other 
works about DNS for turbulent flows past rough surfaces [27,32,33]. 
5 
Fig. 5. Scheme of the channel flow geometry, with the height function 𝐻(𝑥, 𝑧)
representing the dimpled surfaces. The wall-normal direction is given by the 𝑦-
coordinate, where 𝑥 is the streamwise direction. The 𝑧-coordinate, perpendicular to 
the image, is the spanwise axis. The plane 𝑦 = 0 is coincident with the average height 
for the dimpled surface (𝐻(𝑥, 𝑧)). The variable 𝐿𝑦 is the full channel height, and thus 
𝑦 = 𝐿𝑦∕2 is the symmetry plane at the channel center.

In order to simulate the behavior of the rough surfaces, the immersed 
boundary method (IBM) is used. Our IBM implementation is inspired 
by the Fadlun scheme [34], although we use a ghost point inside the 
solid instead of forcing the first (fluid) point above the rough surfaces. 
Extensive validation benchmarks were performed, obtaining identical 
results as Peeters and Sandham [27]. Due to the refined grid, all the 
current DNS cases have dimensionless cell sizes in the range 𝛥𝑥+ < 1.69, 
𝛥𝑧+ < 1.86, and a uniform mesh size of 𝛥𝑦+ ≈ 0.9 is kept near the 
rough surfaces. The mesh size is small in the 𝑥 and 𝑧 directions, since 
the dimples have a significant curvature, and this helps to reduce the 
distance at which interpolation points are considered. The grid size 
further complies with the basic discretization requirements of similar 
simulations [27–29], which can be expressed as (𝛥𝑥+, 𝛥𝑦+, 𝛥𝑧+

)

<
(5, 1, 5). Other discretization constraints related to the length-scale of 
the rough surfaces do not apply to the current study, since the dimples 
are substantially larger than the smallest grid scales. More details about 
the validation of the GPU-based DNS solver can be found in Appendix.

From a fluid mechanics perspective, it is important to mention that 
all DNS cases with dimpled surfaces operate in turbulent regimes. Both 
smooth wall and rough surface cases display turbulent flow behavior 
at 𝑅𝑒𝜏 = 180 for moderate roughness heights [27–29].

About the software implementation, our GPU-accelerated DNS
solver is written in Fortran, using GPU-aware MPI and OpenACC 
for cross-platform compatibility. The numerical algorithm uses the 
fractional-step method, following the methodology used by Peeters and 
Sandham [27]. Finite difference expressions are used for the spatial 
discretization of the Navier–Stokes equations, whereas the temporal 
discretization is given by an Adams–Bashforth scheme. The immersed 
boundary method uses ghost points along fixed Cartesian directions, 
as previously mentioned. To fulfill the continuity equation, a pressure-
Poisson equation is implicitly solved using spectral FFT-based methods, 
achieving (𝑛 𝑙𝑜𝑔 𝑛) time complexity for large-scale applications. In the 
Poisson solver, Fourier transformations are applied in the streamwise 
(𝑥) and spanwise (𝑧) directions, whereas the wall-normal direction (𝑦) 
retains its finite difference discretization and a tridiagonal solver is used 
instead. To ensure high-performance in multi-GPU configurations, the 
computational domain is divided into 1D slabs along the 𝑦-direction 
for each MPI task. This implies that all FFT operations along the 𝑥-𝑧
directions are local to each GPU device. To solve tridiagonal equations 
along the 𝑦-direction, we incorporate a parallel solver, based on the 
parallel cyclic reduction (PCR) algorithm [35,36]. 
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2.4. Scalability analysis

Regarding the scalability of our optimization framework, only the 
running times of the DNS solver are affected by the higher Reynolds 
number (𝑅𝑒𝜏 ). The input images passed to the machine learning system, 
with the local Nusselt number distributions 𝑁𝑢(𝑥, 𝑧), can be rescaled 
to a lower resolution similar to the DNS grid for 𝑅𝑒𝜏 = 180. In our 
experience, this resolution is enough to capture both the geometrical 
features of the dimpled surfaces and the changes in the local 𝑁𝑢(𝑥, 𝑧)
distributions, even for flows at higher Reynolds numbers. Therefore, 
the running times of our machine learning framework are constant for 
flows at different Reynolds numbers. In the case of the DNS solver, the 
Poisson solver tends to be the main performance bottleneck for large-
scale simulations, since the remaining subroutines of the DNS solver 
either perform halo exchanges or local kernel computations. Despite 
these challenges, our DNS code incorporating a parallel tridiagonal 
solver is able to achieve strong scalability (by grid size) when compar-
ing simulations at either 𝑅𝑒𝜏 = 180 or 𝑅𝑒𝜏 = 395. Detailed benchmarks 
about the scalability of DNS solvers with PCR algorithms can be found 
in [35–38].

3. Results

3.1. Optimization for dimples surfaces at 𝑅𝑒𝜏 = 180

In order to initialize the reinforcement-learning loop, described in 
Fig.  3, a DNS database with completely random dimple variations is 
generated first. The dimpled surfaces found in this initial database are 
plotted in Fig.  6. Here, it can be verified that all the 20 DNS cases 
have unique patterns and different surface topologies. Using the GPU-
accelerated DNS solver, the local Nusselt number distributions 𝑁𝑢(𝑥, 𝑧)
for each of these 20 random surfaces are calculated. Based on these re-
sults, the smallest neural network described in Table  2 is trained. From 
the 20 DNS cases available, 18 DNS cases are used as training data, and 
2 DNS cases are left as a small cross-validation set to monitor over-
fitting. After training the neural network, approximately 3.5 million 
different surface designs are evaluated, seeking to maximize the mean 
Nusselt number 𝑁𝑢. The best three performing configurations predicted 
by the neural network in the first reinforcement-learning generation are 
shown in Fig.  7. Here, it can be seen that machine learning predicts that 
the optimal surface consists of two elongated dimples with opposite 
inclination angles (𝛼). This result is very interesting, since none of the 
shapes in the training data (Fig.  6) had a similar pattern. The Nusselt 
numbers predicted by machine learning, and the DNS verification for 
the top-3 configurations are also shown in Fig.  7. From these results, it 
can be noted that the ranking assigned to the dimpled surface designs 
is correct with respect to their Nusselt numbers 𝑁𝑢 extracted from the 
DNS data, even though the neural network slightly under-predicts the 
mean Nusselt number 𝑁𝑢 compared to the DNS results.

For the second iteration of the reinforcement learning loop, new 
dimpled surfaces are generated, according to the methodology de-
scribed in steps (i-iii) of Fig.  3. The surfaces created can be found in Fig. 
8. Here, it can be noted that the new surfaces contain large variations 
from a physical perspective, despite only changing one parameter at a 
time. The neural network is thus re-trained using an extended dataset 
with 41 DNS cases: the 20 original surfaces shown in Fig.  6, the top-1 
ranked surface identified by machine learning (first row in Fig.  7), and 
the variations shown in Fig.  8. After re-training the neural network, 
the results shown in Fig.  9 are obtained. The main difference with 
respect to the first generation of the reinforcement learning loop is that 
inclination angle of the dimpled surfaces was changed from 45◦ to 30◦. 
The variations in the top predicted configurations are minor, and they 
follow the same patterns observed back in Fig.  7.

In the third generation of the reinforcement-learning study, 20 
additional surfaces are considered. Now the DNS database contains 
a total of 62 DNS cases, since the optimal design from the second 
6 
generation (Fig.  9) is also added to the database. Due to the increased 
amount of training data, the size of the neural network was increased. 
Otherwise, the bias of the neural network can be higher, even for 
training samples. The results of the machine learning study are found in 
Fig.  10. Here, it can be seen that the top predicted configurations have 
a very similar topology to the second reinforcement learning stage, 
although small variations in the curvature of the perimeter for the 
dimples are observed. All dimpled surfaces still have high potential for 
heat transfer, according to the DNS results. However, it is observed 
that the minor topological changes observed among the top dimpled 
surfaces do not further influence the outcome of the study, and the 
reinforcement-learning iterations are concluded.

To investigate which surface features contribute the most to heat 
transfer enhancement, Fig.  11 presents a comparison between multiple 
variations from the optimal surface predicted in the second generation 
of the reinforcement learning study. Here, the geometry of the dimpled 
surfaces is shown along with their respective Nusselt numbers 𝑁𝑢
extracted from DNS data. From this comparison, it can be noted that 
the configuration predicted by machine learning is substantially better 
than similar designs. This result indicates that the neural network 
correctly found an optimized dimpled surface design starting from 
low-quality random training data, which had little relation with the 
optimal patterns. Many reinforcement learning frameworks would re-
quire hundreds, if not thousands, of iterations before they can converge 
to an adequate design. In contrast, our machine learning system quickly 
found correct geometrical parameters, such as the inclination angle 
𝛼 = 30◦, corner profiles, depth and aspect ratio for the dimples among 
similar alternatives. Regarding these surfaces, it can also be highlighted 
that the dimples with a circular perimeter, or lower aspect ratio, are 
more closely packed and have more heat transfer area. Therefore, 
machine learning took into account the interactions between roughness 
elements while assessing the potential for heat transfer of different 
surface designs.

Finally, it is interesting to investigate if the performance of the 
optimal dimpled surface can also be explained by investigating the 
local flow structures. Flow patterns are generally important for dim-
pled surfaces, since most heat transfer takes place in the windward 
faces, whereas backflow areas (with recirculation) have a negligible 
contribution. Due to this reason, the averaged Nusselt numbers 𝑁𝑢
of dimpled surfaces are greatly dependent on any heat transfer en-
hancement effects at the windward faces, due to factors such as the 
shape or alignment of dimple elements. Based on this context, the 
higher Nusselt numbers for dimpled surfaces with opposite inclination 
angles can be attributed to the creation of a zig-zag pattern in the 
flow near the surfaces. This phenomenon is visualized in Fig.  12, where 
the streamlines for the top surface from the second generation of the 
reinforcement learning loop (Fig.  9) are compared with the dimples 
with circular perimeter shown in Fig.  11 and other closely related 
geometrical variations. Here, it can be clearly observed that the dimples 
with opposite inclination angles have minimal fluid recirculation, since 
the streamlines inside each dimple follow a spiral pattern [39], where 
the flow from previous dimples is deviated resulting in a large heat 
transfer rate in the frontal faces. In contrast, the circular dimples suffer 
from significant flow recirculation in their interior [40–43], which 
is detrimental for local heat transfer. Another reason for the lower 
thermal performance of circular dimples is that the flow perturbations 
created by one element do not have a significant impact on the up-
coming dimples. This phenomenon lowers the thermal performance of 
aligned roughness elements in general. Beyond the alignment of the 
roughness elements, the larger 𝑁𝑢 values observed for dimples with 
sharper corners, or steeper depth profiles, is related to the increased 
size of the frontal area where the highest local Nusselt numbers 𝑁𝑢(𝑥, 𝑧)
are found.

Regarding the influence of the dimple inclination angle, Fig.  12 
shows that dimples with a moderate inclination of 15◦ have a much 
higher degree of recirculation than the optimal configuration (30◦). 
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Fig. 6. Dimpled surfaces found in the DNS database for the first generation of the reinforcement-learning framework. The sub-images are drawn at scale to represent their size 
in physical coordinates: (𝐿𝑥 × 𝐿𝑧

)

.

This is evidenced by the additional loops of the spiral vortices inside 
these dimples. Dimples with a higher inclination angle of 45◦ display 
minimal recirculation, yet it can be observed that the spiral vortices 
inside the dimples are highly distorted. Finally, the dimples in aligned 
arrangement at 30◦ present a drastically different flow pattern, where 
the flow tends to hover above the dimples, which is less than optimal 
for heat transfer. In summary, it can be observed that both the inclina-
tion angle of the dimples and the staggered arrangement have a large 
impact in the flow patterns for every configuration, and the resulting 
heat transfer. 

Therefore, our machine learning framework can be a useful tool to 
predict surface designs that maximize heat transfer, and we provide a 
framework to iterate using additional results obtained from DNS simu-
lations. Moreover, the local Nusselt numbers 𝑁𝑢(𝑥, 𝑧) predicted for each 
configuration serve as an additional verification tool, to check whether 
the distributions follow physically plausible patterns, or if the mean 
Nusselt number 𝑁𝑢 are affected by spurious non-physical oscillations. 
Further design insights can also be obtained from 𝑁𝑢(𝑥, 𝑧) to predict 
7 
optimal heat transfer patterns, or to understand the sensitivity of the 
neural network to changes in the dimple geometry.

To provide a broader context, the performance metrics reported 
by Ligrani et al. [4] and the Reynolds analogy factor (2𝑆𝑡∕𝐶𝑓 ) [44] 
were computed for the top dimpled surface from the second generation 
of the machine learning study, and other canonical flow cases. These 
values are reported in Table  3, along with the dimensionless ratio 
between heat transfer (𝑄) and pumping power (𝑊𝑝) for each config-
uration. Here, it can be observed that the top dimple configuration 
also has a significantly higher ratio 𝑄∕𝑊𝑝∕(𝑄0∕𝑊𝑝,0). Furthermore, the 
metric 𝑁𝑢∕𝑁𝑢0∕(𝐶𝑓∕𝐶𝑓,0)1∕3 is also higher for the optimized surface. 
However, according to the Reynolds analogy factor and the thermo-
hydraulic efficiency, the optimized surface performs less well. Thus, 
we conclude that the optimization method yields an improved ratio of 
thermal load to pumping power. The latter is the direct result of the 
Nusselt number being much higher for the top dimpled surface than it is 
for the circular dimple surface. Moreover, our channel flow simulations 
have fixed pressure losses 𝛥𝑃 , which implies that the bulk Reynolds 
number 𝑅𝑒  is subject to change. Therefore, the value reported by 
𝑏
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Fig. 7. Top ranked dimpled surfaces found during the first generation of the reinforcement learning loop at 𝑅𝑒𝜏 = 180. The bulk flow moves from left to right.
Table 3
Thermal performance metrics for the highest performing dimpled surface found in the second generation of the reinforcement learning study at 
𝑅𝑒𝜏 = 180, and other closely related alternatives. The sub-index ‘‘0’’ refers to a flat-plate channel case at identical bulk Reynolds number (𝑅𝑒𝑏) 
as the target configuration.
 Case 𝑄∕𝑊𝑝

𝑄0∕𝑊𝑝,0
𝑁𝑢 𝐶𝑓

2𝑆𝑡
𝐶𝑓

𝑁𝑢∕𝑁𝑢0
(𝐶𝑓 ∕𝐶𝑓,0)1∕3

𝑁𝑢∕𝑁𝑢0
𝐶𝑓 ∕𝐶𝑓,0

 
 Top dimpled surface (gen. 2) 1.63 28.0 0.024 1.00 1.54 0.81  
 Circular dimples (same 𝑅𝑒𝑏) 1.25 17.8 0.014 1.10 1.17 0.88  
 Smooth walls, 𝑅𝑒𝜏 ≈ 110 (same 𝑅𝑒𝑏) 1 13.2 0.0091 1.25 – –  
 Smooth walls, 𝑅𝑒𝜏 = 180 (same 𝛥𝑃 ) – 18.1 0.0079 1.13 – –  
the thermo-hydraulic efficiency does not necessarily reflect the final 
performance of the system.

Finally, to emphasize that the computed flows at 𝑅𝑒𝜏 = 180 operate 
in the turbulent regime, Fig.  13 presents a snapshot of the instanta-
neous velocity field 𝑈+ at the plane 𝑧 = 𝐿𝑧∕2 for the top-performing 
dimpled surface from the second generation of the reinforcement learn-
ing study. Here, it can be seen that the velocity field displays the 
similar characteristics as turbulent flow snapshots reported in other 
studies [27].

3.2. Optimization for dimples surfaces at 𝑅𝑒𝜏 = 395

In the previous section, it was shown that machine learning can 
accurately predict optimized dimpled surface designs for flows at a fric-
tion Reynolds number of 𝑅𝑒𝜏 = 180. However, to further demonstrate 
the ability of the optimization method, we repeated the procedure 
for flows at 𝑅𝑒𝜏 = 395. To begin this new phase of the study, a 
new DNS database was generated, considering the randomized dimpled 
surfaces previously shown in Fig.  6. Then, the neural network was re-
trained using the new DNS database with flows at 𝑅𝑒𝜏 = 395, and the 
evaluation procedure with millions of combinations was repeated. The 
top configurations predicted by machine learning are shown in Fig.  14. 
Here, it can be seen that the top-ranked dimpled surface resembles the 
previous optimal design for 𝑅𝑒𝜏 = 180. However, instead of sharper 
(rounded) corners, elliptical corners are chosen instead. To further 
investigate this outcome, an additional DNS was performed at 𝑅𝑒𝜏 =
395, but with sharper corners instead. The last row of Fig.  14 shows a 
comparison with respect to a dimpled surface with sharper (rounded) 
corners. From the DNS results, it can be seen that the elliptical corners 
are indeed beneficial to increase the Nusselt number (𝑁𝑢) at 𝑅𝑒 = 395.
𝜏

8 
The streamline patterns for DNS cases with both corner effects can 
be found in Fig.  15. Here, it can be observed that the elliptical corners 
create spiral vortices more closely aligned with the dimple geometry, 
and that most streamlines are ejected together towards the end of each 
dimple. In contrast, the dimples with sharp (rounded) corners have 
a more dispersed flow pattern, with the streamlines spilling over the 
dimples and being ejected at different locations. This implies that the 
geometry is not closely aligned with the vortices generated, and thus 
it is natural to expect a higher Nusselt number from the dimples with 
elliptical corners at 𝑅𝑒𝜏 = 395.

A comparison between the performance metrics for the newly op-
timized surface at 𝑅𝑒𝜏 = 395 and other relevant cases can be found 
in Table  4. Here, the Nusselt numbers 𝑁𝑢 tend to be higher than 
before (Table  3), since this quantity grows together 𝑅𝑒𝑏 or 𝑅𝑒𝜏 in our 
physical formulation. However, we highlight that the newly optimized 
surface (with elliptical corners) has higher values for 𝑄∕𝑊𝑝∕(𝑄0∕𝑊𝑝,0)
than the previous study at 𝑅𝑒𝜏 = 180. This indicates that the dimpled 
surface is operating efficiently, achieving both a high Nusselt number 
and a good ratio of heat transfer to pumping power. Again, the ratio 
𝑁𝑢∕𝑁𝑢0∕(𝐶𝑓∕𝐶𝑓,0)1∕3 has a favorable value for the optimized surface. 

3.3. Discussion of results

Regarding the quantitative results presented here, it should be 
mentioned that the topologies found will only be optimal for the 
investigated Reynolds numbers. Moreover, the optimized topology was 
found using Dirichlet boundary conditions. This modeling assumption 
may not always be correct when dealing with heat transfer equipment. 
A good example would be a heat exchanger without any multiphase 
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Fig. 8. Additional dimpled surfaces added to the DNS database for the second generation of the reinforcement-learning framework.
Table 4
Thermal performance metrics for the highest performing dimpled surface during the optimization study with 𝑅𝑒𝜏 = 395, and other closely related 
alternatives. The sub-index ‘‘0’’ refers to a flat-plate channel case at identical bulk Reynolds number (𝑅𝑒𝑏) as the target configuration.
 Case 𝑄∕𝑊𝑝

𝑄0∕𝑊𝑝,0
𝑁𝑢 𝐶𝑓

2𝑆𝑡
𝐶𝑓

𝑁𝑢∕𝑁𝑢0
(𝐶𝑓 ∕𝐶𝑓,0)1∕3

𝑁𝑢∕𝑁𝑢0
𝐶𝑓 ∕𝐶𝑓,0

 
 Top dimpled surface (𝑅𝑒𝜏 = 395) 1.78 52.8 0.023 0.88 1.65 0.77  
 Circular dimples (same 𝑅𝑒𝑏) 1.65 46.8 0.0199 0.9 1.54 0.79  
 Smooth walls, 𝑅𝑒𝜏 ≈ 222 (same 𝑅𝑒𝑏) 1 21.7 0.0073 1.14 1 1  
 Smooth walls, 𝑅𝑒𝜏 = 395 (same 𝛥𝑃 ) – 36.6 0.0063 1.16 – –  
phenomena on either the hot or cold side. However, the study’s method-
ology can be extended to the point where the surface topology is 
not only optimized on one side, but on both the hot- and cold-side 
in tandem. In such a case, only the configuration of the DNS solver 
would need to change to allow for conjugate heat transfer, but the 
9 
convolutional neural network would still work and thus, the methods 
in this paper could be used to optimize topologies that are more 
relevant to industry. In subsequent studies, the dimple depth should be 
included in the parametrization of the dimple geometry. Furthermore, 
the same general methodology can be used for different designs such 
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Fig. 9. Top ranked dimpled surfaces found during the second generation of the reinforcement learning loop at 𝑅𝑒𝜏 = 180. The bulk flow moves from left to right.

Fig. 10. Top ranked dimpled surfaces found during the third generation of the reinforcement learning loop at 𝑅𝑒𝜏 = 180. The bulk flow moves from left to right.
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Fig. 11. Comparison between the optimal dimpled surface found in the second generation of the reinforcement learning loop with other closely related geometries at 𝑅𝑒𝜏 = 180. 
The bulk flow moves from left to right.
as transverse bars or riblets, as long as the parametrization is changed 
accordingly. Finally, to include much higher Reynolds numbers, Large 
Eddy Simulations could be used instead of Direct Numerical Simula-
tions to extend the applicability of the methods to a wide range of 
industrial cases.

4. Conclusions

In this study, we present a machine learning framework to opti-
mize rough surfaces for convective heat transfer enhancement. The 
procedure starts by considering a DNS database with purely random 
11 
surface designs. Then, a neural network is trained using the existing 
DNS data, and a new optimal design is predicted within our parameter 
space. To advance in the reinforcement learning loop, the DNS database 
is augmented by simulating both the new optimal surface, as well as 
closely related random variations of this design. The neural network 
can predict highly optimized dimpled surface designs, starting from the 
first iteration of the reinforcement learning loop. The rough surfaces 
identified by machine learning contain elongated dimples with opposite 
inclination angles, which create a zig-zag pattern for the flow near the 
walls. This design is highly effective for heat transfer enhancement, and 
further analysis shows that it is substantially more effective than other 
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Fig. 12. Streamlines for the dimples with circular perimeter (left) shown in Fig.  11, and the top-ranked dimpled surface (right) obtained in the second generation of the reinforcement 
learning loop (Fig.  9). The color-maps for each dimple indicate the averaged temperature (𝑇 ) for their respective streamlines. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)
plausible alternatives within our parameter space. For instance, smaller 
dimples with high packing density can have more heat transfer area, yet 
their Nusselt number is inferior since their shapes do not enhance local 
heat transfer. Additionally, we have shown that at different Reynolds 
numbers, the optimal geometry is different as well. This showcases the 
12 
ability of our machine learning system to prioritize the alignment of 
roughness elements, and to select other appropriate surface features. 
Achieving similar results using traditional correlations would be diffi-
cult, since standard surface metrics (e.g. skewness) correspond to global 
averages, which are not sensitive to the exact location of roughness 
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Fig. 13. Instantaneous snapshot of the velocity field in the streamwise direction (𝑈+) for the highest-performing dimpled surface of the second generation of the reinforcement 
learning study at 𝑅𝑒𝜏 = 180. The slice shown corresponds to the plane at 𝑧 = 𝐿𝑧∕2. Please note that 𝑈 = 𝑈+ in our numerical framework. The bulk flow moves from left to right.

Fig. 14. Top ranked dimpled surfaces found during the optimization procedure for a friction Reynolds number of 𝑅𝑒𝜏 = 395. The label ‘‘previous best’’ refers to the top-ranked 
dimpled surface from the second generation of the reinforcement learning study for 𝑅𝑒𝜏 = 180. The bulk flow moves from left to right.
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Fig. 15. Streamlines for the dimples with elliptical corners (top) shown in Fig.  14, and the top-ranked dimpled surface (bottom) obtained in the second generation of the 
reinforcement learning loop (Fig.  9) at 𝑅𝑒𝜏 = 180. The color-maps for each dimple indicate the averaged temperature (𝑇 ) for their respective streamlines. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
elements. Thus, traditional correlations are not well-posed to predict 
how the alignment between dimples would enhance heat transfer.

In summary, we conclude that machine learning can be an ef-
fective tool to optimize rough surfaces for convective heat transfer 
enhancement. While typical reinforcement learning problems can re-
quire hundreds, if not thousands, of iterations to converge, our system 
can build highly effective surface designs in only a few iterations. 
Beyond the machine learning framework, our DNS analysis also shows 
that elongated dimples with opposite inclination angles are an interest-
ing alternative to consider in optimization studies, since they produce a 
large enhancement in the average Nusselt number under equal pressure 
losses. Moreover, the local Nusselt numbers 𝑁𝑢(𝑥, 𝑧) predicted for each 
configuration serve as an additional verification tool, to check whether 
the distributions follow physically plausible patterns, or if the mean 
Nusselt number 𝑁𝑢 are affected by spurious non-physical oscillations. 
Further design insights can also be obtained from 𝑁𝑢(𝑥, 𝑧) to predict 
optimal heat transfer patterns, or to understand the sensitivity of the 
neural network to changes in the dimple geometry.
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Appendix. Validation of the turbulent flow solver

In order to validate the new GPU-based DNS solver, a comparison 
was first performed with respect to the channel flow with a grit-blasted 
surface simulated by [27,28,32]. This DNS case uses a friction Reynolds 
number of 𝑅𝑒𝜏 = 180 and a Prandtl number equal to unity. The grid 
size considered was (𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧) = (560 × 280 × 280) in each 
Cartesian direction, whereas the domain size is (𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧) =
(5.63 × 2 × 2.815). These settings are equivalent to a dimensionless 
grid size of 𝛥𝑥+ = 𝛥𝑧+ = 1.81 in the streamwise and spanwise 
directions, respectively. In the wall normal direction, a constant value 
of 𝛥𝑦+ = 0.65 is kept near the walls. The validation data is plotted 
in Fig.  A.16. Here, a comparison is performed with respect to the DNS 
data of Peeters and Sandham [27] and Busse et al. [28]. As it can be 
seen in the sub-plots, the new GPU-based DNS solver closely matches 
the turbulence statistics reported, and the associated changes in the 
velocity (𝛥𝑈+) and temperature (𝛥𝑇 +) profiles.

To further validate the accuracy of our DNS solver, an additional 
DNS case was run replicating the work of Maaß and Schumann [45]. 
This case corresponds to a turbulent flow past a wavy surface. The 
results of the benchmark can be found in Fig.  A.17. Here, it can be 
observed that the velocity profiles near the wavy surface are extremely 
close to the reference data. This is a strong validation of our implemen-
tation for the immersed boundary method, since the DNS case of Maaß 
and Schumann [45] operates at a relatively low Reynolds number with 
effects like flow separation. 
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Fig. A.16. Comparison between the turbulence statistics for the new GPU-based DNS solver and existing literature [27,28,32].
Fig. A.17. Validation of the GPU-accelerated solver with respect to the DNS case from Maaß and Schumann [45]. Here, 𝐻 is the height of the channel and 𝜆 is the wavelength 
of the sinusoidal surface.
Data availability

Data will be made available on request.
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