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Abstract 
Satellite altimetry is an important technology used to measure sea level with high spatial and temporal 
resolution. Sentinel-3, a Copernicus satellite mission, offers three types of variables captured 
simultaneously for the first time; sea level (SSH), sea surface temperature (SST) and ocean colour (OC) 
variables. Sea level is measured with SAR altimetry, a technique that considerably increases spatial 
resolution compared to other means of observation. Altimetry measures sea level across a line that 
coincides with the satellite ground track, whereas SST and OC are measured on a grid. What we lack 
are sea level observations in-between ground tracks that would better resolve meso-scale variability. 
This thesis is focused on two objectives, considering previous work that has indicated associations 
between those variables. The first objective was to investigate the correlations among SSH, SST and 
OC, while the second objective was to assess to what extent inter-track sea level can be estimated 
using SST and OC as predictors in machine learning algorithms. 
Daily Sentinel-3 data over a period of eleven months were pre-processed and brought into a form that 
allowed for computation of metrics such as auto- and cross-correlations in the along-track direction. 
The focus was on the spatial scales that would enable to detect meso-scale features, such as eddies. 
With respect to the inter-track sea level estimation two paths were followed. In the first path, Random 
Forest (RF) and Multilayer Perceptron (MLP) were applied using the complete 11-month dataset as 
input. Moreover, RF was applied on input data that belong to each separate day. In the second path, 
1D Convolutional Neural Network (CNN) was used on the complete 11-month dataset, which 
inherently honors the spatial dependency of the variables in contrast to the first path. 
Generally, the correlations between the variables were found to exist in the meso-scale but were not 
always strong and they depend on several other factors, such as meteorological conditions, scales 
included in the analysis and techniques used. All three techniques -RF, MLP and 1D CNN- that were 
applied on the complete 11-month dataset gave poor results. On the contrary, when RF was applied 
on the per-day data gave promising results that are reliable mostly in the vicinity of the ground track, 
although they are not based on one single global model. 
The results from this project suggest that there must be more research on the correlation analysis of 
Sentinel-3 data. It can be improved by using additional or similar techniques, such as localized cross-
correlation metrics on various spatial scales. With respect to the inter-track sea level estimation, far 
more investigation is needed. However, there are indications that a machine learning data-driven 
approach could potentially work to some extent. Sentinel-3 data will become more abundant in the 
next years which will assist data science algorithms such as CNNs which require huge datasets. 
 
 
Keywords: Sentinel-3, sea level, sea surface temperature, ocean colour, Convolutional Neural 
Network, Random Forest 
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Preface 
Chapter one introduces the reader to oceanography in general, as well as in further relevant details. 

In particular, ocean features, sea level, ocean temperature and ocean colour variables are described 

with a focus on their remote sensing aspect; for instance, how those variables are measured and some 

physics behind them, as well as the associations among them. In addition, several techniques are 

described regarding ways to estimate sea level historically and currently by the use of different types 

of models. Chapter two describes the new Sentinel-3 satellite mission which is one of the triggers of 

the methodology of this thesis. Especially, chapters one and two add value to the thesis because they 

briefly make clear that certain aspects are missing regarding sea level estimation research and what 

is implemented here has not been done before. Chapter three summarizes in a more compact and 

structured way the motivation, the reasons for choosing the study areas, as well as the research 

objectives. The two sections of chapter four give literature information about various processing and 

analysis techniques, respectively, so the reader can understand basic concepts that were used such as 

(auto-/cross-) correlations and machine learning analysis using Random Forest and Artificial Neural 

Networks. Chapter five documents the complete methodology used from the data download to 

analysis and final map production stage. The first sub-section pertains to data themselves, while the 

second sub-section describes the techniques used to bring the data into an Analysis Ready form, as 

well as it records the machine learning methodologies that where applied to estimate the sea level 

and the various approaches chosen to handle the data. Chapter six gets into the presentation of the 

results of each methodology, as well as the findings and the techniques are discussed with a critical 

perspective that is necessary. In chapter seven a brief summary of the thesis is given and the main 

take home messages that the writer believes are important regarding pros and cons. In addition, 

possible suggestions on how would the result might become better, as well as future work which does 

not strictly follow the same course followed here regarding the approaches. Chapter eight records the 

bibliography used. Finally, chapter nine presents several additional information about various topics 

that refer to the thesis such as details about Sentinel-3 and different experimentations with the data 

that did not show anything significant. Also complementary graphs are included. 
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1. Introduction 
First and foremost, a background in oceanography with an emphasis to the surface aspect of it is 

important to be presented. This is going to build the very basic understanding of what some of the 

important ocean features and interactions are which at the same time are related to the thesis topic. 

In particular, specific focus is put on the sea level and satellite oceanography which are the core 

concepts. 

Sea level fluctuation components are numerous including both long- and short-term, some of them 

being global ocean circulation and Moon/Sun effects, respectively. Regarding the shorter timescale 

and spatial components (e.g. (sub-) meso-scale eddies, storm surge, estuarine water discharge), there 

might be an expected and known association between water temperature, (bio) geochemical content 

and sea level (Robinson, 2010; Shutler et al., 2016). In turn, the sea level is an important parameter 

for offshore activities either afar or close to the coast in respective fields which include maritime 

services, energy production (e.g. wind, oil drilling) and food production (e.g. aquacultures).  

As a consequence, how efficiently those fields function can have potentially both short and long term 

impact on the local economy, hence local society itself. This is the point where satellite oceanography, 

namely the operational aspect of it, comes into play; in particular among others, all of the above 

problems could be combated by the ocean and coastal waters satellite monitoring, analyzing and 

modelling, hence leading towards exploiting the satellite data in various ways. 

 

1.1. Surface Oceanography 

1.1.1. Ocean Features and phenomena 
The sea level, if one does not consider the tidal component, can be split into two categories. The one 

pertains to sea level variability greater than 500km which is considered the large-scale. An example of 

phenomena at these scales is the El Nino/La Nina. This type of variability is mainly owed to 

atmospheric forcings (e.g. wind stress). The second category concerns the spatial scales smaller than 

500km where the sea level changes are owed to ocean currents and eddies (Fu & Cazenave, 2001). 

However, a very general classification is that below 10 km is considered micro-scale, < 1000 km meso-

scale with its subdivisions (e.g. sub-meso-scale) and > 1000 km the mega- or synoptic scale. The large-

scale is the most well studied due to the observation instruments which historically did not allow for 

a higher resolution. With respect to the temporal scale, sea level can vary from daily (e.g. internal 

waves) to hundreds or thousands of years (e.g. response to climate change). Figure 1 shows in more 

detail how different phenomena vary in different spatial and temporal scales. Generally, the smaller 

the spatial scale structures are the more ephemeral and less lifespan they have (Robinson, 2010). 
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Figure 1: The graph shows the various kind of phenomena that can take place in different spatial and 

temporal scales. The meso-scale on which the thesis is focused is considered generally between 10 km and 

1000 km, with some subdivisions such as the sub-meso-scale. (from Robinson, 2010) 

 

Focusing on the meso-scale features on which the attention fell after the advent of satellite 

oceanography, phenomena such as eddies, rings, currents, fronts and filaments, are formed due to 1) 

tides 2) wind 3) thermohaline circulation 4) density gradients (geostrophy) that cause water pressure 

differences (Shutler et al., 2016). The main two features that are most important for this work are the 

eddies, currents and fronts. The eddies are water bodies that rotate with diameters from 50 km to 

500 km. Filaments are smaller scale features that are generated by the effect of wind and other density 

differences when a current or eddy is decomposed (Robinson, 2010). 

Eddies and sea level can be related to sea surface temperature (SST) in the sense that a difference in 

density is needed between the outer and inner part of the eddy to be formed. This difference in 

density is a result of temperature difference. However, in the cases that there are horizontal density 

gradients at depth instead of the surface one can still find an eddy without relation between SST and 

sea level (Robinson, 2010). For instance, there are the so-called meddies (i.e. Mediterranean eddies) 

(McDowell & Rossby, 1978) which do not show a strong sea surface temperature signal due to their 

genesis mechanism. 

Moreover, variability can be spatial and temporal and usually many different components act together. 

For example, there is a different regime regarding North and South hemisphere, since cyclonic and 

anti-cyclonic spinning eddies are formed (Robinson, 2010). This means that there is different sea level 

variability pattern depending on whether we refer to North or South hemisphere. Also, the meso-scale 

ocean features are highly localized (Yelekci et al., 2001) in the sense that different relations between 
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variables (e.g. sea level, temperature, coastal geometry etc.) occur at different sub-regions of a certain 

study area. 

Regarding temporal variability, one can observe both quasi-permanent patterns of eddies as well as 

temporary (Robinson, 2010). Therefore, some of them might not be so easy to detect. A reason for 

this, is that the sea level variability phenomena act simultaneously at different scales thus hiding the 

eddy signal. However, depending on the region (mainly latitude) different scales dominate over others. 

When the meso-scale energy is not high enough, then the large scale sea level variability dominates 

and vice-versa (Kuragano & Kamachi, 2000). Therefore, due to short-lasting and intense 

meteorological events there might be a superpositioned SST signal which results in hiding the 

temperature differences of an eddy (Robinson, 2010). 

Moreover, eddies and other meso-scale phenomena can also be detectable through the ocean colour. 

However, the relation between them is ephemeral and typically last a few days. In order to increase 

the detectability a coloured tracer must be inserted again into the water via rivers, or re-suspension 

of sea bottom sediment, among others. An example can be seen, where in Figure 2 at the red circle 

area there is a low (blue), high (cyan), low, high sequence from north to south and it coincides with a 

change in SST. Whereas, in Figure 3 this current is difficult to spot due to the absence of high 

concentration in a pigment, chlorophyll in this case. 

Nonetheless, a difference in the relation of eddies/sea level/ocean colour between cyclonic and anti-

cyclonic eddies has been observed. Namely, in the cyclonic eddies the chlorophyll does not collocate 

exactly with the eddy core, which is attributed to a combination of causes (Robinson, 2010). Thus, 

ocean colour is a variable that should be used with care and under specific conditions for meso-scale 

studies. 
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Figure 2: The SST map shows 

the meso-scale phenomena, 

i.e. the current and the clear 

transition from warm to less 

warm water which also has a 

signature on the altimeter 

track that passes on top 

 

Figure 3: The map shows the 

same area as in Figure above, 

using the Chlorophyl variable 

of Sentinel-3 satellite. By 

looking at the circle the 

transition is not depicted as 

clearly as happens with the SST 

due to lack of a pigment (i.e. 

chlorophyl) in the water 

(Figure 2). 

  

1.1.2. Sea level 
Sea level change mechanisms can be split in two groups; steric (or baroclinic) and mass redistribution 

(or barotropic). According to Martin (2014) the former group of mechanisms is related to regional 

changes in temperature and salinity (e.g. seasonal variations), hence density and volume while the 

latter is related to water mass redistribution and other large scale phenomena. Some of the latter 

could be the tides owed to the Sun and the Moon, or the rigidity of the Earth. 

Some examples of the former are the increase in global ocean temperature due to climate change, 

which in larger scales evokes sea level rise, depending always on the geographical region. For example, 

coastal sea levels might follow different patterns compared to the open sea and ocean (Robinson, 

2010) because of higher complexity close to the coasts. For instance, the impact of discharge water 

may regulate the sea level compared to the open waters. Hence, the sea level components vary both 

in time and space and therefore have various ways to measure it. 
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1.1.2.1. Measuring sea level 
Below some of the core measurement techniques along with their limitations are provided. 

Tide gauge 

Tide gauges are mechanisms that are put at the coastal areas which measure the sea level. The sea 

level is measured relative to the land and contains all of the sea level components, thus it needs 

corrections in order to derive the sea level component of interest, if possible. However, depending on 

the geographical location the land is more or less unstable throughout time due to, i.e. vertical land 

motion (VLM) (Frederikse et al., 2016) because of tectonics or generally land subsidence due to human 

impact (Conrad, 2013). For this reason, a precise positioning system is also located at the same spot, 

in order to measure the vertical as well as the horizontal motions (Frederikse, 2018). One major 

advantage of tide gauges is the extremely long historic record, although they are not spatially 

representative as well as they cannot measure in the middle of the oceans (Frederikse, 2018). 

Pressure sensor-equipped Inverted Echo Sounder (PIES) 

The two different components of the sea level can also be measured by using PIES (Baker-Yeboah et 

al., 2009). These are sensors that are positioned in the sea bottom which measure the vertical travel 

time of sound as well as hydrostatic pressure. On the one hand, by using a look-up table along with 

the travel time, the steric sea level can be estimated. On the other hand, the hydrostatic pressure can 

yield the sea level change due to mass redistribution. However, the use of the methodology is 

geographically restricted since i) it takes time to install the stations and ii) it needs quasi-stable and 

known oceanic conditions since it is based on a look-up table of the regional hydrography. 

Altimetry 

Altimetry is the satellite observation technique of measuring the sea level from a distance. Altimetry 

is an active remote sensing technique which utilizes the microwave spectrum. Using altimetric 

techniques, the two core variables that one can measure is the sea surface height (SSH) and the 

significant wave height (SWH). The SSH is the sea level, while the SWH represents the magnitude of 

the ocean waves, simply put. 

The sea surface height in a given geographic region is defined as the distance between the sea surface 

and a reference ellipsoid. What the satellite does is to measure the distance between itself and the 

sea level, i.e. range. By subtracting the range from the distance between the satellite and the 

reference ellipsoid (i.e. altitude) which is calculated with a Global Navigation Satellite System (GNSS), 

one can get the SSH (Eq. (1)). However, in reality this is far more complex, since it essentially needs 

several corrections. Those corrections belong to four types and are related to 1) atmospheric 

propagation delay errors, i.e. Ionospheric correction, Wet tropospheric correction (WTC), Dry 

tropospheric correction (DTC) 2) instrument errors such as tracker bias, antenna gain pattern 3) sea 

surface errors, e.g. sea state bias, Inverse Barometric effect (IB) and 4) external geophysical 

adjustments like tides and atmospheric pressure loading. 

𝑆𝑆𝐻 = 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 − 𝑅𝑎𝑛𝑔𝑒 − 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 Eq. (1) 
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Finally, doing further correction by subtracting the mean sea surface (MSS) or geoid, the Sea surface 

height anomaly (SSHA) is derived (Eq. (2)). Also, depending on the application and the study area 

further corrections are needed such as Dynamic Atmospheric Correction (DAC) which are related to 

the Inverse Barometric effect and the sea level pressure and winds, as well as tides e.g. Ocean tide, 

Earth tide, Pole tide, among others. 

𝑆𝑆𝐻𝐴 = 𝑆𝑆𝐻 − 𝑀𝑆𝑆 Eq. (2) 

SSHA or Sea Level Anomaly (SLA) is usually used in long-term sea level trend studies, study of the 

meso-scale currents, eddies etc. The SSHA mostly contains the baroclinic effects that is why it is used 

in climate studies which are related to ocean temperature and salinity, however depending on the 

region and the geophysical corrections accuracy, they can still contain barotropic effects (Shao & Zhao, 

2015). 

Altimetry observations began ~30 years ago which restricts the temporal scale of observation to 

decadal instead of e.g. multi-decadal compared to tide gauges. Another restriction of altimetry is that 

the measurements are not reliable enough close to the coasts due to inaccurate geophysical 

corrections, as well as the contamination of the radar signal that originates from the land (Sterlini et 

al., 2017). In addition, the measurements are depicted as lines instead of images as is common in the 

remote sensing field. Still, despite those pitfalls it is considered the best method of measuring the sea 

level globally since it allows for both space and time sea level observations.  

However, lately the problems in altimetry have started to being solved through various methods with 

respect to equipment and signal processing methodologies, among others. For instance, the last years 

a new approach in altimetry has been in rise and is going to stay, which is called Synthetic Aperture 

Radar (SAR) or delay-Doppler altimetry and is extremely promising (Cipollini et al., 2017) since it uses 

state-of-the art equipment and processing techniques, and it has far better results. Currently, only 

two satellite platforms work with SAR, being the pioneer Cryosat (Wingham et al., 2006) and Sentinel-

3 which is the primary source of data of this thesis. SAR is exceptional in that it has allowed for high 

spatial resolution (close to 300 meters) as well as it has reduced the noise, e.g. close to the coastal 

regions, thus it allows for more coastal altimetry applications, such as detection of (sub) meso-scale 

eddies (Shutler et al., 2016). However, altimetric observations have become more accurate not only 

because of better retrieval techniques, but also improvements in atmospheric corrections (Bouffard 

et al., 2008) as well as tidal models (Stammer et al., 2014). 

Finally, on 2021 a new altimetric mission is due which is going to depict sea level in an image form, 

thus offering high spatial coverage. This mission exploits a new technique called swath-altimetry. The 

name of the mission is Surface Water Ocean Topography (SWOT) (Fu et al., 2012), and it is about to 

open new doors in the scientific community for far more varying studies. 

 

1.1.3. Surface Ocean Temperature 
Sea Surface Temperature (SST) has been proven one of the most important ocean variables that is 

crucial in large-scale as well as smaller scale studies, since it is inherently connected with ocean 

phenomena and interactions with the oceanic conditions in depth, as well as the atmosphere and the 

land contributions. 
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The SST is affected primarily by two sources. The first source is the outer source, i.e. the Sun, the 

events on the surface and the effect of atmosphere. The second source is the inner one and it includes 

the ocean surface and near-surface interactions (Martin, 2014) 

The near-surface temperature is a result originating from a combination of causes which in turn affect 

the ocean phenomena that occur. The main causes are 1) the sun incoming radiation absorption in 

the upper meters 2) the re-emission of thermal radiation from the ocean back to the atmosphere from 

the upper first millimeters and 3) the mixing of water in the subsurface due to turbulent phenomena 

(Minnett & Kaiser-Weiss, 2012). 

Regarding the first micrometers which is the skin SST they are affected also by the diurnal temperature 

changes (Fig. 4), due to the differential incoming radiation as well as the deeper mixing. On the other 

hand, the so-called foundation SST represents the temperature of the well-mixed layer when the 

diurnal thermocline of the previous day is very weak (Robinson, 2010). 

 

1.1.3.1. Measuring the SST 
The SST measurements come from generally two different sources, namely in-situ and satellite sensors 

where every sensor (e.g. onboard buoy, boat front, infrared radiometer, microwave radiometer) 

measures different SST, i.e. from a different layer of the water. The two major groups are described 

below. 

In-situ 

Firstly, surface, as well as in depth temperature is observed by floats and drifters according to the 

ARGO project which started at around 1990 (Davis, 1991). This project is based on in-situ 

measurements using floats that circulate around most of the oceans. These floats sink in the water 

column and then they immerge in order to send the data to the data centers and they are designed 

for specific (large) depths. This leads to certain regions lack of floats, such as the North Sea, since their 

bathymetry is not deep enough. Also, as can be imagined the spatial resolution of these techniques is 

very low. 

Satellites 

The SST satellite measurements began about ~40 years ago. The SST is measured in the two broad 

categories of the EM spectrum; microwaves and thermal infrared. Thermal infrared depicts the very 

shallow first layers (Fig. 5) and has the advantage of giving very detailed spatial information but has 

the major drawback of cloud cover which obstructs the observations. Microwave, on the other hand, 

can depict the temperature regime from deeper layers (Fig. 5) and has the ability to not being affected 

by non-raining clouds, although its spatial resolution is significantly lower (Martin, 2014). 

Concerning satellites and especially passive ones what thermal infrared sensors measure is a spatial 

average of the radiation that is emitted from the first 3-13 μm (Martin, 2014) of the water surface 

(Shutler et al., 2016), i.e. skin SST. However, if there is high enough mixing with the lower water layers 

(due to e.g. winds, waves), the estimated skin temperatures can be considered representative of a 

few meters below the surface (Shutler et al., 2016). 
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Figure 4: The diurnal change of the thermocline is depicted. In detail how the SSTskin is changing. The 

thermocline is stronger during the daylight due to larger incoming radiation absorption, while at night the 

thermocline almost evens out, making the SST representative of the more deep first layers (from Martin, 

2014) 

 
Figure 5: The figure shows the depths which the infrared and microwave radiation are related to, which are 

parts of the EM spectrum that the satellites measure, each one exhibiting pros and cons in the remote 

sensing SST earth observation. (from Minnett & Kaiser-Weiss, 2012) 
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1.1.4. Ocean Colour 
By Ocean Colour (OC) we refer to the signature that the ocean or surface waters have when using 

optical EM sensors in the visible spectrum (OC radiometers). Using this information, several biotic and 

abiotic parameters/variables of great biogeochemical interest can be derived with some of the most 

important being chlorophyll-a, total suspended matter (TSM), colour dissolved organic matter (CDOM) 

and diffuse attenuation coefficient (Kd) (Le Traon et al., 2015). 

Chlorophyll-a is the green pigment that is contained in the algae. TSM is considered as the matter 

including organic and inorganic that is suspended in the water (Eleveld et al., 2008). CDOM represents 

the dissolved organic material which are organic molecules that are produced from detritus and other 

organic matter (Hoge et al., 1975). Detritus is considered the dead particulate organic material (Patten, 

1975). Kd represents the ability of the light to penetrate water (Valente et al., 2016). 

Ocean colour is especially important for the coastal regions (Le Traon et al., 2015) because of the very 

high variability, e.g. on estuaries where the river discharge fresh water that is mixed with saline sea 

water. Some possible reasons are nutrients that come from human activities etc. (Robinson, 2010) 

which affect the primary production (i.e. phytoplankton biomass times phytoplankton growth rate) 

and dissolved minerals and dead diluted organic material that are imported through rivers etc. 

(Milliman & Meade, 1983). 

Due to this complexity at coastal waters (also referred as complex waters) and the higher impact of 

CDOM, TSM and Chlorophyll on the backscattered signal the estimation of those parameters is trickier. 

On the other hand, signal at open waters and deep lakes is dominated by chlorophyll (Siegel et al., 

2005) therefore the estimations of this variable is more reliable there. In turn, this complexity could 

insert difficulties in relating those biotic parameters with other abiotic ones, such as sea level. 

Geophysical variables (or parameters) that are derived from OC radiometers can be estimated based 

on (semi) empirical data-driven approaches (Robinson, 2010). In addition, they can also be estimated 

by utilizing physical principles - as happens with SST and sea level - such as radiative transfer and 

optical modelling assuming that the algorithm is parametrized with Specific Inherent Optical 

Properties (SIOP) (Mobley, 1994). However, radiometers onboard satellites such as Sentinel-3, use 

(semi) empirical data-driven approaches which utilize univariate or multivariate data processing and 

analysis techniques. 

 

1.1.5. Associations between ocean variables 
Temperature and chlorophyll 

The single-celled algae, phytoplankton, contains the chlorophyll pigment (chlorophyll-a), as a result 

the latter can give information about algae presence and concentration (Boyce et al., 2010). Algae can 

highly flourish in a mixed layer and reproduces fast under solar rich conditions due to high 

photosynthesis. In turn, this increases the SST further establishing a positive feedback loop (Shutler et 

al., 2016). Devi & Sarangi (2017) studied the Indian Ocean during El Nino and La Nina (i.e. large-scale 

phenomena) for a 12-year period and found both positive and negative correlation between SST 
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anomalies/SSHA and chlorophyll-a concentrations. Although, these are relations that depend on local 

oceanographic conditions. 

Chlorophyll and TSM/CDOM 

Total Suspended Matter or CDOM could originate from algae, thus they can be correlated with 

chlorophyll-a (Robinson, 2010). However, if they originate from a different source such as re-

suspension of sea bottom sediment (McCandliss et al., 2002) or river discharge, the correlation 

becomes more complex. Thus, in this case the two aforementioned variables are non-redundant 

(Robinson, 2010). This non-redundancy of information is especially true in the complex waters along 

coastal regions (Robinson, 2010) rather than open waters where chlorophyll dominates. 

Temperature and SSH(A) 

The relation between SST and SSH is the best studied and well established relation among all variable 

relations that are used in this thesis. It is evident that their relationship is not always straightforward 

as one can imagine by simplified physics, since the oceans are a complex system were cause-effect 

associations can be well hidden. Despite that, their spatiotemporal relationship has been formulated 

in the frequency (Fourier) domain based on Held et al. (1995) and it has been shown that it can be 

both linear (Hausmann & Czaja, 2012, Isern-Fontanet et al., 2008) and non-linear depending on the 

region and spatial scale (Tandeo et al., 2013a). Similar finding have been discovered by Casey & 

Adamec (2002) who suggest that there is a spatiotemporal large-scale correlation between SST and 

SSH based on Singular Value Decomposition (SVD) and Empirical Orthogonal Functions (EOF) analyses 

of satellite data, by studying patterns during El Nino-Southern Oscillation (ENSO) period. 

In addition, regarding the meso-scale, there is an observed association between SSH and SST on the 

ocean/current fronts, as well as SST and the geostrophic flow. In turn the geostrophic flow is related 

to the SSH. This association between SST and SSH, for instance, is used in current “velocity projection” 

as is demonstrated by the GlobCurrent platform (Johannessen et al. 2015). 

Moreover, a typical meso-scale example is that of eddies which can be clearly depicted by SSHA 

observations, as well as SST observations since, usually, the cores of the eddies have different 

temperature than the boundary (Robinson 2010). Nevertheless, the eddy can still occur without the 

SST spatial variability since there is no direct causal relationship. As a result, a correlation between 

SSHA and SST in eddies is expected although not always. 

To elaborate further, Jones et al. (1998) described several possible mechanisms that result in 

correlation between SST and SSH(A) which are: 

1. Relation between SST and temperature of the deeper ocean layers, which are associated 

with SSH(A) and water column volume. 

2. Meridional SST gradient would induce a movement of warm water bodies towards the North 

and cold water towards the South. In this case, the SST would be associated with the SSH(A) 

gradient, instead of SSH(A). 

3. Ocean-atmosphere coupling where high SST increases the temperature which is directly 

above the surface, which in turn leads to air mass movements, thus SSH(A) differences. 
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Furthermore, Behringer (1994) implied that a correlation exists between SST and SSH in the Atlantic 

by comparing Jason-1 SSH data with dynamic height estimates of Oceanic General Circulation Model 

(OGCM) assimilative ocean model. The model at that time assimilated SST satellite data to a high 

extent and temperature vertical profiles from bathythermographs to a lesser extent. However, their 

relations depend on the oceanic conditions, features, geography etc. instead of how much SST data 

were assimilated. 

 

SSH(A) and chlorophyll-a 

Based on monthly grouped satellite data during El Nino, algal blooms have been investigated and 

attributed to lowered SSHA, among other reasons (Murtugudde et al., 1999 in Wilson & Adamec, 

2001). Wilson & Adamec (2001) also found negative correlations on large spatial scale (>500km) and 

weekly binned satellite data, which means that higher SSHA induces a deeper thermocline which in 

turn reduces the bioavailability of nutrients in the euphotic zone. However, the correlations are 

restricted to certain regions and latitudes with their own hydrological regimes. The investigated 

correlations pertained to the time series using Root-Mean-Squared-Errors (RMSEs) which gave direct 

spatial relationships, as well as EOFs which gave spatiotemporal relationships. Notably, EOFs are 

commonly used for large-scale spatiotemporal associations (Dawson, 2016). 

 

SSH(A) and density/volume changes 

Changes of SSH(A) can be also related directly with water density/volume changes. Two relevant 

mechanisms are 1) water fluxes on estuarine regions where fresh water is mixed with saline sea water 

and 2) vertical or horizontal advection of water (e.g. upwelling at coastal areas) (Jones et al., 1998). In 

this sense, SSHA can be associated not causally to e.g. SST, Chlorophyll and suspended matter because 

of the river discharge different temperature compare to the coastal waters. 

 

1.2. Studies related to Sea Level estimation 
The purpose of this chapter is to introduce the reader to the research on sea level estimation. In this 

way and in combination with the rest of the chapters it will become clear that the topic of this thesis 

has not been tried before, to the best of this author’s knowledge, as no similar scientific paper was 

found. Of course, in no way the information provided here is extensive, since the sea level research is 

enormous. 

 

1.2.1. Numerical (assimilative) models 
To begin with, historically the use of physical models was the main tool in predicting variables about 

the ocean state (Elsberry & Garwood, 1980), and later was combined with in-situ as well as satellite 

measurements by assimilating them (Cummings et al., 2009, Elsberry & Garwood, 1980). Global Ocean 

Data Assimilation Experiment (GODAE) is the major team working in global oceans forecasting and 

assimilation. The assimilation of data was imperative due to several restrictions that the purely 

physical model had, that originate from causes such as the physics themselves, the lateral boundary 

conditions, the grid resolution as well as atmospheric forcings (Cummings et al., 2009). However, the 

spatial resolution of the output sea level products in reality is worse than the nominal (original 

resolution, according to design), hence it does not contain smaller scale variabilities, which are crucial 
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in depicting meso-scale phenomena. Therefore, large-scale (assimilative) models are not good in 

meso-scale variabilities. However, they can provide hourly, daily and monthly predictions. Some of 

the assimilations systems and methods used are summarized in the table below (Tab. 1): 

 

Table 1: Record of some of the assimilative ocean models (from Cummings et al. ,2009) 

System Name Country Reference 

BODAS Australia Oke et al., 2008 

ECCO-JPL USA Fukumori, 2002 

FOAM UK Martin et al., 2007, Lea et al., 2008 

Mercator France Brasseur et al., 2005 

MOVE/MRIS.COM Japan Fujii & Kamachi, 2003 

NCODA USA Cummings, 2005 

NEMOVAR EU Weaver et al., 2005 

TOPAZ Norway Evensen, 2006 

 

Apart from the global ocean models, there are regional and continental shelf models, as well as others 

that are devoted to surge predictions. In the first group one of them is the Dutch Continental Shelf 

Model (DCSM) (Gerritsen et al., 1995) while in the second group some of them are Sea, Lake and 

Overland Surges from Hurricanes (SLOSH) (Jelesnianski et al., 1992) and Global Tide and Surge Model 

(GTSM) (Kernkamp et al., 2011, Muis et al., 2016). GTSM predicts tide surges and is operational to 

date, and is in the beginnings of assimilating satellite altimetry data. Notably, one of the innovations 

of GTSM is that it uses an irregular grid whose size is based on tessellations that get smaller towards 

the coast, in order to be able to approximate better the more complex hydrodynamics there 

(Kernkamp et al., 2011). 

With respect to SLOSH, it is used to predict large scale phenomena related to hurricane storm surges. 

Due to the high complexity of the SSH(A) and the nature of the satellite altimetry data, there is variety 

of research that tries to combat various problems. Some of them are described briefly below. 

Moreover, regarding assimilative models there is also Hybrid Coordinate Ocean Model (HYCOM) 

(Halliwell, 1998, Halliwel et al., 2000) which predicts sea level among others and can depict the sea 

level spatial pattern fairly accurately, however with not good sea level accuracy. 

 

1.2.2. Data driven models 
Proceeding, Optimal Interpolation (OI) is a geostatistical technique to predict SSHA in-between the 

altimetry tracks (Le Traon, 2003, Pujol et al., 2016) and tries to enhance the information we get 

regarding meso-scale variability. It is a spatiotemporal approach which utilizes many altimetry satellite 

missions (AVISO, 2018). However, despite being considered the best approach with the most widely 

used products today, Lguensat (2017) described two core drawbacks. Firstly, it works best only for 

large-scale structures and, secondly, quality highly depends on the statistical distribution of data (i.e. 

being Gaussian), as well as the spatial and temporal lags used to compute the auto-covariance function. 

 

In addition, there is also a new approach that has been developed and tested lately, namely, the 

analog data assimilation approach (Tandeo, 2015). This approach forecasts sea level by using 
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principally satellite altimetry measurements without the assistance of any physical principles. 

According to Lguensat (2017) the method works more or less better than the currently widely used OI 

and model-driven data assimilative models. Additionally, it uses less computational resources, as well 

as historic observations and simulations, and predicts daily in the meso-scale, locally as well as globally. 

 

In conclusion, it is worth to mention that other data-driven approaches have been developed that aim 

to forecast phenomena related to SSH changes by using Artificial Neural Networks for the 

Mediterranean Sea (Rixen et al., 2001). Another example is the SSHA forecasting using polynomial-

harmonic deterministic least squares, but also a combination of polynomial-harmonic with 

autoregressive models (Niedzielski & Kosek, 2009). Still these studies have restrictions regarding true 

spatial resolution, especially considering that they did not use up-to-date SSH measurement 

approaches such as SAR. 
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2. Sentinel-3 Remote Sensing 
Copernicus (former GMES) is a European program that has been established in order to assist several 

stakeholders in decision making regarding fields such as environment, climate, society etc. 

(Aschbacher & Milagro-Perez, 2012). Sentinel 3 (A and B) is a twin satellite constellation that falls 

under the framework of Copernicus whose purpose is to measure and monitor the Earth’s lands and 

oceans in both long and short time scales (Donlon et al., 2012). Sentinel 3-A and B are in orbit since 

February 2016 and April 2018, respectively. The pair follows Low Earth Orbit (LEO) sun-synchronous 

polar orbits with a 27-day revisit period. The inter-track distance (i.e. distance between ground tracks) 

is 104km (Le Roy et al., 2007) at the equator and lower towards the poles. Onboard, it carries many 

sensors with the interest focused on three of them, being SAR Radar Altimeter (SRAL), Sea and Land 

Surface Temperature Radiometer (SLSTR) and Ocean and Land Colour Instrument (OLCI) which are 

used to estimate variables such as ocean topography, temperature and Earth surface colour, 

respectively. In addition, it needs to be noted that Sentinel-3 is the first satellite mission that measures 

sea level, sea surface temperature and ocean colour variables simultaneously. The current thesis 

pertains to the ocean component, thus only the relevant products of Sentinel 3 are of interest.  

 

2.1. Altimetry 
The Sentinel-3 altimetry system is based on three core instruments to measure Sea Surface Height, 

among other variables. Namely, the instruments are the SRAL, the Microwave Radiometer (MWR) and 

the Precise Orbit Determination (POD) system. The SRAL (Le Roy et al., 2010) is a nadir-looking active 

microwave system (or radar altimeter) which sends pulses in two frequencies (Ku and C). Then, it 

measures the pulses that are back-scattered by the Earth’s surface. MWR is a passive microwave 

instrument which is used to estimate the delay of the pulses caused during the atmospheric 

propagation. This is especially useful to estimations close to the coasts due to the higher atmospheric 

water content variability (Donlon et al., 2012). Finally, POD is a collection of measurement systems 

that aims to estimate the precise orbit. 

In conclusion, SRAL offers sea level estimates, such as SSH with the highest possible along-track spatial 

resolution to date, which is about 300m. It achieves that by a combination of signal processing 

techniques and instrument characteristics which comprise SAR mode (i.e. delay-Doppler) altimetry on 

the contrary to Low Rate Mode (LRM) which is the conventional altimetry approach, though 

deactivated during the operational phase of Sentinel-3 (EUMETSAT, 2017). Its SSH nominal accuracy 

is ~3.4 cm. 

 

2.2. Sea Surface Temperature 
The SLSTR instrument is a radiometer devoted in measuring the Sea Surface Temperature. It is a dual-

view instrument with a nadir-looking and an oblique-looking view. The oblique looking view points at 

the opposite direction of the satellite movement (EUMETSAT, 2018b). Therefore, it provides two 

swaths, the nadir-looking being ~1400km and the oblique-looking ~740km (Fig. 6). The average global 

revisit time is ~1.9 days at the equator, which of course becomes less towards the poles due to the 
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overlap of the swaths of the neighboring relative orbits. Together Sentinel 3-A and B further decrease 

the revisit time to ~0.9 days. 

In order to estimate the SST not only the three thermal bands are used but also VNIR and SWIR (App. 

Table 5) for certain geophysical corrections. The SST estimation is realized using radiative transfer 

models with linear regression algorithms (Závody et al., 1995, Merchant et al., 1999). The final SST 

product has a spatial resolution of 1km and a nominal accuracy less than 0.3 K (EUMETSAT, 2018b). 

 

2.3. Ocean Colour 
As far as the ocean colour is concerned, it is measured by the passive sensor, OLCI. It uses 21 spectral 

bands which fall in the VNIR/SWIR parts of the EM spectrum (App. Table 6). The instrument is a push-

broom imaging spectrometer and is composed of five cameras whose field-of-view has overlap. The 

cameras are positioned in the shape of a fan and they point perpendicular to the flight direction 

(along-track) of the satellite. Moreover, they are tilted by some amount towards the west in order to 

alleviate the sun glint effect (EUMETSAT, 2018). 

The revisit time is the same as SLSTR’s, whereas the spatial resolution is higher and reaches ~300m 

ESA (2017). In addition, the swath of the OLCI is approximately 1200km and it has a full overlap with 

the SLSTR swath (Fig. 7). 

 
Figure 6: The SLSTR instrument on-board Sentinel-3 is depicted. It is a dual-view instrument, where the one 

view looks opposite from the direction of flight, while the other one looks towards the Earth. This results 

in a rear-swath smaller than the nadir-swath. (From EUMETSAT, 2018b) 
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Figure 7: The footprint of the three sensors that are on-board Sentinel-3 are depicted. SLSTR, the 

instrument that measures the sea surface temperature, has the larger nadir-looking swath. The OLCI 

instruments which measures the ocean colour, has smaller swath which overlaps fully with the SLSTR nadir-

looking one. The SRAL instrument which measures the sea level, does this on a line along-track. (From 

Donlon et al., 2012) 
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3. Motivation and Research Objectives 

3.1. Motivation and New Opportunities 
Putting things into perspective, sea level is mostly measured by tide gauges at the coasts and satellite 

altimetry offshore. Close to the coasts satellite altimetry shows higher errors due to more complex 

hydrodynamic processes and significant land/water signal interference, despite SAR approaches have 

helped in alleviating this effect. Tide gauges yield point (0D) observations while altimetry yields linear 

(1D) observations. On the other hand, physical-, data- or hybrid-based models do not currently offer 

high spatial resolving power in the meso-scale. However, on early 2021 the new satellite altimetry 

mission, SWOT will be launched, that is going to offer swath (2D) sea level products for the first time 

(Fu et al., 2012). 

One of the main purposes of the aforementioned datasets is for climate studies which means long 

temporal and large spatial scales, instead of operational purposes; the only exception being the surge 

forecasting. This purpose is mainly achieved by using a lot of altimetry missions along with other 

datasets, e.g. SST. However, still because of the techniques used the rest of the products such as SST 

might give greater SSH accuracy, although they do not help in increasing the true spatial resolution. 

What we currently lack, are sea level products of large spatial and high temporal resolution especially 

with a meso-scale resolving capability. 

The goal of this thesis is to investigate whether the SSHA spatial coverage can be expanded combining 

it with SST and OC which already have high resolving power with a focus on the meso-scale, since this 

will be extremely helpful for operational applications. The estimations can also be used as inputs to 

assimilative models (e.g. Numerical Ocean Prediction, Tide and Surge) and complementary to SWOT 

products or even be verified by SWOT which will have higher accuracy. In addition, by mapping meso-

scale phenomena in-between the altimetry ground tracks could also be useful in quantifying kinetic 

energy of currents and eddies such as Ducet et al. (2000) with higher precision. 

Also the fact that at least 3-4 altimeters are necessary for having an accurate picture of the meso-scale 

variability (Le Traon et al., 2015) is a drawback that can be potentially be solved by combining the 

different variables. In the future, this could lead to the decrease of separate satellite altimetry and 

SST/OC devoted missions, which would mean less cost. On top of that, decreasing the number of 

satellite missions in general could also be a temporary yet small relief of the space debris problem 

(NASA, 2016, NASA, 2008) until an agreement on the best solution is come and implemented. 

Therefore, smart data processing and analysis techniques are imperative to date. 

 

3.1.1. Study Area criteria 
Until this point, it has been argued that the relations between SSH(A), SST and OC variables are far 

from simple. Their relationship sometimes is causal and others simply correlational with high spatio-

temporal complexity, from large- to meso-scale. In addition, certain variables and their relationships, 

as well as their relationships with ocean phenomena at different scales have well been studied 

compared to others. For instance, SSH(A) and SST, and Chlorophyll to a lesser extent, are well studied, 

especially in the large scale in phenomena such as El Nino. In addition, the different components of 
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sea level can act simultaneously making the disclosure of relationships even more difficult. Apart from 

the biogeophysical aspect, there are certain restrictions that are imposed by the satellite mission itself 

with respect to the choice of the study area, such as the operational time span which is small, as well 

as the a priori decision to work with Sentinel-3 due to the new opportunities it offers. 

The part of the Gulf Stream close to New York was chosen because this is a region which is 

characterized by a clear distinction of quasi-stable meso-scale phenomena such as ocean currents and 

eddies (Robinson, 2010) as opposed to North Sea which varies fast due to atmospheric and 

meteorological effects. In fact, atmospheric effects such as wind, as well as Rhine river discharge have 

a high impact on SSH which means that i) meso-scale phenomena would be not so clear (Pietrzak et 

al., 2011, Frederikse, 2018) or of smaller scales and ii) the impact of the SST signal-to-noise ratio on 

SSH(A) would be very small. 

In conclusion, choosing a region such as the Gulf Stream would be a favourable option since most of 

the Sentinel-3 variables could be utilized, and especially SSHA, SST and Chlorophyll, and to a lesser 

extent TSM, CDOM and Kd. The primary focus was on SSHA and SST. Therefore, a basic assumption is 

that the relations between most of the variables in the meso-scale and under the time span that S3 

operates would be clearer in the Gulf Stream. Although, a small part of the exploratory and 

correlational research was also realized at North Sea for comparison purposes, and some additional 

results are given in the Appendix. 

 

3.2. Research Objectives 
In summary, the two major research objectives along with some sub-objectives that this thesis deals 

with are: 

 Investigation of possible meso-scale correlations between SSHA, SST and OC variables 

o Correlations 

o Auto- and cross- correlations 

 Potential of machine learning techniques in expanding the SSH measurements spatially in the 

across-track direction 

o Spatial dependence not taken into account 

o Spatial dependence directly taken into account 
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4. Data Science Theoretical Background 

4.1. Data Processing 

4.1.1. Outlier detection 
According –but not restricted- to Hawkings (1980), outliers of a certain dataset are considered those 

values that fall too far from most of the rest of measured values. Therefore, they are considered 

extreme values. However, one always needs to define what “too far” means, which is something that 

depends on the specific problem under tackle. There are different approaches as simple as using rules 

of thumb based on statistical metrics (e.g. divergence from the standard deviation), and more complex 

approaches such as machine learning (e.g. decision trees, PCA). 

Regarding the nature of the outliers in real datasets, it can be either “artificial” or natural. An “artificial” 

outlier could be owed to measurement, instrument, sampling etc. errors. While a natural outlier 

means that there is an inherent peculiarity in the measurement which could potentially reveal 

something not common and of specific (high) interest. Therefore, it is subjective whether one needs 

to disregard the outliers or not and depends on the nature of the problem. In addition, it is very crucial 

since it will dictate what analysis techniques will be used later. 

4.1.2. Moving average filtering 
Assuming data on one dimensional (time) domain one can apply a 1D filter. In signal processing, a 

dataset being in the time-domain means that it belongs in the physical space. While a frequency-

domain mean that the data are mathematically transformed in a space with no direct physical meaning. 

The moving average filter applied is a sliding window and the values of its elements are equal to one 

divided by the number of window elements (Booth et al., 2006). The new value of each element of 

the original 1D signal (variable) is equal to the convolution of the original signal and the filter. The 

moving average is considered a low-pass filter. A schematic example with an explanation can be seen 

in Figure 8: 

 
Figure 8: The graphs shows the way that a moving average filter is applied. The upper row depicts the vector 

that needs to be smoothened, and the lower row depicts the window of size 3. (from 

https://dawn.cs.stanford.edu/2017/08/07/asap/, Retrieved on: 01/2019) 

 

The value of the first element of the array after convolving and zero-padding one element to its left, 

becomes 
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0 ∙ 2 + 1 ∙ 3 + 2 ∙ 4

3
 

The value of the second element of the array becomes 

1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4

3
 

and so on 

It needs to be noted that since moving average is based on the mean central tendency metric, can be 

biased by extreme values. For this reason, prior to applying this filter pre-processing is needed such 

as, for instance, removing outliers (Chou, 1975, Booth et al., 2006). 

4.1.3. (Auto-/cross-) correlation 
Assuming there are two variables each one consisted of consecutive measurements, their correlation 

can be computed by some metric. Depending on whether the variables change linearly or non-linearly 

together, different kinds of metrics can be used. In the former case, the most common metric is the 

Pearson’s correlation coefficient which is one unitless number, can be used in robust statistics and 

defines as (Ott & Longnecker, 2010): 

𝜌 =
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
  

𝑤ℎ𝑒𝑟𝑒 𝑐𝑜𝑣(𝑥, 𝑦) =
1

𝑁
∑(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)

𝑁

𝑖=1

 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

𝜎 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝜇 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 

Proceeding, one can also compare any variable with itself. For this purpose, the term autocorrelation 

is used and it has meaning on datasets that usually refer to time and/or space. Thus, a correlation 

metric can be computed between a variable and a lagged version of itself. To put it simply, 

measurements that are close together are related stronger than the measurements that are afar. 

Autocorrelation can be defined as (Gubner, 2006): 

𝑅𝑥𝑥 = ∑ 𝑥𝑛+𝑘 ∙ 𝑥𝑛
∗

𝑛

 

𝑤ℎ𝑒𝑟𝑒 𝑥∗𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑜𝑓 𝑥 𝑎𝑛𝑑 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑔 

In the same manner, one can compute the cross-correlations which would yield the relation of one 

variable with lagged versions of the other variable. For example, two identical sinusoids with zero lag 

would give the highest possible absolute value of cross-correlation. Whereas, if one moves the one 

sinusoid to the positive or negative horizontal axis of the Cartesian 2D plane by half the wavelength, 

s/he would take an anti-cross-correlation, again, with the highest possible absolute value. 

Also, in order to have comparable auto- and cross-correlation metrics, they can be normalized 

between -1 and 1 (Park, 2018). The two extreme values show the highest possible correlation, where 

the former shows positive while the latter shows negative correlation (anti-correlation). The 
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normalization takes place before the cross-correlation computation based on the auto-correlation 

formula above which uses the z-scores. 

𝑧𝑥 =
𝑥 − 𝜇𝑥

𝜎𝑥𝑁
 𝑎𝑛𝑑 𝑧𝑦 =

𝑦 − 𝜇𝑦

𝜎𝑦
 

𝑤ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑛𝑑 𝑐𝑜𝑢𝑙𝑑 𝑏𝑒 𝑢𝑠𝑒𝑑 𝑜𝑛 𝑧𝑦 𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑧𝑥𝑓𝑜𝑟𝑚𝑢𝑙𝑎 

4.1.4. Ordinary Least-squares (OLS) regression 
OLS is a linear fitting technique which estimates the slope and the intercept parameters of a linear 

regression model based on given observations that are accompanied by errors 

𝒚 = 𝑎𝒙 + 𝛽 + 𝒆 

𝒚, 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝒙, 𝑡ℎ𝑒 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝑎, 𝛽, 𝑡ℎ𝑒 𝑠𝑙𝑜𝑝𝑒 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

𝒆, 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟𝑠 

In the case that the slope is found to be equal or close to 1 and the intercept equal or close to zero, 

then this means that the response variable can perfectly predicted without any bias. However, always 

certain assumptions must hold and further post processing normally should be carried. For example, 

the variables must be random, linearly related, and usually normally distributed. However, violation 

of the latter does not always have major impact on the estimation. Also, the residuals (or errors) which 

is the difference between the response variable and its predicted version must be random, normally 

distributed with zero mean and constant variance (Ott & Longnecker, 2010). 

4.1.5. Inverse Distance Weighted (IDW) Interpolation 
Assume measurements of a given variable no matter if it has spatial or temporal components. The 

measurements fall in a defined domain restricted by the minimum and maximum values. To 

interpolate means that one needs to estimate what is the value of the variable in a position without 

measurement (query point) that lies in the aforementioned domain. For this reason, there are several 

techniques that have been devised. Some of them are functional while others are stochastic. IDW is a 

functional, precise interpolation method. The value at the unknown position is estimated based on 

the values of its neighbors weighted by the inverse distance. The formulation can be seen below 

(Shepard, 1968): 

�̂� =
∑ 𝑤𝑖𝑦𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 𝑖𝑓 𝑑 > 0 

�̂� = 𝑦𝑖 𝑖𝑓 𝑑 = 0 

𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 =
1

𝑑𝑝
 

𝑑, 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑟𝑦 𝑝𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 
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𝑝, 𝑡ℎ𝑒 𝑝𝑜𝑤𝑒𝑟 𝑤ℎ𝑖𝑐ℎ 𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑖𝑠 0,1,2 𝑜𝑟 3 

𝑁, 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑡𝑎𝑘𝑒𝑛 𝑖𝑛𝑡𝑜 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 

4.2. Data Analysis 

4.2.1. Machine Learning Techniques 
Machine learning is a collection of computational techniques which uses different variables (i.e. 

features) in order to predict another variable of interest (i.e. label or target). As input, variables with 

direct physical meaning (e.g. temperature) and indirect physical meaning (e.g. nth order derivatives) 

can be used which might be informative. The basic idea of machine learning is that it uses the current 

information that is contained in a measured dataset in order to predict something of interest. A major 

drawback of this approach is that the techniques cannot predict something that is not already 

contained in the given dataset. This means that in the case of extreme events presence it might be 

very difficult, if not impossible, to predict them with accuracy as good as with the rest of the dataset. 

Of course, researchers are currently working on these cases (e.g. Liu et al., 2016). Moreover, missing 

values and outliers are usually a problem since they can make the algorithms non-functional and 

biased, respectively. 

On the other hand, a major advantage is that usually the ML algorithms keep the assumptions and 

part of the a priori knowledge to minimal, and they do not ask for specific statistical distribution 

assumptions, which makes them non-parametric. Especially, in the case of neural networks, one might 

need minimum pre-processing since the algorithm finds on its own whether there are associations or 

not. However, much time should be spent on exploring and understanding the data, in order to decide 

which of them should/should not be used or should be transformed into something more informative 

(Ketkar, 2017), thus making more wise decision regarding certain parameter values. Therefore, 

domain knowledge is often crucial. These are aspects of ML that offer lower computational complexity 

when big datasets are into play, compared to e.g. pure statistical inference.  

The general workflow of a prediction scheme using ML is that after pre-processing the features and 

the label, is that the data need to be split into at least two parts; the train and test sets. Usually, the 

80-20% rule applies, although one should experiment with additional proportions. The train set can 

be further split into two parts; the train and the validation sets. All of the sets, comprise both features 

and labels, while in all cases the algorithm uses the features to predict something which is compared 

to the labels. 

The idea is that the algorithm learns based on the train set. The user or the algorithm itself (in case of 

Neural Networks) should use the validation set to check whether it has learnt correctly. If not learnt 

accurately enough, the so-called hyperparameters are tuned and the procedure is realized again. After 

arriving to the least-worst hyperparameter, the algorithm is applied on the test set. At the end of 

every prediction/comparison an error metric is used in order to decide to what extent the prediction 

is accurate. In turn, choosing an error metric is non-trivial since it depends on the type of dataset and 

whether it contains e.g. natural outliers, among other things. 
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4.2.2. Random Forest 
Random Forest (either for classification or regression problems) is a machine learning technique based 

on ensemble of decision trees. It builds decision trees that are not correlated based on subsamples of 

the tabular data. After that the decision trees are averaged in order to get the final prediction, for 

regression problems (Breiman, 2001). Moreover, another aspect of the random forest is that it can 

yield by how much each feature contributed to the final prediction, i.e. feature importance. This is a 

procedure that is realized after the splitting criterion in each tree is updated. Two important aspects 

of Random Forest is 

Regarding the decision tree itself, it is a decision scheme based on split rules which categorize the data 

many times until certain criteria are met. There are various parameters that can be tuned in order to 

achieve the best possible performance such as number of trees, depth of each tree, loss function 

threshold, among others. It is considered one of the simplest, yet most used and among the best ML 

techniques (Hastie, 2009). Usually in regression problems the split rule is the Mean Squared Error 

(MSE). A basic scheme of a decision tree along with its components can be seen in Figure 9. 

 
Figure 9: A basic Decision Tree scheme is presented showing its main components. The inputs are split 

based on different rules (e.g. greater or lower than threshold values) many times, until certain conditions 

are met. These conditions comprise the hyperparameters which can be number of leafs, number of nodes 

etc. among others. 

 

4.2.3. Artificial Neural Networks 

4.2.3.1. Multilayer Perceptron 
The Single Layer Perceptron or simply Perceptron is the simplest form of an Artificial Neural Network 

(ANN) which comprises the input and output layers and is used in linear problems (Freund & Schapire, 

1999). On the other hand, Multilayer Perceptron is a little bit more complex, is composed of an input, 

an output and at least one hidden layer and is used in both linear and non-linear problems (Hastie et 

al., 2009). Multilayer perceptron is elaborated further below. 

The basic building block of an ANN in general is the so-called unit (or node or neuron).  A unit can be 

considered as a transfer function which takes one or more vectors as input. The transfer function 

linearly transforms the input vector by applying a scale (weight) and an offset (bias) which are 

randomly chosen from a given probability distribution. The unit produces a scalar value and its output 
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is generated after the application of the activation function (Hahnloser et al., 2000). The activation 

function is either linear or non-linear and which one should be chosen depends on the nature of the 

problem. However, most of the times a non-linear activation function is needed, since this is the 

approach to detect more complex associations between variables. 

Moving forward, an ANN is structured in stack of layers and each layer is composed of units. The units 

of the first layer (or input layer) represent the input features. The units of the last layer (or output 

layer) represent the output (or estimate or prediction), while every layer in-between the first and the 

last are considered as the hidden layers. In turn, the hidden layers comprise one or several units which 

basically represent artificially created features with no direct physical meaning. As the network 

becomes deeper the artificially created features resemble even less the original input features. The 

number of units in each hidden layer is taken as the width of the layer, whereas the number of hidden 

layers as the depth of the network (Ketkar, 2017). An example of a basic ANN with fully-connected 

layers can be seen in Figure 10. 

The number of the elements of every input feature corresponds to the label or target i.e. the target 

layer. The values of the target layer can have any value e.g. discrete or continuous. By the time the 

network predicts the values of the target layer, it needs to compare them with it in order to assess 

how good the prediction is. The comparison is realized by using a loss function which can be anything, 

depending on the nature of the problem (i.e. regression, classification). For regression problems some 

metrics that are commonly used are mean squared error (MSE) and mean absolute error (MAE) each 

one with its advantages and disadvantages. For example, MSE is more susceptible to outliers 

compared to MAE. Other useful loss function metrics are Huber Loss (Huber, 1964), which is robust to 

outliers and very asymmetrically distributed data, as well as Charbonnier loss (Barron, 2019) robust to 

outliers. Thus, the loss function one should use is not a trivial step. After applying the activation 

function one can start using other regularization layers such as e.g. Dropout which can prevent 

overfitting by dropping units during training (Srivastava et al., 2014). 

To sum up, the general idea of an ANN is that it has some inputs. Then linear and non-linear 

transformations are applied which produce a prediction. The prediction is compared to the target 

(original) by using a loss metric. This procedure is repeated until the loss metric is minimized (Behzad, 

2014). The minimization takes place by using an optimizer (usually some form of gradient descent). 
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Figure 10: The above graph shows a multilayer perceptron architecture. By definition, the MLP is a fully-

connected network which means that every node’s output is fed to each node of the next layer. The input 

layer is composed of four features (nodes). Also there are two hidden layers where each layer consists of 

three and two nodes, respectively. 

 

4.2.3.2. Convolutional Neural Networks (CNN) 
The CNNs follow the same principles as the regular ANNs but in a somewhat different context, since 

each input is assumed to show auto-correlation to a certain extent. For this reason, the basic operation 

of convolution is exploited. The general architecture of a CNN from beginning to end is input layer, 

convolution/activation/pooling layers (hidden layers), fully connected layer (hidden layer), output 

layer (Ketkar, 2017). Of course, depending on the needs there can be more packs of 

convolution/activation/pooling and/or fully connected layers. 

The convolution layer applies a predefined number of filters and filter (window) size on the inputs. 

The values of each filter are the weights and are defined in the same manner as in simple ANNs. After 

that, the output of the convolution layer is fed to a pooling layer. The pooling layer is a layer which 

uses a predefined window to reduce the size of its input based on a rule. The rule usually is an average 

(Average Pooling) or maximum (Max Pooling) value out of the values inside the window. This 

procedure is similar to binning and downsampling the given array (Yamashita et al., 2018). 
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5. Materials and Methods 

5.1. Dataset 

5.1.1. Data Description 
Sentinel-3 offers various products which come from the three core instruments in the form of 

compressed (ZIP) NetCDF4. For the current study the Level-2 marine products were used. SRAL offers 

3 data files, namely the “reduced”, the “standard” and the “enhanced”. The “enhanced” data file was 

chosen since it included complete altimetry information such as 1/20Hz, C/Ku-band as well as raw 

waveforms. In addition, SLSTR offers one data file which follows the GHRSST naming and structure 

directives. On the other hand, OLCI offers 24 data files and 7 annotation files. The 24 data files are 

composed of the surface reflectances and variables, while the 7 annotation files are composed of 

information such as geographical coordinates, flags etc. More detailed information about the products 

and the data files that are chosen can be seen in Table 2. Regarding the spatial resolution, the SLSTR 

1km and OLCI 300m were chosen. It is worth noting that generally, the products which contain more 

details (i.e. “enhanced” SRAL and 300m OLCI) were chosen in case that some extra information was 

going to be necessary during the processing/analysis stages. 

Also, Sea Surface Temperature Level-4 (SST L4) were used. The data are delivered as one netCDF file 

which includes the desirable time series of AOI and represents the foundational SST. The L4 product 

is gap-filled by using SST data from multiple sensors such as AVHRR, AATSR, SEVIRI, AMSRE, TRMM MI, 

MODIS, GOES Imager, MTSAT-1R as well as in-situ data from buoys (Chao et al., 2009). The temporal 

resolution of this product is 1 day while the spatial resolution is 1 km. 

5.1.2. Data acquirement 
The S3 marine products are disseminated by the Copernicus Online Data Access (CODA) web service. 

The dates that were chosen were between 01-05-2018 and 30-03-2019 and were queried and 

downloaded by gaining access to the Data Hub Software (DHuS). The access was made possible by 

taking advantage of the dhus.sh bash script that is offered by the services and uses the corresponding 

API. On top of that, an additional bash script was created in order to fully automate the 

query/download process. Working in a Windows 7 OS, additional tools were needed such as MSYS and 

wget; the former is a collection of GNU utilities (e.g. bash command line) while the latter is a free 

software package that retrieves data using various internet protocols (e.g. HTTPS). Further 

information about the online data access can be found at https://coda.eumetsat.int/manual/CODA-

user-manual.pdf. 

Regarding the SST L4 products, they are derived from NASA (JPL OurOcean Project, 2010, 

https://podaac.jpl.nasa.gov/dataset/JPL_OUROCEAN-L4UHfnd-GLOB-G1SST) by using the online 

spatial subset option. The spatial extents that were used for the North Sea and Gulf Stream cases are 

described by the bounding boxes (-3.11, 9.11, 51.10, 58.21) and (-80.00, -65.00, 31.00, 40.00), 

respectively. The coordinates are given in geographic coordinate reference system, namely World 

Geodetic System 1984 (EPSG: 4326). 
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5.1.3. Data preparation 
After the data acquirement, the products were unzipped and subset based on the Region-Of-Interest 

(ROI) in geographical coordinates in order to reduce the file size. Particularly, for the SRAL coordinates 

needed to be adjusted since they are defined as degrees East relative to Greenwich meridian, which 

means that they are also represented by values greater than 180 degrees. Therefore, in those cases, 

a subtraction of 360 degrees was needed. Regarding the OLCI files, only the relevant ones where 

selected (e.g. chl_oc4me.nc, wqsf.nc) while the rest of them (e.g. iwv.nc) were deleted (Tab. 2). As a 

result of subset, the shape of the original data was changed from matrix to array. The choice of 

working with the data being in an array (i.e. considered as points) instead of a matrix (i.e. considered 

as image) form was driven by hardware (i.e. RAM) restrictions. Namely, matrix form would contain 

more elements including useless cloud covered points, hence it would need higher memory capacity. 

Throughout every query/download and unzip/subset stage the dataset was checked for any corrupted 

files and logged to a text file. In case of corrupted file presence the file was re-downloaded/subset. 

Next, the flags of SLSTR and OLCI are extracted into bit values and then applied on the corresponding 

variables and their errors, i.e. SST, chlorophyll, total suspended matter concentration, diffuse 

attenuation coefficient and coloured detrital and dissolved material absorption. The flags and quality 

level thresholds that were applied can be seen in Table 2 and followed the suggestions of data 

providers (EUMETSAT, 2018; GHRSST Science Team, 2010). Notably, regarding the OLCI products the 

only flag that was not used is the High Solar Zenith (HISOLZEN). It was observed that by using this flag 

the remaining scenes consisted of considerably less data and this is why it was not used. The SST L4 

data that are used are based on sea mask. 

Table 2: The table below names the flags which were used in the preprocessing stage of the Sentinel-
3 and SST Level-4 satellite data 
Ocean Colour variables WQSF (flags) 

Algal pigment concentration in open waters CHL_OC4ME 
CHL_OC4ME_err 

WATER 
CLOUD 
CLOUD_AMBIG
UOUS 
CLOUD_MARGI
N 
INVALID 
COSMETIC 
SATURATED 
SUSPECT 
HIGHGLINT 
SNOW_ICE 

AC_FAIL 
WHITECAPS 
ANNOT_ABSO_D 
ANNOT_MIXR1 
ANNOT_DROUT 
ANNOT_TAU06 
RWNEG_O2 
RWNEG_O3 
RWNEG_O4 
RWNEG_O5 
RWNEG_O6 
RWNEG_O7 
RWNEG_O8 

OC4ME_FAIL 

Diffuse attenuation coefficient KD490_M07 
KD490_M07 _err 

KDM_FAIL 

Total suspended matter concentration TSM_NN 
TSM_NN_err 

 OCNN_FAIL 

Coloured Detrital and Dissolved Material absorption ADG443_NN 
ADG443_NN_err 

     

Sea Surface Temperature l2p_flags quality_level   

sea_surface_temperature land 
ice 
lake 
rive 
exception 
cloud 
sun_glint 

>= 2 (worst 
quality of usable 
data) 

  

     

Sea Surface Temperature Level-4 mask (flags)    

analysed_sst sea    
     

Sea Surface Height Anomaly flags    
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ssha_20_ku surf_class_20_ku 
surf_type_20_ku 
surf_type_class_20_ku 

   

 

Another thing that needs to be highlighted, as far as the SST is concerned, the measurements with a 

quality level greater than or equal to 2 were used. This is the threshold of the usable data where 2 

denotes the worst quality. It was noticed that in the Gulf Stream there were cloud edge effects on 

some of the scenes and specific regions of each scene (Fig. 11). For this reason, it was chosen to 

consider those values as outliers and disregard them. 

 
Figure 11: This is an image of the SST acquired by SLSTR on-board Sentinel-3. It is masked using the most 

conservative flag options possible. However, evidently there are still cloud edge effects at the Eastern side 

of the swath which are depicted as light blue colours which surround white regions. This is the region of 

Gulf Stream. 

Furthermore, the choice of the chlorophyll product for open waters (CHL_OC4ME) instead of the 

complex coastal waters (CHL_NN) was based on the interest in the open water mostly. The reason for 

this is that one of the basic assumptions is that the effect of chlorophyll at open waters is assumed to 

be more clear, compared to the more complex signal at the coastal regions. The parameter 

ADG443_NN represents the absorption by detritus plus CDOM (Valente et al., 2016). KD490_M07 

represents the diffuse attenuation coefficient for downward irradiance (Valente et al., 2016), which 

basically shows how easily the light penetrates the open waters. More information about the products 

can be derived from https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-3-

slstr/level-2/sea-surface-temperature-ghrsst (Retrieved on: 04/2019) and EUMETSAT (2018a). 

Finally, before moving to further processing the data needed to be transformed into some local 

projected coordinate reference system (CRS) since distance calculations were realized. The CRS of Gulf 

Stream and North Sea that were used are NAD83/UTM zone 23N (EPSG: 26923) and ETRS89/LAEA 

Europe (EPSG: 3035), respectively. 
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5.2. Data pre-processing and analysis 
Before proceeding further, some of the techniques that were widely used must be highlighted and 

explained. Therefore, every time these concepts are mentioned later, the reader can refer to this 

section. 

5.2.1. Processing 

5.2.1.1. Interpolation of SST, SST L4 and OC 
One of the very first steps used in bringing the data into an analysis ready form was the interpolation 

of the SST and OC variables on the SSHA points. This was achieved by using the IDW technique as 

described in the introduction (Chap. 4.1.5) using a power of 1 (p = 1). Theoretically, the closest 8 

neighbours are used, although in practice due to missing data this reduces to 3-5 points that fell in a 

search radius, which was equal to: 

𝑟𝑎𝑑𝑖𝑢𝑠 = 𝑆𝑅 ∙ √2 

𝑆𝑅, 𝑡ℎ𝑒 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

𝑖. 𝑒. 1𝑘𝑚 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑆𝑆𝑇 (𝑎𝑛𝑑 𝑆𝑆𝑇 𝐿4) 𝑎𝑛𝑑 300𝑚 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑂𝐶 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

The reason for choosing this radius is in order to only include the points that are close enough, but 

not too far (all within the 3 x 3 window). An idealized sketch can be seen in (Fig. 12). 

 

Figure 12: The red point is a point on which we need to 

interpolate a variable (e.g. SST). The circle denotes the 

search area and the blue points show the points of the 

variable. This is the search radius that was used in IDW 

interpolations on the along-track measurement points. 

 

5.2.1.2. Outlier detection 
In this thesis several ways to treat outliers and disregard them were used especially for visualization 

purposes. Some of them are using the percentiles (e.g. 1% and 99%) and 2.5 or 3 times the standard 

deviation of each dataset. However, the one that was widely used in order to bring the data into an 

Analysis Ready form, was the IQR Rule or Tukey’s method (Tukey, 1977). Based on this rule of thumb, 

the outliers are considered those values that are greater than 𝑄3 + 1.5 ∙ 𝐼𝑄𝑅 and less than 𝑄1 − 1.5 ∙

𝐼𝑄𝑅. The explanation of the expressions/symbols can be seen below: 

𝑄1, 𝑄3 = 1𝑠𝑡 𝑎𝑛𝑑 3𝑟𝑑 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 
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𝐼𝑄𝑅 = 𝑄3 − 𝑄1 

This option was used on every variable. 

5.2.1.3. Moving Average filtering 
The use of a moving average low-pass filter was chosen because of its simplicity both in understanding 

and computational complexity, as well as its straightforward implementation.  It was used for two 

purposes. The first purpose was to filter out the high frequency noise (< ~10km), while the second one 

was to approximate the general (non-linear) trends. The approaches were applied in an exploratory 

mode mainly on SSHA, SST and Chlorophyll, which were the core variables of this project and, later, 

on the rest of the variables. 

Two moving average approaches were explored in order to arrive at the one that would represent the 

data better. The first approach did not take into account the missing values. This means that any 

elements of the arrays with missing values (i.e. Not-a-Number) were disregarded. In turn, this means 

that in presence of large number of consecutive missing values the elements at the edges would be 

affected by elements that are physically very far. This is illustrated in Fig. 13 and 14. In addition, zero-

padding is necessary at the edges of the array. 

The second approach deals with the missing values differently, in the sense that it imputes them 

instead of disregarding. The missing values were interpolated by using the value of the nearest 

neighbour that has a value. The same choice holds for the previously zero-padded elements. After 

imputation of the missing values, the moving average filtering is applied. This approach was applied 

using the ASTROPY Python package. 

The second approach show advantages since the edge effects that take place using the first approach 

are absent. The edge effects are clear both at the right and left edges of the spatial series, as well as 

in the intermediate space where many consecutive missing values occur (Fig. 14) 

 

 
Figure 13: Common moving average with zero-padding at the edges 
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Figure 14: Moving average filtering using the Astropy approach, which treats the missing values differently 

by interpolating using nearest neighbour. 

 

5.2.2. Remark on number of tracks 
At this point, a remark which holds for every processing and analysis step, is that the number of tracks 

used depending whether it includes SSHA/SST or SSHA/SST/OC was different. In fact, the former 

dataset was far larger than the latter, because the tracks with common sensing dates needed to be 

queried. There was a deficit of tracks on specific dates due to exclusion because of e.g. total cloud 

cover or partial cloud cover that was right at the regions where the ground track is (hence the OC 

and/or SST did not have measurements there). Due to the differential data deficit, mainly, between 

SST and OC that are affected by the cloud cover, the chances of finding common sensing dates among 

SSHA/SST/OC were lower than SSHA/SST. Also, as a consequence of the above, not all of the pairs 

SSHA/SST and SSHA/OC correspond to the same dates. 

 

5.2.3. Along-track correlations 
First of all, the original SSHA data are cleaned from any outliers, and later are smoothed by removing 

the high-frequencies using the 1D moving average filter with a window size of 99km (or 300 array 

elements). After that, the large spatial trend is computed again using 1D moving average filter with a 

larger window size of 297km (or 900 array elements). The meso-scale variability is disclosed by 

subtracting the large spatial trends from the smoothed data. This is a technique that is has also been 

used slightly differently by Chelton et al. (2011) and AVISO (2019). Nevertheless, experiments were 

done on different combinations of window sizes. 

A similar approach is followed for the SST. Firstly, the variables are interpolated using IDW on the SSHA 

along-track points. After that, they are smoothed from the high-frequency noise using a search radius 

of 50 km (i.e. diameter of 100 km). In addition, the large spatial trend is computed on the original 

product by using a 2D moving average with a search radius of 150 km (i.e. diameter of 300 km). In the 

same manner, as with SSHA, the large-scale trend is subtracted from the smoothed version. Two 
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examples of the 2D moving average effect on SST can be seen in Fig. 15, 16 and 17, for the North Sea. 

Afterwards, the cross correlations of the products that have been acquired at the same days are 

computed and plotted. 

The same approach was followed regarding Chlorophyll-a, TSM and CDM absorption coefficient with 

the difference of the search radius which was 100 km (i.e. diameter of 200 km). The reason for this 

choice came out of trial and error and it was noticed that there were less bad relations. 

As far as the SST L4 is concerned, since it did not contain any outliers and missing values, as well as it 

is a spatially complete product it was decided to use it in a slightly different manner. Therefore, in this 

case, the SSHA data after the relevant pre-processing, they were de-noised by smoothing with a 

moving average filter using a window size of 11.5 km (or 35 array elements). The SST L4 were directly 

mapped by using IDW on to the SSHA along-track points and then smoothed using a 2D moving 

average filter with a search radius equal to 10km. After that, the autocorrelations of both variables 

were computed, as well as their cross-correlations using a maximum lag distance of 132 km (or 400 

array elements). The choice of the maximum lag was based on the assumption that the meso-scale 

phenomena at the Gulf Stream are more or less stable, therefore even 104km is a conservative choice. 

The reason that the auto-correlations were computed only on this dataset is that the Sentinel-3 SST 

~10 km smoothed version was dominated by missing values, which is a crucial problem for the 

autocorrelation algorithm. Interpolation would not solve the problem because it would import lots of 

“random-like” values and abnormalities which would result in weird patterns of abrupt highs and lows. 

 

 
Figure 15: Original SST version at the North sea 
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Figure 16: Same scene as in Figure 15, but this 

time it is 2D filtered using the moving average 

with a search radius of 50 km (or 100 km 

diameter) 

Figure 17: Same as in Figure 15, with a radius of 

150 km (or 300 km diameter) 

 

5.2.4. Spatially independent analysis 
From now on more specialized machine learning terminology is used which brings the need to make 

the matches with the thesis dataset. First of all, the terms label and feature(s) are used 

interchangeably instead of SSHA and SST/OC variables, respectively. For example, the five different 

versions of SST comprise five features. In addition, the number of samples can be used instead of 

number of tracks. Eventually, the sample size can be used instead of vector size/length, track 

size/length and number of observations/measurements of sample. 

Spatially independent analysis means that the techniques described below did not consider (at least 

directly) the fact that all of the variables of interest show spatial autocorrelation. The ML techniques 

used were two, namely, i) Random Forest (RF) and ii) Multilayer Perceptron (MLP). The preparation 

these approaches needed was minimal, especially, after bringing the data into along-track array form 

as described previously. Although the algorithm execution time was significant and imposed time 

restrictions of the practical part of this thesis. 

5.2.4.1. Random Forest 

5.2.4.1.1. Complete track archive approach 
Firstly, the features needed to be constructed. The features that were chosen after the relatively 

shallow correlation analysis, were different smoothed versions of the original variables. Practically, 

this means that for SST and OC variables, 2D moving average was applied multiple times. Regarding 

the SST, the following search radii were used to generate the various versions; 5 km, 12.5 km, 32 km, 
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53 km, 95 km, 125 km and 150 km. As far as the OC variables are concerned, the radii used were 5 km, 

12.5 km, 32 km, 95 km and 150 km. The reasoning behind the choice of the radii was that they needed 

to be able to represent the meso-scale phenomena and at the same time not require much computing 

resources. Therefore, the diameters needed were larger than 10 km which discard the high-frequency 

variations (micro-scale) and less than 300 km which is a critical landmark for the meso-scale variability 

and especially eddies (e.g. Fig. 1, AVISO, 2019). Moreover, especially for the OC variables, since the 

grid size was very dense (~300 m spatial resolution), they needed even more resources and this is why 

less smoothed versions of it were generated. 

As it is highlighted, time required was a major drawback of this approach and owed to the feature 

generation. The reason is the 2D moving average filtering application with the use of various window 

sizes. A different approach would probably be faster, if the data were e.g. in a matrix form, so different 

and more sophisticated image/matrix operation techniques could be used. 

After bringing the data into the along-track array form and before using them as input in the Random 

Forest algorithms, they were further processed. Since they still contained missing values in the middle, 

as well as at the edges of the timeseries, instead of discarding all of them at once, it was chosen to 

use one-dimensional (along-track) interpolation/extrapolation on them. The interpolation used was 

linear, while for the extrapolation Akima technique (Akima, 1970) was used. Both of them were more 

or less a heuristic choice. Although, Akima was assumed to work better due to its higher complexity 

and could extrapolate non-linearly since it is a spline based method. Higher complexity does not mean 

that it is always better, but in the specific case any potential Akima flaws would not have any 

noticeable impact. The reason for this is that very few missing values were extrapolated, which would 

not allow for significant impact of possible bad imputed values. After that, the remaining missing 

values that were not imputed (extra- or inter-polated) were discarded. 

Before starting the training using RF, the features were min-max normalized between -1 and 1. The 

reason for this is that the data consisted of variables that were in different scales. Namely, the SST 

measurements were at about 20 oC, while the e.g. chlorophyll’s range was between roughly -2 and 1.5 

log(mg/m3). The negative values are owed to the fact that the chlorophyll is an extremely skewed 

variable, due to its variability from coast to open ocean, therefore the product is offered log-

normalized. However, it is still characterized by a highly skewed distribution which would be better to 

be eliminated before using the variable as input to the RF. Although, it was decided to not be log-

normalized further in order to avoid additional errors, thus it was simply min-max normalized. 

Regarding the training procedure, the dataset was split into train and test experimenting with the 

70/30 and 80/20 proportions. The training features and the label were used to fit the model, and after 

that the model was used to predict on the training as well as the test features to predict the SSHA. 

The predicted SSHA was compared to the original (label) SSHA and a linear regression models was 

fitted and the RMSE was computed. 

Furthermore, the most important part was to choose the best hyperparameter values in order to do 

the most accurate possible estimations. The choice was done by trial and error and the guide to this 

was the train and test errors, and the computation of the slope, the intercept and the RMSE of the 

linear regression model. Namely, the best RF model was found using the hyperparameters that are 

shown in the Table 3. Nevertheless, these are values that are indicative since there is always space for 

improvement. 
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Table 3: An indication of the hyperparameters used in the Random Forest complete track archive 

training are presented below. 

Hyperparameter Value 

# of estimators (trees) 300 

Split Criterion Mean Squared Error 

Maximum Depth 15 

Minimum number of sample leaf 8 

 

All in all, an approach similar to leave-one-out cross-validation was implemented. This means that, 

one track was kept out in the beginning, and the train/test split was implemented on the remaining 

data. This procedure ran iteratively, and every time the RMSE of train, test and the track that was out 

were recorded in order to be compared. 

The whole procedure as described above, although less thoroughly regarding the hyperparameters, 

was realized for the SST data only. The only exception was that they were not normalized between -1 

and 1 since there was no need. 

5.2.4.1.2. Per-track approach 
Moving on to the next approach, the same preparation as in the previous sub-chapter was followed 

in order to bring the data in a form ready for RF training. The same ranges of proportions regarding 

train/test sets were used. The values of the hyperparameters can be seen in Table 4. 

A per-track approach means that a RF model was trained for every track (i.e. satellite pass). This means 

that the number of RF models is equal to the number of tracks with common sensing dates. The 

method was applied for both SSHA/SST/OC and SSHA/SST as they were described previously. As one 

can imagine, the number of observations in every track was far smaller compared to the one used in 

the previous section. This also explains the use of low values of the hyperparameters, since the RF 

model did not demand high complexity. 

However, the number of features regarding SST and OC was smaller, because several features were 

observed to be redundant regarding the accuracy of the RF SSHA estimation, thus discarded. This 

redundancy was observed by looking at the summary statistics of the feature importances of all RF 

models that is computed after the RF training. This practically shows which of the features contributed 

the most. 

Table 4: An indication of the hyper parameters used in the per-track approach 

Hyperparameter Value 

# of estimators 6 

Split Criterion Mean Squared Error 

Maximum Depth 9 

Minimum number of sample leaf 3 
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5.2.4.2. Multilayer Perceptron 
The features used for the MLP was the various SST smooth versions, i.e. different combinations of 5 

km, 12.5 km, 16 km, 32 km, 53 km, 75 km, 95 km, 105 km, 125 km and 150 km. The reason for not 

using the OC variables was that there were memory errors and after the first 2-3 epochs the network 

ceased. Thus, the three additional smoothed versions were added as features with the hope of yielding 

any additional information. 

The general mentality to building the network was a step-by-step adding of layers and then one-by-

one change of some of the hyperparameters. The basic layers that were used were the fully-connected, 

the activation function and the dropout. The Leaky ReLU activation was used with the alpha parameter 

equal to 0.8. Other values also were tried, but generally values between 0.6 and 0.9 were enough. 

As far as the network’s structure is concerned, the MLP depth was increased gradually, whereas there 

was experimentation regarding the width. Specifically, a structure of a pyramid shape was used, as 

well as a combination of pyramid and reverse pyramid. A pyramid structure means that the width of 

the network starts being wide (i.e. many units) and gradually dissipates to one unit which predicts the 

output layer. The maximum number of units used was 256. The depth of the network was between 1 

and 15 pairs of fully-connected/activation layers. Relative to the loss functions MSE, MAE, Huber and 

Charbonnier were used, with a focus on the last three due to their higher robustness to outliers. The 

optimizer used was the Adam optimizer (Kingma & Ba, 2014). 

Finally, different combinations of proportions between train/test and train/validation sets were used 

that fall between the 70/30% and 90/10% proportions. The split of the samples into set was realized 

pseudo-randomly. Also, the number of epochs used was approximately 100. 

5.2.5. Spatially dependent analysis using CNN 
The spatially dependent analysis means that it takes into account the inherent spatial relationships of 

each one of the variables. This is achieved by using the CNNs in the one-dimensional domain which 

exploits the convolution operation. The analysis was carried out on both SSHA/SST and SSHA/SST/OC. 

Notably, the latter was able to work without any memory issues, the reason being the CNN technique 

itself. 

First of all, before applying the CNN, some preparation was needed. The SSHA data were prepared by 

detection of outliers without removing them, smoothed with a window size of 11.5km. Same approach 

as before with the SST, as well as all of the OC variables, with their corresponding search radius 

regarding interpolation and 2D smoothing. The features (or SST and OC smoothed versions) used were 

of 5km, 50km and 150km radii. Since CNNs generate the features automatically via convolution and 

pooling operations, in principle they need few feature engineering procedures, if not at all. Although, 

in this case it was decided to create some, though very few, features that would be considered 

representative of every spatial scale. 

In order to apply the 1D CNN all of the tracks (or samples) needed to be brought into the same size, 

since every track has slightly different number of elements (or measurements). The difference in size 

between them is owed to either masking/cleansing or because they simply represented different 

scenes, hence belong to a different relative orbit. For this reason, the statistics of all usable track sizes 

where calculated which can be seen in Figure 18. The statistics were used as a guide to what would 
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be the common vector size to be used which in the end was equal to the maximum vector size (=3126). 

Practically, this means that a vector (tracks) with size less than 3126 was concatenated with NaNs in 

order to reach 3126. The same approach was followed for the features based on the maximum vector 

size. 

 

Figure 18: The graph on the left shows the 

vector size (track size in number of 

elements) statistical distribution of the 

satellite tracks. Most of the tracks have a 

size of over 2750, with a median of 3123. 

The median was used as a guide metric 

since the distribution is heavily 

asymmetric. 

 

The NaNs of the features strictly, needed to be interpolated because the CNN is not robust to missing 

values. For this reason, several ways to impute them were tried such as zero, average, random from 

standard normal distribution and, finally, extreme negative values. The assumption behind those 

choices was that they would not have a high impact in the prediction, thus the result was expected to 

not be affected much. 

The CNN was applied on different combinations of features, with a main focus on the original (~10 km 

smoothed) data since a basic assumption is that the CNN will create itself the features and choose 

which of them are important and which are not. 

Regarding the structure and composition of the network, the layers that were used were 

Convolutional, Activation, Average Pooling, (spatial) Dropout and Fully-connected layer. The Average 

pooling was assumed to work better than the commonly used Max Pooling, because the problem we 

are dealing with is a regression problem and the variables are continuous, thus an average instead of 

a max was more appropriate. The spatial dropout differs from the simple dropout in that it discards 

complete samples (tracks or features) instead of units that is done in fully-connected layers as the 

functionality is far different between fully-connected and convolutional network types (Tompson et 

al., 2015). 

Concerning the depth and the width, different combinations were tried but the reasoning was the 

same as with the MLP. Start adding the layers one-by-one and check for the outcome. Generally, the 

structures tried were a pyramid, i.e. wide network at the top which get narrower towards the bottom, 

as well as a same-width structure, i.e. all of the layers had the same width. Regarding the kernels used, 

they were much more in the first layers and get fewer at the bottom layers. The reasoning behind 

those choices where larger number of parameters is used at the top and less at the bottom, is that 
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the features at the top would have more detailed and small-scale characteristics to be learnt, while at 

the bottom the larger characteristics such as trends would be learnt. 

As far as the activation function is concerned, in the beginning Rectified Linear Unit (ReLU) was chosen 

(Nair & Hinton, 2010) since it is considered one of the most preferred activation functions (LeCun et 

al., 2015). It is suitable for regression problems also. However, it is only activated for values greater 

than zero, which means that it saturates the predictions that have negative values. For this reason, 

Leaky ReLU (Maas et al., 2013) was used instead, which is a variation of ReLU that can compensate for 

the aforementioned disadvantage. The only parameter that was tuned is the alpha parameter in the 

range between 0.5 and 0.8. The rest of its values was observed not to impose any significant impact 

on the outcome. 

Regarding the train/validation/test split, the ratios were kept to higher values because of the very 

small data set, e.g. for the SSHA/SST it was ~200 samples. Thus, ratios as high as 95/5% were also tried 

apart from the golden 80/20% rule. 

Moving on to the next dataset, the same procedures were applied in the SSHA/SST L4 pair. There was 

no problem of missing values, except for those that were artificially created with the procedure of 

bringing the tracks into the same size. Also, this time only the ~10 km data were used. This implies 

that the number of inputs (or features) was one (i.e. SST L4). 

The relevant Python code along with a short manual can be found either on the GitHub repository 
(profile name: konstantinos2018) or by directly asking the author of this thesis. 
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6. Results & Discussion 
This chapter aims to present the key results and discuss some probable causes why certain techniques 

and approaches worked or not. Also, out of those that worked it is investigated to what extent they 

did and which types of problems they can tackle. 

6.1. Representativeness in capturing meso-scale phenomena  
Before proceeding to the presentation and discussion of the correlations on the along-track between 

the different variables, it is imperative to discuss about how some meso-scale phenomena look like in 

the along-track sections and try to make some interpretations. Also, it is important because it will help 

the reader to be critical and understand about the significance of searching for correlations using the 

“correct” data, since the widely known saying “garbage in, garbage out” holds true. 

In Figure 19 along-track sections with a ~10 km moving average filter for both SSHA and SST can be 

seen, regarding the Gulf Stream. On Figure 20 the SSHA is the same as before, while the SST has been 

de-trended with a smoothed version of itself with radius 50 km (or diameter 100 km). Figure 21 shows 

both SSHA and SST de-trended (between 100 km and 300 km) in order to depict the meso-scale eddies 

more clearly. The first thing that is noticed in Figure 19 is that without any deep processing the eddies 

and some smaller spikes that are better seen in a different along-track section (Fig. 22) are clearly 

visible. The eddies are represented by the sinusoidal-like SSHA signal. What can be noticed is that as 

one subtracts the larger trends, eddies become more distinguishable, while the 100 km/300 km also 

eliminates the intermediate meso-scale features (e.g. larger and smaller spikes) (Fig. 23). 

  
Figure 19: SSHA and SST ~10 km filtered  Figure 20: De-trending of SST. 100 km along-track 

is subtracted from 10km one. The SSHA is ~10 km 

  

Figure 21: De-trending of SSHA and SST. 150 km 

along-track is subtracted from 10km one. 

Figure 22: In the ~10km filtered SSHA some spikes 

in-between the eddies are observed (red arrows) 

in almost every along-track section. 
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Figure 23: De-trending of SSHA and SST. 300 km 

along-track is subtracted from 100 km one. This 

time the absence of the small meso-scale spikes 

is evident, compared to Figure 22 

 

However, if one observes some equivalent graphs for the North Sea, s/he will not see these patterns 

as easily (Fig. 24) without processing (Fig. 25). This means that the meso-scale phenomena are not 

always easy to detect without exploration in different scales and combinations of different scales, 

since various factors affect their visibility. For example, as mentioned before, in the North Sea the 

meteorological and atmospheric effects are high which means that the meso-scale signal may be 

hidden. This leads to further error coming from the SRAL itself, e.g. the Inverted Barometer correction 

needed might not be the default that SRAL provides. For instance, in the North Sea a different IB 

correction is needed (Premier, 2017). 

With respect to the SST detrending, two probable sources of bias need to be mentioned. The SSHA is 

moving averaged in the along-track direction only, while the SST is averaged in every possible 2D 

direction. Thus, in a way the variables do not contain the same directional bias when compared. In 

addition, on the SST scenes normally a seasonal component should have been subtracted from the 

SST, however due to the less than one year timespan of the dataset (< 1 year) this was not chosen. 

Adding to that, another thing that was noticed is the different sizes of those sinusoidal-like patterns, 

between Gulf Stream and North Sea, as well as at the very same region itself. This leads to another 

possible source of bias in the ability to truly depict meso-scale features using the along-track data, 

seems to be the geometry of the features relative to the satellite ground track. For example, usually 

eddies are cyclic/elliptic, which means that the ground-track can cross-cut them in different parts and 

directions. In particular, it plays a role whether it cross-cuts the eddy perpendicular to the major axis 

or not, or close at the ellipse's edge. Also, assuming that there is a narrow current, it matters whether 

it is cross-cut perpendicular or parallel to its flow, since the signature on the along-track section will 

be totally different. If it is cross-cut perpendicular to the flow, then it will be depicted as a relatively 

narrow area which could easily be an edge of an eddy. 

Now, one might wonder why the above matters in the correlation analysis, since the SSHA/SST/OC are 

measured at the same time they should show the same signature in the along-track which is irrelevant 

to the geometry of the satellite and the ocean phenomena.  The truth is that despite they are 

measured simultaneously, some of them were discarded due to not passing the quality flags because 

of the presence of clouds. The result of this was that part of the data were composed of pairs of 

SSHA/SST and SSHA/OC that belonged to the same sensing date but a different sensing time. To give 

an indication about the magnitude of the differences, a bar graph can be seen in Figure 26. In fact, 37% 

of the pairs SSHA/SST have a sensing time difference less than 5 minutes, 50% less than 60 minutes 
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and 55% less than 70 minutes. The rest of them have a sensing time difference of almost 12 hours (Fig. 

26). 

 
 

Figure 24: ~10 km smoothed SSHA and SST at North 

Sea. Eddies or current indications are not present 

Figure 25: Detrended SSHA and SST (100 km – 300 

km) SSHA and SST at North Sea, which reveal some 

meso-scale phenomena that were not possible to 

distinguish before (Fig. 24) 

 

At this stage of the thesis, the assumption that this time discrepancy between the products used would 

not play a negative dominant role in the relation between the SSHA and SST (and OC) at the Gulf 

Stream, because of the relative stability of the ocean phenomena there such as the current that goes 

towards the North and turns to the East as well as the largest eddies. However, theoretically this 

always depends on meteorological effects such as winds, which would increase the speed of ocean 

flows thus hiding the SSHA/SST relation. 

  

Figure 26: Time differences of satellite arrival time 

between SRAL (SSHA) and SLSTR (SST) products at 

the same dates. 55% of the tracks have a time 

difference less than 70 minutes. 

Figure 27: Along-track overlap between SSHA and 

SST. Remarkably the time difference between the 

two products is ~12 hours and still a correlation is 

apparent. 

 

Furthermore, another point to be highlighted is that in the graphs Figure 21 and Figure 25 which depict 

detrended features, the SST gaps due to clouds and outlier removal that were present in the quasi-

original products (Fig. 19, Fig. 24) are now absent. This is an effect of the larger windows (search radii) 

smoothing which includes values that exist and they are far from the altimetry track. In other words, 

it is the effect of the neighbours that are far. Therefore, the missing data are decreasing as larger 

smoothing search radii (or window sizes) are used - which is nicely demonstrated in Figure 52 which 

is later discussed. Thus, this fact by itself can also import some error, which cannot be quantified. 
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All in all, another characteristic that is seen in the Figure 22, are the sub-meso-scale spikes that are 

evident as described above. Those spikes might be either artificial due to the processing or natural. 

An artificial cause could be the moving average filtering that is generally known to possibly produce 

such features, while a natural cause could be phenomena such as filaments or other smaller meso-

scale phenomena which also seems very probable. This is also one reason why it was chosen to use 

spatial scales that would eliminate such ambiguous phenomena (i.e. larger than 100 km) that were 

not always depicted in the SST as was the case with SSHA. 

6.2. Along-track Correlations 
Some of the pitfalls and the difficulties were discussed that arise from the approaches to depict the 

meso-scale phenomena as clear as possible in SSHA and SST. However it is logical to assume that the 

same is true for the rest of the variables. Moving on, the meso-scale relations at the scale between 

100 km and 300 km were examined further, mostly qualitatively, with a more focus on the Gulf Stream 

from now on. 

6.2.1. SSHA versus SST, OC 
As has already been seen, most of the along-track plots show associations between SSHA and SST to 

a larger or smaller extent, even when the time difference is half a day (Fig. 27). The same thing holds 

true for the relationship between SSHA and Chlorophyll, although this is not the case for other 

variables which were less examined compared to the rest. For instance, in Figure 28 a relation 

between SSHA and Chlorophyll can be inferred. Although, in the cases where there seems to be a 

correlation there is a spatial lag between them, which may be owed to the difference in timing. The 

same can be seen with the TSM (Fig. 29), although, quantitatively speaking the overlap with zero or 

larger lag was almost absent. An issue that was also noticed regarding the OC variables is that the 

presence of clouds was higher which imposed problem with working deeply with them, especially in 

the analysis part. 

  
Figure 28: SSHA versus chlorophyll (100-300 km 

detrend) with half a day sensing time difference 

Figure 29: SSHA versus TSM (100-300km detrend) 

with half a day sensing time difference 

 

Before moving further the scatter plots of SSHA and SST were examined. The majority of them showed 

weird nonsensical patterns (App. Chap. 9.4), which is something that was expected since the SSHA and 

SST do not show perfect pattern coincidence. 

According to the above, while it is true that meso-scale phenomena correlations between SSHA and 

SST/Chl are there, a more quantitative approach was also investigated. Namely, the cross-correlations 
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were computed regarding the SSHA and SST, while the OC was left out because of the high percentage 

of missing values. A pair of a correlogram (Fig. 31) accompanied by an along-track section (Fig. 30) can 

be seen. The absolute value of the cross-correlation showed that the 47% were above 0.5 which could 

be taken as not that bad if one thinks of all the possible sources of error and the signal components. 

In addition, 14% was between 0.5 and 0.6 which means that 33% was over 0.6. Thus, if one can trust 

the cross-correlations this means that 33% of the data are close to be usable for deeper analysis 

without considering that the lag is far from zero. 

The cross-correlation technique itself that was used, as implied in the last previous sentence might 

not be trustable enough. This is due to the fact that it is a metric that can only detect linear correlations, 

and only shows global relationship between the timeseries. Simply put, global means that the 

algorithm takes the one vector, displaces it relative to the other and computes the cross-correlation 

metric. In the case of existence of cross-correlations in only a certain region of the time series, then 

the metric would fail since it would be affected by the rest non-existent correlations. Therefore, by 

only considering the last two mentioned peculiarities one can assume that these cross-correlation 

graphs tell us about a small part of the story. 

 
Figure 30: The figure shows the along-track SSHA, SST  with the corresponding correlogram below (Fig. 31) 

 
Figure 31: The figure shows the cross-correlation between the SSHA and SST detrended (100 km – 300 km) 

 

6.2.2. SSHA versus SST L4 
The importance of significant cloud presence (i.e. missing values) in the dataset is high. Hence, it was 

speculated that it would pose problems in the machine learning prediction, since it is a well-known 

obstacle before applying ML techniques which - depending on how one handles it - imports bias, larger 
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or smaller, anyway. All of the ML techniques used here would not suffer from the missing value 

problem due to bias, however the Convolutional Neural Networks would not work at all, since at their 

core they are based on the continuity of the observations. This means that missing values cannot 

simply be omitted. 

Despite one can think of many creative ways to deal with the missing values problem, the present 

work kept it simple and dealt with it with the two following ways concerning the inputs in the CNN. 

The first way, and the most common was to interpolate the missing values using various approaches, 

and the second way was to use a different SST dataset, namely, SST Level 4. Therefore, before 

proceeding to the ML analysis, a brief investigation on the correlations of SSHA and the SST L4 was 

conducted. 

To begin with, two indicative along-track sections of SSHA/SST L4 can be seen in Figure 32, Figure 33. 

Generally, it was observed that the SST L4 were following the general trend of the SSHA, without 

excluding absence of collocation of patterns such as in Figure 34. Two things can be observed. The 

first one is that the SST L4 along-track data seem really smooth if one considers how the Sentinel-3 

SST of the same smoothing window look like. The second thing is that in several along-track sections 

smaller scale periodic signal is observed which is also smooth. These two features might probably 

owed to the procedures held during the production of the Level-4 product, such as resampling of 

different products. In addition, by looking at the map (Fig. 35) and comparing it to a map of Sentinel-

3 SST (Fig. 36), it can be inferred that the SST L4 does not have a truly 1km resolution, since it cannot 

resolve smaller scale features as SLSTR can. 

  
Figure 32: SSHA (~10 km smoothed) versus SST 

Level-4 original (1 km) along-track section 

Figure 33: SSHA (~10 km smoothed) versus SST 

Level-4 original (1 km) along-track section. Despite 

SST L4 is in the 1 km, it seems rather smooth with a 

high frequency sinusoidal pattern in it. This is might 

owed to SST L4 processing schemes that are used in 

order to create it. 
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Figure 34: An example of SSHA and SST L4 with absence of collocation of pattern 

 

 
Figure 35: SST L4 in 1 km pixel size. This is a typical example of the difference between pixel size and 

spatial resolution. The SST L4 product despite having a 1 km grid, the resolving power is lower than this 

which can easily be compared to the figure below (Fig. 36) 
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Figure 36: SST of Sentinel-3 three in 1 km resolution 

 

In addition, the auto-correlations and cross-correlations on the ~10 km can be summarized in the 

Figure 37 and Figure 38, respectively. The auto-correlograms suggest the existence of autocorrelations 

of each variable, with the SSHA being clearly stronger than the SST L4. In addition, the SSHA show a 

dissipating periodic autocorrelation pattern which is the signature of the (quasi) periodicity of the 

eddies/current that was discussed before in the qualitative analysis. These datasets need to be 

autocorrelated like this since it is used in the CNN regression analysis, which is a prerequisite, although 

not strictly. 

In regards of the cross-correlation a summary graph, an along-track section along with its 

corresponding cross-correlogram are shown (Fig. 38). In addition, a summary histogram of the 

maximum positive and maximum negative cross-correlations are also shown (Fig. 39). 

 
 

Figure 37: In the above two figures the autocorrelation of SSHA and SST L4 ~10 km smoothed versions can 

be seen. Both of them show autocorrelations, although the SSHA presents a more sinusoidal pattern which 

might imply that it can relate to phenomena such as eddies more closely. 
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Figure 38: The along-track section of SSHA and SST L4 ~10 km smoothed versions (left), along with the 

corresponding cross-correlation (right) are depicted. 

 

This histogram is bi-modal with the one mode being over zero while the other being roughly 0.7. This 

suggests that the dataset is in a way split into two parts. The one part which shows no cross-

correlations between SSHA and SST L4, and the other part which shows significant cross-correlations. 

 
Figure 39: The histogram of maximum and minimum cross-correlations computed regarding the SSHA and 

SST L4 ~10 km smoothed data. The distribution is bimodal, where the higher mode is over ~0.7, while the 

lower mode is over 0 correlation. Therefore, most of the cross-correlations seem to be positive. The lag 

interval and maximum used were 1 element (~0.330 km) and 400 elements (132 km) 

 

6.3. Spatially independent ML analysis 
The spatially independent analysis techniques that were used are related to Random Forest and 

Multilayer Perceptron. 



48 
 

6.3.1. Random Forest 

6.3.1.1. Complete track archive approach 
The RF model was build based on the complete track archive and it is a global spatiotemporal model 

in the sense that it uses the complete time series (i.e. every track) where every timeseries refers to a 

different region of the study area. To make it clear, every single observation is considered to be 

independent from the other, thus no true spatial or temporal relation between the observations is 

assumed. 

In Figure 40 the plot between the label SSHA and the predicted SSHA of the test dataset and the 

training dataset can be seen. Apart from that, there is the comparison between the prediction of SSHA 

for the track that was left out in order to do the leave-one-out cross validation. While in Figure 41 the 

corresponding along-track section of the SSHA and predicted SSHA can be seen. A very peculiar thing 

was observed which is illustrated further on a summary statistics histogram (Fig. 42). Despite the fact 

that 1) both the training and testing errors are acceptably low, 2) the RMSEs of the linear regression 

between predicted and labels are very low, too and 3) the slope and the intercept of the linear 

regression are proper, the relation between the predicted and label of the track that was left out 

seems to be random. This holds true for every such comparison, which raises questions about how 

this is possible. 

 

 
Figure 40: The uppermost and the middle figures, show the SSHA prediction versus the test and train 

corresponding labels. The methods used is the complete track archive approach using SST and OC smoothed 

versions as features. The lowermost figure shows the corresponding graph using the track that was left out 

of the training/testing during the leave-one-out cross-validation procedure. Surprisingly, despite the train 

and test errors are low without any possibility of overfitting, the unseen track cannot be predicted. 
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Figure 41: The figure shows the corresponding 

along-track section of predicted and label SSHA of 

the Figure 40 (lowermost) 

Figure 42: The histogram of training and test errors 

that were computed in every training session during 

the leave-one-out cross validation. The unseen track 

errors in blue, show a huge discrepancy compared to 

the train and test errors. 

 

The same situation occurs when using the SST smoothed versions also. Although, in this case while 

the achieved train and test errors are optimal, the regression slope is lower close to 0.8, compared to 

SST/OC where the slope was ~0.9. Moreover, all of the predicted SSHA seem to follow a pattern and 

they seem to be far from random in nature. 

Having excluded every possibility of technical mistake, there is a hypothesis about this peculiarity. The 

following facts may play a role with different weights in tricking the ML algorithm to learn things and 

patterns that are physically non-existent. Firstly, the sensing time difference between the SSHA and 

the rest of the features might import artificial (fake) relations to a certain extent, which of course the 

algorithm takes them for granted. Secondly, artificial patterns might be generated, due to smoothing. 

Thirdly, since there is a general notion that the ML algorithms tend to learn and find patterns which 

might not exist. In other words, the algorithm could probably detect patterns if one takes the complete 

data (pairs of SSHA/SST/OC) and shuffle them, without instructing it about the relationship of one 

observation relative to the other. 

The same dataset was used in the MLP algorithm, however as already mentioned there were memory 

issues when using large feature dataset. However, even with the SST smoothed versions the training 

was not successful as the training/validation errors were very high with various NN structures. Some 

indicative prediction/label SSHA along-track sections can be seen, though (Fig. 43). 

6.3.1.2. Per-track approach 
Moving forward to the next approach, namely the per-track approach, by both using only SST or SST 

and OC smoothed versions, the models performed well. The difference maker in the accuracy of the 

results was the smoothed radius of the features. 
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Figure 43: Multilayer perceptron predicted versus label SSHA along-track sections 

 

In particular, beginning with the SSHA and SST dataset, the different smoothed SST versions were 

examined since it had been anticipated that some of them would be more informative. However, this 

is an approach that makes the model always depend on the ocean features and their scale that are 

present at the time of the satellite pass, thus not being very flexible. Consequently, each track (or 

corresponding model) would need its own features that represent the single situation better. 

Although, it was speculated that some of the features no matter what, would be more informative 

since they would represent phenomena of all scales, thus it would lead to a choice of non-redundant 

features. Indeed by trial and error and by primarily inspecting the feature importance graphs (e.g. Fig. 

44), it was found that certain features had higher positive impact on the prediction’s accuracy. The 

training and testing errors can be seen accumulatively in the histograms (Fig. 45) which show the 

impact of different feature combinations on the RMSEs. 

 

 

Figure 44: On the left upper graph the predicted test versus label test of SSHA using the RF per-track 

approach can be seen. On the left lower, the corresponding scatter plot shows a linear trend with a slope 

~0.9 and an intercept close to 0. On the right the corresponding feature importance if the features to build 

the model is shown. 
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Figure 45: The histograms above show the statistical distribution of the RMSEs of train and test sets, when 

using different combinations of SST features. 

 

In particular the Figure 45a shows the train/test RMSE distribution when all of the SST features were 

used which has an acceptably low value with a maximum value close to 2.5 cm. The Figure 45b shows 

what happens when only the small search radius SST smoothed versions are used. The impact is very 

big, since the maximum RMSE goes very high close to 16 cm which is not acceptable since the nominal 

accuracy error of the SSH is ~3.4 cm. The Figure 45c shows the RMSEs produced by using some small 

(~10 km diameter), medium (~100 km) and somewhat larger (~200 km) scales SST versions. The RMSEs 

falls compared to the previous histogram, however is still not acceptable since the maximum is about 

6 cm. The Figure 45d graph shows the RMSEs produced out of the optimal number of features. This 

graphs can explain basically the importance of using all possible spatial scales that depict different 

spatial aspects of the sea level meso-scale phenomena in the range 10 km to 300 km, and at the same 

time not using redundant features. The RMSE maximum of the last graph is close to 2.5 cm, as a result 

it is acceptable. 

However, this approach needs not to be taken lightly. It is limited in the sense that the relationships 

that the RF finds in order for them to be true, need the input data to be from the exact same relative 

orbit (satellite pass), i.e. the timing needs to be the same. Since it is very easy for the RF technique 

due to its well capabilities to multivariately fit the features successfully, then it means that practically 

what we see as good performance is a form of memorization. Another argument that might indicate 

that this is might be a form of memorization is that the RF algorithm finds relationships in every track, 

a b 

c d 
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which obviously includes tracks of different timing. Additionally, in order to check qualitatively the 

magnitude of this controversial problem, some models were blindly chosen and applied in the rest of 

the tracks. What was noticed is that the predictions generally were extremely poor (Fig. 46), 

something that was expected, although at dates close to the model used the prediction were less poor 

(Fig. 47). This can be easily explained by the fact that some ocean phenomena at certain scales have 

various lifespans. 

  
Figure 46: The model used here was built based on 

the 25-05-2018 track and applied on the date that is 

seen in the graph, i.e. 18-06-2018. The result seems 

very bad 

Figure 47: This is the same model as in Figure 46 

while the application date that is seen in the graph 

is on 27-05-2018. The result does not seem too bad 

compared to Figure 46 

 

Moreover, by looking at two of the produced SSHA maps computed for every track both for SST and 

SST/OC (Fig. 48, Fig. 49), in some of them one can notice certain saturation regions which can be 

explained as the inability of the model to extrapolate, since it is trained on non-representative data. 

This is illustrated in Figure 50 where one can observe that the lower SST values in the North-East part 

are not sampled at all, thus they are not included in the input features domain. As a result, the 

aforementioned saturation at that region occurs (Fig. 48). However, by looking at Fig. 49 the same 

region shows less saturation. This effect is owed to the use of chlorophyll apart from SST, which can 

be seen in Figure 51. The chlorophyll values at the saturation region can also be found at the area of 

the altimetry track footprint, which means that these are sampled values (i.e. inside the training 

domain). 
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Figure 48: SSHA map 

prediction based on 

SST using the per-

track RF approach. A 

saturation area can be 

noticed at the 

Northern coasts. This 

may be an effect of 

the 

misrepresentativenes

s of the data used to 

train the RF model, 

hence it is a 

demonstration of the 

inability of the model 

to generalize even on 

the specific study area 

at the same date and 

time. 

 

Figure 49: SSHA map 

prediction based on 

SST and OC variables 

using the per-track RF 

approach. Compared 

to the above map, the 

saturation areas are 

minimized which is a 

fact probably owed to 

the additional number 

of features used (OC 

variables). 

 

On the other hand, two different arguments can give meaning to the above result instead of 

considering it as memorization. The first and most straightforward is that by looking at the train and 

test RMSEs and taking into account that the splitting procedures are random, as well as the test/train 

proportions are proper, then this cannot be explained as memorization or overfitting. The second 

argument can be understood better if could be thought of inside a different framework. In particular, 

if one aims to build a global spatial and temporal model, then this approach is poor. On the contrary, 

if one aims to create a local spatial and static model then this approach might not be in the wrong 

direction. For example, an idea is that this could be used for other purposes, e.g. lake ecological studies 
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where the sea level (anomaly) might be of use where the sea level may have a faster response to 

temperature/evaporation, thus purely spatial approaches like this could be useful. 

 
Figure 50: Sentinel-3 SST that was used to produce the SSHA predictions in Figure 48, Figure 49 using the 

RF per-track training approach. 

 
Figure 51: Sentinel-3 chlorophyll (CHL_OC4ME algorithm) that was used to produce the Figure 49 SSHA 

prediction using the RF per-track training approach. 
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All in all, in order for the approach to work, the following requirements are needed: 1) the SSHA and 

SST need to be of the same relative orbit and sensing time 2) there needs to be minimum cloud cover 

in order to use the best and as many data as possible due to the inherent data size restriction 3) the 

spatial ocean features signatures on the SSHA and SST do not need to be different very far from the 

track, otherwise the model cannot generalize to truly unknown data. However, there is one case 

where the model will always work, which is at the locations close to the ground track. 

6.4. Spatially dependent analysis using CNN 
The spatially dependent analysis is related to the use of the CNNs which take advantage of the 

spatial relationships. The 1D CNN was applied on Sentinel-3 data first and on to the SST L4 later. 

Regarding Sentinel-3 data, CNN training used the ~10 km smoothed versions of SST and OC variables, 

as well as just SST by itself. Concerning, SST L4 the smoothed 10 km version was used. As mentioned 

before, there were many missing values on the SST and OC due to cloud cover. Those values almost 

exploded after concatenating the vectors with the NaNs in order to bring them at the same size. In 

order to get a more quantitative view of how big the problem is after concatenating with NaNs the 

histogram can be examined which pertain to SST (Fig. 52). Thus, the histograms reveal that 4/5 of the 

SST 5 km, 2/5 of the SST 50 km and 1/5 of the SST 150 km radii contain missing values over 50%. The 

first number is considered quite large if one needs to use this dataset as input in a CNN. The problem 

of course becomes larger when those missing values are in consecutive elements of the data array, 

which implies that any interpolation technique could not alleviate the problem, which is an option 

that was also tried. In the Appendix, the reader can find relevant histograms regarding the rest of the 

OC variables (Chap. 9.5). 
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Figure 52: The above histograms depict a summary of the missing values of three smoothed versions of the 

SST, 5 km, 50 km, 150 km radius. The 5 km radius version show that 80% of the tracks have more than 50% 

missing values. While the smoothing radius increases, the missing values are get less which is an effect of 

the moving average filter. As a consequence, the 150 km radius contains 18 % of tracks with more than 

50 % missing values. 

 

On the contrary, the training was possible using the SST L4 only, as feature. Some of the 

train/validation errors with an example of along-track section of SSHA label/predicted can be seen in 

Figure 53. What is observed is that the validation error in all cases started very low compared to the 

training errors that for sure the algorithm is not overfitting since the validation error is lower than the 

training error. However, after a certain epoch the two errors seem to stabilize with the validation been 

slightly but not significantly lower than the training error. Some possible interpretations of this is that 

either the CNN architectures that were constructed were not complex enough or that there is too 

much noise in the feature and label or some other factor. 

Finally, in the histograms in Figure 53 the train/test error distributions for the summary of the tracks 

was computed and plotted in every CNN architecture. These graphs show generally a mode over 13 

cm at best, which is not acceptable since the nominal accuracy of the SSH is ~3.4 cm. All in all, it seems 

that currently the 1D CNN does not lead to many promising results, based solely on these datasets. Of 

course, there is always room for improvement such as deeper fine-tuning of the hyperparameters or 

allowing the CNN to run for a prolonged period of time. 
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Figure 53: The two graphs in the first row show the train and validation loss of the 1D CNN for two max 

epochs. The graphs in the second row show the train vs. test RMSEs which are very high compared to the 

desired ~0.03m. The third row shows the corresponding along-track SSHA predictions. 
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7. Conclusions 

7.1. Research objectives 
The main research objectives of this thesis were to investigate the meso-scale correlations between 

SST, SSHA and OC variables up to a certain extent and, then, use them as input to machine learning 

algorithms in order to make SSHA estimation in the across-track direction of Sentinel-3. The focus was 

more on the SSHA and SST, to a lesser extent to chlorophyll and far less to the rest of the OC variables. 

It was found that the relationships are rather complex, however there seems to be a stronger relation 

between SSHA and SST, which was not so easy to quantify using the along-track sections. 

Furthermore, with respect to the machine learning approaches used, some of them had very bad 

results and need more understanding on the physics as well as more devotion on the pre-processing. 

Some other techniques, showed controversial results which would need more investigation in order 

to understand them deeper. However, some hypotheses were formulated about possible reasons why 

they had this controversy. One of the techniques, namely the Random Forest in the per-track approach 

despite its controversy, if it is seen from a different prism it can be considered to work well. This means 

that if a problem is seen as a purely spatial problem assuming the system is not dynamic, then this 

approach might work, indeed. 

7.2. Suggestions 
To put things into perspective, the opinion of the author based on the literature review and the 

experimental research conducted in this thesis is that there are no shortcut paths in the study of SSHA 

spatial prediction. This means that machine learning, and especially neural network techniques are 

not magic wands that blindly solve problems without deep exploration and understanding of the data 

and their interrelations. For this reason, the following pre-processing approaches to the following 

problems are suggested. 

 

 The effects of clouds are a big problem and can be partially be tackled by using DINEOF, since even 

the SST L4 did not seem to alleviate the situation on 1D CNN, although it showed greater 

associations between temperature and SSHA compared to the Sentinel-3 SST. DINEOF is a spatio-

temporal interpolation approach widely used in the marine and atmospheric sciences for gap-

filling (e.g. Beckers et al., 2006). In addition a combination of a longer Sentinel-3 data archive with 

a choice of an area with even less cloud cover and especially during the autumn and winter is 

suggested. 

 The latter suggestion above inevitably leads to better SST pre-processing by subtracting the 

seasonal component. In general, though, more investigation is needed in spatial and temporal 

components of every variable. 

 The cross-correlations in the way they were used, represented a global relationship along the 

space timeseries. Especially, with the knowledge that the complexity of the system under study is 

high, another approach can be followed. For instance, what is proposed is to use a more localized 

cross-correlation (window time lagged cross-correlation), i.e. define various windows with 

ascending number of sizes, run the window in the along-track and compute the cross-correlation 

at defined lags, so only the close by regions will be taken into account. A possible result would be 
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a coloured matrix which would indicate at which windows and which lags there is high correlation. 

However, this needs good pre-processing. 

 Other sources of data could be used to further validate the possible SSHA prediction accuracies, 

such as tide gauges close to the coasts and other altimeters in the open ocean. 

 

With regard to the machine learning analysis, the following suggestions are proposed: 

 Further work for the per-track approach would be to take SSHA and SST randomly from different 

dates with a large time span and train a model based on them. Then it will be checked whether a 

model can be built as easily as happened in this thesis, thus it would indicate to what extent this 

is a form of memorization. 

 The potential memorization extent can also be checked if more than one consecutive swaths were 

considered in order to train the model.  For example, a footprint that would span from the equator 

towards the pole. In this way, a greater variability of the dataset would be imported.  

 

7.3. Future work 
 Possible future work in trying to predict SSHA more accurately could be based on the per-track 

spatially independent training. For example, the SSHA time series of each relative orbit track could 

be taken and train a model (e.g. RF) on each one. This means that, the number of the models that 

will be produced will be equal to the number of relative orbits. In the case that the prediction 

performance is high, then any point on a grid would have as many SSHA predictions as the number 

of models. The final SSHA prediction of that point would be some inverse distance weighted mean 

of every model’s prediction. The distance would represent the distance between the query point 

and the relative orbit 

 The autocorrelation graphs of the SSHA seemed to be promising for coastal altimetry applications. 

The reason for this is that most of altimetry tracks presented moderate to strong autocorrelations 

which in fact revealed spatially periodic SSHA signal. Taking into account the well-known problem 

of high errors of SSH close to the coasts, it could be alleviated by an SSHA along-track prediction 

using some sort of auto-regressive model. 

 Since we are dealing with a two-dimensional problem, then the way to tackle it might be to use 

2D techniques. An idea is that after having gap-filled data, 2D CNNs could be used. In this was 

spatial relationship in all directions would be taken into account, thus more realistically 

approaching the problem. This type of work would be directly comparable to the average weekly 

SSHA products of AVISO. 
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9. Appendix 

9.1. Low-pass filter 
In addition to the moving average filter, two more low-pass filtering techniques were used; namely, 

the median and the Butterworth. They were both abandoned because they produced not realistic 

results. On the one hand, the median filter in spite of being robust to outliers, hence it would not 

create peaks and valleys at positions were the did not originally exit, it produced flats and the 

smoothing was not significant, which are not realistic (Fig. 54). 

On the other hand, the butterworth filter was not a heuristic one since it needed to be designed first. 

It was not choses because it produced an extremely smooth outcome, as well as it probably produced 

some periodic effect that might be artificial (Fig. 55). For these reason, it was also abandoned. 

 

 

Figure 54: Close-up of along-track SSHA which shows the flat effect produced by median filter 

 

 
Figure 55: Close-up of along-track SSHA which shows the Butterworth filter with periodic-like effect and 

high smoothness 
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9.2. Temporally Grouped SST data 
Another approach that was conducted was the temporal grouping of the tracks. Every 10 days the 

tracks were grouped together and the training approach as described in the methodology chapter 

(complete track archive approach) was applied, although with different hyperparameters. In reality, 

the number of tracks that were included in ever 10-day group was varying. The reason for this is that 

there were several days that they were full of clouds, therefore they could not be used. Also, Sentinel-

3 B data delivery (after the Calibration/Validation phase) begun on March 2019, which means that 

after that the dataset was more dense, hence each group had more tracks. This means that the RF 

training was based on a heterogeneous distribution of data in the groups, thus the RF result of each 

one of them could not be trusted therefore the approach was soon abandoned after seeing the not 

promising first results. 

9.3. Learning rate decay on CNN 
Instead of a constant learning rate, a learning rate with a decay was tried at the SSHA/SST L4 datasets, 

without luck. The formula used was: 

𝑙𝑟 =
𝑙𝑟𝑖

1 + 𝑙𝑟𝑑𝑒𝑐𝑎𝑦 ∙ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

𝑤ℎ𝑒𝑟𝑒 𝑙𝑟, 𝑡ℎ𝑒 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

𝑙𝑟𝑖 , 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

𝑙𝑟𝑑𝑒𝑐𝑎𝑦 =
𝑙𝑟𝑖

𝑁
, 𝑁 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑝𝑜𝑐ℎ𝑠 

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 

9.4. Scatter plots of SSHA and SST 
In addition to the direct scatter plots and correlations between SSHA and SST, time-lagged scatter 

plots were also examined as far as the North Sea is concerned. The lag interval used was 1 day while 

the maximum lag was 90 days. Some indicative plots can be seen below. The outstanding majority of 

them showed pure randomness (Fig. 56, Fig, 57, Fig. 61) while very few showed clear positive 

correlations (Fig, 59,Fig. 60) or negative correlations (Fig. 58). 



67 
 

 
Figure 56: No lag between SSHA and SST without filter. Complete randomness is observed. 

 
Figure 57: No lag between SSHA and SST without filter. No correlation is observed. 
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Figure 58: 20-day lag between SSHA and SST. Very slight negative correlation can be distinguished. 

 
Figure 59: 18-day lag between SSHA and SST. Very slight positive correlation can be observed. 
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Figure 60: 30-day lag between SSHA and SST without filter. A very slight positive correlation can be 

distinguished 

 
Figure 61: No lag between SSHA and SST without filter. No correlation occurs. 
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Table 5: Spectral bands that the SLSTR Sentinel-3 instrument uses (from EUMETSAT, 2018b). 
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Table 6: Spectral bands the OLCI instrument uses (from EUMETSAT, 2018). 

9.5. Missing Values OC variables 
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Figure 62: The above graphs show the percentage of missing values for different OC variables of various 

spatial scales. In larger spatial scales less missing values occurs since they are inter/extra-polated, while 

in smaller scales the values are very high (over 50%) 
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