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A Control Architecture for Entanglement Generation Switches in
Quantum Networks

Scarlett Gauthier, Gayane Vardoyan, Stephanie Wehner

ABSTRACT
Entanglement between quantum network nodes is often produced 
using intermediary devices - such as heralding stations - as a re-
source. When scaling quantum networks to many nodes, requiring 
a dedicated intermediary device for every pair of nodes introduces 
high costs. Here, we propose a cost-effective architecture to connect 
many quantum network nodes via a central quantum network hub 
called an Entanglement Generation Switch (EGS). The EGS allows 
multiple quantum nodes to be connected at a fixed resource cost, by 
sharing the resources needed to make entanglement. We propose an 
algorithm called the Rate Control Protocol (RCP) which moderates 
the level of competition for access to the hub’s resources between 
sets of users. We proceed to prove a convergence theorem for rates 
yielded by the algorithm. To derive the algorithm we work in the 
framework of Network Utility Maximization (NUM) and make use 
of the theory of Lagrange multipliers and Lagrangian duality. Our 
EGS architecture lays the groundwork for developing control ar-
chitectures compatible with other types of quantum network hubs 
as well as system models of greater complexity.

1 INTRODUCTION
A quantum network enables radically new capabilities that are prov-
ably impossible to attain in any classical network [26]. Examples 
include applications such as secure communication [7, 11], secure 
quantum computing in the cloud [1, 5], and clock synchronization 
[14]. Users utilize the end nodes of a network to run applications. 
The key to unlocking widespread roll-out of these applications is 
the ability to produce entanglement between these end nodes.

Prevalent methods for generating entanglement between two 
quantum nodes that are directly connected by a quantum communi-

cation medium (e.g., optical fibers) involve an intermediate device. 
A prime example is heralded entanglement generation [6, 10] in 
which the intermediary device is a so-called heralding station. This 
method of producing entanglement has successfully been demon-

strated in many experimental platforms including Color Centers 
[3, 12], Ion Traps [15, 17], Atomic Ensembles [8, 9] and Neutral 
Atoms [23]. As quantum networks continue to scale, it becomes 
increasingly impractical to maintain direct fiber connections and 
dedicated heralding stations for every pair of end nodes.

To address this challenge, we propose a scalable quantum net-
work architecture for an Entanglement Generation Switch (EGS), a 
central hub equipped with a limited number of intermediate devices 
called resources, a switch, and a processor responsible for managing
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a scheduling algorithm and sending classical messages to nodes.

This central hub enables multiple nodes to share the intermediate

devices, significantly reducing the complexity and total resources

required for large-scale deployment. While our results apply to

an EGS sharing any type of entanglement generation resource,

a specific example illustrates how an EGS can operate: Consider

quantum network nodes that generate entanglement between them

using the so-called single-click bipartite entanglement generation

protocol (see e.g [12]). In this case the resource(s) to be shared are

the heralding station(s). Such stations consist of two input channels

connected to a 50/50 beam splitter, which is then connected by

two output channels to a pair of photon detectors. The detectors

are each connected to a device such as a Field Programmable Gate

Array (FPGA), for triggering the next action of the entanglement

generation sequence based on the measurement outcomes. The

basic principle of the single-click protocol requires that each net-

work node of the pair locally generates entanglement between a

qubit in their local memory and a travelling photon. The photon

is sent to a heralding station at which an entanglement swap is

attempted on the two photons received; if the entanglement swap

is successful, the qubits of the two network nodes will have become

entangled. An EGS aims to share one or more heralding stations

amongst many connected network nodes. These nodes will still

run the single-click protocol, but be limited to using the heralding

station needed in the time allocated to them by the EGS.

A crucial challenge in implementing such an architecture is the

efficient allocation of the central hub’s resources to different pairs

of users in distinct time slots. Similar to classical networking, the

allocation process should be driven by user demand for network

resources. In the context of quantum networks, this translates to

the demand of a user pair (𝑢𝑖 , 𝑢 𝑗 ) for entanglement generation

at a specific rate or fidelity. Given a set of user demands, the EGS

must compose a schedule for the allocation of resources in order

to service those demands. In general, the total demand of users

may exceed the available resources at the central hub, leading to

scheduling and resource allocation challenges.

Here, we introduce the first algorithm for regulating user de-

mand to an EGS, thereby solving this key challenge. Specifically,

the algorithm takes as input a vector of rates of entanglement gen-

eration demanded by pairs of users and outputs an updated rate

vector. The current set of user-originated demands is a measure of

competition for EGS resources. We construct the algorithm within

the Network Utility Maximization (NUM) framework, wherein the

problem of demand regulation is cast as a constrained optimiza-

tion problem. To solve the problem, we derive the algorithm by

using the theory of Lagrange multipliers and Lagrangian duality.

These tools, respectively, enable including the constraints together

with the objective of the optimization problem and solving for a

parameter vector which is the unknown value of the combined

problem. Regulating competition for the resources by modifying
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user demand makes it possible to enforce a notion of fairness in the

allocation of resources and maximize resource utilization. Since the

algorithm regulates competition by calculating the rates demanded

by users, we call it the Rate Control Protocol (RCP).

1.1 Results Summary
We make the following contributions:

• We characterize (Theorem 2.7) the capacity region of the EGS,

which is the maximal set of rates at which users can demand

entanglement generation such that there exists a scheduling

policy under which, on average, the demanded rates do not

exceed the delivered rates. The impact of specifying the

capacity region is that it delineates which rates can feasibly

be serviced by the EGS.

• We prove (Theorem 2.7) that under the Maximum Weight

Scheduling policy (Definition 2.4) for resource allocation it

is possible for the EGS to deliver average rates of entangle-

ment generation that match the requested rates, for any rate

vector from within the capacity region. Therefore, an EGS

operated with this scheduling policy can achieve through-

put optimality as long as the rates demanded by users lie

within the capacity region. To prove the theorem, we use

the Lyapunov stability theory of Markov chains.

• We derive the RCP, an algorithm to regulate the rates of

bi-partite entanglement generation which pairs of users de-

mand from an EGS. The RCP solves the problem of moder-

ating user competition for EGS resources. The derivation

is based on techniques from Network Utility Maximization

(NUM) and its quantum network extension (QNUM), where

resource allocation in a (quantum) network is modelled as

an optimization problem that can be solved using methods

from convex optimization theory.

• We prove (Theorem 3.1) that the sequence of arrival rate

vectors yielded by the RCP converges over time slots to

an optimum value, given any feasible rate vector as initial

condition. The significance of this result is that if the RCP

is used to set the demand rates of entanglement generation

over a series of time-slots, the set of demanded rates will

approach an optimal value, as long as the initial rate vector

supplied to the algorithm is feasible. The proof relies on

Lagrange multipliers and Lagrangian duality theory.

• Finally, we supply numerical results that support our analy-

sis. These results illustrate possible values of the tightness of

convergence 𝛿 between the rate vectors yeilded by the RCP

and the optimum, and the number of time slots Δ𝜏 that the
RCP must run before convergence is achieved.

1.2 Related Work
A quantum network hub that can store locally at least one qubit

per linked node and distributes entanglement across these links

has been studied [2, 24]. We refer to such a hub as an Entangle-

ment Distribution Switch (EDS). This system differs from our sys-

tem because the central hub has qubits and/or quantum memories,

whereas our system does not. In [24] the focus is on assessing the

EDS performance in terms of the rate at which it creates 𝑛−partite

entanglements, and in [2] the possible rate/fidelity combinations

of GHZ states that may be supplied by an EDS [2] are studied.

MaximumWeight scheduling is a type of solution to the problem

of resource allocation which is based on assigning resources to sets

of users with the largest backlogs of queued demands. A Maximum

Weight scheduling policy was originally presented in [21] for re-

source allocation in classical communication networks and was

adapted to the analysis of a single switch for classical networking

in [18], where it was shown that under this scheduling policy the

set of request arrival rates matches the request departure rates

(or in other words the policy stabilizes the switch for all feasible

arrival rates). In [22] the capacity region of an EDS, defined as the

set of arrival rates of requests for end-to-end multi-partite entan-

glements that stabilize the switch, is first characterized. Using the

Lyapunov stability theory of Markov chains, a Maximum Weight

scheduling policy is proposed and shown to stabilize the switch for

all arrival rates within the capacity region. To summarize, in each

of the classical network settings and in the EDS setting a Maximum

Weight scheduling policy has the merit of achieving a specified

performance metric. None of these results are immediately applica-

ble to our system. We demonstrate that such a policy achieves the

performance metric of throughput optimality when applied to the

EGS. To do so, we first characterize the capacity region of the EGS,

which has not been done before. Then, we prove that a Maximum

Weight scheduling policy also achieves throughput optimality in

our system.

These results on the analysis of EDS systems constitute the first

analytic approaches to resource allocation by a quantum network

hub. However, due to the assumption that an EDS locally controls

some number of qubits per link, the system has a high technical

implementation cost which may not be compatible with near-term

quantum networks. Moreover, although these works assume that

there is competition between multiple sets of users, the focus is

purely on the capacity of the EDS system. Conversely, our analytic

contributions apply to EGS quantum network hubs, which have a

low technical implementation cost because the hub does not require

local control of any qubits or quantum memory. Furthermore, our

results extend beyond the analysis of the capacity of the EGS and

we propose the RCP as a solution the the problem of moderating

competition for the EGS resources.

In [19], a quantum network topology is studied where user-

controlled nodes are connected through a hub known as a Qonnec-

tor. The Qonnector provides the necessary hardware for limited end

nodes to execute applications in pairs or small groups. A potential

configuration of the Qonnector is as an EGS. While [19] focuses on

assessing the performance of certain applications in this topology,

it does not address control policies for the system. In contrast, our

work examines control policies for an EGS.

NUM was first introduced in [13] and has been widely used to

develop and analyze control policies for classical networks [20]. It is

a powerful framework for designing and analyzing communication

protocols in classical networks wherein the problem of allocating

resources amongst competing sets of users is cast as a constrained

optimization problem. This framework was recently extended to

QNUMby [25]. Therein, the authors first develop three performance

metrics and use them to catalogue the utility of resource allocation

in a quantum network model where each link is associated with a
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rate and fidelity of entanglement delivery to communicating users.

This work does not immediately extend to control policies, as the

resource allocations investigated are based on static numerical

optimization and need to be recalculated in response to changes in

the constraints or sets of users.

In classical networks, probabilistic failures such as loss of a

message during transmission or irreconcilable distortion due to

transmission over a noisy channel may occur. A serious challenge

introduced in the analysis of quantum networks is that in addition

to the failure modes of a classical network several new probabilistic

failure modes arise that are independent of the state of the network

but nevertheless affect its ability to satisfy demands. An example is

the probabilistic success in practical realizations of heralded entan-

glement generation [3, 8, 9, 12, 15, 17, 23]. Due to this failure mode,

scheduling access to a resource at a certain rate does not guarantee

entanglement generation at that rate, thereby complicating the

analysis of scheduling.

2 PRELIMINARIES
Operation of the EGS requires interactions between the set of quan-

tum network nodes 𝑈 and the EGS processor with control over 𝑅

resources. See Figure 1 a) for an overview of the physical archi-

tecture. Below we delineate the process by which pairs of nodes

may request

(
Figure 1 d)

)
and receive

(
Figure 1 b) and d)

)
resource

allocations from the processor. We assume:

• the EGS operates in a fixed-duration time slotted system

where 𝑡𝑛 denotes the 𝑛𝑡ℎ time slot;

• timing synchronization between the processor and each node

is continuously managed by classical control electronics at

the physical layer;

• allocation of a single resource to communication session

𝑠 for one time slot allows for the creation of a maximum

of one entangled pair with a success probability of 𝑝gen.

A consistent physical model involves a batched sequence
of attempts, which can be terminated upon the successful

creation of an entangled pair or at the end of the time slot. See

Figure 1 c) for an example quantum communication sequence

compatible with heralded entanglement generation.

The classical communication sequence repeated in each time slot

𝑡𝑛 which governs resource allocation is summarized in Figure 1

d). In what follows we introduce and explain each step of this

communication sequence.

Definition 2.1 (Target Rate, Session). Each possible pair of nodes

has the potential to require shared bipartite entanglement. To fulfill

this need, a node pair (𝑢𝑖 , 𝑢 𝑗 ) requires the processor to allocate a
resource. The node pair sets a target rate 𝜆(𝑖, 𝑗 ) (𝑡𝑛) once per time

slot, which represents the average number of entangled pairs per

time slot they aim to generate using one or more EGS resources.

A distinct pair of nodes with a non-zero target rate is referred to

as a session and associated with a unique session ID 𝑠 . The set of

session IDs 𝑆 is defined as follows:

𝑆 :=
{
𝑠 = (𝑖, 𝑗) | 𝑖 < 𝑗 and 𝜆𝑠 (𝑡𝑛) > 0,∀ (𝑖, 𝑗) ∈ {1, · · · , 𝑁 }2

}
(1)

where 𝑁 = |𝑈 | is the number of nodes with connections to the

EGS.

The target rates of all sessions in 𝑡𝑛 can be written as a vector

𝝀(𝑡𝑛) ∈ R |𝑆 | , the 𝑠𝑡ℎ component of which is labelled by session ID

𝑠 as 𝜆𝑠 (𝑡𝑛).
A rate of entanglement generation is the service demanded by

each communication session from the EGS. To address the differ-

ence between the desired rate and the rate at which a communica-

tion session requires resource allocation to achieve that rate, we

establish the following model for demand, which is compatible with

a discrete time scheduling policy.

Definition 2.2 (Demand). Demands for resources are requests

made by communication session 𝑠 to obtain a single entangled

pair. The number of demands 𝑎𝑠 (𝑡𝑛) submitted by session 𝑠 at

time slot 𝑡𝑛 depends on its target rate 𝜆𝑠 (𝑡𝑛). If 𝜆𝑠 (𝑡𝑛) > 1, then

communication session 𝑠 first submits ⌊𝜆𝑠 (𝑡𝑛)⌋ demands. For a

communication session 𝑠 with 0 ≤ 𝜆𝑠 (𝑡𝑛) ≤ 1, or to account for

the remaining part of the rate for any session with 𝜆𝑠 (𝑡𝑛) > 1, each

communication session randomly generates demands by sampling

from a Bernoulli distribution with a mean equal to 𝜆𝑠 (𝑡𝑛)− ⌊𝜆𝑠 (𝑡𝑛)⌋,
so that in general the submitted demands satisfy a (shifted) Bernoulli

distribution, 𝑎𝑠 (𝑡𝑛) ∼ Bernoulli

(
𝜆𝑠 (𝑡𝑛) − ⌊𝜆𝑠 (𝑡𝑛)⌋

)
+ ⌊𝜆𝑠 (𝑡𝑛)⌋.

When the processor receives a demand it is added to one of |𝑆 |
queues, one for each session. Each queue processes demands in first

in first out order.

Definition 2.3 ((Demand-Based) Schedule). A resource allocation

schedule is a vectorM(𝑡𝑛+1) ∈ N |𝑆 |
calculated by the EGS processor

in 𝑡𝑛 determining the assignment of the resources for 𝑡𝑛+1. A single

session 𝑠 may be allocated the use of multiple resources, up to a

maximum number 𝑥𝑠 set by the EGS which does not exceed 𝑅, the

total number of resources controlled by the EGS. For every session

𝑠 ∈ 𝑆 the entry

𝑀𝑠 (𝑡𝑛+1) ∈ {0, 1, · · · , 𝑥𝑠 } (2)

corresponds to the number of resources assigned to 𝑠 for the entire

duration of time slot 𝑡𝑛+1. A demand based schedule is based on the

vector of all queues, q(𝑡𝑛) ∈ N |𝑆 |
, as it stands before new demands

are registered in 𝑡𝑛 and satisfies,∑︁
𝑠

𝑀𝑠 (𝑡𝑛+1) ≤ min

(∑︁
𝑠

𝑞𝑠 (𝑡𝑛), 𝑅
)
, (3)

0 ≤ 𝑀𝑠 (𝑡𝑛+1) < min

(
𝑞𝑠 (𝑡𝑛), 𝑥𝑠

)
≤ 𝑅, ∀ 𝑠 . (4)

Definition 2.4 (Maximum Weight Scheduling). The setM of fea-

sible demand based schedules at time slot 𝑡𝑛 contains all vectors

M′ (𝑡𝑛+1) ∈ N |𝑆 |
satisfying (2), (3), and (4). The EGS processor se-

lects a maximum weight schedule M(𝑡𝑛+1) ∈ M from the feasible

schedules for the following time slot by solving for

M(𝑡𝑛+1) ∈ arg max

M′

∑︁
𝑠

𝑞𝑠 (𝑡𝑛)𝑀′
𝑠 (𝑡𝑛+1) . (5)

By the end of 𝑡𝑛 , the schedule for 𝑡𝑛+1 has been computed by the

processor and broadcast to the nodes. If the schedule allocates use

of a resource to session 𝑠 for 𝑡𝑛+1, the users of 𝑠 utilize the allocated
resource to make a batch of entanglement generation attempts over

the duration of 𝑡𝑛+1. The demand at the front of queue 𝑠 is only

marked as served once both a resource has been allocated and the

users of 𝑠 have successfully generated entanglement. Hence the
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Figure 1: EGS Architecture: a) EGS structure: An EGS with 𝑅 = 4 resources connected to 𝑁 = 9 nodes. The EGS is controlled
by a classical processor and consists of a switch, resources, and physical connections. Nodes have quantum communication
channels to the switch and classical communication channels to the processor. b) Resource Allocation: The switch opens
connections to link nodes 1, 2 and resource 1. For example, the connections may consist of direct optical fiber paths from
the nodes to the switch and from the switch to the resource, via an interface at the switch. This establishes the physical
allocation of resource 1 to the communication session of nodes 1, 2 for time slot 𝑡𝑛 . c) Quantum communication sequence:
Node-to-processor communication in time slot 𝑡𝑛 with a batch size of three entanglement generation attempts. d) Concurrent
classical communication sequences: Nodes and the processor communicate in time slot 𝑡𝑛 , governing resource allocation and
the RCP (see Algorithm 1 for RCP details.)

dynamics of each queue are given by,

𝑞𝑠 (𝑡𝑛+1) = [𝑞𝑠 (𝑡𝑛) + 𝑎𝑠 (𝑡𝑛) − 𝑔𝑠 (𝑡𝑛)]+ ∀ 𝑠, (6)

where [𝑧]+ = max(𝑧, 0), and 𝑔𝑠 (𝑡𝑛) is the number of successfully

generated entangled pairs by 𝑠 during 𝑡𝑛 . Note that this number of

successfully generated entangled pairs is a sample from a binomial

random variable where the number of trials is the number of re-

sources allocated to 𝑠 , 𝑀𝑠 (𝑡𝑛), and the trial success probability is

𝑝gen,

𝑔𝑠 (𝑡𝑛) ∼ Bin

(
𝑀𝑠 (𝑡𝑛), 𝑝gen

)
.

Definition 2.5 (Supportable rate). The arrival rate vector 𝝀(𝑡𝑛) ∈
R+ |𝑆 | =

(
𝜆𝑠 (𝑡𝑛) ∀ 𝑠

)
T

is supportable if there exists a schedule under
which,

lim

𝑄→∞
lim

𝑛→∞
P

(
|𝒒(𝑡𝑛) | ≥ 𝑄

)
= 0, (7)

where |𝒒(𝑡𝑛) | := Σ
𝑠
|𝑞𝑠 (𝑡𝑛) | is the sum of the number of demands in

the queue of each session in time slot 𝑡𝑛 . That is,𝝀(𝑡𝑛) is supportable
if the probability that the total queue length becomes infinite is

zero.

Definition 2.6 (Capacity Region). The capacity region of the EGS

is the set of arrival rate vectors that are supportable by the EGS.

Theorem 2.7 (Capacity Region). Let 𝑥𝑠 be the maximum num-
ber of resources that can be allocated to a session 𝑠 per time slot. For
each resource, 𝑝gen is the probability that a communication session
allocated the resource for one time slot will successfully create an

entangled pair. The capacity region of an EGS with R resources is the
set of rate vectors 𝝀 ∈ IntC, where C is defined as:

C =
{
𝝀 : 𝝀 ≥ 0,

∑︁
𝑠

𝜆𝑠 ≤ 𝜆EGS, and 𝜆𝑠 ≤ 𝜆max

gen,𝑠 ∀ 𝑠 ∈ 𝑆}, (8)

𝜆EGS = 𝑅 · 𝑝gen and 𝜆max

gen,𝑠 = 𝑥𝑠 · 𝑝gen. Moreover, maximum weight
scheduling (Definition 2.4) is throughput optimal and supports any
rate vector 𝝀 ∈ IntC. For proof, see the Appendices.

We assume that there are two types of constraints on the se-

quence of target rates set by a session. The first is a minimum rate

of entanglement generation 𝜆min

𝑠 ; below this rate, session 𝑠 cannot

obtain sufficient entangled pairs within a short enough period of

time in order to enable its target application. The second constraint

𝜆𝑢 ∀𝑢 ∈ 𝑈 is an upper limit on the rate at which each node 𝑢 can

generate and/or make use of entanglement across all of the sessions

that it is involved in. This parameter can capture a range of tech-

nical limitations of the quantum nodes, including a limited rate of

entanglement generation or a limited speed of writing generated

entanglement to memory, hence temporarily decreasing the avail-

ability of the node for engaging in further entanglement generation

immediately following the successful production of a pair.

3 RCP ALGORITHM
An algorithmmoderating competition for EGS resources enables the

possibility of introducing a notion of fairness in how resources are

allocated amongst competing communication sessions and ensuring
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that the resources are fully utilized. We consider a situation where

the rate vector produced by any such algorithm is constrained

by the maximum service rate of the switch, as described by the

capacity region C, as well as the node or user level constraints

described by 𝜆𝑢 ∀𝑢 and 𝜆min

𝑠 ∀𝑠 . In the framework of NUM, we

pose an optimization problem where each communication session

𝑠 is associated with a utility function 𝑓𝑠 (𝜆𝑠 (𝑡𝑛)) : R ↦→ R, which
encodes the benefit 𝑠 derives from the rate vector 𝝀(𝒕𝒏). We apply

the theory of Lagrange multipliers and Lagrangian duality (see [4]

for detailed coverage) to formulate and analyze the optimization

problem. We then derive the RCP (Algorithm 1) as the solution to

this problem.

The primal problem is to maximize the aggregate utility or the

total benefit that users derive from the EGS by maximizing the

sum of the utility functions, including the constraints by the use

of Lagrange multipliers. The dual problem is to determine an op-

timal vector of Lagrange multipliers. In the case where there is

no duality gap [4], a solution to the dual problem is equivalent

to a solution of the primal problem. The vector of Lagrange mul-

tipliers 𝒑(𝑡𝑛+1) =
(
𝑝𝑐 (𝑡𝑛), 𝑝𝑢 (𝑡𝑛) ∀𝑢

)
∈ R+ (1+𝑁 )

, with compo-

nents for the processor and each node, is denoted as the price

vector in our algorithm and serves as a measure of the competi-

tion for resources amongst the communication sessions. Define

𝑆 (𝑢) := {𝑠 : 𝑢 ∈ 𝑠} ⊆ 𝑆 to be the subset of communication sessions

in which node 𝑢 participates. In each communication session one

node is designated to communicate demand to the switch and the

other node is secondary. Note that 𝑢 ∈ 𝑠 ⇔ 𝑠 ∈ 𝑆 (𝑢). The feasible
rate region of communication session 𝑠 is,

Λ𝑠 := {𝜆𝑠 : 𝜆min

𝑠 ≤ 𝜆𝑠 ≤ 𝜆max

gen,𝑠 } ∀ 𝑠, (9)

and the feasible region for a rate vector 𝝀 is,

Λ =
⋃
𝑠

Λ𝑠 . (10)

We make the following two assumptions on the utility function 𝑓𝑠
of each communication session 𝑠:

A1: On the interval Λ𝑠 = [𝜆min

𝑠 , 𝜆max

gen,𝑠 ] the utility functions 𝑓𝑠
are increasing, strictly concave, and twice continuously dif-

ferentiable;

A2: The curvatures of all 𝑓𝑠 are bounded away from zero on Λ𝑠 .

For some constant 𝛼𝑠 > 0,

−𝑓
′′
𝑠 (𝜆𝑠 ) ≥

1

𝛼𝑠
> 0 ∀ 𝜆𝑠 ∈ Λ𝑠 .

To ensure feasibility and satisfy the Slater constraint qualification

[4], in addition to assumptions A1 and A2 it is necessary that the

rate vector with components equal to the minimal rates of each

communication session is an interior point of the constraint set,∑︁
𝑠

𝜆min

𝑠 < 𝜆EGS; (11)∑︁
𝑠∈𝑆 (𝑢 )

𝜆min

𝑠 < 𝜆𝑢 ∀ 𝑢. (12)

Algorithm 1: Rate Control Protocol (RCP)

Processor’s Algorithm: At times 𝑡𝑛 = 1, 2, · · · , the processor:

(1) receives rates 𝜆𝑠 (𝑡𝑛) from all sessions 𝑠 ∈ 𝑆 ;

(2) computes a new central price,

𝑝𝑐 (𝑡𝑛+1 ) =
[ 1

𝜆EGS

∑︁
𝑠

𝑞𝑠 (𝑡𝑛 ) + 𝜃𝑐
(∑︁

𝑠

𝜆𝑠 (𝑡𝑛 ) − 𝜆EGS
) ]+

, (13)

where 𝜃𝑐 is a constant step size;

(3) broadcasts the new central price 𝑝𝑐 (𝑡𝑛+1) to all sessions
𝑠 ∈ 𝑆 .

Network Node u’s Algorithm: At times 𝑡𝑛 = 1, 2, · · · , net-
work node 𝑢:

(1) marks the subset of sessions COMM(𝑢) ⊆ 𝑆 (𝑢) involv-
ing node𝑢 for which it is the designated communication

node;

(2) receives from every secondary node𝑢′ the price 𝑝𝑢′ (𝑡𝑛)
for each session 𝑠 = (𝑢,𝑢′) ∈ COMM(𝑢);

(3) computes a new node price,

𝑝𝑢 (𝑡𝑛+1 ) =
[ 1

𝜆𝑢

∑︁
𝑠∈𝑆 (𝑢)

𝑞𝑠 (𝑡𝑛 ) +𝜃𝑢
( ∑︁
𝑠∈𝑆 (𝑢)

𝜆𝑠 (𝑡𝑛 ) −𝜆𝑢
) ]+

, ∀𝑢, (14)

where 𝜃𝑢 is a constant step-size;

(4) communicates the new price 𝑝𝑢 (𝑡𝑛+1) to the communi-

cation node from every session 𝑠 ∈ 𝑆 (𝑢) \ COMM(𝑢)
in which 𝑢 is a secondary node;

(5) receives from the switch the central price 𝑝𝑐 (𝑡𝑛+1);
(6) computes the new rate for every session 𝑠 ∈ COMM(𝑢),

𝜆𝑠 (𝑡𝑛+1 ) =
[(

d𝑓𝑠

d𝜆𝑠

)−1 (
𝒑 (𝑡𝑛+1 )

) ]𝜆max

gen,𝑠

𝜆min

𝑠

, (15)

where [𝑧]𝑀𝑚 = max

(
min(𝑧, 𝑀),𝑚

)
and 𝒑(𝑡𝑖 ) =(

𝑝𝑐 (𝑡𝑖 ), 𝑝𝑢 (𝑡𝑖 ) ∀𝑢
)
is the vector of prices pertaining to

time slot 𝑡𝑖 ;

(7) communicates the new rate 𝜆𝑠 (𝑡𝑛+1) to the EGS proces-
sor, for every session 𝑠 ∈ COMM(𝑢).

The RCP is a gradient projection algorithm with constant step-

sizes over the closed convex set Λ. To establish convergence we

follow a similar treatment as in [16].

Theorem 3.1 (RCP Convergence). Suppose assumptions A1 and
A2 and the constraints (11, 12) are satisfied and each of the the step-
sizes 𝜃𝑟 ∈ {𝜃𝑐 , 𝜃𝑢 ∀𝑢} satisfies 𝜃𝑟 ∈ (0, 2/𝛼 |𝑆 |), where 𝛼 = max

𝑠∈𝑆
𝛼𝑠

with 𝛼𝑠 the curvature bound of assumption A2, and |𝑆 | is the number
of communication sessions. Then, starting from any initial rate 𝝀(0) ∈
Λ and price 𝒑(0) ≥ 0 vectors, every accumulation point

(
ˆ𝝀, �̂�

)
of

the sequence over time slots {
(
𝝀(𝑡𝑛),𝒑(𝑡𝑛)

)
} generated by the RCP is

primal-dual optimal. Refer to the Appendices for proof.

4 CASE STUDY
To illustrate use of the RCP we associate a log utility function with

each session,

𝑓𝑠 (𝜆𝑠 ) = log(𝜆𝑠 ) ∀ 𝑠 ∈ 𝑆. (16)

Log utility functions are suitable when throughput is the target

performance metric, and a set of sessions all employing log util-

ity functions will have the property of proportional fairness. In

such a system, if the proportion by which one session rate changes
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Figure 2: The RCP drives convergence of Σ
𝑠
𝜆𝑠 (𝑡𝑛) to 𝜆EGS for

an EGS with 𝑅 = 3 resources, 𝑝gen = 0.05, connected to 𝑁 = 20

(top), 𝑁 = 50 (middle) and 𝑁 = 100 (bottom) nodes. Black
dotted lines indicate Δ𝜏 . Observed 𝛿 are 𝛿1 = 0.12, 𝛿2 = 0.035

and 𝛿3 = 0.012. Step-sizes (𝜃𝑐 , 𝜃𝑢 ∀𝑢) were all 1/(40 · 𝜆EGS).

is positive, there is at least one other session for which the pro-

portional change is negative. For compatibility with Theorem 3.1

note that log utility functions satisfy A1 and A2 is satisfied with

𝛼𝑠 = (𝜆max

gen,𝑠 )2 ∀𝑠 .
Although the convergence theorem only guarantees asymptotic

convergence of the sequence over time slots {
(
𝝀(𝒕𝒏),𝒑(𝒕𝒏)

)
} to

an optimal rate-price pair

(
ˆ𝝀, �̂�

)
, in any realization of an EGS one

expects that the convergence time Δ𝜏 , the number of time slots

that the RCP must run before convergence is attained, is finite.

In addition, it is practically relevant to characterize the tightness

of convergence 𝛿 , or the maximum size of fluctuations about the

optima.

If an EGS is connected to 𝑁 nodes, there are |𝑆 |max =
(𝑁
2

)
pos-

sible sessions. We assume that in a real network not all pairs of

users require shared entanglement. In Figure 2 we numerically in-

vestigate (Δ𝜏, 𝛿) for an EGS with 𝑅 = 3 resources and 𝑝gen = 0.05

connected to 𝑁 = 20, 50 and 100 users, where the number of ses-

sions is restricted to |𝑆 | = 0.1 · |𝑆 |max by randomly sampling 10%

of the possible sessions. In these simulations we set 𝑥∗𝑠 = 1 ∀𝑠 , and
average over 1000 independent runs of the simulation, each using

the same set of sessions.

The reported Δ𝜏 are the number of time slots that occur before

the sum of demand rates

(
Σ
𝑠
𝜆𝑠 (𝑡𝑛)

)
first crosses the optimal value

𝜆EGS. Reporting of 𝛿 is based on the maximum size of fluctuations

of Σ
𝑠
𝜆𝑠 (𝑡𝑛) about 𝜆EGS following Δ𝜏 . As the number of sessions

hosted by an EGS increases, we observe a trade-off between the Δ𝜏
and 𝛿 . When the number of sessions is lower, Δ𝜏 is shorter but 𝛿 is

larger. We have performed additional simulations which indicate

that increasing the step size used in the RCP can be used to trade

larger 𝛿 for somewhat shorter Δ𝜏 .

5 OPEN QUESTIONS
We have presented the first control architecture for an EGS. The

architecture is tailored to a simple system model, hence a natural

corollary to this work is to create a refined version of the control

architecture that will be compatible with a more versatile physical

model. In particular it would be interesting to study sources of

delay such as heterogeneous connection lengths between nodes

and the EGS and to extend the definition of demand to allow pairs of

users with variable quantum network node capabilities to demand

packets of a number of entangled pairs, delivered at some desired

rate.
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