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The Generalized Langevin model representations of two second-moment closure models for the
rapid pressure-strain term, proposed by Fu and Launder and by Jones and Musonge, are obtained.
This representation makes it possible to use these models in PDF calculations of turbulent flows.
The implications of three realizability constraints for the relationship between Langevin models and
these second-moment closures are discussed. A Generalized Langevin model representation exists
only if the rapid pressure-strain model satisfies realizability at the 2D turbulence limit. ©1996
American Institute of Physics.@S1070-6631~96!01807-7#

Langevin models provide a general and computationally
attractive class of Lagrangian turbulence models to calculate
the probability density function of velocities.1 The relation-
ship between a generalized form of the Langevin model and
conventional Eulerian second-moment closures was shown
by Haworth and Pope2 and was exploited further by Pope.3

In this Letter this relationship is looked upon in detail for the
rapid pressure-strain models of Fu and Launder4 ~FL! and of
Jones and Musonge5 ~JM!. Both models will be written in a
general representation and the equivalent Langevin models
will be presented. The FL model was developed from a gen-
eral expression for the pressure-strain correlation which was
reduced to a two parameter model by application of three
realizability constraints. The JM model was developed spe-
cifically for variable density flows and may be useful for
reacting flow simulations. This model satisfies the proper
symmetry conditions but does not explicitly satisfy realiz-
ability. We want to make some remarks about the implica-
tions of the realizability constraints for the relationship be-
tween second-moment closures and Langevin models. This
work can be seen as an additional remark to the work of
Pope and the outline of this Letter will follow Pope3 closely.
It shows that non-linear second-moment closure models can
be used in PDF calculations of turbulent flows.

Fu and Launder model the rapid-pressure strain term
fi j 2 as a function of the mean velocity gradients and aniso-
tropy tensor by

f i j 252k~alik j1al jki !
]Ūk

]xl
, ~1!

in which Ū denotes the mean velocity,k the turbulent kinetic
energy, and the fourth-order tensoralik j is a function of the
anisotropy tensor only. The Reynolds stress tensor is denoted
by uiuj . A general expression foralik j , which contained up
to cubic terms in the anisotropy tensor, was reduced to a two
parameter model by application of three kinematic con-
straints which require that the model is redistributive only
~aliki50!, that it satisfies normalization (alikk 5 uiul /k) and
that it is valid in the limit of two-dimensional turbulence
~faa250 for uaua→0). The two model parameters are
called c2 and c28 of which c2 multiplies a purely rotational

term andc28 is important in near wall flows. The standard
valuesc250.6 andc2850 give good results for free shear
flows but improved predictions were obtained taking
c250.55 andc2850.6.4

For convenience the model is represented on a basis of
tensors polynomialsTi j

(n) ~see Table I! which were defined by
Pope.3 Compared to the original basisTi j

(3) was modified so
that its trace is zero in variable density flows and to represent
terms inc2 andc28 tensorsTi j

(9) andTi j
(10) were added, respec-

tively. For FL the coefficientsA(n) are given in Table II.
The coefficientsA(n) are related to the coefficients of the

Generalized Langevin model2 ~GLM! by a set of linear alge-
braic equations. To represent terms inTi j

(9) and Ti j
(10) the

GLM was extended with quadratic terms in the anisotropy
tensorbi j with coefficientsj. This, more general, version of
the GLM reads as

dUi52
1

r

] p̄

]xi
dt1Gi j ~Uj2Ū j !dt1~C0e!1/2dWi , ~2!

in which ] p̄/]x is the mean pressure gradient,U is the in-
stantaneous velocity,C0 is a positive constant,W is an iso-
tropic Wiener process and

Gi j5
e

k
~a1d i j1a2bi j1a3bi j

2 !1Hi jkl

]Ūk

]xl
, ~3!

in which e is the dissipation of turbulent kinetic energy and

Hi jkl5b1d i jdkl1b2d ikd j l1b3d i ld jk1g1d i j bkl

1g2d ikbjl1g3d i l bjk1g4bi jdkl1g5bikd j l

1g6bild jk1j1bi j bkl1j2bikbjl1j3bil bjk . ~4!

The 15 coefficientsa, b, g, and j can be functions of
scalar invariants ofbi j and the strain tensorSi j . Terms inb,
g, andj multiplying di j or bi j and can be chosen arbitrarily
because these can be expressed ina1 or a2, respectively, or,
the other way around, terms ina1 and a2 which contain
scalar invariants ofSi j can be expressed inb, g, and j.
Equating the modeled Reynolds stress equations, for both the
conventional and the Lagrangian model, the modeled redis-
tribution termfi j yields

2
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f i j5S 231C0D ed i j1Gil uluj1Gjl ului , ~5!

which includes both rapid and slow pressure-strain effects as
well as effects of anisotropy of dissipation. Choosingb1, g1,
g4, andj1, the eight remaining coefficientsb, g, andj are
related to the coefficientsA(3) through A(10). This set of
equations has a rank deficiency of one and obtains a one
parameter solution if

A*[
3

2
A~3!2A~4!1

1

3
A~6!1

1

6
A~8!2

1

9
A~10!50. ~6!

A GLM representation of a second-moment closure ex-
ists only if Eq. ~6! is satisfied. Apart from the fact that this
condition on the second-moment closure follows from alge-
braic derivations it has a physical background which will be
shown below. Equation~6! is satisfied by FL for allc2 and
c28. The corresponding GLM coefficientsb, g, and j are
given in Table III. Having solved forb, g, andj the coeffi-
cientsa are determined by the relations toA(1) andA(2) and
by the fact that the modeled redistribution term may not
affect the level of turbulent kinetic energy.

Jones and Musonge model the pressure-strain correlation
by

f i j 25
2

3
c2SDi j2

1

3
Pkkd i j D 1c3~Di j2Pi j !

1c4S ]Ū i

]xj
1

]Ū j

]xi
2
2

3

]Ūk

]xk
d i j D 12c5bi j

]Ūk

]xk
, ~7!

in whichDi j 5 2uiuk]Ūk /]xj 2 ujuk]Ūk /]xi andPi j is the
production tensor. The recommended values of the constants
are c2520.44, c350.46, andc4520.23.6 The term inc5
has no effect for constant density flows but may be important

in flows with large density variations. In general representa-
tion the non-zero coefficients of this model read as

A~1!52c5Skk , A~3!522c212c4 ,
~8!

A~4!523c2 , A~5!53c214c3 ,

which yieldsA*53c4 . This implies that an equivalent GLM
of JM exists only ifc450. Expansion in tensor polynomials
shows thatc4 multipliesTi j

(3) which is a zero-th order term in
the anisotropy tensor. The conditionc450 expresses that, in
a GLM @Eq. ~5!#, the zero-th and first order tensorsTi j

(3) and
Ti j
(4) are not independent. Implications for realizability are

discussed below. Choosingg550 the non-zero GLM coeffi-
cients are given by

b25c3 , b352
3

2
c22c3 . ~9!

Note that for variable density flows termsdkl in Eq. ~4! mul-
tiply ]Ū l /]xl which is non-zero.

We now have a closer look at some implications of three
realizability constraints, which were used to derive the FL
model, on the relationship between second-moment closure
models and Langevin models. Because the Langevin model
predicts the velocity of a realization of a fluid particle the
model always predicts realizable states of turbulence as long
as the model coefficients remain finite. Therefore a Langevin
equivalent of a second-moment closure can exist only if this
model is realizable.

The constraint that the model is redistributive~aliki50!
only or, in other words, the model may not affect the level of
turbulent kinetic energy but may only redistribute the energy
over the stress components, is always satisfied by a model
which can be represented in the tensor polynomialsTi j

(n). By
construction the tensorsTi j

(n) have zero trace and the model is
redistributive. The GLM always satisfies this constraint be-
cause the condition that the modeled redistribution term has
zero trace is used to determine the coefficientsa.

The constraint of normalization (alikk 5 uiul /k) is diffi-
cult to apply to a model in general representation because the
relationship between the fourth-order tensoralik j in Eq. ~1!
and the second-order tensorsTi j

(n) is not explicit. Concentrat-
ing on the rapid term, which is linear in mean velocity gra-
dients, the relationship between thealik j in Eq. ~1! andHi jkl

in Eq. ~3! is given by

2k~alik j1al jki !5Himklujum1Hjmkluium , ~10!

TABLE III. Generalized Langevin model coefficients for FL choosing
b15g15g45j150 andg5 to be a free parameter.

b25
11
1514bkk

2 c21(bkk
2 2

8
15)c281

1
3g5

b352
2
1524bkk

2 c21
8
15c282

1
3g5

g250.41
1
15c28

g352
16
15c28

g6520.411.6c282g5

j2512c210.8c28
j35212c223.2c28

TABLE I. Non-dimensional, symmetric tensorsTi j
(n) which are functions of

the anisotropy, strain, and rotation tensorsbi j , Si j , andWij , respectively
@see Pope~Ref. 3!#.

Ti j
(1)5bi j

Ti j
(2)5bi j

2 2
1
3bll

2d i j

Ti j
(3)5Si j2

1
3Slld i j

Ti j
(4)5Sil bl j1Sjl bli2

2
3Slmbmld i j

Ti j
(5)5Wilbl j1Wjlbli

Ti j
(6)5Sil bl j

2 1Sjl bli
22

2
3Slmbml

2 d i j

Ti j
(7)5Wilbl j

2 1Wjlbli
2

Ti j
(8)5bilSlmbmj2

1
3Slmbml

2 d i j

Ti j
(9)5bik

2Wklbl j1bjk
2 Wklbli

Ti j
(10)5bik

2 Sklbl j1bjk
2 Sklbli2

2
3blk

2 Skmbmld i j

TABLE II. CoefficientsA(n) of the tensorsTi j
(n) for the FL model and defi-

nitions of scalar invariantsQ1 andQ2 .

A(1)522.4Q110.8Q2c28 A(6)50.822c28
A(2)50.8Q1c28 A(7)50.81

34
15c28

A(3)50.81
4
3bkk

2 c28 A(8)521.613.2c28

A(4)51.21(0.412bkk
2 )c28 A(9)5248c228c28

A(5)5
26
15116bkk

2 c21(2bkk
2 2

14
45)c28 A(10)524.8c28

Q15bkl
2 Skl2

2
3bklSkl2

1
3Sll Q25bklSkl1

1
3Sll
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in which terms ina which contain scalar invariants ofSi j are
represented inHi jkl . There is no explicit relation between
alik j andHi jkl and the direct implications of this constraint
on the GLM coefficients are unknown.

The rapid pressure-strain term modeled by the GLM is
given by the RHS of Eq.~10! multiplied by ]Ūk /]xl . It is
easily seen that this model always satisfies realizability at the
2D turbulence limit (faa2 5 0 for uaua→0). Consequently,
a representation of a conventional rapid pressure-strain
model by a GLM exists only if this model is realizable at the
2D limit. Application of the constraint to an expression in
general representation yields thatSaa multipliesA* and re-
alizability can be satisfied only if Eq.~6! is valid. The fact
that this condition is necessary for the existence of a GLM
representation of a second-moment closure has already been
shown. In general JM does not satisfy realizability at the 2D
turbulence limit for c4Þ0. Usually the 2D limit is ap-
proached near walls only whereSaa is zero and a non-zero
value of A* will not violate realizability. Jones and
Musonge5 suggest to makec4 a function of the anisotropy
invariants such that it goes to zero at the 1D and 2D limits.
The total redistribution term modeled by the GLM satisfies
realizability in the sense that the 2D limit can never be
reached.7 At the 2D limit realizability is not satisfied because
of the assumption of local isotropy at the smallest scales,
which is modeled by the isotropic Wiener process, which
will always disturb the 2D state of turbulence. This property
of the GLM becomes clear mathematically by the fact that,
in general, the coefficientsa become infinite for 2D turbu-
lence. Dreeben and Pope8 calculate near wall flows using a
GLM in which they overcome this problem by modifying the
constantC0 .

The GLM as defined by Haworth and Pope2 and which is
extended here by adding quadratic terms in the anisotropy
tensor, is able to represent the rapid pressure-strain correla-
tion model of Fu and Launder. The Jones and Musonge
model can be represented by a GLM only if the model pa-

rameterc4 equals zero. Because the GLM prediction of the
rapid pressure-strain term always satisfies realizability at the
two dimensional turbulence limit the corresponding second-
moment closure has to satisfy this constraint also. JM satis-
fies this constraint forc450 only. The total redistribution
term which accounts for both rapid pressure-strain and
‘‘return-to-isotropy’’ effects, as predicted by the GLM, can-
not satisfy realizability at the 2D limit because of the isot-
ropy of the Wiener process. However realizability is satisfied
in the sense that the 2D limit cannot be reached in a finite
time. The realizability constraint of redistribution is needed
as an extra condition to uniquely specify the GLM coeffi-
cientsa. Most published second-moment closure models sat-
isfy this constraint. The implications of the normalization
constraint for the relationship between Langevin models and
second-moment closures remains a topic for further research.
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