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The Generalized Langevin model representations of two second-moment closure models for the
rapid pressure-strain term, proposed by Fu and Launder and by Jones and Musonge, are obtained.
This representation makes it possible to use these models in PDF calculations of turbulent flows.
The implications of three realizability constraints for the relationship between Langevin models and
these second-moment closures are discussed. A Generalized Langevin model representation exists
only if the rapid pressure-strain model satisfies realizability at the 2D turbulence limitl9%%
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Langevin models provide a general and computationallyterm andc; is important in near wall flows. The standard
attractive class of Lagrangian turbulence models to calculatealuesc,=0.6 andc,=0 give good results for free shear
the probability density function of velocitiésThe relation-  flows but improved predictions were obtained taking
ship between a generalized form of the Langevin model and,=0.55 andc;=0.6*
conventional Eulerian second-moment closures was shown For convenience the model is represented on a basis of
by Haworth and Pogeand was exploited further by Pope. tensors polynomialgi(j“) (see Table)lwhich were defined by
In this Letter this relationship is looked upon in detail for the Pope® Compared to the original bas1§j3) was modified so
rapid pressure-strain models of Fu and LaufideL) and of  that its trace is zero in variable density flows and to represent
Jones and MusongéJM). Both models will be written in a  terms inc, andcj tensorsT{? andT{'® were added, respec-
general representation and the equivalent Langevin modetively. For FL the coefficientd\" are given in Table II.
will be presented. The FL model was developed from a gen-  The coefficientsA(™ are related to the coefficients of the
eral expression for the pressure-strain correlation which waGeneralized Langevin modelGLM) by a set of linear alge-
reduced to a two parameter model by application of thredraic equations. To represent terms'ITﬁg) and Ti(jlo) the
realizability constraints. The JM model was developed speGLM was extended with quadratic terms in the anisotropy
cifically for variable density flows and may be useful for tensorb;; with coefficientsé. This, more general, version of
reacting flow simulations. This model satisfies the propeithe GLM reads as
symmetry conditions but does not explicitly satisfy realiz- 1L
ability. We want to make some remarks about the implica- __*9P TR 12
tions of the realizability constraints for the relationship be- dui= p X dt+Gij (U= U)dtt (Coe) Wi, (2)

tween second-moment closures and Langevin models. This ) ) i
work can be seen as an additional remark to the work of? Which dp/dx is the mean pressure gradiebk,is the in-

Pope and the outline of this Letter will follow Pcpelosely. ~ Stantaneous velocityC, is a positive constanilV is an iso-

It shows that non-linear second-moment closure models cafioPic Wiener process and
be used in PDF calculations of turbulent flows. —
. . € (?Uk
Fu and Launder model the rapid-pressure strain tefrm  G..=—(q,8;: + a,b; + asb?)+H;\ — 3
K R K ) ik 1Yij 2Mij 3Vij ijkl v
#ij> as a function of the mean velocity gradients and aniso- [

tropy tensor by in which € is the dissipation of turbulent kinetic energy and

Uy
¢ij2:2k(alikj+aljki)a_xla 1)

Hiji = B16ij S+ B26ik 8)1 + B3 it Sj T+ v1.0ij by

+ ¥26ibji + ¥381 Dji+ Yabij S+ vsbik 5
in which U denotes the mean velociﬂy,the turbulgnt kinetic + yghy S+ E1by by + Exbycby + Ebyby . (8)
energy, and the fourth-order tensgy; is a function of the
anisotropy tensor only. The Reynolds stress tensor is denoted The 15 coefficientsy, 8, y, and ¢ can be functions of
by Uju;. A general expression fa;; , which contained up scalar invariants ob;; and the strain tens@; . Terms ing,
to cubic terms in the anisotropy tensor, was reduced to a twg, and§ multiplying &; or b;; and can be chosen arbitrarily
parameter model by application of three kinematic con-because these can be expressed,ior a,, respectively, or,
straints which require that the model is redistributive onlythe other way around, terms ia; and «, which contain
(ayiki =0), that it satisfies normalizatiora(, = uju;/k) and  scalar invariants ofS; can be expressed i, y, and ¢
that it is valid in the limit of two-dimensional turbulence Equating the modeled Reynolds stress equations, for both the
(¢ n02=0 for u,u,—0). The two model parameters are conventional and the Lagrangian model, the modeled redis-
calledc, andc; of which c, multiplies a purely rotational tribution term ¢; yields?
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TABLE |. Non-dimensional, symmetric tensoT;%") which are functions of
the anisotropy, strain, and rotation tensors, S;;, andW;; , respectively

[see PopéRef. 3].

T{P=b;,
1
T 0~ o
Ti»4)=Sj — 351 9;j )
T )= S”b“- +S; b, — §Smme5ij

TP )= W by +W; by 2
T{P=S,bf + S bf — 55mbF, 5

TABLE IIl. Generalized Langevin model coefficients for FL choosing
B1=71=v,=§=0 andy; to be a free parameter.

11 8, ., 1
B>= 1_5_S4b§k(;2+ (bE— 1_5){32‘*‘ 3Ys
Bs=— 15— 4biCo+t 15C2— 375

= 0.4+ 1eC5
72_ 16 }5 2
V3= T 15C2
¥6=—0.4+1.6C;— s
&,=120,+0.8c)
£3=—12c,—3.2C)

TP )= W; bf + W, b

8)_ _ 1 2

Tiy' = Bit Smbmj— 3Simbmidij

Ti(;): b7 Wiibyj + b3 Wigby; X

Tijlo): bizksklblj + bijkaIi - Z_%blzkskmbml‘sij

in flows with large density variations. In general representa-
tion the non-zero coefficients of this model read as

2 - o AY=2¢:S,, A®=-2c,+2¢c,,
§+Co) €5ij+Gi|U|Uj+Gj|U|Ui, (5) (8)
A®=—-3c,, A®=3c,+4c;,

which includes both rapid and slow pressure-strain effects as
well as effects of anisotropy of dissipation. Choosj#ig y;,  which yieldsA* = 3c,. This implies that an equivalent GLM
v4, and &;, the eight remaining coefficieni8, v, and ¢ are  of JM exists only ifc,=0. Expansion in tensor polynomials
related to the coefficient&® through A9, This set of  shows that, multiplies T which is a zero-th order term in
equations has a rank deficiency of one and obtains a orthe anisotropy tensor. The conditiop=0 expresses that, in
parameter solution if a GLM [Eq. (5)], the zero-th and first order tensng) and
T{} are not independent. Implications for realizability are
discussed below. Choosing=0 the non-zero GLM coeffi-
cients are given by

A GLM representation of a second-moment closure ex-
ists only if Eq.(6) is satisfied. Apart from the fact that this
condition on the second-moment closure follows from alge-
braic derivations it has a physical background which will be
shown below. EquatioK) is satisfied by FL for alc, and ~ Note that for variable density flows terndg in Eq. (4) mul-
c5. The corresponding GLM coefficients, vy, and ¢ are  tiply dU,/dx; which is non-zero.
given in Table Ill. Having solved fop, y, and¢ the coeffi- We now have a closer look at some implications of three
cientsa are determined by the relationsAé") andA(® and  realizability constraints, which were used to derive the FL
by the fact that the modeled redistribution term may notmodel, on the relationship between second-moment closure
affect the level of turbulent kinetic energy. models and Langevin models. Because the Langevin model

Jones and Musonge model the pressure-strain Corre|aticﬁ)fedicts the VelOCity of a realization of a fluid particle the
by model always predicts realizable states of turbulence as long
as the model coefficients remain finite. Therefore a Langevin
equivalent of a second-moment closure can exist only if this
model is realizable.

— The constraint that the model is redistributitgg;; =0)

i BTt W _5,,) +2¢b;; IV (7 onlyor, in other words, the model may not affect the level of
axp % 3 ax ! bax turbulent kinetic energy but may only redistribute the energy
inwhichD;; = —ui_ukr?U_k/axj — Uj_Uk(?U_k/ﬁxi andP;; is the over the stress components, is always satisfied by a model

production tensor. The recommended values of the constanfdich can be representen()j in the tensor polynomigls By _
are c,——0.44, c;=0.46 andc4=—0.23f5 The term incs construction the tensoFEfj have zero trace and the model is

has no effect for constant density flows but may be importanfdistributive. The GLM always satisfies this constraint be-
cause the condition that the modeled redistribution term has
zero trace is used to determine the coefficients
The constraint of normalizatiora(;, = u;u, /k) is diffi-

cult to apply to a model in general representation because the

- relationship between the fourth-order tensqg; in Eq. (1)
A((U)ZO-B* 2¢ and the second-order tensdr§’ is not explicit. Concentrat-
A =08+ I ing on the rapid term, which is linear in mean velocity gra-

AB)=—1.6+3.2} . . . :
A(g)=_4802_8cz dients, the relationship between thg; in Eq. (1) andHjy

b=

3 1 1 1
A*EEA(3)_A(4)+§A(6)+€A(8)_§A(10):O' (6)

3
Br=cCgs, ,33:_502_03- 9

2

1
¢i12:§f52( Dij — 3 Pwkdij | +€3(Dij —Pij)

U, aU; 2 Uy
+c,

TABLE II. CoefficientsA™ of the tensorgT{[" for the FL model and defi-
nitions of scalar invariant®, andQ,.

AW =—-2.4Q,+0.8Q,¢;
A®=0.8Q,c)
A®=0.8+ 3b2c)
AW =12+ (0.4+2bZ)C)

AG) = g_ng 16g§k02+(2b§k* Uy A0 ~4.8¢; in Eq. (3) is given by
1= 0§4Sa— 3PS — 35 Q2=bySy+ 35 _
2k(ayikj + ayjki) = HimiUjUm+ HjmigUilm , (10)
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in which terms ina which contain scalar invariants &; are  rameterc, equals zero. Because the GLM prediction of the
represented irH;;,,; . There is no explicit relation between rapid pressure-strain term always satisfies realizability at the
ayij andHj;, and the direct implications of this constraint two dimensional turbulence limit the corresponding second-
on the GLM coefficients are unknown. moment closure has to satisfy this constraint also. JM satis-
The rapid pressure-strain term modeled by the GLM isfies this constraint foc,=0 only. The total redistribution
given by the RHS of Eq(10) multiplied by U, /dx,. Itis  term which accounts for both rapid pressure-strain and
easily seen that this model always satisfies realizability at théreturn-to-isotropy” effects, as predicted by the GLM, can-
2D turbulence limit ¢,,, = 0 foru_u,—0). Consequently, not satisfy realizability at the 2D limit because of the isot-
a representation of a conventional rapid pressure-strairopy of the Wiener process. However realizability is satisfied
model by a GLM exists only if this model is realizable at the in the sense that the 2D limit cannot be reached in a finite
2D limit. Application of the constraint to an expression in time. The realizability constraint of redistribution is needed
general representation yields tt&yj, multiplies A* and re- as an extra condition to uniquely specify the GLM coeffi-
alizability can be satisfied only if Eq6) is valid. The fact cientse. Most published second-moment closure models sat-
that this condition is necessary for the existence of a GLMsfy this constraint. The implications of the normalization
representation of a second-moment closure has already beeanstraint for the relationship between Langevin models and
shown. In general JM does not satisfy realizability at the 2Dsecond-moment closures remains a topic for further research.
turbulence limit for c,#0. Usually the 2D limit is ap-
proached near walls only whef&,, is zero and a non-zero
value of A* will not violate realizability. Jones and a’Corre_sponding al_Jthor_. Section Heat Transfer, Department of Applied
Musonge suggest to make, a functon of the anisotropy £V, DEf ey of Tty Loz 1 202 3, Deft
invariants such that it goes to zero at the 1D and 2D limits. gjectronic mail: huib@duttwta. tn.tudelft.nl
The total redistribution term modeled by the GLM satisfies?Also at Shell Research and Technology Centre, Amsterdam, the Nether-
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of the assumption of local isotropy at the smallest scales?p. c. Haworth and S. B. Pope, “A generalized Langevin model for tur-
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