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Abstract

A quadrotor is a type of Unmanned Aerial Vehicle that has received an increasing amount of
attention recently with many applications being actively investigated. Possible applications
include search and rescue, surveillance, supply of food and medicines in emergency situations
and object manipulation in construction and transportation. An interesting subproblem of
load transportation is the control of the position of a cable suspended load. The challenge is
in the fact that the quadrotor-load system is highly nonlinear and under-actuated. The load
cannot be controlled directly and has a natural swing at the end of each quadrotor movement.

The goal of this thesis is to present a nonlinear geometric control approach, investigate its
possibilities and limitations to track the position of a cable suspended load. The focus lies
on the quadrotor-load subsystem where the cable tension is non-zero, which is analogous to
modeling a rigid link between the quadrotor and load.

After introducing the basic concepts, an introduction is given on geometric mechanics. This
differential geometric based approach is used to model and control the system, based on
the geometric properties of the system dynamics. It is shown how the configuration of the
quadrotor-load system can be described on smooth nonlinear geometric configuration spaces,
and analyzed with the principles of differential geometry. This allows for modeling in an un-
ambiguous coordinate-free dynamic fashion, while avoiding the problem of singularities that
would occur on local charts.
Next, the geometric properties are utilized to define tracking error functions on these same
spaces, making it possible to design almost-globally defined nonlinear geometric controllers.
A backstepping approach is applied to generate a cascaded structure with multiple nonlinear
geometric controllers, allowing control of several flight modes that are responsible for the
control of 1) quadrotor attitude, 2) load attitude and 3) load position.
Finally, simulations demonstrate the stability and abilities of the nonlinear geometric con-
troller. A Linear Quadratic Regulator is derived to compare both of the control performances.
The tracking performances of both controllers are discussed for three different experiments.
From the results of the experiments can be concluded that the nonlinear control design allows
control of multiple states with the final objective of controlling the load position. The nonlin-
ear geometric approach proves effective in load position tracking of complex trajectories and
fast maneuvers, while maintaining stability of the closed-loop system.
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Chapter 1

Introduction

AQuadrotor (QR) is a type of Unmanned Aerial Vehicle (UAV) that has received an increasing
amount of attention recently with many applications being actively investigated. Possible
applications include search and rescue, surveillance, reliable supply of food and medicines
in emergency situations and object manipulation in construction and transportation. It has
already proven itself useful for many tasks like multi-agent missions, mapping, explorations,
transportation and entertainment such as acrobatic performances.

The inspiration for this research is build upon the idea of creating a system of multiple
autonomous QRs for a cooperative towing task. The advantage of such systems for object
manipulation is the increased reach and the possibility to reduce complexity of the individual
robot, decreased cost compared to traditional robotic systems and high reliability. One can
think of examples in nature, where individuals coordinate, cooperate and collaborate to per-
form tasks that they individually can not accomplish. Redundancy makes the development
of fail safe control methods possible and can extend the capabilities of a single robot.

Considering a multi-agent task, one can think of multiple QRs assisting in the transportation
of a common load in many ways. One interesting method is the transportation of a load
suspended via a cable. Prior to a multi-agent load transportation task, research must be
done on this task involving a single QR. This research revolves around load position control
of a single QR with a cable-suspended load in motion.
The suspended object naturally continues to swing at the end of every movement. In case
a residual motion is undesirable or for the task of obstacle avoidance and path following,
control of the load position is required. Reducing the oscillation or controlling the position
of the suspended load might be necessary, but is challenging in the fact that this cable-
suspended system is under-actuated. Possible objectives are minimizing the oscillations of
the load during or after motion, minimizing the time to position the load, trajectory tracking,
trajectory generation and obstacle avoidance.
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2 Introduction

1-1 Aim and Motivation

The aim is to control the position of a suspended load using a single QR. Before considering
multiple QRs working together, it is important to investigate and understand the possibilities
of a single QR with a cable suspended load. Hence, in this research a single QR is consid-
ered for the transportation of a cable suspended load, which will exert additional forces and
torques on the QR. This is a challenging control problem in the fact that the QR system is
under-actuated, since adding a suspended load will add extra Degree of Freedom (DOF)s and
oscillations of the load occur at the end of every movement.
The system can be divided into two subsystems. The first subsystem is where the cable
tension is non-zero and the distance between the QR and the load is defined by the cable
length, such that both QR and load are coupled as one system. The second subsystem is
where the cable tension is zero, such that the QR and load (in free fall) are two separate
decoupled systems. This research focuses on the first subsystem, where that the cable tension
is non-zero. In order to control both subsystems, hybrid control must be applied, which is
considered out of the scope of this research.
Former work on attitude control of QR and/or load often relies on linear control methods
such as PID [2, 3], MPC [4] and LQR [5] control. The dynamics are linearized around an
equilibrium point, describing the system dynamics by a set of linear differential equations.
The control of a QR-load system is a very specific case and scarcely investigated. Former
work includes MPC [6, 7] and LQR control approaches [8], where optimal control strategies
are used to minimize the swing of the load.
The reason that linear control near an equilibrium state is commonly applied, is partly to
avoid difficulties that come with modeling and controlling the non-linearities of the system.
However, linear control limits the system to small angle movements, as the optimization will
not allow large angles that deviate too much from the linearized point. This approach of
modeling and control will not be sufficient for applications that require fast aggressive ma-
neuvers. Nonlinear control systems are often governed by nonlinear differential equations and
are able to represent the dynamics in a more realistic manner. Nonlinear control approaches
to minimize the load swing includes a Model Based Algorithm controller applied by [9].
Nonlinear Geometric Control is a nonlinear model based control technique based on a model-
ing approach involving the concepts of differential geometry. This results in a globally defined
coordinate-free dynamical model, which prevents issues regarding singularities, and enables
the design of controllers that offer almost-global convergence properties. Nonlinear Geometric
Control for QR systems is rarely found in literature, despite the advantageous properties of
differential geometry.
This motivates to investigate the potential and limitations of a rarely used nonlinear Geo-
metric Control approach. The control performance of a nonlinear geometric controller for the
task of a load transportation maneuver can be investigated, and a comparison can be made
with linear control strategies.
Different aspects involving the modeling and control for the QR-load system must be in-
vestigated, for it can be expected that the non-linearity will have a great influence in the
representation of the dynamics and the stability, accuracy and type of the control design.
It is possible to investigate which advantages or disadvantages this nonlinear approach has
compared to a linear approach, in terms of stability and performance.
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1-2 Organization of the Report 3

Former work includes a nonlinear geometric control of a QR [12, 13] and nonlinear geometric
control of the load position, load attitude and QR attitude of a QR-load system [14, 15, 16].
For a study on rigid body dynamics and optimal control problems, where geometric features
are incorporated, one can refer to [10, 11].

1-2 Organization of the Report

In this first chapter, a brief introduction of the subject is given and the problem is described.
This is followed by discussing the aim, motivation and contributions of this thesis for this
research. The organization of the report is as follows.

Chapter 2 introduces Geometric Mechanics to understand and derive the system’s equations
of motion in order to allow nonlinear geometric controller design and analysis. The system
configuration space is described on a differentiable manifold using the tools of differential
geometry instead of Euclidean geometry, where the system dynamics evolve in a three di-
mensional space. The dynamics of the QR-load system are then described by the laws of
kinematics and the application of Newton’s laws and Lagrangian mechanics. In contrast with
classical modeling techniques, geometric modeling results in a compact, unambiguous and
coordinate-free model.

Describing the system dynamics on nonlinear manifolds allows the design of nonlinear geo-
metric controllers on these same manifolds. The control design is presented in Chapter 3.
The controller has a cascaded structure, allowing the control of several flight modes that are
accountable for the control of different degrees of freedom.

Chapter 4 describes the experiments that are done to investigate the abilities and performance
of a nonlinear Geometric Control design. Different tracking objectives are defined in order to
compare the performance between an LQR control design and a nonlinear Geometric Control
design. The results are presented and findings are discussed.

In the final chapter a summary of the thesis is given, followed by the conclusions that were
made based on the results of the research. Finally, recommendations are given which could
serve as a starting point for future work.
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Chapter 2

Dynamic Model

A mathematical model of the system needs to be derived in order to simulate and study the
effects of nonlinear geometric control. In Section 2-1, an introduction is given on geometric
mechanics, a modern description of classical mechanics from the perspective of differential
geometry, a discipline in mathematics that studies manifolds and their geometric properties,
which uses the tools of calculus.

In Section 2-2 a dynamical model of the QR is derived and the assumptions that are applied to
simplify the model are discussed. Next in Section 2-3, the same is done to obtain a dynamical
model of the QR-load system with geometric mechanics, resulting in a compact, coordinate-
free, unambiguous representation of the dynamics, described on nonlinear manifolds.
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6 Dynamic Model

2-1 Geometric Mechanics

For the derivation of the equations of motions, traditional modeling methods often parame-
terize the rotations in a local coordinate system. This can be done with Euler Angles, and
despite this parametrization might result in singularities, this is a commonly used method to
describe rotations. There are 24 possible sets of Euler angles and many different conventions
are used, which introduces ambiguity. The definition of Euler angles is not unique and a se-
quence of rotations is not commutative. Therefore, Euler angles are never expressed in terms
of the external frame, or in terms of the co-moving rotated body frame, but in a mixture.

An other disadvantage of Euler angles, is that the transformation from their time rates of
change to the angular velocity vector is not globally defined. Furthermore, when angular errors
are large, the difference in Euler angles is no longer a good metric to define the orientation
error. Hence, the error is rather written as the required rotation to get from the current to a
desired orientation, which can be achieved by considering geometric properties of the system.

In geometric mechanics the configuration space of systems is a group manifold instead of a
Euclidean space. The kinetic and potential energies are expressed in terms of this configu-
ration space and their tangent spaces. It explores the geometric structure of a Lagrangian-
or Hamiltonian system through the concepts of vector calculus, linear algebra, differential
geometry, and nonlinear control theory. Geometric mechanics provides fundamental insights
into the nonlinear system mechanics and yields useful tools for dynamics and control the-
ory. Furthermore, the resulting form of the Euler-Lagrange equations are more compact than
equations expressed in terms of local coordinates.

An example is given of a simple 2-link arm, to illustrate different representations of a config-
uration space, see Figure 2-1. Let the configuration of the arm be defined by two coordinates
in a Cartesian coordinate system, which is a local representation. This can be seen in Figure
2-1b, where the colored edges illustrate singularities, because the definition of one point has
multiple solutions.
Next, the configuration space is represented as a geometric shape called a torus, as shown
in Figure 2-1c. It is a smooth manifold where each configuration is mapped uniquely, which
allows the configuration to be defined globally.

(a) (b) (c)

Figure 2-1: Configuration Space of a 2-link arm
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2-1 Geometric Mechanics 7

Manifolds The fundamental object of differential geometry a manifold. A manifold is a
mathematical space, a collection of points, that locally resembles Euclidean space near each
point. Examples are a plane, a ball, a torus and a sphere. Manifolds are important objects in
mathematics and physics, because they allow more complicated structures to be expressed and
understood in terms of the relatively well-understood properties of simpler spaces. Each point
of an n-dimensional manifold has a neighborhood that is homeomorphic to the n-dimensional
Euclidean space, meaning that there is a continuous function describing the relation between
these spaces, illustrated in Figure 2-2. This allows coordinate-free modeling of a system,
avoiding singularities that come with local representations.

Figure 2-2: A manifold locally resembles a Euclidean space

A differentiable manifold is a smooth and continuous manifold and is locally similar enough
to a linear space to allow to do calculus. One can define directions, tangent spaces, and
differentiable functions on such a manifold [17].
Taking the derivative at a point on a manifold is equivalent to a tangent vector at that
point. Meaning that derivatives are conceptually equivalent to an infinitesimally short tangent
vector. Each point of an n-dimensional differentiable manifold has a tangent space, which is
an n-dimensional Euclidean space consisting of all the tangent vectors of all curves that pass
through that point.
A tangent space describes a relationship between a position and a velocity at that position.
This property is of importance for the determination of configuration error functions, which
give a measure of the error between a desired state and an actual state. The configuration
errors will be described in Section 3-1.
To illustrate a tangent space, a point x is chosen on a 2-sphere, which is a manifold denoted
by S2 and defined by a sphere of dimension 2. The tangent space at point x is the collection
of all tangent vectors at point x and is denoted by TxS2, see Figure 2-3a.

Geometric Configuration Spaces Several methods exist to describe rotations, such as Euler
Angles, quaternions or rotation matrices. The main disadvantages of Euler angles are that
some functions have singularities and they are a less accurate measure for the integration
of incremental changes in attitude over time, compared to other methods. To avoid these
problems, in geometric mechanics rotations are expressed as rotation matrices to provide a
global representation of the attitude of a rigid body.

Master of Science Thesis N.N. Vo



8 Dynamic Model

(a) Representation of a manifold with
a tangent space

(b) Identity map of manifold SO(3)
with Lie Algebra so(3)

Figure 2-3: Tangent Spaces on different manifolds

The QR attitude is expressed as a rotation matrix R in the Special Orthogonal Group SO(3),
which describes the rotation of a body frame relative to the spatial frame. The manifold
SO(3) is defined as

SO(3) ,
{
R ∈ R3×3|RRT = I3×3, det(R) = 1

}
(2-1)

where SO(3) is the group of all rotations about the origin of a 3-D Euclidean space, which
preserves the origin, Euclidean distance and orientation. [18, 19]

Every rotation has a unique inverse rotation and the identity map satisfies the definition
of a rotation. The elements of Lie Algebra so(3), a property associated with SO(3), are
the elements of the tangent space of SO(3) at the identity element, see Figure 2-3b. These
elements define an important kinematic relation between the rotation R and its derivative Ṙ,
such that

Ṙ = RΩ̂ (2-2)

For n ∈ N, so(n) is is the vector space of skew-symmetric matrices in Rn×n and defined as

so(n) ,
{
S ∈ Rn×n|ST = −S

}
(2-3)

The hat map ∧ : R3 → so(3) is an isomorphism between R3 and the set of 3 × 3 skew
symmetric matrices, such that x̂y = x × y for any x, y ∈ R3. The vee map ∨ : so(3) → R3,
and is the inverse isomorphism of the hat map. Several properties of the hat map are

x̂y = x× y = −y × x = −ŷx, (2-4)

tr[Ax̂] = 1
2 tr[x̂(A−AT )] = −xT (A−AT )∨, (2-5)

x̂A+AT x̂ = ({tr[A]I3×3 −A}x)∧, (2-6)
Rx̂RT = (Rx)∧, (2-7)

N.N. Vo Master of Science Thesis



2-1 Geometric Mechanics 9

for any x, y ∈ R3, A ∈ R3×3, and R ∈ SO(3). The mapping between the body angular velocity
vector Ω ∈ R3 and Ω̂ ∈ so(3) is written as

Ω̂ =

 0 −Ω3 Ω2
Ω3 0 −Ω1
−Ω2 Ω1 0

 ,
 0 −Ω3 Ω2

Ω3 0 −Ω1
−Ω2 Ω1 0


∨

= Ω (2-8)

The load attitude is expressed as a unit vector q, which points from the origin of {B} to the
load. The configuration space is a two-sphere S2, see Figure 2-3a. The space is defined as

S2 ,
{
q ∈ R3|q · q = 1

}
(2-9)

The plane tangent to the sphere at q is the tangent space

TqS2 '
{
ω ∈ R3|q · ω = 0

}
(2-10)

where ω is the angular velocity of the suspended load. The equations in this section are
important relations that are used to model the system, which is done in the next section.

Master of Science Thesis N.N. Vo



10 Dynamic Model

2-2 Quadrotor Model

Assumptions can be made to simplify the complexity of the mathematical model. Table 2-1
shows the assumptions that are used for modeling the QR system.

Modeling assumptions quadrotor model

• The structure of the QR is rigid and symmetric.
Elastic deformations and shock (sudden accelerations) of the QR are ignored.

• The mass distribution of the QR is symmetrical in the x-y plane.
• The inertia matrix is time-invariant.
• Aerodynamic effects acting on the QR are neglected.

Blade flapping, turbulence, ground effects.
• The air density ρ around the QR is constant.
• The propellers are rigid ⇒ The thrust produced by rotor i is parallel to the axis of rotor i.
• Drag factor d and thrust factor b are approximated by a constant.

Thrust force Fi and moment Mi of each propeller is proportional to the square of
the propeller speed.

Table 2-1: Modeling assumptions quadrotor model

The QR model representation is shown in Figure 2-4. Two Cartesian coordinate frames are
defined:

• The body-fixed reference frame {B} (Body Frame)

with unit vectors {b1,b2,b3} along the axes

• The ground-fixed reference frame {I} (Inertial Frame)

with unit vectors {e1, e2, e3} along the axes

such that {I} is fixed to earth and the body-frame axes b1 and b2, coincide with the arms of
the QR.

The QR is described as a rigid body with six degrees of freedom, driven by the system inputs:
the total upward force f and the moments M =

[
Mφ Mθ Mψ

]T
around the body axes.

The configuration of the QR can be described by 1) the location of the QR’s Center of
Mass (CM), xQ ∈ R3, described in the Euclidean space w.r.t. {I} , and 2) the attitude which
is the orientation of {B}w.r.t. {I} evolving on a nonlinear space, described by a rotation
matrix R ∈ SO(3).
Rotations w.r.t. {B} , about the axes b1, b2 and b3 are parameterized by φ, θ and ψ, respec-
tively, which is illustrated in Figure 2-4b.
The dynamics of a rigid body can be expressed on the manifold SE(3), which is the group of
rigid displacements in R3. A rigid displacement describes both the rotation and the position
of {B} relative to {I} .
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2-2 Quadrotor Model 11

(a) QR model with forces and moments (b) QR Angle representation

Figure 2-4: Quadrotor model representation

Rotor dynamics The complex dynamics of the rotors and their interactions with drag and
thrust forces are represented by a simplified model. The angular speed ωi of rotor i, for
i = 1, 2, 3, 4, generates a force Fi parallel to the direction of the rotor axis of rotor i, given by

Fi =
(
KvKτ

√
2ρA

Kt
ωi

)2

' bω2
i (2-11)

where Kv,Kt are constants related to the motor properties, ρ is the density of the surrounding
air, A is the area swept out by the rotor, Kτ is a constant determined by the blade configu-
ration and parameters, and b is the thrust factor.
The torque around the axis of rotor i, generated due to drag is given by

Mi = 1
2RρCDA(ωiR)2 ' dω2

i (2-12)

where R is the radius of the propeller, CD is a dimensionless constant, and d is the drag
constant.
The required rotor speeds ωi can be calculated for a given desired total thrust f and total
moment M=

[
Mφ Mθ Mψ

]T
, by solving the following equation


f
Mφ

Mθ

Mψ

 =


b b b b
0 −lb 0 lb
lb 0 −lb 0
−d d −d d



ω2

1
ω2

2
ω2

3
ω2

4

 (2-13)

where l is the distance from the rotor to the QR’s CM, d is the drag factor and b is the thrust
factor.
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12 Dynamic Model

2-3 Quadrotor-Load Model

Assumptions are also made to simplify the mathematical model for the QR-load system.
Table 2-2 shows the assumptions that are used for modeling the QR-load system.

Modeling assumptions quadrotor-load model

• The cable is modeled as a rigid and massless cable.
• The cable is connected to a friction-less joint at the origin of the body-fixed.
• The tension in the cable is considered to be non-zero.

This implies that the QR-load subsystem that consists of a QR and a load
in free fall, is disregarded.

• Aerodynamic effects acting on the load are neglected.

Table 2-2: Modeling assumptions quadrotor-load model

The total quadrotor-load model consists of two subsystems, 1) where the cable tension is
zero, and 2) where the cable tension is non-zero. In this research, the focus is only on the
subsystem where the cable tension is non-zero.

The QR-load model is shown in Figure 2-5. The unit vector q ∈ S2 gives the direction from
the QR to the load expressed in {B} . The position of the QR and load are related by

xQ = xL − Lq (2-14)

where xQ ∈ R3 is the position of the QR’s CM expressed in {I} , xL ∈ R3 is the position of
the load expressed in {I} , and L is the length of the cable.

(a) QR model with load (b) Load Angle representation

Figure 2-5: Quadrotor with load model representation

The configuration of the load can be described by its location xL ∈ R3 w.r.t. {I} , evolving
in Euclidean space, and the load attitude evolving on a nonlinear space S2, described by the
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2-3 Quadrotor-Load Model 13

unit vector q ∈ S2. Rotations of the load w.r.t. {I} , about the axes e1 and e2 are denoted
by φL and θL , respectively, see Figure 2-5b.

Euler-Lagrange To develop the Euler-Lagrange equations for mechanical systems that evolve
on manifolds, an approach developed by [10, 20, 21, 22] is applied. The basic idea is to express
the variations of the curves evolving on S2 and SO(3). This approach is based on Hamilton’s
principle, which states that the evolution of a physical system is a solution of the following
equation

δS

δx(t) = 0 (2-15)

where x describes the generalized coordinates. S is the action integral, defined as

S =
∫ t2

t1
Ldt (2-16)

where L = T − U is the Lagrangian of the system, and T ,U are the kinetic and potential
energy, respectively.
Hamilton’s principle of least action states that the path a conservative mechanical system
takes between two states x1 and x2 at time t1 and t2, is the one for which Equation 2-16 is a
stationary point, resulting in

δS =
∫ t2

t1
δLdt = 0 (2-17)

where δL is the variation of the Lagrangian. For systems with non-conservative forces and
moments, Equation 2-17 is extended to

δS =
∫ t2

t1
(δW + δL)dt = 0 (2-18)

where δW is the virtual work. Equation 2-18 is applied to the QR-load system, where the
configuration manifold is R3 × S2 × SO(3). With the following states

x =
[
xL ẋL q ω R Ω

]T
(2-19)

where ω is the angular velocity of the load and Ω denotes the angular velocity of the body-fixed
frame.
The kinetic energy T and the potential energy U for the system are denoted as

T = 1
2mQẋQ · ẋQ + 1

2mLẋL · ẋL + 1
2Ω · J · Ω

U = mQgxQ · e3 +mLgxL · e3

(2-20)

where J ∈ R3×3 is the inertia tensor of the QR, g is the gravity constant, mL is the mass of
the load and mQ is the mass of the QR.
The energy can be rewritten in terms of q and xL, by substituting Equation 2-14, giving

T = 1
2(mQ +mL)ẋL · ẋL −mQLẋL · q̇ + 1

2mQL
2q̇ · q̇ + 1

2Ω · J · Ω (2-21)

U = (mQ +mL)gxL · e3 −mQgLq · e3 (2-22)
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14 Dynamic Model

Variations The variations of T and U are approximated by a first-order Taylor approxima-
tion, which results in

δT ≈ ∂T
∂ẋL

δẋL + ∂T
∂q̇

δq̇ + ∂T
∂Ω δΩ

= ((mQ +mL)ẋL −mQLq̇) · δẋL + (−mQLẋL +mQL
2q̇) · δq̇ + (JΩ) · δΩ

δU ≈ ∂U
∂xL

δxL + ∂U
∂q
δq

= ((mQ +mL)ge3) · δxL − (mQgLe3) · δq

(2-23)

The first term of virtual work is obtained from f acting on the QR and is given by the
following term,

δW1 = fRe3 ·
3∑
j=1

∂xQ
∂qj

δqj

= fRe3 · (δxL − Lδq)
(2-24)

where qj = xL, q, R and xQ is substituted by Equation 2-14. The second term of virtual work
is obtained from M acting on the QR. This gives the following term

δW2 = M ·
3∑
j=1

∂Ω
∂q̇j

δq̇j

= M · (RT δR)

(2-25)

The variations in energy and the virtual work can be substituted into Equation 2-18, such
that

δS =
∫ t2

t1
(δW1 + δW2 + δT − δU)dt (2-26)

While xL, ẋL vary on R3, Equation 2-26 is also a function of variations on manifolds, where
δR is a variation on SO(3) and δq is a variation on S2. These so called infinitesimal variations
define how the curves on the manifold "vary", and are obtained as shown in [1, 23, 20, 22, 11].

δR = Rη̂ ∈ TRSO(3), where η ∈ R3, η̂ ∈ so(3)
δq = ξ × q ∈ TqS2, where ξ ∈ R3, ξ · q = 0

(2-27)

The following variations follow from differentiation,

δq̇ = ξ̇ × q + ξ × q̇,
δṘ = Ṙη̂ +R ˆ̇η,
δΩ̂ = δ(RT Ṙ)

= δRT Ṙ+RT δṘ

= (Rη̂)T Ṙ+RT (Ṙη̂ +R ˆ̇η)
= η̂T Ω̂ + Ω̂η̂ + ˆ̇η
= (Ω̂η)∧ + ˆ̇η,

δΩ = (Ω̂η) + η̇

(2-28)
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2-3 Quadrotor-Load Model 15

These variations are substituted into Equation 2-26, allowing it to be a function of variations
in each generalized coordinate.

δS =
∫ t2

t1
(δW1 + δW2 + δT − δU)dt

=
∫ t2

t1
(((mQ +mL)ẋL −mQLq̇) · δẋL + (fRe3 − (mQ +mL)ge3) · δxL)dt

+
∫ t2

t1
((mQL

2q̇ −mQLẋL) · δq̇ + (mQgLe3 − fLRe3) · δq)dt

+
∫ t2

t1
(ΩTJ · δΩ +M · (RT δR))dt

(2-29)

After rearranging and setting each variation to 0, the following equations of motion for the
QR-load system are found.

d

dt
xL = ẋL (2-30)

(mQ +mL)(ẍL + ge3) = (q · fRe3 −mQL(q̇ · q̇))q (2-31)
q̇ = ω × q (2-32)

mQLω̇ = −q × fRe3 (2-33)
Ṙ = RΩ̂ (2-34)

JΩ̇ + Ω× JΩ = M (2-35)

where Equations 2-31 and 2-33 are the load position and attitude dynamics, and Equation
2-35 represents the QR attitude dynamics. Equation 2-33 can be rewritten, directly in terms
of the load attitude q as follows

mQLq̈ +mQL(q̇ · q̇)q = q × (q × fRe3) (2-36)

The dynamics of the complete QR-load system can be globally expressed on the Special
Orthogonal Group SO(3), two-sphere S2 and Special Euclidean Group SE(3), which are all
smooth manifolds. This results in a compact notation of the equations of motion, making the
large amount of trigonometric functions unnecessary, that normally are introduced by Euler
angles.

Summary

In this chapter, the dynamical model of the quadrotor-load system was derived. The motiva-
tion to use geometric mechanics and a basic understanding of its concepts are given in order
to understand the difference between a nonlinear geometric model and a model obtained with
classical modeling approaches.

With the tools of differential geometry, the system dynamics are expressed on nonlinear config-
uration manifolds, which results in a globally defined, compact, unambiguous representation
of the model. This dynamical model is used for a nonlinear geometric control approach, which
is discussed in the next chapter.
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Chapter 3

Control Design

Section 3-1 introduces nonlinear geometric control and concepts of geometric properties that
are used for analysis and control design. In the previous chapter, the configuration spaces of
the system dynamics were expressed on nonlinear manifolds. Error functions and geometric
mappings are defined on these same nonlinear manifolds allowing calculation of the error
between current and desired states.

A backstepping control approach is applied to control the under-actuated system. This control
design consists of multiple controllers operating in a cascaded structure. By using the states
as virtual control inputs, control laws can be obtained that guarantee stabilization of the
closed-loop system This approach results in the possibility to track a load position, while
stabilizing the system. Different flight modes and the corresponding controllers are discussed
in Section 3-2.
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18 Control Design

3-1 Nonlinear Geometric Control

Many control systems are developed for the standard form of ordinary differential equations
ẋ = f(x, u), where x is the state and u the control input. It is assumed that the state and
the control input lie in Euclidean spaces, and the system equations are defined in terms of
smooth functions between Euclidean spaces. However, for many mechanical systems, the
configuration space can only be expressed locally as a Euclidean space. A nonlinear space
is required to express the configuration space globally, which is discussed in the previous
chapter.

Geometric control theory is the study on how geometry of the state space influences control
problems. In control systems engineering, the underlying geometric features of a dynamic
system are often not considered carefully. Differential geometric control techniques utilize
these geometric properties for control system design and analysis. The objective is to express
both the system dynamics and control inputs on nonlinear manifolds instead of local charts. In
contrast to locally defined linear control, nonlinear geometric control can be defined almost
globally, avoiding singularities that would occur in the representation of large angles and
complex maneuvering.

The design of the controllers for the QR attitude can be found in [12], and the controllers
of load attitude- and position can be found in [1]. Thorough stability analyses are presented
in these references. For a deeper understanding of Lyapunov stability analysis in geometric
control, the reader can refer to [11, 18]. Other control systems that are able to switch between
control modes, such as the hybrid control described in [24], require complicated reachability
set analysis to guarantee safe switching between different flight modes. nonlinear geometric
control does not require such analysis, as the region of attraction for each flight mode covers
the configuration space almost globally. A study on global nonlinear dynamics of various
classes of closed loop attitude control systems can be found in [18].

3-1-1 Error Functions

The control of a trajectory tracking problem requires state feedback to define tracking errors,
a measure of the difference between the current states and the desired states. Since the closed-
loop system dynamics evolve on nonlinear manifolds, which describe the configuration space
of the QR attitude ∈ SO(3) and the load attitude ∈ S2, error functions are defined on these
same manifolds [11]. These functions play a role in the definition of the potential function for
the closed-loop system and form the basis for both stabilizing and tracking controllers of the
QR-load system.

Quadrotor Attitude Error

Recall that R is the rotation matrix to describe the QR attitude, and Rd is the desired
rotation matrix. To describe the relative rotation from the body frame to the desired frame,
an attitude error is defined as RTdR. Note that RTdR is again a rotation matrix itself. Based
on this attitude error, the tracking error function ΨR on SO(3) is chosen to be

ΨR(R,Rd) = 1
2 tr

[
I −RTdR

]
(3-1)
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3-1 Nonlinear Geometric Control 19

such that ΨR is locally positive-definite about RTdR = I within the region where the rotation
angle between R and Rd is less than 180◦. It can be shown that this region where ΨR < 2
almost covers SO(3) [26].

Using Equation 2-5 and 2-27, the derivative of the tracking error function ΨR with respect
to R along the direction of δR = Rη̂ for η ∈ R3 is given by

DRΨ(R,Rd) ·Rη̂ = −1
2 tr[R

T
dRη̂]

= 1
2(RTdR−RTRd)∨ · η

(3-2)

where the vee map ∨ : so(3)→ R3 is the inverse of the hat map defined in Section 2-1. From
this equation, the QR attitude tracking error eR ∈ R3 is chosen as follows

eR = 1
2(RTdR−RTRd)∨ (3-3)

It is important to note that the velocities Ṙ and Ṙd cannot be compared directly, since they
do not lie in the same space. At time t = t0, assume that R(t0) = q and Rd(t0) = r, then
Ṙ and Ṙd lie in their own tangent spaces, denoted by TqSO(3) and TrSO(3), respectively.
For this reason, Ṙd must be transformed into a vector on TqSO(3) to allow a meaningful
comparison with Ṙ. Defining a velocity error can be achieved with a mathematical object
called a transport map, which enables the comparison of tangent vectors living in different
spaces.
In Figure 3-1, two curves R(t) and Rd(t) evolve on manifold SO(3). Transport map T (q, r) :
TrSO(3) 7→ TqSO(3) allows comparison of the velocity curves Ṙ and Ṙd.

Figure 3-1: Transport map T (q, r)

The velocity error ė is a vector field along R corresponding to the transport map. It defines
the velocity error between the curves R and Rd, and is defined as

ė = Ṙ− Ṙd(RTdR) (3-4)
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This equation is rewritten to obtain the angular velocity tracking error, as follows

Ṙ− Ṙd(RTdR) = RΩ̂−RdΩ̂d(RTdR)
= R(Ω)∧ − (RRT )RdΩ̂dR

T
dR

= R(Ω)∧ −R(RTRdΩd)∧

= R(Ω−RTRdΩd)∧

(3-5)

The angular velocity tracking error eΩ expressed in {B} is defined as

eΩ = Ω−RTRdΩd (3-6)

Similar to the form of Equation 2-34, eΩ represents the angular velocity vector of the relative
rotation matrix RTdR, represented in {B} . Hence, it can be shown that the following equation
holds

d

dt
(RTdR) = (RTdR)êΩ (3-7)

The values of the QR attitude tracking error eR and the QR angular velocity tracking error
eΩ are used later on to design control for the QR attitude.

Load Attitude Error

The load attitude dynamics evolve on S2 and its tangent space TS2, where the error of the
load attitude is described in a similar approach. The error between the load attitude q and
the desired load attitude qd is defined by the error function qTd q. Based on the error function,
the tracking error function Ψq on S2 is chosen to be

Ψq = 1− qTd q (3-8)

The derivative of the tracking error function Ψq is given by

d1Ψq(q, qd) = q̂2qd (3-9)

From this equation, the load attitude error function eq is defined as follows

eq = q̂2qd (3-10)

Again, a transport map is used for a comparison between the tangent vectors on different
tangent spaces. Using the tracking error Ψq and the transport map TS2 , a closed-loop energy
function evolving on S2 is derived [11, 11.3.2]. From this energy function, the load angular
velocity error function is defined as

eq̇ = q̇ − (qd × q̇d)× q (3-11)

The values of the load attitude tracking error eq and the load angular velocity tracking error
eq̇ are used later on to design control for the load attitude.
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3-1 Nonlinear Geometric Control 21

Load Position Error

The tracking errors for the load position and load velocity are defined as

ex = x− xd (3-12)
ev = v − vd (3-13)

where vd = ẋd. Furthermore, xd(t) ∈ R3 must be a smooth twice-differentiable load trajectory,
such that functions are well defined. The values of the position error ex and the velocity error
ev are used later on to design control for the load position.
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3-2 Backstepping Control

A backstepping approach will be used in this research for the control of the load trajectory
tracking problem, and is commonly used for QR control [27]. Backstepping control is a Lya-
punov based control technique for the stabilization of nonlinear dynamical systems, developed
by [28]. The method relies on a triangular structure of the system in a certain set of coordi-
nates. The system is split into subsystems in a cascaded structure and recursive techniques
allow a systematically design of feedback control laws and corresponding Lyapunov functions.

The control structure is created by starting with a stable system as the most inner subsystem.
By "stepping back" from this subsystem, a control loop can be added around it, that contains
a control law to define a change of coordinates. The states are used as a virtual control input
to find a state feedback controller to stabilize the subsystem. Each controller computes a
virtual command signal for the adjacent inner loop. This is repeated until the final external
control is reached.

Figure 3-2: Nonlinear geometric control loop of the QR-load system

The backstepping approach is able to calculate the control inputs f and M that are required
to stabilize the QR, while several controllers are able to track different states, see Figure
3-2 [1]. The inner controller determines what the required control inputs are, driven by Rc.
The next controller calculates how to drive the computed rotation matrix Rc based on qc,
such that the QR is stabilized. And the last controller determines which load attitude qc is
required, such that the desired load position xL,d is tracked.

Since the QR has only four actuators, it is not possible to control all DOFs of the QR-load
system simultaneously. The backstepping approach allows control of different flight modes in
which a combination of DOFs is controlled. The flight modes and their functions are defined
below in order, from the most inner loop to the most outer loop.

• QR Attitude controlled Mode

– Track a desired QR attitude Rd(t) or commanded signal Rc(t)
– Optional tracking of a desired heading direction b1d

(t), the first column of Rd(t)
– Calculate the control input M for the QR-load system

• load Attitude controlled Mode

– Track a desired load attitude qd(t) or commanded signal qc(t)
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3-2 Backstepping Control 23

– Calculate a computed QR attitude Rc for the QR attitude controller
– Calculate the control input f for the QR-load system

• load Position controlled Mode

– Track a desired load position xL,d(t)
– Calculate a computed load attitude qc for the load attitude controller
– Calculate the control input f for the QR-load system

where the subscript d denotes a desired tracking reference, which must be given whenever it
is not calculated by a controller. For example in Figure 3-3, where the QR attitude controller
works as a standalone controller, without taking load attitude and position into account. The
subscript c denotes a computed tracking reference, calculated by the controllers.

Figure 3-3: QR Attitude controller

3-2-1 Quadrotor Attitude Tracking

The QR Attitude controlled Mode is designed to control the QR attitude by tracking a smooth
desired QR attitude Rd(t). Analysis of the error dynamics eR and eΩ requires the calculation
of their time derivatives.
Using Equations 3-3 and 3-6, the derivative of the attitude tracking error eR can be written
as

ėR = 1
2(RTdRêΩ + êΩR

TRd)∨ (3-14)

The derivative of the angular velocity tracking error eΩ, follows from Equations 2-34, 3-6 and
Ω̂dΩd = 0, such that

ėΩ = Ω̇ + Ω̂RTRdΩd −RTRdΩ̇d (3-15)

Recall from Equation 2-34, that the kinematics equation for the desired attitude can be
written as

Ṙd = RdΩ̂d and Ω̂d = RTd Ṙd (3-16)

The desired angular acceleration Ω̇d follows from the following equation

˙̂Ωd = (ṘTd Ṙd) + (RTd R̈d)
= (RdΩ̂d)T (RdΩ̂d) + (RTd R̈d)
= −Ω̂dΩ̂d +RTd R̈d

(3-17)
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such that,
Ω̇d = (−Ω̂dΩ̂d +RTd R̈d)∨ (3-18)

By substituting Equation 2-35 into Equation 3-15, the following equation is obtained
ėΩ = J−1(−Ω× JΩ +M) + Ω̂RTRdΩd −RTRdΩ̇d (3-19)

From this, the control inputM is defined [26], and consists of a proportional term, a derivative
term and a canceling term, as follows

M = −kReR − kΩeΩ + Ω× JΩ− J(Ω̂RTRdΩd −RTRdΩ̇d) (3-20)
Rapid exponential convergence of the attitude error function and angular velocity error func-
tion can be achieved by adding the parameter ε to Equation 3-20 as done in [1], where
0 < ε < 1„ given by

M = − 1
ε2
kReR −

1
ε
kΩeΩ + Ω× JΩ− J(Ω̂RTRdΩd −RTRdΩ̇d) (3-21)

Substituting Equation 3-21 into Equation 3-19 results in the time derivative of the angular
velocity tracking error, given by

ėΩ = J−1(− 1
ε2
kReR −

1
ε
kΩeΩ) (3-22)

for any positive constants kR, kΩ.
Equation 2-6 is used to rewrite the time derivative of eR as follows

ėR = 1
2(RTdRêΩ + êΩR

TRd)∨

= 1
2(tr[RTRd]I −RTRd)eΩ ≡ C(RTdR)eΩ

(3-23)

where ‖ C(RTdR) ‖2≤ 1, such that ‖ ėR ‖≤‖ eΩ ‖ for all RTdR ∈ SO(3), guaranteeing that ėR
will be bounded, whenever eΩ is bounded. In [12] it is proven that the Lyapunov functions,
which are functions of the error dynamics eR, eΩ, ėR, ėΩ described above, are non-increasing
and bounded. With this controller stability analysis, it is proven that the zero equilibrium of
the closed loop tracking error (eR, eΩ) = (0, 0) is exponentially stable, if the initial conditions
satisfy

ΨR(R(0), Rd(0)) < 2 (3-24)

‖ eΩ(0) ‖2< 2
λM (J)

kR
ε2

(2−ΨR(R(0), Rd(0))) (3-25)

where λM (·) denotes the maximum eigenvalue.
Furthermore, there exist constants αR, βR > 0 such that

ΨR(R(t), Rd(t)) ≤ min
{

2, αRe−βRt
}

(3-26)

Equations 3-24 and 3-25 determine the domain of attraction, which is the region in which
the trajectory of the system is able to converge to an asymptotically stable equilibrium point.
The domain of attraction almost covers SO(3), this is referred to as almost-global exponential
attractiveness.
Note that the tracking of the QR attitude does not require any specification of the thrust
magnitude f . During this flight mode, the translational motion can only be controlled par-
tially, which makes this flight mode suitable for attitude maneuvers with short time periods.
For a QR system without load, in [12] a tracking controller is described that calculates both
a thrust magnitude f and total moment M in order to track a QR position trajectory.
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3-2-2 Load Attitude Tracking

The load Attitude controlled Mode is designed to track a desired load attitude qd. In order
to influence the load dynamics, see Equation 2-33, the load attitude controller calculates a
computed QR attitude Rc for the QR attitude controller, which replaces Rd.
The commanded directions of the body frame axes are defined by Rc, and is defined as follows

Rc =
[
b1c; b3c × b1c; b3c

]
(3-27)

Ωd is replaced by Ωc, where Ωc is defined by

Ω̂c = RTc Ṙc (3-28)

which will influence the QR attitude dynamics, see Equation 2-35.
The unit vector b1c is the first column of Rc and is constructed by normalizing the projection
of a desired heading angle b1d ∈ S2 onto the plane normal to b3c, see Figure 3-4. Defining
b1c ∈ S2 orthogonal to b3c guarantees that Rc ∈ SO(3) [26].

Figure 3-4: Construction of b1c to define Rc

b1c is defined as follows
b1c = − 1

||b3c × b1d||
(b3c × (b3c × b1d)) (3-29)

Such that b2c = b3c × b1c, and b1d is chosen, not parallel to b3c ∈ S2, the third column of Rc.
b3c is defined by a normalization of F ,

b3c = F

||F ||
(3-30)

where F is defined by a normal component Fn, a proportional-derivative component Fpd and
feedforward control force Fff

F = Fn − Fpd − Fff (3-31)

The inclusion of Fn ensures that b3c is always well defined. Fn is defined as

Fn = −(qd · q)q (3-32)

The control forces Fpd and Fff are defined for trajectory tracking in [11, 11.2.5] as follows

Fpd = −kP q̂2qd − kD(q̇ − (qd × q̇d)× q)
= −kqeq − kωeq̇

(3-33)

and
Fff = mQL〈〈q, qd × q̇d〉〉R3(q × q̇) +mQL(qd × q̈d)× q (3-34)
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for positive constants kq, kω.
This controller affects the control input f , which is defined as

f = F ·Re3 (3-35)

and the control input M will be defined as

M = − 1
ε2
kReR −

1
ε
kΩeΩ + Ω× JΩ− J(Ω̂RTRcΩc −RTRcΩ̇c) (3-36)

It is proven in [1] and [11, Lemma 11.23] that the zero equilibrium of the closed loop tracking
error (eq, eq̇, eR, eΩ) = (0, 0, 0, 0) is exponentially stable, if the initial conditions satisfy

Ψq(q(0), qd(0)) < 2 (3-37)

‖ eq̇(0) ‖2< 2
mQL

kR(2−Ψq(q(0), qd(0))) (3-38)

The domain of attraction is defined by Equations 3-24, 3-25, 3-37 and 3-38. Equation 3-37
states that the initial load attitude error should be less than 180◦, which means that the
controller achieves almost-global exponential convergence for load attitude q. Furthermore,
there exist constants αq, βq > 0 such that

Ψq(q(t), qd(t)) ≤ min
{

2, αqe−βqt
}

(3-39)

3-2-3 Load Position Tracking

The load Position controlled Mode is designed to track a desired load position xL,d. Analysis
of the error dynamics ex and ev requires the calculation of their time derivatives.
The derivative of the load position error ex is given by

ėx = ev (3-40)

and from Equation 2-31 and given that ėv = ẍL − ẍL,d follows

(mQ +mL)ėv = −(mQ +mL)(ge3 + ẍL,d)−mQL(q̇ · q̇)q + (q · fRe3)q (3-41)

Equations 3-40 and 3-40 are used in a stability analysis of the controller. The load position
controller calculates a computed load attitude qc for the load attitude controller. Rd and qd
are replaced by Rc and qc, respectively. In order to stabilize the error dynamics, it is proven
in [1] that the required computed load attitude is defined as

qc = − A

||A||
(3-42)

where
A = −kxex − kvev + (mQ +mL)(ẍL,d + ge3) +mQL(q̇ · q̇)q (3-43)

Furthermore, Equation 3-32 is redefined as

Fn = (A · q)q (3-44)
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which is substituted in Equation 3-31, resulting in a new control input f .

This controller ensures that the zero equilibrium of the closed loop tracking error (ex, ev, eq, eq̇, eR, eΩ) =
(0, 0, 0, 0, 0, 0) is exponentially attractive, if the initial conditions satisfy

Ψq(q(0), qc(0)) < ψ1 < 1 (3-45)

‖ ex(0) ‖2< exmax (3-46)

where exmax and ψ1 are fixed design depended constants.

The domain of attraction is defined by Equations 3-24, 3-25, 3-45 and the following equation

‖ eq̇(0) ‖2< 2
mQL

kq(ψ1 −Ψq(q(0), qd(0))) (3-47)

Summary

In this chapter, the control design is discussed, based on a nonlinear geometric control ap-
proach. Different from other control techniques, is the fact that error functions are defined on
non-Euclidean manifolds, similar to the manifolds that describe the configuration space of the
system. Since these manifolds are locally Euclidean, local stability properties of a closed-loop
equilibrium solution can be determined by using standard Lyapunov methods.
Based on these error functions, controllers are designed through a backstepping approach, en-
abling both load position tracking and stabilization of the system. Using the geometric prop-
erties of the system allows the design of globally defined controllers that ensure almost-global
convergence of the QR attitude and load attitude. In order to test the control performance
of a load position tracking objective, experiments are defined in the next chapter.
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Chapter 4

Experiment

The experimental procedure is explained in Section 4-1. It is discussed what experiments
can be done in order to investigate closed-loop stability and the tracking performance of
nonlinear geometric control. In addition, a comparison is made between the performances of
the nonlinear geometric controller and a linear LQR controller.

The controllers are tested on their ability to track a desired load trajectory. Section 4-2
presents several desired load trajectories that create different challenges for load position
tracking, and it is discussed what could be expected from these experiments.

In Section 4-3 the experimental setup is discussed. The model parameters for the QR-load
system are presented, as well as the controller parameters for both nonlinear geometric con-
troller and LQR controller. The notion of a backstepping command filter is made to explain
a mathematical simplification in the experiments.

Finally, in Section 4-4 the results that are obtained from the load trajectory tracking experi-
ments are presented and discussed. The stability of the closed-loop system is demonstrated by
using the nonlinear geometric controller and the differences in linear- and nonlinear controller
performance are discussed.
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4-1 Procedure

The goal of the experiments is to analyze the controller performance and closed-loop stability
in a load position tracking task. The load positions are described by smooth trajectories
xL,d(t) in order to get well-defined control functions. In this work the desired load paths
are generated manually. The corresponding required velocity and acceleration are calculated
by a command filter, which is explained in more detail in Section 4-3. For the purpose of
load transportation, both controllers can be used. The difference is in the definition of the
problem.

As described in Chapter 3, the stability of the nonlinear geometric controller is evaluated
by analyzing the error functions to check whether 1) the zero equilibrium of the closed loop
tracking error (ex, ev, eq, eq̇, eR, eΩ) = (0, 0, 0, 0, 0, 0) is exponentially stable and 2) the tracking
errors ΨR and Ψq are bounded by an exponential decay function and the maximum error.
Performance of both nonlinear geometric control and LQR control are evaluated by comparing
their ability to track a load trajectory with minimal error. The differences based on response
time, load tracking accuracy and peculiarities are analyzed and discussed.

A linearized model is obtained by assuming small angles of both load and QR around an
equilibrium point. The model is obtained by assuming an equilibrium point such that the QR
is in a hover position with the load hanging directly underneath it. The LQR cost function
allows control of the states that define the QR position, QR attitude and load attitude by
calculating the control inputs f andM , in such a way that the system is stable. As a result, the
linearized model does not allow direct reference tracking of the load position. This limitation
illustrates an important difference between the use of a linear and a nonlinear model.

The LQR controller in this thesis is designed to track a QR position and to minimize the load
swing. The tuning of the LQR controller involves a trade-off between accurate QR movements
and minimal load swing. The QR position is based on the same desired load trajectories that
are used for the nonlinear geometric controller. When assuming small angles and minimal load
swing, the QR position should be approximately a cable length above the predefined desired
load position. Note that this will not allow a direct comparison of the load trajectory tracking
performance, nevertheless this will illustrate important differences between the controllers.
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4-2 Trajectories

This section discusses a number of cases that describe different load trajectories for the QR-
load system. The trajectories are generated to obtain responses and test stability of the
closed-loop system. A description of the desired trajectory is given in each case and the chal-
lenges that are involved are discussed. In order to define the nonlinear geometric controllers,
geometric approach requires the desired load trajectory to be twice-differentiable, meaning
that it is not capable of tracking a non-smooth trajectory. For this reason, all signals that are
used to generate the trajectories start smoothly, similar to the shape of a sigmoid function.
More details on the construction of the signals can be found in Section A-1.

Case A

In the first case, a smooth step-like trajectory is generated to investigate the step response of
the system. The step response is a commonly used analysis tool to obtain information about
the stability of a dynamical system. A step function is used to investigate the effects of a
sudden input to the system. Typical response properties that can be investigated are: rise
time, overshoot, settling time and steady-state error. The goal is to transport the load from
a starting position to a final position along the y-axis.

Figure 4-1 shows the desired load position, velocity and acceleration in the y-direction. The
desired position, velocity and acceleration in x- and z-direction are zero. It can be expected
that the step response is only able to track a trajectory up to a limited steepness. The
commanded acceleration in Equation 3-43 is required to be bounded, such that

‖ (mQ +mL)(ẍL,d + ge3) +mQL(q̇ · q̇)q ‖< B (4-1)

where B is a positive constant [12]. This might result in large errors, and it must be investi-
gated whether the system is able to maintain stable.

Figure 4-1: Desired load trajectory Case A, y-direction
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Case B

The nonlinear geometric controllers are expected to be able to deal with large angles in the
QR attitude, allowing aggressive maneuvering. This can be tested by describing the next
trajectory as a sine wave, growing in amplitude over time, in the direction of one axis in
{I} . This will result in a increasing distance between the load positions at each end of the
movement, requiring increasing velocities on both the QR and the load. To achieve this, it
can be expected that the QR requires large rotations. It is investigated whether the system
is able to perform load position tracking while dealing with increasing QR rotations.

The trajectory is generated by the product of signals A and B, shown in Figure 4-2a, of
which the first signal is a sine and the second consists of a smooth step up and down. This
product results in signal C, shown in the same figure, which is chosen to be the trajectory
in the direction of the y-axis of {I} . Figure 4-2 shows the desired load position, velocity
and acceleration in the y-direction. The desired position, velocity and acceleration in x- and
z-direction are zero.

(a) Trajectory generation (b) Desired trajectory

Figure 4-2: Desired load trajectory Case B, y-direction

Case C

This case is generated in order to investigate the response on tracking multiple conditions
at the same time. The trajectory along the y-axis in {I} is described as a sine wave with
an increasing and decreasing amplitude over time, similar to case B. While following this
wave, the load is commanded to move along the x-direction, while tracking a sine wave in the
z-direction. The changing amplitude of the trajectory that moves from side to side, requires
varying velocities to ’keep up’ with the trajectory.
In this case it can also be expected that large QR rotations are required to track the changing
amplitude of the sine wave and the varying velocities. While doing so, the QR is expected to
lose height due to the rotations. It can be investigated how the close-loop system responds
to the forward movement, while tracking a swinging motion and whether the controller can
correct for the expected height loss, while simultaneously tracking the varying heights.
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Figure 4-3 shows the desired load position and a three dimensional representation, which can
be seen as a figure eight increasing and decreasing in size. Figure 4-4 shows the corresponding
desired velocity and accelerations in all directions.

(a) (b)

(c) (d) (e)

Figure 4-3: Desired load Position Case C

(a) (b)

Figure 4-4: Desired load trajectory Case C
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4-3 Setup

Model and Control parameters The simulations are developed using Matlab® and Simulink®

R2013b. The model parameters to define the system are based on a Parrot® Bebop Drone
1, also used in a research by [29], see Table 4-1. The maximum thrust per rotor defines the
maximum total thrust and moment. mL and L are chosen arbitrarily.

Parameter Value Description
mQ 0.4 kg Quadrotor Mass
l 0.126 m Arm length from QR CM to rotor
Ixx 2.23×10−3 kgm2 Quadrotor Inertia about x-axis
Iyy 2.99×10−3 kgm2 Quadrotor Inertia about y-axis
Izz 4.8×10−3 kgm2 Quadrotor Inertia about z-axis
fi,max 1.96 N Maximum thrust per rotor
mL 0.1 kg Load Mass
L 0.7 m Cable Length

Table 4-1: Modeling Parameters

In order to get a feel for realistic physical limits, these can be based on hardware data, which
could be found on the web 1. These values are shown in Table 4-2, and can be compared
with the simulation results, in order to check whether the outcome is in the same order of
magnitude of a real physical system.

Value Description
13 m/s Maximum top speed
2.5 m/s Maximum vertical speed
30 deg Maximum inclination

Table 4-2: Hardware Parameters for Bebop Parrot Drone 1

The chosen controller gains in Equations 3-20, 3-33 and 3-43 can be found in Table 4-3.

Gain Case A Case B Case C
kR 0.9 0.9 0.9
kΩ 0.1 0.1 0.1
kq 3.9 3.9 3.9
kω 2 2 2
kx 6 6 6
kv 2.75 2.75 2.75

Table 4-3: Controller gains nonlinear geometric controller

1http://blog.parrot.com/2016/01/12/comparison-bebop-2-vs-bebop-drone/
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Command Filtering A consequence of a backstepping control approach, is that it increases
the order of the commanded states. The controllers generate control laws that are a function
of the commanded signals and their derivatives. As can be seen in Chapter 3, the control laws
require the values Rc, Ṙc, R̈c, qc, q̇c and q̈c. Time derivatives of the virtual control variables
may be quite complex and the calculation could result in high computational costs. Instead
of analytic differentiation of these terms, which can be tedious, these values can be obtained
with the use of a Command Filter [30, 31].
The state space implementation of such a filter is

ẋ1 = x2

ẋ2 = −2ζωn − ω2
n(x1 − xoc)

(4-2)

where xc = x1 and ẋc = x2. If xoc is bounded, the xc and ẋc are bounded and continuous.
The transfer function from xoc to xc is

Xc(s)
Xo
c (s) = H(s) = ω2

n

s2 + 2ζωns+ ω2
n

(4-3)

which has a unity gain at low frequencies, ζ is the damping ratio and ωn the undamped
natural frequency.

The result of a command filter is that the command signal is being pre-filtered by low pass
filters and generates an estimation of the derivatives of the commanded signal. Backstepping
command filters are implemented to compute Ṙc, R̈c, q̇c, q̈c, ẋL,d and ẍL,d.

The implemented command filter is shown in Figure 4-5.

Figure 4-5: Command Filter

The parameters were determined by trial and error. The higher the value for ωn, the higher
the frequencies that are passed through the filter. Whenever the frequency was chosen too
high, noisy derivatives are calculated, resulting in a destabilization of the system. Choosing
the values too low resulted in slow responses, and a bad estimation of the derivatives. The
damping ratio ζ = 0.98, which results in a strong damping. For the experiments, ωn are
30, 25, 25 rads for the filtering of R, q, xL,d, respectively.
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LQR control Linear Quadratic Regulator (LQR) control uses an algorithm to obtain a state-
feedback controller, minimizing a cost function depending on the states and weight factors.

Figure 4-6: LQR control design

LQR control is based on a small angle assumption. Therefore, following a traditional modeling
method, the rotation matrix is represented with a local coordinate system, for example with
an Euler Angle parameterization. The implemented LQR design is shown in Figure 4-6.
A continuous time linearized model of the system used in this controller is represented in the
following form

ẋ = Ax +Bu (4-4)
y = Cx +Du (4-5)

where x is the state vector and u is the input vector, defined as follows

x =
[
x y z φ θ ψ φL θL ẋ ẏ ż φ̇ θ̇ ψ̇ φ̇L θ̇L

]T
u =

[
f Mφ Mθ Mψ

]T (4-6)

Using Matlab command lqr(A,B,Q,R), an optimal gain matrix K is calculated, such that
the state-feedback law u = −K(x− xref ) [5] minimizes the quadratic cost function. Where
the cost function is defined as

J(u) =
∫ ∞

0
(xTQx + uTRu)dt (4-7)

The weight matrices Q and R define the effects of the states and inputs in the cost func-
tion, and the gain matrix K can be calculated. The derivation of the state space matrices
A,B,C,D, the weight matrices Q,R and the calculated gain matrixK can be found in Section
A-2.
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4-4 Results

In this section the results of the experiments are discussed, for each case separately. The
load tracking performance for the nonlinear geometric controller is discussed by analyzing
the desired and actual load trajectories, together with the corresponding load position and
velocity errors.
The configuration errors ΨR,Ψq and the corresponding tracking errors of the QR attitude
eR, eΩ, load attitude eq, eq̇ are presented. The error dynamics are analyzed through the error
functions, as described in Chapter 3. The stability of the closed-loop system is investigated by
observing whether the zero equilibrium of the closed loop tracking error (ex, ev, eq, eq̇, eR, eΩ) =
(0, 0, 0, 0, 0, 0) is exponentially stable.
Finally, the load position tracking results of the nonlinear geometric controller and a LQR
controller are compared.

Case A

In this case, the desired trajectory was shaped like a smooth step-like function to investigate
the response of the system to a sudden input. The desired and actual load position, velocity
and acceleration are shown in Figure 4-7a and 4-7b.

(a) (b)

Figure 4-7: Load Position Tracking NGC Case A

Since this function is different from a normal step function, it might be less meaningful to
say something about the rise time. Normally one checks the time it takes to reach 90% of
the step height. In this case, the step is a smooth function, meaning that the system is not
forced to the step height instantly, but in a smooth manner. However, it can be seen in Figure
4-11 that the required time such that 90% of the desired value is reached for the first time
is 0.61s. It can be observed that the system responds with approximately 15% overshoot in
the y-direction, and loses height during this maneuver. This was to be expected due to large
QR rotations. The error remains within a 5% error bound after 1.26s, to eventually reach
a steady-state at the step size of 0.25m. The load position and velocity error are shown in
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Figure 4-8c, where Figure 4-8a and 4-8b show the tracking errors of the QR attitude and
load attitude, respectively. The error in QR attitude and angular velocity are large at the
moments the slope starts and ends, indicating the required sudden QR rotation and high
angular velocity are larger than the system can manage. Nevertheless, the figures indicate
that the errors in both QR and load attitude are driven to zero relatively fast.

(a) (b)

(c)

Figure 4-8: Error functions NGC Case A

Furthermore, Figure 4-9a and 4-9b show that the tracking error functions of the QR and load,
respectively, are also driven to zero. From this can be concluded that (ex, ev, eq, eq̇, eR, eΩ) =
(0, 0, 0, 0, 0, 0) is exponentially stable.

For both control approaches, Figure 4-10a shows the load position and Figure 4-10b shows
the corresponding load position error. Figure 4-11 shows the absolute position error over the
desired load position in percentages. From this can be observed that for the LQR controller
the required time to reach 90% of the desired value for the first time is 1.36s. The system
responds with approximately 23% overshoot and the error remains within a 5% error bound
after 4.75s. Compare to the results of the NGC, the response is slower, the overshoot is much
larger and the settling time is higher.
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(a) (b)

Figure 4-9: Tracking Error functions NGC Case A

Due to the aggressive maneuver by the NGC control, the system has a steady-state offset in
height. It was found that this can be resolved by tuning the controller with smaller gains or
decreasing the cut-off frequency of the low pass filters, which both result in smoother, but
slower responses.
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(a) (b)

Figure 4-10: Controller Comparison Case A. Solid: NGC, Dash-dot: LQR

Figure 4-11: Load Position Error Percentage Case A. Solid: NGC, Dash-dot: LQR
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Figure 4-12a shows the QR attitude with respect to {I} , and a huge difference in the QR
rotations during the maneuver can be observed, note the difference in scale. It is obvious that
the NGC controller is capable of handling more aggressive maneuvers. Figure 4-12b shows
the load angle with respect to {I} . The NGC controller allows larger angles of the load
attitude, while stabilization is reached relatively fast. The LQR controller tries to minimize
the swing along the entire trajectory, not allowing large angles of the load attitude. It can be
observed that the LQR controller requires more time to stabilize the load angle, whereas the
NGC controller is capable of damping the oscillation in a smooth manner.

(a) (b)

Figure 4-12: Controller Comparison Case A. Solid: NGC, Dash-dot: LQR
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Case B

In this case, the desired trajectory was designed to investigate the response of the system
to increasing distance and velocities between the ends of a swinging motion. The desired
and actual load position, velocity and acceleration are shown in Figure 4-13a and 4-13b.
The corresponding load position and velocity error are shown in Figure 4-13c. Despite the
fact that case B requires higher velocities than in case A, the distance of the load position
gradually increases, which requires less sudden aggressive commanded rotations. It can be
seen that acceleration in case B is a lot smoother than in case A, which explains why also
both the velocity and position are smooth enough for the system to track.

(a) (b)

(c)

Figure 4-13: Load Position Tracking nonlinear geometric control Case B

Figure 4-14a and 4-14b show the tracking errors of the QR attitude and load attitude, re-
spectively. The error in QR attitude and angular velocity is much smaller compared to the
results in case A, which indicates that the system is fast enough to respond to the required
QR rotations and velocities.
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(a) (b)

Figure 4-14: Error functions NGC Case B

Both QR and load attitude errors stay bounded during the trajectory and are driven to zero.
Furthermore, Figure 4-15a and 4-15b show a gradual increase and decrease in error, similar
to the profile of the desired velocity. All error functions are driven to zero, and it can also be
concluded for this case that (ex, ev, eq, eq̇, eR, eΩ) = (0, 0, 0, 0, 0, 0) is exponentially stable.

(a) (b)

Figure 4-15: Tracking Error functions NGC Case B

Figure 4-16a shows the load position for both control approaches. The shape of the actual
load position appears to be quite similar. However, taking a look at Figure 4-16b shows the
load position error for both control approaches. It is clear that the LQR controller fails to
track the load position, since errors can be seen to reach values up to 1.1m.
The profiles of the QR rotation angles look notably alike, as can be seen in Figure 4-17a. It
shows that the LQR controller is certainly capable of controlling the QR to large rotations.
The gradually increasing velocity allows the LQR controller to reach larger angles. However,
it can be seen in Figure 4-17b that the load swings significantly more when controlled by the
LQR. The load continues its natural swing, which increases the error even more. This shows
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that the LQR controller struggles with both keeping up with the position and minimizing the
load swing.

(a) (b)

Figure 4-16: Controller Comparison Case B. Solid: NGC, Dash-dot: LQR

(a) (b)

Figure 4-17: Controller Comparison Case B. Solid: NGC, Dash-dot: LQR

It is also notable that the shape of the load trajectory is nearly correct, this can be explained
due to the regular shape of the trajectory and the natural swing of the load. It is easily
illustrated that the controller has large load position errors due to the swing of the load,
when the desired load trajectory becomes more complex.
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An irregular shape for the desired load trajectory can be created by multiplying the desired
load position from this case with a sine wave of an other frequency. The signal C in Figure
4-2a gets multiplied with signal D to obtain signal E, see Figure 4-18a. The corresponding
desired position, velocity and acceleration is shown in Figure 4-18b.

(a) Trajectory generation (b) Desired trajectory

Figure 4-18: Desired load trajectory case B extended, y-direction

Figure 4-19a shows the load position and it can be seen that the swinging motion of the actual
trajectory is no longer similar to the desired trajectory. Figure 4-19b shows the corresponding
load position error. In Figure 4-20a can be seen that the LQR controller does not react to
the large load angles, seen in Figure 4-20b. The NGC shows fast changes in the QR angles
to correct for the load position errors.

(a) (b)

Figure 4-19: Controller Comparison Case B extended. Solid: NGC, Dash-dot: LQR
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(a) (b)

Figure 4-20: Controller Comparison Case B extended. Solid: NGC, Dash-dot: LQR
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Case C

The last case is designed to investigate the response to a more complex desired load trajectory
in three directions, each direction with a different shape. The desired and actual load position,
velocity and acceleration are shown in Figure 4-21a and 4-21b.

(a) (b)

(c)

Figure 4-21: Load Position Tracking nonlinear geometric control Case C

As can be seen in Figure 4-21c, the error in height is quite large. This can be explained by the
combination of height loss due to rotation and the changing desired height trajectory. At some
point in time the load is required to fly a distance of 2m from side to side in the y-direction
with approximately 2m/s. At the same time when the QR is inclined, the trajectory in the
z-direction requires the load to go up and down.

As expected, the QR loses height due to a decreasing total upward force whenever the QR is
inclined. The error in the y-direction is most likely the result of the increasing required speed
in both the x- and y-direction. The QR is capable of creating a moment around a body axis.
However, when the QR is rotated around one body axis, a rotation around the other body
axis will not result in a straight translation. This makes it challenging to move fast in one
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direction while swinging perpendicular to that direction.

Despite the errors, the QR is able to stabilize the system to an equilibrium, this can be seen in
Figures 4-21c, 4-22a, 4-22b, 4-23a and 4-23b. It can be observed that (ex, ev, eq, eq̇, eR, eΩ) =
(0, 0, 0, 0, 0, 0) is exponentially stable.

(a) (b)

Figure 4-22: Error functions NGC Case C

(a) (b)

Figure 4-23: Tracking Error functions NGC Case C

Figure 4-24a shows the load position and Figure 4-24b shows the load position error for both
control approaches. It is evident that the LQR controller is not suitable for load position
tracking of such complex trajectories.

Figure 4-25a and 4-25b show the QR and load angle w.r.t. {I} . The main difference that
can be observed are the spikes in the NGC approach. The NGC QR attitude controller is
able to calculate the required rotation along the trajectory, based on the error information.
This indicates fast maneuvering, something what the LQR controller is not capable of.
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(a) (b)

Figure 4-24: Controller Comparison Case C. Solid: NGC, Dash-dot: LQR

The load angle by NGC has a peculiar shape, for it is not a smooth sine-wave like shape. The
pointy almost triangular shapes indicate that load angle is controlled actively, rather than
letting it swing freely. This can be related to the peaks in the QR angle, see Figure 4-25a.

(a) (b)

Figure 4-25: Controller Comparison Case C. Solid: NGC, Dash-dot: LQR
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4-5 Summary

This chapter describes the experiments to test the nonlinear geometric controller on its ability
to track load trajectories. It is explained how the stability of the system and the load position
tracking performance can be analyzed.

The first trajectory is a smooth step-like function, which allows properties similar in the
analysis of a step response to be observed. Next, the second trajectory describes an increasing
load position trajectory to investigate the systems response on tracking a load trajectory with
increasing velocities. Finally, the last trajectory describes a three-dimensional load position
tracking task, by generating a complex trajectories to test the response to limitations of the
system.

Matlab and Simulink were used to create simulations of the experiments, and data was gener-
ated to analyze the responses of the system. Along with the chosen parameters, the results of
the experiments are presented. The experiments were done with both the nonlinear geometric
controller and an LQR controller. Differences in the control performances were discussed and
the concept of the nonlinear geometric controller is proven.

N.N. Vo Master of Science Thesis



Chapter 5

Conclusions and Future Work

5-1 Summary and Conclusions

This thesis aims to give insight in a nonlinear geometric approach for the control of a quadro-
tor with a cable suspended load. In order to test the concept of the nonlinear geometric
approach, a mathematical model is composed by applying techniques from differential geom-
etry, differential calculus and integral calculus. This method allows the model to be defined
globally on nonlinear manifolds instead of Euclidean spaces that are defined by Cartesian
coordinates, avoiding the obstacle of singularities that occur on local charts.

After defining the model, nonlinear geometric control is used as a control system for the
QR with load. Now, both the dynamic system and controller evolve on nonlinear manifolds.
The model allows nonlinear geometric controllers to define error functions to calculate error
through matrix operations that arise from linear algebra. A backstepping approach allows
different DOFs of the under-actuated system to be controlled. The controllers consists of
control laws that guarantee stabilization of the closed-loop system in a cascaded structure by
using the states as virtual control inputs.

The stability and performance of the nonlinear geometric controller is tested in a set of
experiments, each describing different load trajectories. The experiments are simulated and
the nonlinear control performance is compared to the proven concept of an LQR controller.
The nonlinear tracking controller proves almost-global exponential attractiveness to the zero
equilibrium of the tracking errors.

The nonlinear geometric approach allows the control of multiple states with the final objective
of controlling the load position. From the results of the experiments can be concluded that
the nonlinear control design has proven effective in tracking complex trajectories and fast
maneuvers, while maintaining closed-loop stability of the system.
Furthermore, the advantage that the controllers are almost-globally defined, makes them
suitable for complex load position tracking. The controller shows overall satisfying results for
the load position tracking experiments.

Master of Science Thesis N.N. Vo



52 Conclusions and Future Work

Tuning of the controller can be done by checking the system responses and the error func-
tions. Tuning the controllers for the QR and load attitude controlled mode can be done in a
similar fashion as tuning a simple PD controller. Adding proportional gain results in a faster
response, where adding derivative gain for a better damping. However, tuning the load posi-
tion controlled mode is no longer intuitive due to the nonlinearities, the increased complexity
introduced by the control laws and the under-actuated nature of the system.

Where the nonlinear geometric controller employs a nonlinear model that is defined on non-
linear manifolds, the LQR controller employs a model that is defined and linearized in a
Euclidean space. The nonlinear geometric approach allows the control of the dynamics that
are described by the nonlinear model. The linear controller has an incomplete model due to
unmodeled dynamics, and the controller does not allow direct tracking of a load trajectory.
For that reason, the LQR controller is tuned by making a trade-off between sufficient QR
position tracking and minimization of the load swing.

From the comparison between the controllers it can be concluded that near the equilibrium
configuration, the LQR controller is able to reduce the swing relatively fast and accurate.
However, the shortcomings of the LQR controller become evident when it is given the task
to track complex trajectories. The controller is not able to cope with the fast changing
dynamics, resulting in overshoots and slow responses, causing the load to lag behind the
desired trajectory. Keep in mind that the comparison with an LQR controller is meant as a
proof of concept of NGC, and the goal is not to optimize the LQR controller.

5-2 Recommendations for Future Work

5-2-1 Investigate Implementation

Digital control The concept of geometric control is shown under the assumption of continuous-
time control. However, an analysis must be done in the discrete-time domain for the imple-
mentation of a real-time application. The feasibility to run the controller on an on-board
processor on a QR must be investigated. The control performance could be limited by the
bandwidth of either the discretized control system or the wireless communication. It must be
investigated whether the control system is still able to deal with the fast dynamics that are
required for aggressive maneuvering. Continuous-time Euler-Lagrange equations were found
by minimizing the action integral, which is a function of the Lagrangian. In a similar pro-
cedure the discrete-time Euler-Lagrange can be obtained, by minimizing te summation of a
discrete Lagrangian, which is demonstrated in [10].
Furthermore, command filters were applied to approximate the derivatives of the command
inputs and the parameter choice was arbitrarily. An extension to the use of the filters, is
the investigation of the parameter choice and its effects. However, the implementation of
the command filters was also done under the assumption of continuous-time control. The
calculations can be achieved by implementation of simple low-pass filters, potentially saving
computational power and possibly interesting for an on-board implementation. However, it
must be investigated whether this approach preserves the geometric properties of a mechanical
system and controller stability in the discrete-time domain.
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Model identification, validation and robustness In this thesis the model parameters are
either obtained from examples in literature or arbitrarily chosen. In practice, identification
and validation of the QR model and rotor dynamics is required.
The control in this thesis assumes perfect state feedback. In practice the controller depends
on visual feedback or data obtained from an on-board inertial measurement unit. Unlike in
simulations, this data will contain noise, uncertainties and possibly drift.
Based on a nonlinear geometric approach for a QR without load, [13] includes uncertainties
in the translational dynamics and rotational dynamics to prove robustness. As a theoretical
extension, this approach could be extended to a QR-load system to test the influence of model
mismatches and robustness of the controller.

Hybrid System Control This thesis is focused on the subsystem where the tension in the
cable is non-zero. The dynamics of the QR-load system will be better covered by adding the
subsystem where the cable tension is zero. More specifically, the second subsystem simply
considers a QR with a disconnected load in free fall. Both subsystems can be modeled via
the same nonlinear geometric approach.
A possible extension is to investigate the possibilities to apply hybrid control, such that the
controller is able to switch between control for each of the two subsystem depending on
whether the cable tension is zero or non-zero. In [1, 16, 33] both subsystems are expressed in
the form of one hybrid nonlinear geometric model and a trajectory generation method that
accounts for the switching dynamics of the hybrid system is presented.

5-2-2 Trajectory Generation

Minimum Snap Trajectory Generation The trajectories described in Section 4-2 were ar-
bitrarily generated by hand to test the performance of the controller in different situations.
Recall that the nonlinear geometric controllers require a twice-differentiable trajectory. When-
ever more complex or optimal trajectories are required, manual generation of trajectories is
no longer efficient and become too complex to solve by hand. A recommended extension to
this thesis is the automatic generation of a trajectory.
Trajectory generation algorithms exist that are able to generate a smooth desired position,
velocity and acceleration by solving a QP optimization problem. This approach is presented
by [34] and applied in [16, 33]. The QP even allows inclusion of constraints on inputs or
trajectory in the optimization. Furthermore, it is proven that the system is differential flat,
meaning that all states and inputs can be expressed in terms of only four states and their
derivatives. This property is used to transform the high-dimensional optimization problem
into a four-dimensional problem.
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Appendix

A-1 Signals Trajectory Generation

Figure 4-1, 4-2b and 4-3a show the trajectories that are generated for Cases A, B and C. This
section gives more detail on the generation of the signals that were used in the generation of
the trajectories, see Figure A-1.
Signal A is the x-component in Case C, and is composed by taking π rad of a sine wave with
frequency ω = 2π/45 rads , from the lowest to the highest point. Biasing the signal will make it
start smoothly from 0. This signal is kept constant at 20s and multiplied with a gain of 20.
Signal B and signal C are both sine waves with ω = 2

π/3
rad
s and ω = 2π/1.5 rads .

Signal D is a concatenation of a smooth upwards signal, a constant and a smooth downwards
signal. The up- and downwards signal are part of a sine wave with frequency ω = 2π/45 rads ,
composed the same way as signal A. Signal D is multiplied with signal B and C to ensure that
the trajectory gradually increases and decreases. The multiplication with signal B gives the
y-component in case B and case C, and the multiplication with signal C gives the z-component
of case C.

Figure A-1: Signals for trajectory generation
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A-2 LQR controller

The linearized model is written into a first order ODE of the form

ẋ = Ax +Bu (A-1)
y = Cx +Du (A-2)

with the state- and input vectors as defined in Equation 4-6.

The model is linearized around the equilibrium point where the QR is in a hovering state
and the load hangs underneath it. All translational and rotational velocities are zero during
hover. The positional states and the yaw angle do not affect the dynamics, and are set equal
to zero. A thrust input u1 = g(mQ +mL) is required to maintain hover, and all other control
inputs are set equal to zero. The states and inputs in the equations of motion are substituted
by an initial condition and a perturbation

ẋ→ ẋ0 + δẋ, x→ x0 + δx, u→ u0 + δu (A-3)

x(0) = 0

u(0) =
[
g(mQ +mL) 0 0 0

]T (A-4)

The linearized equations of motion are rearranged in Equation A-5, as done in [8], and sub-
stituted back into Equation A-1.

M1δẍ +M2δx = M3δu (A-5)

With IL = mLL
2 and mT = mQ +mL, the matrices M1,M2,M3 are defined as follows

M1 =



mT 0 0 0 0 0 0 LmL

0 mT 0 0 0 0 LmL 0
0 0 mT 0 0 0 0 0
0 0 0 Ixx 0 0 0 0
0 0 0 0 Iyy 0 0 0
0 0 0 0 0 Izz 0 0
0 mLL 0 0 0 0 IL + L2mL 0

mLL 0 0 0 0 0 0 IL + L2mL


(A-6)

M2 =



0 0 0 0 −gmT 0 0 0
0 0 0 gmT 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 gLmL 0
0 0 0 0 0 0 0 gLmL


, M3 =



0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0


(A-7)
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The tuning parameters of the LQR controller are chosen as follows

1 Qdiag = [50000 50000 50000 0.001 0.001 1 25000 25000 0.001*ones(1,8)];
2 Rdiag = [1000 100*ones(1,3)];

such that Q = diag(Qdiag) and R = diag(Rdiag). This indicates that the position of the
QR has higher priority than the load angle. There are many ways to approach the problem,
and many ways to tune the controller. Matlab command lqr(LQRA,LQRB,Q,R) generates the
following gain matrix K

1 K =
2

3 Columns 1 through 7
4

5 -0.0000 0.0000 7.0711 -0.0000 -0.0000 -0.0000 0.0000
6 -0.0000 -22.3607 0.0000 2.3683 -0.0000 -0.0000 8.3778
7 22.3607 0.0000 -0.0000 -0.0000 4.0067 0.0000 -0.0000
8 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.1000 -0.0000
9

10 Columns 8 through 14
11

12 0.0000 -0.0000 -0.0000 2.6591 0.0000 0.0000 -0.0000
13 0.0000 -0.0000 -6.9992 -0.0000 0.2112 0.0000 0.0000
14 -9.6733 7.8971 0.0000 -0.0000 -0.0000 0.0272 0.0000
15 -0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0311
16

17 Columns 15 through 16
18

19 -0.0000 -0.0000
20 -5.0244 -0.0000
21 0.0000 4.6145
22 -0.0000 0.0000
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A-3 Additional Figures

Figures A-2, A-3, A-4 and A-5 show the control inputs corresponding to the experiments in
cases A, B, B extended and C, respectively. Left are the total force and forces per rotor, right
are the moments about the body axes.

(a) (b)

Figure A-2: Control Inputs NGC Case A

(a) (b)

Figure A-3: Control Inputs NGC Case B
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(a) (b)

Figure A-4: Control Inputs NGC Case B extended

(a) (b)

Figure A-5: Control Inputs NGC Case C
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List of Symbols

ε Tuning parameter to enable rapid exponential convergence of eR, eΩ

λM (·) Maximum eigenvalue
ω Angular velocity of the load
Ω ∈ R3 Body angular velocity
ωi Angular speed of rotor i
φL Angle of rotation about e1 w.r.t. {I}
{b1,b2,b3} Unit vectors along the axes of {B}
{e1, e2, e3} Unit vectors along the axes of {I}
{B} Body Frame
{I} Inertial World Frame
b Thrust factor
d Drag factor
f Total thrust in direction of b3, expressed in {B} . f =

∑4
i=1 Fi

Fi Force generated by rotor i
g Gravitation constant 9.81m/s2

J ∈ R3×3 Inertia tensor of QR
L Length of the cable
l Distance from the rotor to the QR CM

M Total moment around axes of {B} , expressed in {B} . M =
[
Mφ Mθ Mψ

]T
mL Mass of the load
mQ Mass of the QR
Mi Drag moment generated by each rotor
q ∈ S2 Unit vector from QR to load
xL ∈ R3 Position of the load
xQ ∈ R3 Position of the QR CM
θL Angle of rotation about e2 w.r.t. {I}
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Acronyms

QR Quadrotor

CM Center of Mass

DOF Degree of Freedom

PD Proportional-Dervative (controller)

PID Proportional-Integral-Derivative (controller)

LQR Linear Quadratic Regulator

MPC Model Predictive control

NGC Nonlinear Geometric Control

QP Quadratic Programming

Master of Science Thesis N.N. Vo


	Front Matter
	Cover Page
	Title Page
	Signatures
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables

	Main Matter
	Introduction
	Aim and Motivation
	Organization of the Report

	Dynamic Model
	Geometric Mechanics
	Quadrotor Model
	Quadrotor-Load Model

	Control Design
	Nonlinear Geometric Control
	Error Functions

	Backstepping Control
	Quadrotor Attitude Tracking
	Load Attitude Tracking
	Load Position Tracking


	Experiment
	Procedure
	Trajectories
	Setup
	Results
	Summary

	Conclusions and Future Work
	Summary and Conclusions
	Recommendations for Future Work
	Investigate Implementation
	Trajectory Generation



	Appendices
	Appendix
	Signals Trajectory Generation
	LQR controller
	Additional Figures


	Back Matter
	Acronyms


