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Abstract. This paper presents a new functionality of the Automatic Differentiation
(AD) Tool tapenade. tapenade generates adjoint codes which are widely used for
optimization or inverse problems. Unfortunately, for large applications the adjoint code
demands a great deal of memory, because it needs to store a large set of intermediates
values. To cope with that problem, tapenade implements a sub-optimal version of a
technique called checkpointing, which is a trade-off between storage and recomputation.
Our long-term goal is to provide an optimal checkpointing strategy for every code, not yet
achieved by any AD tool. Towards that goal, we first introduce modifications in tapenade

in order to give the user the choice to select the checkpointing strategy most suitable for
their code. Second, we conduct experiments in real-size scientific codes in order to gather
hints that help us to deduce an optimal checkpointing strategy. Some of the experimental
results show memory savings up to 35% and execution time up to 90%.

1 INTRODUCTION

The context of this work is Automatic Differentiation (AD) [2, 7]. The reverse mode
of AD is a promising way to build adjoint codes to compute gradients. The fundamental
advantage of adjoint codes is that they compute gradients at a cost which is independent
of the dimension of the input space, and they are thus a key ingredient to solve inverse
problems and optimization problems [14, 4]. AD adjoint codes are fundamentally made of
two successive sweeps, a forward sweep running the original code and storing a significant
part of the intermediate values, and a backward sweep using these values to compute the
derivatives. For large applications, such as CFD programs, reverse differentiated codes
may end up using far too much memory.

Checkpointing is a standard time/memory trade-off tactic to reduce the peak of this
memory use. When a segment of the program is checkpointed, it is executed without
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storage of the intermediate values. Later on, when the backward sweep reaches the check-
pointed segment, this segment must be executed a second time with storage, and finally
the backward sweep may resume. Checkpointing has a benefit: there are two places where
the memory size reaches a peak, namely at the end of the forward sweep and at the end
of the checkpointed segment, and both peaks are generally smaller than the peak without
checkpointing. On the other hand, checkpointing has a cost: (1) in execution time be-
cause segment is executed twice and (2) in memory because intermediate values must be
store to run the segment twice. Hopefully this last memory cost is less than the memory
benefit above.

In AD tools, checkpointing is applied systematically, for instance at procedure calls or
around loops bodies. Experience shows that checkpointing every procedure call is in gen-
eral sub-optimal. Optimal strategies have been found only for the case of a fixed-length
loop [5], and not for the nested procedure structure of real-life codes.

Towards the ultimate goal of an AD tool embedding an optimal checkpointing strategy
for all programs, we propose in a first step to activate checkpointing for only a number of
user-selected procedure calls. Therefore, in addition to the default systematic checkpoint
mode (called joint mode in [7]), each procedure may now be differentiated in the so-called
split mode, i.e. without checkpointing. In split mode, the procedure gives rise to two sep-
arate differentiated procedures, one for the forward sweep and one for the backward sweep.

This paper presents the implementation of this new split mode functionality inside our
AD tool tapenade [10], which up to now only featured the joint mode. We also discuss
the necessary adaption of the existing preliminary data-flow analyses namely, adjoint-
liveness analysis [11] and TBR analysis [9, 11]. In a second step, we use this user control
on checkpointing to make experimental measurements of various checkpointing choices on
several large scientific codes. We present the results of these experiments, some of which
show savings of memory up to 35% and execution time up to 90%. Also, these results
give hints to a general automatic strategy of where to use checkpointing. At present, no
AD tool has such a general checkpointing strategy, and our long term goal is to provide
one in tapenade.

The remainder of this paper is structured as follows: Section 2 introduces the reverse
mode of AD. In Section 3 we present the checkpointing technique and show how different
checkpointing placement strategies affect the behavior of the reverse differentiated code.
In Section 4 we discuss the implementation issues. In Section 5 we present and discuss
the experimental measurements. Finally, we discuss the future work and the conclusions
in Section 6.
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2 REVERSE AUTOMATIC DIFFERENTIATION

In our context, AD is a program transformation technique to obtain derivatives, and
in particular gradients. We are given a program P that evaluates a function F . Program
P can be seen as a sequential list of instructions Ij

P = I1 ; I2 ; . . . ; Ij ; . . . ; Ip−1 ; Ip,

where the instructions represent elementary functions fi. Then the function F is indeed

F = fp ◦ fp−1 ◦ . . . ◦ fj ◦ . . . ◦ f2 ◦ f1.

AD takes advantage of this to apply the chain rule of calculus to build a new program
that evaluates the derivatives of F.
The reverse mode of AD computes gradients. Roughly speaking, for a given scalar output,
it returns the direction in the input space that maximizes the increase of this output.
Strictly speaking gradient is defined only for scalar output functions. Therefore, we build
a vector Y that defines the weights of each component of the original output Y = F (X).

This defines a scalar output Y
t
× Y = Y t × Y = F t(X) × Y . Its gradient has thus the

following form:

X = F ′t(X)× Y = f ′t
1 (x0)× . . .× f ′t

j+1(xj)× . . .× f ′t
p (xp−1)× Y (1)

where xi−1 is the set of all variables values just before execution of the instruction that
implements f ′t

i , and F ′t(X) is the transposed Jacobian.

Formula 1 is implemented from right to left, because matrix×vector products are
cheaper to compute than matrix×matrix products. This result in probably the most
efficient way to compute a gradient. Unfortunately, this mode of AD has a difficulty: the
f ′t

i instructions require the intermediate values xi−1 in the reverse of their creation order.
The trouble is that programs often overwrite variables, and therefore these values may be
lost when needed by the f ′t

i .

There are two main strategies to cope with this problem: Recompute-All [3] or Store-
All [7]. Recompute-All strategy is very demanding in execution time, quadratic with
respect to the number of run-time instructions, because it recomputes the intermediates
values every time they are required, from a saved initial point. On the other hand, the
Store-All strategy is linear with respect to the number of run-time instructions, both for
memory consumption and execution time, because it consists in storing on a stack all
values required later by derivatives, and then restore them when they are needed. This
results in the structure of reverse differentiated programs shown on Figure 1.
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Forward
Sweep

Backward
Sweep

mpeak

x̄ = f ′t
1 (x0)× x̄1;

xj = fj(xj−1);

xp−1 = fp−1(xp−2);

x̄j = f ′t
j+1(xj)× x̄j+1;

x0;

TIME

...

...

...

...

x̄p−1 = f ′t
p (xp−1)× ȳ;

restore values

store values

(stack)
MEMORY

Figure 1: The horizontal axis represents the amount of values currently on the stack.

Because we will need to reason formally about adjoint programs in the sequel of this
paper, we need to denote them in a more algebraic way. The reverse differentiated pro-

gram P has two parts. The first is called the forward sweep
−→
P , and is basically the

necessary “slice” of the original program P plus some instructions to store required va-

lues. The second part is called the backward sweep
←−
P , and consists of the instructions

that implement the functions f ′t
i (x) from Formula 1, plus some instructions to recover the

needed intermediate values.

Formalizing the structure of the program in Figure 1, the structure of the reverse
differentiated program P of a program P is roughly described by equation (2)

P =
−→
P ;
←−
P = I1 ; . . . ; Ip−1 ;

←−
Ip ; . . . ;

←−
I1 (2)

Figure 2 shows the reverse differentiated version of a small example procedure, featuring
the forward and backward sweeps. The PUSH() and POP() calls store and restore values of
required intermediates variables. We can now refine formula (2) by inserting these calls.
For any instruction I and any program tail D after I, the program P is defined recursively
by the following equation:

P = I ; D =
−→
I ; D ;

←−
I = PUSH(out(I)) ; I ; D ; POP(out(I)) ; I ′ (3)

where out(I) is a set of values overwritten by instruction I. In reality, we store only
the intermediates values which are required to compute the derivatives of I and of its
preceding instructions. The data-flow equations of the static analysis that evaluates these
values ”To Be Recorded”, known as the ”TBR” analysis, was given in [11].
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Original procedure Reverse differentiated procedure

subroutine sub1(x,y,z)

I1 tmp1 = SIN(y)

I2 y = y * y

I3 tmp1 = tmp1 * x

I4 z = y / tmp1

end

subroutine sub1 b(x,xb,y,yb,z,zb)

I1 tmp1 = SIN(y)

PUSH(y)

I2 y = y * y

PUSH(tmp1)

I3 tmp1 = tmp1 * x

<forward sweep ends, backward sweep begins>

I ′
4

{

yb = zb/tmp1
tmp1b = −(y ∗ zb/tmp1 ∗ ∗2)
POP(tmp1)

I ′
3

{

xb = tmp1 ∗ tmp1b
tmp1b = x ∗ tmp1b
POP(y)

I ′
2 yb = 2 * y * yb

I ′
1 yb = COS(y) * tmp1b

end

Figure 2: The structure of a reverse differentiated program

3 CHECKPOINTING

To control the memory problem caused by the storage of intermediates values, the
Store-All strategy can be improved in two main directions: (1) refine the data-flow anal-
yses in order to reduce the number of values to store, and (2) deactivate the Store-All
strategy for chosen segments of the code, therefore saving memory space. The former is
described in [11, 12], the latter is the focus of this work.

The mechanism which deactivates the Store-All strategy for certain chosen segment is
called checkpointing. It has two consequences on the behavior of the reverse differentiated
program:

1. when the backward sweep reaches the chosen segment, it must be executed again,
this time with Store-All strategy turned on.

2. in order to execute the segment twice, a sufficient set of values (called a snapshot)
must be stored before the first execution of the segment.

On Figure 3, we assume that snapshot(C) < tape(C). This is a reasonable assumption
in most cases, and particularly when C is large. As a consequence we see that mpeakc
is smaller than mpeak, because in the checkpointed case the first execution of segment C
does not store anything. Conversely, we see that the time tc is longer than t, because
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store snapshot(C)

−→

C forward sweep C
←−

C backward sweep C

C original code

storing tape(C)

restoring tape(C)

restore snapshot(C)

mpeak

−→

C

←−

C

←−

C

−→

C

TIME

Sweep

Sweep

t

Backward
Sweep

tc

Backward

Forward

C

mpeakc

Sweep
Forward

(stack)
MEMORY

Figure 3: Checkpointing in Reverse Mode AD.

in the no-checkpointing case every piece of the code is executed only once, whereas we

observe in the checkpointing case that segment C is executed twice (C and
−→
C ).

Checkpointed segments can be chosen in different ways, and can be nested. One classi-
cal strategy is to checkpoint each and every procedure call. However, experience indicates
that this strategy is not optimal, though the optimal situation is not easy to foresee.
Since the optimal checkpointing strategy is still out reach, it seems natural to let the user
influence the choice. A completely user-driven checkpointing will allow the user to try
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each and every combination, looking for an optimal placement of checkpoints. This paper
describes the developments to achieve this user interaction. In a second step, this will
let us experiment about rules and tactics, towards the long-term goal of computer aided
optimal checkpointing. This paper presents our first experiments in this direction.

The assumption behind checkpointing is that snapshot(C) < tape(C). To keep the
snapshots small, we need to develop the algebraic notation of equation (3). When segment
C is checkpointed (denoted with surrounding parentheses), reverse differentiation of the
program P = U ; C; D is defined by the recursive equation

P = U ; (C); D =
−→
U ; PUSH(snp(C)); C; D; POP(snp(C)); C;

←−
U (4)

where U/D are the code segments Upstream/Downstream of C and snp(C) is the
snapshot stored to re-execute C. Intuitively, if a variable is not modified by C nor by D,
then its value will be unmodified when C is run again and it is not necessary to store it.
We shall denote by out(X) the set of variables overwritten by the code segment X. Also,
only the variables that are going to be used by C need to be in the snapshot. Indeed, only
the variables that are used by C need to be stored, and this set is often smaller than the
variables used by C. We shall call it live(C), and it is determined by the so-called adjoint
liveness analysis. Therefore a good enough conservative definition of the snapshot is:

snp(C) = live(C) ∩ (out(C) ∪ out(D)) (5)

The data-flow equations of adjoint liveness analysis were defined formally in [11]. Snap-
shots can be refined further, taking into account the interactions between successive or
nested checkpointed segments. A study on minimal snapshots can be found in [12].

Let’s now focus on the checkpoint placement problem. In tapenade like in many
other AD tools, the natural checkpointed segment is the procedure call. Therefore in the
sequel we shall experiment with various placements of checkpoints, all around procedure
calls, and therefore shown on call trees. This hypothesis is by no means restrictive and our
conclusions can be extended to arbitrary cleanly nested code segments. Figure 4 shows (on

take snapshot

use snapshot

original subroutine x

←−x

x

backward sweep for x

−→x forward sweep for x

DB

C C
−→

C
←−

C

−→

B
←−

B
←−

D
−→

D

−→

A
←−

A

C

B D

A

Figure 4: Joint-All mode: Checkpointing all calls in Reverse Mode AD
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the left) the call graph of an original program, and the corresponding reverse-differentiated
call graph, using the Joint-All mode, where all procedure calls are checkpointed. This
Joint-All mode is naturally the basic mode, being the extreme trade-off that consumes
time and saves memory. Memory resources are finite, whereas execution time resources
are not. Therefore this choice is safest, especially if we assume that snapshots are generally
smaller than the corresponding tape.

−→

A

−→

D
−→

B

−→

C

←−

A

←−

C

←−

D
←−

B

Figure 5: Split-All mode: no Checkpointing in Reverse Mode AD

Figure 5 shows the other extreme alternative, which checkpoints no procedure call. We
call this alternative Split-All mode. In split mode the forward sweep and the backward
sweep are implemented separately. There is no duplicate execution, so no snapshot is
required and in theory the execution time is smallest. On the other hand the peak size
of the tape is highest. Moreover, since the forward sweep and the backward sweep do
not follow each other during execution, even the values of the local variables need to be
stored, which requires even more intermediate values in the tape.

Split-All and Joint-All modes are two extreme strategies. It is worth trying hybrid
cases, we present a couple of cases in Figure 6. The first strategy (hybrid1) implements
the joint mode for all procedures except for D. Conversely, the second strategy (hybrid2)
implements the split mode for all procedures except for procedure D, which is check-
pointed.

In order to have a more precise idea of the aforementioned trade-off we shall simulate
the performances of these four checkpointing strategies from figures 4, 5, and 6, for two
motivating scenarios, namely when ”tape > snapshot” and when ”tape < snapshot”. We
assume that all procedures require the same snapshot and tape size. Also, we assume
that each procedure has the same execution time.

For the first scenario, we set the memory size of the snapshot to 6 and the memory size
of the tape to 10. This setup corresponds to the usual assumption that the tape is bigger
than the snapshot for procedures. Figure 7 shows the behavior of the four checkpointing
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−→
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C

−→

D
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D
−→

B
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B
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C
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C

←−

A

←−

C
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Figure 6: Two hybrid approaches (split-joint)
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Figure 7: Numerical Simulation results, tape = 10, snapshot = 6

strategies. As we expected, the curve that represents the joint configuration shows the
smallest memory use but the largest execution time. Conversely, the curve that repre-
sents the split mode has the highest peak of memory use but the shortest execution time.
Hybrid strategies range between these two extremes.

This scenario assumed that the tape is bigger than the snapshot. However, this a-
ssumption is not always valid. Therefore we make a second simulation where we assume
that the tape costs 6 in memory, and each snapshot costs 10. Figure 8 shows that Joint-
All and Split-All modes are not the extreme of the trade-off anymore. In fact, the extreme
bounds in memory consumption corresponds to the hybrid modes. We also notice that
the maximum peak of memory use is smaller than in the first simulation, which is not
surprising since it depends mostly on the tape size, which is assumed smaller. In this
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Figure 8: Numerical Simulation results, tape = 6, snapshot = 10

scenario, the advantage of checkpointing is less obvious because of the costs of snapshots,
therefore the Split-All mode is nearly the best in every respect.

The real differentiated codes will have for every procedure different tape, snapshot
and execution time characteristics, making this motivating simulation look a bit unreal.
This gives us a feeling of the behavior of real codes, but experiments with real code are
mandatory. Before we get to that, we shall briefly discuss the necessary implementation
step.

4 IMPLEMENTATION

We implemented the algorithms and data-flow analysis mentioned in the previous sec-
tion inside tapenade tool [10], which is a source-to-source AD engine. tapenade is
written in JAVA and some modules are written in C. tapenade supports programs writ-
ten in Fortran77 and Fortran90/95.

4.1 Modifications of the Data-Flow Analyses

The AD model that tapenade implements relies on several data-flow analyses, all of
them formally defined in [9, 11]. However, these analyses implicitly made the assumption
of the Joint-All strategy. The checkpointing strategy has s strong impact on adjoint live-
ness and TBR analyses, which are interprocedural. More precisely, it impacts the way
data-flow information is propagated on the call graph during the bottom-up and top-down
analyses sweeps.
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For example, since for a checkpointed segment the forward sweep is followed imme-
diately by the reverse sweep, we can use the fact that all original variables are useless at
the end of the forward sweep. This is the foundation of the adjoint liveness analysis [11].
In the initial state of the AD tool where every call is checkpointed, this allowed the
”adjoint-live” set at the tail of each procedure to be the empty set. The adjoint-liveness
analysis can then proceed, backwards inside the flow-graph of the procedure, progressively
accumulating variables into the set of live variables. In the new situation where a proce-
dure can be left in split mode, the initial ”adjoint-live” set at the tail of this procedure
must change, and it depends of the live variables in each of its calling sites. More pre-
cisely, we shall set the live variables at the tail of a non-checkpointed procedure (i.e. split
mode) to the union of all the live variables just after each of the call sites for this procedure.

In order to implement the mentioned adaptation we have to run the adjoint liveness
analysis twice. A first sweep runs bottom-up on the original program call graph. In this
sweep we build the effect of each procedure on the set of live variables, to be used in each
of its call sites. The second run is top-down and accumulates the sets of live variable after
each call site, before it is used as the initial set for the adjoint liveness analysis of every
split procedure.

Similarly the TBR analysis had to be transformed. The TBR analysis runs forward,
from the head to the tail of each procedure. At the outer level of the call graph, the
analysis could run in only one bottom-up sweep. Because TBR analysis now requires a
context information in the case of a non-checkpointed procedure, that will carry the union
of the TBR status just before the call sites, we had to add a top-down sweep into the
TBR analysis.

4.2 General Implementation Notes

Along with the modification of the analyses, the generation of the differentiated pro-
gram must also be adapted. The AD model defined by equation (4) shows that the joint

mode runs the backward sweep of C,
←−
C , immediately after its forward sweep

−→
C . When

C is a procedure,
−→
C and

←−
C can be easily merged into a single procedure C. As a con-

sequence, local variables of C (and therefore of
−→
C ) are still in scope when

←−
C starts, and

naturally preserve their values. This is no longer possible in split mode, since procedure
−→
C and

←−
C are separated. Consequently, local variables of

−→
C must be stored before they

vanish and restored when
←−
C starts. This was addressed in the implementation by adding

an extension to the TBR analysis. This extension looks for the locals variables that are
necessary for the backward sweep, when the end of the forward sweep is reached. These
variables are PUSH’ed just at the end of the forward sweep and POP’ed at the beginning of
the backward sweep.
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We make the choice of generalization versus specialization, by allowing for only one
split mode per procedure. Even then, this requires care in naming the procedures. We
need to create up to four names (original, forward sweep, backward sweep and reverse dif-
ferentiated) when split and joint strategies are combined. This problem is technical, but
it has implications within the whole way tapenade handles the names of differentiated
elements.

The split strategy is driven by the user by means of a directive (C$AD NOCHECKPOINT)
which is placed just before the procedure call, or through a command line option (-split
"[list of procedure names]"). The introduction of directives is a novel feature for
tapenade.

5 EXPERIMENTAL MEASUREMENTS

We applied the split mode to certain procedure calls, looking for experimental confir-
mation of the intuitions from Section 5. In particular, we want to show the interest of
letting the user drive the checkpointing strategy.

The procedures chosen to be split were the ones that best illustrate the memory and
run-time trade-off. The criteria to choose procedures rely on two values, which can be ob-
tained by studying the reverse generated code. These values are: the size of the snapshot
and the size of the tape. The implementation of both snapshot and tape is based on PUSH

calls, thus the measurements and comparisons between these values are straightforward.

In figures 9 and 11, loops are denoted by square brackets. For instance, on Figure 9 we
have two loops, one which involves from subroutine pasdtl to subroutine quaind, and
a second one which includes all inbigfunc’s procedures. In general, these loops are the
segments of the programs that consume most of memory and time.

5.1 Experiment I: UNS2D

uns2d is a CFD solver. It has 2.055 lines of code (loc). The reverse differentiated
version has 2.200 loc.

The first four experiments 02 - 05 of Table 5.1 report gain both in time and memory,
reminding us of the case where tape < snp (Figure 8). This is indeed what we observe
when we measure the actual sizes of tape and snapshot for the procedures in question.
Therefore, when each of calgra, calcl, quaind or enthald are split the program
saves memory for the snapshot without using as much for the tape. At the same time it
saves time because the procedure is not executed twice.
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QUAINDCALGRAENTHALDINBIGFUNCPASDTLCALGRA

DIFFAR FLW2D SYMMT CALGRA

BIGFUNCTION

CALCL CALCL

Figure 9: uns2d call graph.

Experiment Time Memory
Id Description Total [s] % gain Peak [Mb] % gain

01 Joint-All strategy 41.69 184.69
02 split mode calcl (all call sites) 37.66 9.7 167.53 9.3
03 split mode quaind 37.54 9.9 162.13 12.2
04 split mode calgra (all call sites) 36.63 12.1 163.92 11.2
05 split mode enthald 34.33 17.6 162.17 12.2
06 split mode inbigfunc 31.83 23.6 468.13 -153.5
07 02 and 05 33.95 18.6 163.20 11.6
08 03 and 06 31.75 23.8 446.82 -141.9
09 02, 04 and 05 35.81 14.1 174.45 5.5
10 02, 05 and 06 35.49 14.8 533.23 -188.7
11 02, 03, 04 and 05 38.50 7.6 184.45 0.13
12 02, 04, 05 and 06 30.92 25.8 408.88 -121.4
13 split mode all the above procedures 32.67 21.6 443.56 -140.2

Table 5.1: Memory and time performance for uns2d.

Experiment 06 exhibits a gain in time at the cost of a larger memory use. As we sus-
pected from the simulations on Figure 7, this corresponds to the case where snp < tape.
This confirms the intuition that checkpointing is really worthwhile on large sections of
program. In this situation checkpointing is really a time/memory trade-off. Therefore
checkpointing inbigfunc (in other words the joint mode) is a wise choice when memory
size is limited.

Experiments 07 - 13 can be separated in two sets: whether inbigfunc is checkpointed
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(08, 10, 12 and 13) or not (07, 09 and 11). The separation criterion underlines the relative
weight of the subroutine inbigfunc.

Experiments 07, 09 and 11 shows a remarkable behavior on the execution time perfor-
mance. We would expect the execution time savings of combined split mode procedures to
accumulate, as we observed in Figures 7 and 8. Surprisingly, the execution time for these
experiments do not behave like that. In particular, the experiment 11’s execution time
saving (3.18s) is smaller than the execution time savings (4.03s, 4.15s, 5.03s and 7.36s)
for any of the procedures split individually. We have at present no clear understanding
of this behavior. It is likely that the present model we have about the performances of
checkpointed reverse programs, is still insufficient to capture this behavior, and must be
refined further.

As for concrete recommendations for this example, we advise to apply split mode
sparingly, only on one or two of subroutines calgra, calcl, or quaind in the case
where there are strict memory constraints. This allows for memory savings up to 12%.
On the other hand, if memory is not an issue and speed is, we recommend the configuration
of experiment 12.

5.2 Experiment II: SONICBOOM

sonicboom is a part of a CFD solver which computes the residual of a state equation.
It has 14.263 loc, but only 818 loc to be differentiated, generating 2.987 loc of derivative
procedures.

GRADNOD FLUROE VCURVM TRANSPIRATION CONDDIRFLUX

PSIROE

Figure 10: sonicboom call graph.

The first group of experiments 02 - 04 from Table 5.2, shows gains in execution time,
because the procedures are executed only once. There is no gain in memory because the
size of the snapshot and the tape are very close.

14
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Experiment Time Memory
Id Description Total [s] % gain Peak [Mb] % gain

01 Joint-All strategy 0.2900 10.84
02 split mode vcurnvm 0.2725 6.0 10.84 0.0
03 split mode conddirflux 0.2699 6.9 10.84 0.0
04 split mode fluroe 0.2500 13.8 11.06 -2.0
05 split mode gradnod 0.2374 18.1 18.77 -73.1
06 02 and 03 0.2624 9.5 10.84 0.0
07 04 and 05 0.2374 18.1 19.00 -75.2
08 02, 03 and 04 0.2475 14.7 11.08 -2.2
09 02, 03 and 05 0.2360 18.6 18.77 -73.1
10 split mode all the above procedures 0.2374 18.1 19.00 -75.2

Table 5.2: Memory and time performance for sonicboom.

The experiments where gradnod is among the split subroutines exhibit the largest
gain in execution time. This is related to the fact that gradnod accounts for the largest
part of the computation, and since the tape size grows like the number of executed instruc-
tions, tape(gradnod) is much larger than snp(gradnod). For the other procedures in
this experiment we also have tape < snp, but to a smaller extent. Therefore, everything
behaves like in the classical case of Figure 7. In particular, there is no procedure for which
the split mode would give a gain in a memory consumption.

It is worth noticing that the effect of the split mode is really an increase in memory
traffic rather than in memory peak size. For example splitting conddirflux certainly
results in a higher memory traffic, but the local increase of the local memory peak is
hidden by the main memory peak which occurs just after

−−−−−−−→
gradnod. We are currently

carrying new experiments and developing refined models that include this memory traffic.

Practically for this experiment, our advice would be to run subroutines fluroe,
vcurvm and conddirflux (experiment 08) in split mode in any case, and this already
gives a 14.7% improvement in time at virtually no cost in memory. In the case where
memory size is not limited strongly, then it is advisable to run gradnod in split mode
too, which gives an additional gain in time at the cost of a large increase in memory peak.

5.3 Experiment III: STICS

stics is an agronomy modeling program. It has 21.010 loc, and the reverse differen-
tiated code generated has 46.921 loc. In the code of stics, we introduce three levels of
nested loops around subroutine onebigloop because this code simulates and unsteady
process over 400 time steps. These nested loops are a manual modification that allow
us to perform checkpointing on various groups of time steps. We acknowledge that this

15
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DENSIRAC

Figure 11: stics call graph.

simplistic method is far from the known optimal strategy first described in [5].

Experiment Time Memory
Id Description Total [s] % gain Peak [Mb] % gain

01 Joint-All strategy 38.56 229.23
02 split mode biomaer 36.15 6.3 229.23 0.0
03 split mode mineral 35.78 7.2 229.28 0.0
04 split mode densirac 30.02 22.1 229.23 0.0
05 split mode croira 24.45 36.6 229.23 0.0
06 split mode onebigloop 23.75 38.4 229.75 -0.2
07 04 and 05 16.79 56.5 229.23 0.0
08 04 and 06 15.64 59.4 229.75 -0.2
08 05 and 06 11.71 69.6 206.81 9.8
09 04, 05 and 06 3.93 89.8 149.11 34.9
09 03, 04, 05 and 06 3.92 89.8 149.11 34.9
09 split all the above procedures 3.90 89.9 149.11 34.9

Table 5.3: Memory and time performance for stics.

For this experiment, the default (Split-All) strategy applied by tapenade gave very
bad results in time, with a slowdown factor of about 100 from the original code to the
reverse differentiated code. We made some measurements of the tape sizes compared to
the snapshot sizes, and we found out that tape was much smaller than snapshot for sub-
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routines densirac, croira and onebigloop. This is a special case of the situation of
Figure 8 and is reflected on the experimental figures of Table 5.3. We see that split mode
on these three procedures gain execution time at no memory cost. Combined split mode
on the three procedures (experiment 09) gives an even better result.

The enormous gain in execution time makes the differentiated/original ratio go down to
about 7, which is what AD tools generally claim. In the stics experiment, the execution
time of the Split-All version did not come from the duplicate executions due to check-
pointing but rather from the time needed to PUSH and POP these very large snapshots.
This suggests that a complete model to study optimal checkpointing strategies should
definitely take into account the time spent for tape and snapshots operations.

Practically, in the stics example there is no doubt densirac, croira and onebigloop

should be differentiated in split mode. In addition, one can differentiate additional proce-
dures in split mode, (e.g. mineral), but the additional execution time gain is marginal.

6 CONCLUSION, RELATED WORKS, FUTURE WORK

This paper is a contribution towards the ultimate goal of optimally placing checkpoints
in adjoint codes built by reverse mode Automatic Differentiation. We started from the
observation that the strategy consisting in checkpointing each and every procedure call is
in general, although safe from the memory point of view, far from optimal. Both simula-
tions on very small examples, and real experiments on real-life programs show that some
procedures should never be checkpointed, and that others may be checkpointed depending
on the available memory. The great variety of possible situations makes the objective of
automatic selection of checkpointing sites very distant. It seems therefore reasonable to
let the user drive this choice through an adapted user interface. We discussed the devel-
opments that we made into the AD tool tapenade to add this functionality. This new
functionally allowed us to conduct extensive experiments on real codes, that justified a
posteriori our hypotheses on this optimal checkpointing problem and suggest the relevant
criteria for a future helping tool namely, for each procedure, its execution time, its tape
and snapshot sizes, and the time required by tape PUSH and POP traffic.

Related works on optimal checkpointing have been conducted mostly on the model case
of loops of fixed-size iterations. Only in the particular sub-case where the number of iter-
ations in known in advance was an optimal scheme found mathematically [5]. This gave
rise to the treeverse/revolve [6] tool for an automatic application of this scheme. In
the case where the number of iterations is not known in advance, a very interesting sub-
optimal scheme was proposed in [13]. We are not aware of optimal checkpointing schemes
for the case of an arbitrary call-tree or call graph. Notice that checkpointing is not the
only way to improve the performance of the reverse mode of AD. Local optimization can
reduce the computation cost of the derivatives by re-ordering the sub-expressions inside
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derivatives [8]. Other optimizations implement a fine-grain time/memory trade-off by
storing expensive sub-expressions that occur several times in the derivatives. In any case
these are local optimizations that only give a fixed small benefit. For large programs, only
nested checkpointing can make reverse differentiated codes actually run without exceeding
the memory capacity of the machine, and therefore the study of optimal checkpointing
schemes is an absolute necessity.

User-driven placement of checkpointing is an important step in this direction, but
further work is needed to help this placement or to propose a good enough automatic
strategy. This could be based on execution time profiling of the original program or even
of the differentiated code itself. In any case, we need to study the experimental figures
found and to refine the model we have built for the performance of reverse differentiated
codes. In particular this model must better take into account some of the surprising
effects we have found, such as time gains that do not add up. This suggests a process of
iterative improvements of the reverse differentiated codes, based on previous runs, much
like what is done in iterative compilation [15].
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