

Delft University of Technology

How Do Community Smells Influence Code Smells?

Palomba, Fabio; Tamburri, Damian; Serebrenik, Alexander; Zaidman, Andy; Arcelli Fontana, Francesca;
Oliveto, Rocco
DOI
10.1145/3183440.3194950
Publication date
2018
Document Version
Final published version
Published in
Proceedings of the International Conference on Software Engineering -- Companion Volume (ICSE
Companion)

Citation (APA)
Palomba, F., Tamburri, D., Serebrenik, A., Zaidman, A., Arcelli Fontana, F., & Oliveto, R. (2018). How Do
Community Smells Influence Code Smells? In Proceedings of the International Conference on Software
Engineering -- Companion Volume (ICSE Companion) (pp. 240-241). IEEE / ACM.
https://doi.org/10.1145/3183440.3194950
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3183440.3194950
https://doi.org/10.1145/3183440.3194950

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

How Do Community Smells Influence Code Smells?

Fabio Palomba1, Damian A. Tamburri2,5, Alexander Serebrenik2,
Andy Zaidman3, Francesca Arcelli Fontana4, Rocco Oliveto5

1University of Zurich, Switzerland — 2Eindhoven University of Technology, The Netherlands
3Delft University of Technology, The Netherlands — 4University of Milano-Bicocca, Italy — 5University of Molise, Italy

ABSTRACT

Code smells reflect sub-optimal patterns of code that often lead to

critical software flaws or failure. In the sameway, community smells

reflect sub-optimal organisational and socio-technical patterns in

the organisational structure of the software community.

To understand the relation between the community smells and

code smells we start by surveying 162 developers of nine open-

source systems. Then we look deeper into this connection by con-

ducting an empirical study of 117 releases from these systems.

Our results indicate that community-related factors are intu-

itively perceived by most developers as causes of the persistence of

code smells. Inspired by this observation we design a community-

aware prediction model for code smells and show that it outper-

forms a model that does not consider community factors.

CCS CONCEPTS

• Software and its engineering→ Software organization and

properties;

KEYWORDS

Code Smells, Organisational Structure, Community Smells

ACM Reference Format:

Fabio Palomba1, Damian A. Tamburri2,5, Alexander Serebrenik2, Andy

Zaidman3, Francesca Arcelli Fontana4, Rocco Oliveto5. 2018. How Do Com-

munity Smells Influence Code Smells?. In ICSE ’18 Companion: 40th In-

ternational Conference on Software Engineering Companion, May 27-June

3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 2 pages. https:

//doi.org/10.1145/3183440.3194950

1 INTRODUCTION

Software engineering is, by nature, a “social" activity that involves

organizations, developers, and stakeholders who are responsible

for leading to the definition of a software product that meets the

expected requirements. The social interactions among the involved

actors may represent the key to success as well as a critical issue

possibly causing the failure of the project [13].

Recently, the research community has investigated social debt,

i.e., unforeseen project cost connected to a “suboptimal" develop-

ment community (i.e., both in structure and behavior) [14]. One

of the recent advances in this research field is represented by the

definition of community smells [14], i.e., a set of socio-technical

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3194950

characteristics (e.g., high formality) and patterns (e.g., recurrent

condescending behavior), which may lead to the emergence of

social debt. Community smells are connected to code smells [12].

In this paper we aim at deeply and empirically exploring the

relation between social and technical debts, in particular on how

community smells influence the maintainability of code smells [3, 8].

We follow a convergence mixed-methods approach [4], in which

quantitative and qualitative research are run in parallel over the

same dataset aiming at converging towards a confirmed theory.

Our main results indicate that presence of community smells

hinders refactoring of the code smells. In particular, we identify

occurrence of two known and four previously unknown community

smells; and show that community smells are relevant for all code

smells and are often more relevant than traditional community-

related measures such as socio-technical congruence.

2 SURVEYING DEVELOPERS

To understand the concerns affecting developers’ decisions to elim-

inate or preserve code smells we consider 117 releases of 9 open-

source projects from Apache (Mahout, Cassandra, Lucene, Cayenne,

Pig, Jackrabbit and Jena) and Eclipse (CDT andCFX). UsingDECOR [8]

we identify the occurrence of five popular code smells (LongMethod,

Feature Envy, Blob Class, Spaghetti Code and Misplaced Class) and

contact those developers that worked the most (in terms of com-

mits) with one distinct smelly class instance in any of the releases.

162 developers responded out of the 472 we have contacted, for a

response rate of 34,32%—that is almost twice than what has been

achieved by previous papers (e.g., [2, 9, 16, 17]).

We have shown the respondents the smelly code fragments and

asked them for the reasons or risks that lead them to decide whether

to refactor the smell. Two authors independently coded the answers.

Survey data highlights the relation between community smells

and code smells. 80% of practitioners explicitly mention that avoid-

ing community problems, is the reason why code smells are *not*

addressed, meaning that it is more convenient to keep a technical

smell than dealing with a community smell. We also confirm in

open-source communities the presence and impact of 2 previously

reported community smells in industry [5]. At the same time, we

observe 4 new community smells that afflict open-source communi-

ties and strongly relate to code smells. The new community smells

pertain to the inability to achieve consensus, fear that refactoring

would be detrimental for understandability, highly complex classes

that can be managed by 1-2 people at most and changes causing a

previously existing group of modularised collaboration to fragment.

3 STATISTICAL MODELING

We perform statistical modeling of the relationship between com-

munity and code smells. We consider the same software systems

240

2018 ACM/IEEE 40th International Conference on Software Engineering: Companion Proceedings

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Palomba et al.

Table 1: Metrics contributing more than the threshold of 0.10 are highlighted in bold, community smells — in italic.

Long Method Feature Envy Blob Spaghetti Code Misplaced Class

Metric Gain
SK-ESD

Metric Gain
SK-ESD

Metric Gain
SK-ESD

Metric Gain
SK-ESD

Metric Gain
SK-ESD

Likelihood Likelihood Likelihood Likelihood Likelihood

LOC 0.83 94 CBO 0.87 87 Period Commits 0.74 92 LOC 0.77 85 Organizational Silo 0.85 91

Churn 0.68 85 Previous Intensity 0.79 83 Previous Intensity 0.72 81 Churn 0.73 83 ST-Congruence 0.76 89

Previous Intensity 0.68 84 Churn 0.76 78 ST-Congruence 0.72 79 Previous Intensity 0.71 77 Previous Intensity 0.61 77

Period-Commits 0.67 82 Lone Wolf 0.59 76 CBO 0.69 72 Period Commits 0.65 71 Black-Cloud 0.55 75

CS-Persistence 0.55 78 ST-Congruence 0.56 71 Churn 0.65 75 Lone Wolf 0.56 66 CBO 0.45 61

Black-Cloud 0.55 75 LOC 0.55 70 Project Tenure 0.65 65 CS-Persistence 0.45 63 Committers 0.35 59

Clones 0.46 67 Clones 0.53 64 LOC 0.57 59 Ratio Core-Periphery 0.38 61 Period Commits 0.33 55

Organizational Silo 0.27 66 Project Tenure 0.39 53 Organizational Silo 0.45 57 Organizational Silo 0.24 56 Ratio Core-Periphery 0.32 51

ST-Congruence 0.18 59 Truck Factor 0.23 41 Truck Factor 0.38 51 Project Tenure 0.23 45 Truck Factor 0.24 45

Turnover 0.17 43 Period Commits 0.15 16 Bottleneck 0.34 50 Smelly Quitters 0.22 41 Smelly Quitters 0.17 42

Commit Tenure 0.15 35 Smelly Quitters 0.12 13 Clones 0.27 44 CBO 0.13 41 CS-Persistence 0.14 38

Ratio Core-Periphery 0.12 27 Committers 0.12 11 Committers 0.24 41 Total Commits 0.12 34 Churn 0.12 31

CBO 0.12 24 Bottleneck 0.09 8 Turnover 0.23 33 Bottleneck 0.12 31 Project Tenure 0.12 24

Fault-proneness 0.12 21 Organizational Silo 0.08 7 Smelly Quitters 0.16 27 Committers 0.09 5 Bottleneck 0.09 11

Lone Wolf 0.09 8 Fault-proneness 0.05 4 Fault-proneness 0.14 19 Truck Factor 0.08 4 Total Commits 0.08 8

Total Commits 0.08 8 Turnover 0.05 4 Ratio Core-Periphery 0.09 9 Commit Tenure 0.08 4 Clones 0.08 8

Bottleneck 0.07 6 Ratio Core-Periphery 0.04 2 Black Cloud 0.04 5 Fault-proneness 0.07 3 Lone Wolf 0.07 5

Committers 0.07 4 Total Commits 0.03 2 Lone Wolf 0.03 3 Clones 0.06 2 Turnover 0.07 3

Truck Factor 0.05 2 CS-Persistence 0.03 2 CS-Persistence 0.03 2 Turnover 0.05 1 LOC 0.02 1

Smelly Quitters 0.04 2 Black Cloud 0.02 1 Total Commits 0.01 1 Black Cloud 0.04 1 Commit Tenure 0.02 0

Project Tenure 0.02 1 Commit Tenure 0.01 0 Commit Tenure 0.01 1 ST-Congruence 0.03 1 Fault-proneness 0.01 0

and the code smells as above. Using the CodeFace4smells tool, a

fork of CodeFace [6], we detect the following community smells:

Organisational Silo Effect, Black-cloud Effect, Lone-wolf Effect, and

Bottleneck Effect [14]. We also include in the model traditional met-

rics such as LOC, Churn or CBO and community-related variables

such as socio-technical congruence. As the dependent variable we

consider the code smell intensity, i.e., how much the value of a

chosen metric exceeds a given threshold [7]. We use Gain Ratio

Feature Evaluation [10] to rank the independent variables and the

Scott-Knott Effect Size Difference (SK-ESD) [15] to verify the ranks.

We report the likelihood that a feature was ranked at the top.

Looking at the results in Table 1, we observe that for all the

code smells but Misplaced Class traditional metrics such as LOC,

CBO, and Code Churn influence the code smell intensity most.

These results were quite expected given the importance of LOC for

evolution of code smells [11]. Also the previous intensity of a smell

is important: likely, this is caused by developers rarely refactoring

code smells [1], thus increasing the intensity of smells over time.

Turning the attention to the community smells, we observed

that they represent relevant features for all the considered code

smells. Note that the community-related control factors (e.g., socio-

technical congruence) are often not able to explain the dependent

variable better than community smells, meaning that the commu-

nity smells are more powerful “predictors” than such control fac-

tors. For instance, the Organisational Silo provides a higher entropy

reduction (0.27) than socio-technical congruence (0.18) when con-

sidering the Long Method smell. In the second place, we note that

different community smells are related to different code smells,

meaning that circumstances occurring within a community influ-

ence the maintainability of code smells. For example, in the case

of Long Method, such circumstances are related to non-structured

or missing communication between developers, as highlighted by

Black Cloud and Organisational Silo being highly influential.

4 SUMMARY

The organisational and technical structures of software are deeply

interconnected. Similarly, we conjectured that the social and tech-

nical debt may be connected just as deeply. In this paper, we start

exploring this relation from the manifestations of both social and

technical debt, i.e., code and community smells. While previous

work offered evidence that these two phenomena occurring in soft-

ware engineering may be correlated, in this paper using a mixed-

method empirical evaluation we provide evidence of this relation.

REFERENCES
[1] Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., and Palomba, F. An exper-
imental investigation on the innate relationship between quality and refactoring.
J. Syst. Softw. 107, C (Sept. 2015), 1–14.

[2] Bavota, G., Linares Vásqez, M., Bernal-Cárdenas, C. E., Di Penta, M.,
Oliveto, R., and Poshyvanyk, D. The impact of API change- and fault-proneness
on the user ratings of android apps. TSE 41, 4 (April 2015), 384–407.

[3] Di Nucci, D., Palomba, F., Tamburri, D. A., Serebrenik, A., and De Lucia, A.
Detecting code smells using machine learning techniques: Are we there yet? In
SANER (March 2018), IEEE.

[4] Di Penta, M., and Tamburri, D. A. Combining quantitative and qualitative
studies in empirical software engineering research. In ICSE (Companion Volume)
(2017), S. Uchitel, A. Orso, and M. P. Robillard, Eds., ACM, pp. 499–500.

[5] Jiménez, M., and Piattini, M. Problems and solutions in distributed software
development: A systematic review. In SEAFOOD (2009), pp. 107–125.

[6] Joblin, M., Mauerer, W., Apel, S., Siegmund, J., and Riehle, D. From developer
networks to verified communities: A fine-grained approach. In ICSE (2015),
A. Bertolino, G. Canfora, and S. G. Elbaum, Eds., IEEE, pp. 563–573.

[7] Marinescu, R. Assessing technical debt by identifying design flaws in software
systems. IBM Journal of Research and Development 56, 5 (Sept 2012), 9:1–9:13.

[8] Moha, N., and Guéhéeuc, Y.-G. Decor: a tool for the detection of design defects.
In ASE (2007), R. E. K. Stirewalt, A. Egyed, and B. Fischer, Eds., ACM, pp. 527–528.

[9] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D., and De
Lucia, A. Mining version histories for detecting code smells. TSE 41, 5 (May
2015), 462–489.

[10] Quinlan, J. R. Induction of decision trees. Mach. Learn. 1, 1 (Mar. 1986), 81–106.
[11] Tahmid, A., Nahar, N., and Sakib, K. Understanding the evolution of code
smells by observing code smell clusters. In SANER (March 2016), vol. 4, pp. 8–11.

[12] Tamburri, D. A., and Di Nitto, E. When software architecture leads to social
debt. InWICSA (2015), L. Bass, P. Lago, and P. Kruchten, Eds., IEEE, pp. 61–64.

[13] Tamburri, D. A., Kazman, R., and Fahimi, H. The architect’s role in community
shepherding. IEEE Software 33, 6 (2016), 70–79.

[14] Tamburri, D. A., Kruchten, P., Lago, P., and van Vliet, H. Social debt in
software engineering: insights from industry. J. Internet Services and Applications
6, 1 (2015), 10:1–10:17.

[15] Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and Matsumoto, K.
An empirical comparison of model validation techniques for defect prediction
models. TSE 43, 1 (Jan. 2017), 1–18.

[16] Vasilescu, B., Filkov, V., and Serebrenik, A. Perceptions of diversity on github:
A user survey. In CHASE (2015), IEEE, pp. 50–56.

[17] Vasilescu, B., Posnett, D., Ray, B., van den Brand, M. G. J., Serebrenik, A.,
Devanbu, P. T., and Filkov, V. Gender and tenure diversity in github teams. In
CHI (2015), B. Begole, J. Kim, K. Inkpen, and W. Woo, Eds., ACM, pp. 3789–3798.

241

