
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2011

MSc THESIS

System Level Support for Dynamic Partial
Reconfiguration

Abhijit Nandy

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2011-24

In this thesis a generic approach for integrating a dynamically recon-
figurable device into a general purpose system interconnected with
a high-speed interconnect, is described. The system dynamically
installs and executes hardware instances implementing functions to
accelerate parts of a particular workload. The hardware descriptions
of the functions (bitstreams) are inserted into an unified executable
running on the host. This is achieved through an extension to the
GCC compiler which in addition inserts system-calls to the device
driver controlling the reconfigurable device. Thereafter, the general
purpose host-processor manages the hardware reconfiguration and
execution through a Linux device driver. The device has direct ac-
cess to the main memory (DMA) operating on virtual addresses; it
further supports memory mapped IO for data and control, and is
able to interrupt the host for synchronization. The above system is
implemented on a general purpose AMD Opteron-244, and 1 GB of
DDR memory providing a HyperTransport bus to connect a Xilinx
Virtex4-100 FPGA. Moreover to facilitate automatic generation of
hardware, an open source C to VHDL compiler is used. Finally, our
proposal is evaluated using a secure audio processing application.
This is done through acceleration of the audio processing kernel in

hardware and subsequently an AES encryption function is configured via dynamic partial reconfiguration.
Experimental results with up to 2GB of data show that our solution is up to 12 times faster than pure
software execution.

System Level Support for Dynamic Partial
Reconfiguration

Addition of Partial Reconfiguration support and automatic

hardware generation from C code

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Abhijit Nandy
born in Jamshedpur, India

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

System Level Support for Dynamic Partial
Reconfiguration

by Abhijit Nandy

Abstract

I
n this thesis a generic approach for integrating a dynamically reconfigurable device into a
general purpose system connected with a high-speed interconnect, is described. The system
dynamically installs and executes hardware instances implementing functions to accelerate

parts of a particular workload. The hardware descriptions of the functions (bitstreams) are
inserted into an unified executable running on the host. This is achieved through an extension
to the GCC compiler which in addition inserts system-calls to the device driver controlling the
reconfigurable device. Thereafter, the general purpose host-processor manages the hardware
reconfiguration and execution through a Linux device driver. The device has direct access to the
main memory (DMA) operating on virtual addresses; it further supports memory mapped IO
for data and control, and is able to interrupt the host for synchronization. The above system
is implemented on a general purpose AMD Opteron-244, and 1 GB of DDR memory providing
a HyperTransport bus to connect a Xilinx Virtex4-100 FPGA. Moreover to facilitate automatic
generation of hardware, an open source C to VHDL compiler is used. Finally, our proposal is
evaluated using a secure audio processing application. This is done through acceleration of the
audio processing kernel in hardware and subsequently an AES encryption function is configured
via dynamic partial reconfiguration. Experimental results with up to 2GB of data show that our
solution is up to 12 times faster than pure software execution.

Laboratory : Computer Engineering
Codenumber : CE-MS-2011-24

Committee Members :

Advisor: Ioannis Sourdis, CE, TU Delft

Advisor: Georgi N. Gaydadjiev, CE, TU Delft

Chairperson: Koen Bertels, CE, TU Delft

Member: Henk Sips, PDS, TU Delft

i

ii

To my loving family to whom I owe all that I am today and my
respected professors who have taught me to always keep pushing the

limits.

iii

iv

Contents

List of Figures viii

List of Tables ix

Acknowledgements xi

Achievements 1

1 Introduction 1
1.1 Problem Statement . 2
1.2 Objectives . 4
1.3 Overview . 6

2 Background 7
2.1 The HTX Platform . 9

2.1.1 Integration and Control of the Reconfigurable Device 12
2.1.2 Functionality of the Reconfigurable Device 14

2.2 Introduction to Dynamic Partial Reconfiguration 15
2.3 Reconfigurable High-Performance Computers 18

2.3.1 Convey . 18
2.3.2 SGI Altix . 19
2.3.3 XtremeData DISC . 19
2.3.4 DRC Computers . 21
2.3.5 SRC Computers . 22

2.4 Automatic hardware generation . 23
2.4.1 DWARV . 24
2.4.2 Handel C . 25
2.4.3 SRC’s MAP compiler and Carte 25
2.4.4 Catapult-C . 25
2.4.5 Stream-C . 26
2.4.6 ROCCC . 27

2.5 Concluding the discussion on background work 29

3 System Level Support for Dynamic Partial Reconfiguration 31
3.1 Dynamic Partial Reconfiguration on HTX 31

3.1.1 The Internal Configuration Access Port(ICAP) 31
3.1.2 Xilinx Bitstream Format . 33
3.1.3 The ICAP Controller . 35

v

3.1.4 Partially Reconfigurable Regions on the HTX board 36
3.2 Compiler Support and Prefetching . 38
3.3 Hardware generation using the ROCCC compiler 41

3.3.1 Wrapping ROCCC Modules . 44
3.3.2 Wrapping ROCCC Systems . 45

3.4 Optimizations . 48
3.4.1 Optimizations on the C code . 48
3.4.2 Optimizations on the hardware wrapper for ROCCC output 48
3.4.3 Optimization of the CCU generation process 50

3.5 Conclusion . 50

4 Evaluation 53
4.1 The AES and Audio cores . 53
4.2 Results using DPR . 54
4.3 Testing ROCCC Code through an implementation of the AES algorithm . 57
4.4 Concluding the Evaluation . 58

5 Conclusion 61
5.1 Summary and contributions of this thesis 61
5.2 Proposed directions for future research . 62

5.2.1 Parallel Data loads . 62
5.2.2 Branch prediction techniques for runtime configuration decisions . 63
5.2.3 Profiling for deciding hardware usage 63
5.2.4 Improvements to the C-to-VHDL compiler platform 63

Bibliography 66

vi

List of Figures

1.1 The HTX Platform indicating it’s various components as well as my area
of focus. 5

2.1 The Molen Polymorphic Processor. 8

2.2 The HTX Platform implementation. 9

2.3 Overview of the HTX Platform. 10

2.4 Modules implemented in the FPGA. 11

2.5 System calls inserted. 13

2.6 The basic premise of Partial Reconfiguration. 16

2.7 Proxy Logic is realized using LUT elements as shown in this implementa-
tion view of our design in PlanAhead. 17

2.8 Convey Computer. Source: http://www.conveycomputer.com/ 18

2.9 SGI Altix architecture showing how an FPGA is connected
to the NUMAlink interconnect and SRAM chips. Source:
http://www.sgi.com/products/servers/altix/numalink.html 20

2.10 XtremeData Architecture. Source: http://www.xtremedata.com 21

2.11 The toolset for the DelftWorkBench. Source: [1] 24

2.12 The MAP Compiler from SRC Computers. Source: [2] 26

2.13 Declaration of Process in Stream-C. Source: [3] 27

3.1 The SelectMAP Interface. Source: [4] . 32

3.2 ICAP Interface. Source: [4] . 33

3.3 The Xilinx bitstream format. 34

3.4 The operation of the ICAP Controller. 36

3.5 The hierarchy in our design. 37

3.6 The Floorplan for the HTX Platform. 38

3.7 The GCC compilation process. 39

3.8 The conversion of C code from GENERIC to GIMPLE. 40

3.9 The wrappergen program generates FSM based VHDL code to manage
the ROCCC output within the CCU. 42

3.10 The phases in the ROCCC compilation process. 43

3.11 The VHDL top level entity generated for a ROCCC module for a 5-Tap
FIR filter. 44

3.12 The VHDL top level entity generated for a simple ROCCC System called
WithinBounds. 47

3.13 Optimizations done by the modified GCC 4.5 compiler. 49

3.14 Transformations done to the SHA1 transform block function to allow au-
tomatic hardware generation by ROCCC. 51

3.15 Conversion of the x264 kernel into hardware using Chained Systems. . . . 52

4.1 Bitstream configuration latencies. 55

4.2 Execution Time versus bitstream size. 56

vii

4.3 Speedup versus bitstream size. 56
4.4 Breakup of Execution Time versus total time. 59

viii

List of Tables

2.1 Summary of various machines which integrate a reconfigurable device and
their focus areas. 23

2.2 Summary of various C to VHDL tools and their focus areas. 28

3.1 Virtex 4 frames used for various purposes. Source: [4] 33

4.1 Usage of various types of components in the FPGA. 54
4.2 The algorithms chosen to test the output of wrappergen. 58

ix

x

Acknowledgements

This thesis represents not only my work at the keyboard but is also the result of re-
search in Reconfigurable Computing by many distinguished professors and students at
the Computer Engineering Lab of TU Delft.

I would like to begin by thanking my supervisors Ioannis Sourdis and Georgi Gay-
dadjiev for guiding me throughout this thesis. Your constant support and faith in me
was most encouraging and allowed me to achieve much more. It was an honor working
with you and I hope we do so again in the future.

I am grateful to my family: My mother Ila, my father Amit and my brother Apratim
for their constant support and love. I hope I did you all proud.

I would like to thank all the professors at TU Delft who have taught me in the last
two years. I learnt a lot from each of you and from my stay in the Netherlands. This
thesis is the culmination of all the knowledge I gained from you. Furthermore I am
thankful for the help provided on multiple occasions during my thesis by Lidwina Tromp
and Monique Tromp of Computer Engineering for various administrative activities.

My very special thanks to Anthony Brandon for being always available to help me
understand the finer details of our work. I hope I improved upon and did justice to the
efforts you put in to the HTX Platform.

I would like to express my gratitude to Google for funding this project through the
Faculty Awards Program. I hope my work contributes to their efforts in this direction.

Finally for all my friends, thank you for always standing by me and making me feel
at home. I would like to especially mention Venkat, Vishwas, Dhariyash and Ravi. We
had some truly wonderful times together and this thesis would not have been possible
without you all.

Abhijit Nandy
Delft, The Netherlands
October 3, 2011

xi

xii

Achievements

The following conference paper was accepted as a result of this MSc thesis:

• Ioannis Sourdis, Abhijit Nandy, Venkatasubramanian Viswanathan, Anthony
Brandon, Dimitris Theodoropoulos and Georgi N. Gaydadjiev, “Reconfigurable Ac-
celeration and Dynamic Partial Self-Reconfiguration in General Purpose Comput-
ing”, Int. Conf. on Field-Programmable Technology (FPT’11), December 2011,
New Delhi, India.

1

Introduction 1
Computers allow us to solve computational problems in two different ways, either in
hardware or in software. Hardware solutions are preferred when price and performance is
favorable. Such a case exists for Graphical Processing Units(GPUs) in video cards whose
performance has increased and prices have fallen in response to widespread demand and
technical innovation. When solving problems in hardware we can use a device like an
application-specific integrated circuit (ASIC) which has the advantage of being fast and
optimized for a particular task. However its structure is tied to a single application in
spite of long development times and effort. Software is comparatively cheaper and can
be modified far more easily to tackle the problem at hand. Yet this adaptability comes at
a cost, with several orders of magnitude slower execution speed compared to a hardware
implementation. An equivalent ASIC implementation provides far more efficient usage
of silicon area and power.

Reconfigurable computing provides an attractive compromise between hardware and
software. It allows hardware to be reconfigured for different applications but under soft-
ware control. Designers can then implement performance critical and parallel logic in
hardware while parts which are sequential can stay in software. Therefore an applica-
tion can reap the benefits of the performance offered by hardware while still allowing
the software part to be modified quickly as needed. Field Programmable Gate Arrays
(FPGAs) are often the primary devices used to realize such systems. FPGAs can serve
as application accelerators and provide a customized match for the specific requirements
of the computing problem. A more general purpose computer such as Linux clusters or
Massively Parallel Processing systems based on CPUs or GPUs alone may not provide
a comparable boost. However the use of such an accelerator must be abstracted from a
general programmer who may be unaware of hardware design and hardware design lan-
guages such as VHDL. The system must be able to transparently use the accelerator in
the background to provide higher performance and lower power. Furthermore the system
should be able to deliver increased throughput with larger workloads when hardware is
added.

Integrating Reconfigurable Computing with traditional computing systems has been
a challenge since the early days of FPGAs; several machines have been designed in this
direction, such as PAM [5], Splash [6], and DISC [6]. The primary drawback of all these
attempts was the limited bandwidth and increased communication latency between the
host general purpose processor and the reconfigurable device. In order to overcome
these bottlenecks, other solutions proposed a more tightly coupled reconfigurable unit
integration, e.g. Garp [7], Chimaera [8], and OneChip [9]. Recently, however, sev-
eral components have been released which support standard high-speed communication
between general purpose processor(s), memory and other peripheral devices. These so-
lutions use high-speed on-board links such as the Intel QuickPath [10] and the AMD

1

2 CHAPTER 1. INTRODUCTION

HyperTransport bus [11] and provide multi-GByte/sec low latency communication.
A number of commercial solutions have been developed based on these high speed

links. DRC Computers [12] provides a solution based on multiple HyperTransport links
that fits into a standard x86 processor slot and seamlessly works with the CPU. SRC
Computers [2] makes the Series H MAP Processor which is a commercial FPGA based
reconfigurable processor. They describe the computational logic running in the FPGA
as Direct Execution Logic (DEL) which is executed by a DEL processor. The DEL
processor is realized using the resources of an FPGA. XtremeData makes a module,
called the In-Socket Accelerator (ISA), which is pin compatible with a CPU socket from
Intel or AMD. Their product sits in a CPU socket which allows the module to be a
peer to the CPU and handle interrupts. Their approach is based on the loosely coupled
massively parallel processing (MPP) approach and also uses HyperTransport for high
bandwidth access to the host’s main memory.

The above developments offer a new opportunity for integrating reconfigurable com-
puting in general purpose systems. Rather than suggesting fundamental architectural
changes, it is better for performance and certainly cost-efficient to propose a generic so-
lution that uses existing off-the-shelf components with only software (and configuration)
modifications. Furthermore to encourage the rapid adoption of such a generic solution
it is important to make it easily accessible through a known and simplified software
development environment (such as C or C++). Such a system lies between a software
developer and the underlying hardware accelerator thus helping to abstract away hard-
ware complexities.

To realize an environment which can insulate a programmer from the complex nature
of hardware, an automatic hardware generator is desirable. Significant work has been
done in automatic software to Hardware-Description-Language translation in order to
simplify the use of reconfigurable acceleration by a programmer. A few examples are
DWARV [1], ROCCC [13], Catapult-C [14], Handel-C [15] and others. In this thesis I
demonstrate the integration of the ROCCC C to VHDL compiler to make it easier to
write programs for our selected reconfigurable platform. Furthermore I address many
unsolved issues which prevent a smooth integration of reconfigurable acceleration in a
general purpose machine.

The remainder of this introduction is organized into four sections. Section 1.1 de-
scribes the problems with current platforms for combining general purpose computing
with reconfigurable computing. In Section 1.2 I describe the features already existing in
our selected reconfigurable platform and the proposed extensions to facilitate better in-
tegration of reconfigurable computing with a general purpose computer. Finally, Section
1.3 gives an overview of the remaining chapters of this thesis.

1.1 Problem Statement

Current general purpose computers which support hardware acceleration of a given work-
load have several drawbacks which has prevented their widespread usage. The primary
stumbling block to higher acceptance among commercial and general users has been
the highly focused nature of these machines. For example the inherent fixed function
nature of the XtremeData DISC with very little support for quick modification for an en-

1.1. PROBLEM STATEMENT 3

tirely new problem has restricted it’s usage beyond the data warehousing market. Other
platforms like Convey suffer from high latencies while attempting to access host mem-
ory and while reconfiguring the FPGA. Some architectures such as GARP, Chameleon,
Chimaera, OneChip and PRISC attempt to solve this by integrating the reconfigurable
accelerator in the same chip as the general purpose processor; however, this requires
redesign of the chip, and a different fabrication process making it expensive. However,
the latency and bandwidth issue can be alleviated to a large extent through the use of
a standard high speed bus such as Quickpath or HyperTransport, which are specifically
developed for high speed connections between processors, main memory and peripherals.
This helps reduce the bottleneck presented by data access issues and from application
as well as reconfiguration data riding on the same bus.

Furthermore modern FPGAs support Dynamic Partial Reconfiguration (DPR). The
scope of application of a FPGA based system can be increased by incorporating this in
the design. Allowing the application specific accelerator to be reconfigured at runtime
enhances the functionality of a single FPGA as completely different designs can be time
multiplexed into a single device. However to use DPR transparently a considerable
amount of system level support is required. The following components play an especially
large role in providing this support.

• the compiler should detect and generate code that reconfigures the FPGA during
runtime as needed;

• a software driver is needed to provide access to the underlying design as well as
support it’s reconfiguration;

• hardware support must be present in the static part of the FPGA design to recon-
figure the device.

Another drawback of many reconfigurable computing systems is in general the pro-
grammability. A common solution for programming these systems is either through a
new or extended programming language which is then transformed by the compiler into
an unified executable or additional function calls which manage the reconfigurable de-
vice. Particularly important is an unified executable which contains both the software
and hardware implementations of a software function within the same binary. This al-
lows the compiler to choose the correct implementation to use at runtime. The ideal
situation for the programmer is of course to use an existing language such as C or C++
which is learnt by most programmers early in their careers. The burden of hardware
acceleration should thus shift to the compiler where possible.

The final drawback of many platforms is similar to vendor lock-in. Most applica-
tions developed for a certain platform are tied to the specific hardware or development
tool-chain used for that platform and therefore to the hardware’s producer. This implies
that the work needed to port either the application or accelerator (or both) to a different
and possible better implementation of the same platform is non-trivial at best. Some
platforms such as Molen and Convey address this by specifying a fixed interface to the
accelerator and software. However even these platforms have some drawbacks. The next
drawback is that most of these systems are not suitable for general purpose computing.
Convey is aimed at the high performance computing market, meaning supercomputers

4 CHAPTER 1. INTRODUCTION

and clusters used for computationally intensive tasks such as simulations in scientific
research. SRC and DRC computers are meant for the same market and for data in-
tensive applications. Thus their platforms are not ideal for general purpose computing.
Furthermore each of these platforms use their own specific development environment
and operating system with custom libraries and system calls. The operating systems are
often tuned to the specific application to which that particular machine is targeted thus
foregoing the benefits of a more general purpose system. While it is certainly possible
to port an existing operating system to a platform such as Convey or Molen the pre-
ferred way would be to add reconfigurable computing support to an existing platform
which runs a general purpose operating system without modifying the operating system
extensively.

A platform that meets the above challenges should therefore have the following re-
quirements.

• the reconfigurable device used as the accelerator should have high bandwidth access
to the main memory of the host;

• the system should be easy to adapt to a new problem with a radically different
workload through modern techniques such as dynamic partial reconfiguration;

• it should use a general purpose operating system running on common off-the-shelf
hardware thus making it an easy target to port applications;

• the platform should be easily programmable in a familiar programming language.

1.2 Objectives

As discussed in the previous section there are many important requirements for a plat-
form independent solution that utilizes reconfigurable computing. In this section I ex-
plain how this thesis attempts to meet those requirements. Our selected reconfigurable
system is shown in Figure 1.1 and is the basis of this thesis work.

As shown in the figure, it consists of a hardware platform comprising of the following:

• AMD Opteron-244 1.8 Ghz 64-bit processor;

• 1 GB of DDR memory connected to an IWILL DK8-HTX motherboard;

• a AMD Hypertransport Bus on the motherboard which also provides an interface
to this bus called as the HyperTransport eXpansion(HTX);

• a Xilinx Virtex 4-100 FPGA chip placed on the HTX Board developed at the
University of Mannheim [16];

• a HTX module used by the FPGA to interface to the host.

The software used with this hardware platform are as follows:

• Gentoo Linux Kernel 2.6.30;

1.2. OBJECTIVES 5

Figure 1.1: The HTX Platform indicating it’s various components as well as my area of
focus.

• Linux PCI driver

• a modified GCC 4.5 compiler

The above software and hardware components together comprise the HTX Platform.
This term will hereafter refer to both these components. The points listed below are
the enhancements done to this AMD Opteron Hypertransport based machine. My work
mainly involved the tools and operating system and resulted in a more flexible and
programmable platform that can be used for a large number of applications.

• Dynamic Partial Reconfiguration Support: This is the primary enhancement
done to the system and is implemented via the Partial Reconfiguration feature of
the Virtex 4 device. It uses the ICAP component to reconfigure hardware instances;

• Driver Support for Partial Reconfiguration: Non-blocking execution support
is added to allow a user process to initiate configuration of the FPGA and con-
tinue execution without waiting for reconfiguration to complete. When the FPGA
is needed by the process which initiated it’s reconfiguration then it’s ready for
immediate use. This is used for the prefetching option of the system;

• Compiler Enhancements: The GCC 4.5 compiler is modified to insert code at
the appropriate places to support partial reconfiguration. Compiler logic has also
been inserted for efficient use of the prefetching feature through proper scheduling
of partial reconfiguration;

• Automatic Hardware Generation: The ROCCC C-to-VHDL compiler is inte-
grated into the tool-chain to allow complete hardware to be automatically gener-
ated starting from C or C++ code for a function.

6 CHAPTER 1. INTRODUCTION

1.3 Overview

This thesis consists of four chapters after this introduction. In the next chapter, Chap-
ter 2, I discuss our selected reconfigurable platform and how it offers a new approach
towards a general-purpose system with reconfigurable acceleration. Some of the novel
features offered by this platform are discussed along with the mechanism used to inte-
grate the FPGA and control it. This chapter also provides an introduction to the basic
premise of dynamic partial reconfiguration and the adaptations required in a typically
flat design to accommodate it. The Hierarchical Design Methodology and some of the
terminology associated with this flow is presented. I then move on to describe some
existing commercial and research machines existing today that have similarities to our
Platform. This includes the Convey Computer, the XtremeData DISC, SGI Altix, SRC
Computers and machines from DRC. Finally I touch upon the state of current research
in C-to-VHDL compilers and a few existing solutions. These are the DelftWorkBench
[1], Handel C [15], Catapult C [14], SRC’s Map compiler [2] and a few others. I conclude
with a discussion of the ROCCC compiler and the reasons for integrating it into our
tool-chain.

Interested readers already familiar with the background work, may want to skip
directly to Chapter 3 where I present the modifications done to enable partial recon-
figuration on our selected reconfigurable platform. I begin with a discussion about the
interfaces provided by Xilinx to configure their FPGAs and go into particular detail
about the Internal Configuration Access Port(ICAP). Subsequently I discuss modifi-
cations that were applied to the Xilinx bitstream format before it could be used to
configure the FPGA through the ICAP. I also discuss the development of the ICAP
Controller and how the size of the Read FIFOs affected our design. Then I focus on
floor planning of components for our platform and the final plan I settled on for getting
optimum timing results. This is followed with a discussion about compiler support for
partial reconfiguration and driver modifications done for non blocking execution of the
calling process. I finally talk about hardware generation using the ROCCC compiler and
wrapping ROCCC systems and modules through the wrappergen program. The chap-
ter concludes with a discussion of the optimizations done to extract the best possible
performance from our system.

Ultimately in Chapter 4 I describe the secure audio processing application used to
evaluate my work. I discuss the Audio and AES cores and the resources occupied by
them. Then I move on to a discussion about the execution time obtained for different
input data sizes and the variation of speedup with the same sizes. I also compared five
different prefetching techniques and the performance each of them deliver. Towards the
end I delve on the function used to test the CCU wrapper generated by wrappergen
around the ROCCC output modules. I conclude with a comparison of the execution
time for each kernel that is used to benchmark our design.

I conclude this thesis in Chapter 5 where I indicate it’s contributions and provide
directions for future research.

Background 2
In the previous chapter I discussed how applications can be accelerated in hardware and
the challenges involved. This chapter discusses the HTX Platform as proposed in [17]
and how it offers a new approach towards a general-purpose system with reconfigurable
acceleration. Some of the novel features offered by this platform are discussed along with
the mechanism used to integrate the FPGA and control it.

The HTX Platform is an implementation of the Molen polymorphic processor
paradigm [18] utilizing an AMD processor and the HTX high speed interconnect. There-
fore I will first present a brief discussion on it’s features. Molen uses a PowerPC(PPC)
processor connected to a Virtex-2 FPGA to accelerate functions. The PPC and the re-
configurable device can communicate data through a set of Exchange Register(XREGs).
The Molen Polymorpic Processor is shown in Figure 2.1. It extends the instruction set
of the PPC with eight instructions which are sufficient for accelerating applications on
this platform. The instructions are internally executed using microcode. The system
supports partial reconfiguration but does not support direct access to the PPC’s main
memory. Programs intended to execute on the Molen architecture are written in C. The
functions that are accelerated in hardware are marked with a pragma user directive as
shown below. This is based upon the technique used in the DelftWorkBench:

__attribute__((user("replace")))

void rijndaelEncryptData(..)

{

...

...

}

The HTX Platform is an implementation of the Molen architecture however it uses an
AMD Opteron processor instead of a PowerPC. Furthermore the platform adds support
for high bandwidth memory access using the HTX Bus. Common design issues in the
design of Polymorphic Processors are also addressed such as:

• Instruction Set Extension: While Molen does a one time architectural of a given
ISA comprising of 8 instructions, the HTX Platform does not require it. The
functions for managing reconfiguration are handled through commands sent to the
FPGA by the driver

• Parameter Passing: Our platform allows any number of parameters to be passed
to the FPGA device through addresses in the virtual address space of a process
running in the host. This is further explained in Section 2.1

7

8 CHAPTER 2. BACKGROUND

Figure 2.1: The Molen Polymorphic Processor.

• Modularity: The HTX Platform allows independently designed FPGA modules to
be inserted through Custom Configured Units(CCUs). These are designed specifi-
cally for an application and can be easily inserted into the system.

The HTX Platform already supports acceleration of software functions through re-
configuration of the FPGA device. However it lacks support for changing the hardware
configuration at runtime such that the functionality can be changed while a process is
using it. This allows the process to utilize the FPGA for accelerating a new function with-
out the need for halting it or restarting it. Thus the HTX platform was extended with
support for dynamic partial reconfiguration. This required adaptations to the initial flat
design in conformance with hierarchical design using the Hierarchical Design Method-
ology. The Hierarchical Design Methodology(HDM) is the most prevalent methodology
used with Xilinx boards today and it replaced the Early Partial Reconfiguration flow
used with earlier tools. HDM is used in our platform as it leads to a very clear cut
hierarchical structure and allows automatic insertion of hardware logic to handle recon-
figurable regions. This eliminated the need for explicit specification of bus macros. It’s
also required for specifying reconfigurable partitions which is needed to use DPR with
Xilinx tools. Some of the terminology associated with the HDM flow is also presented.

This chapter is split into four sections. In Section 2.1 I discuss the HTX Platform
and some of it’s novel features. Then in Section 2.2 I provide an introduction to the
basic premise of dynamic partial reconfiguration and current design flows associated
with it. Subsequently in Section 2.3 I attempt to put my work in perspective of current
developments in other parts of the world by describing some existing commercial and
research machines. I particularly discuss the machines from SGI Altix, the Convey
Computer, XtremeData, SRC Computers and DRC Computers. Finally I touch upon
the state of current research in C-to-VHDL compilers and a few existing solutions in

2.1. THE HTX PLATFORM 9

Section 2.2. These include the DelftWorkBench, Handel C, Catapult C, SRC’s Map
compiler and especially the ROCCC compiler. I conclude this discussion on background
work in Section 2.4.

2.1 The HTX Platform

Figure 2.2: The HTX Platform implementation.

The HTX Platform shown in Figure 2.2 consists of an AMD Opteron-244 1.8 Ghz 64-
bit processor and 1 GB of DDR memory connected to an IWILL DK8-HTX motherboard.
The motherboard has an HTX bus with an HTX connector which is used to connect
a Xilinx Virtex 4-100 FPGA device. For interfacing the FPGA with the HTX bus
the HTX module developed at the University of Mannheim [16] was used. It allows
3.2 GBytes/sec throughput(unidirectional, 16-bit link width) with up to 32 concurrent
DMA requests. The system runs on a Gentoo Linux Kernel 2.6.30. The FPGA contains
the accelerator for computationally intensive functions in hardware. Such functions are
annotated in the code by the user beforehand to indicate that they should be executed
in hardware. The compiler is then responsible for emitting the proper binary with the
hardware configuration (bitstream) of the respective function embedded within it. The
configuration bitstream and the function arguments are sent to the reconfigurable device,
which subsequently performs the reconfiguration, executes the function and returns the
result. Figure 2.3 shows an overview of the HTX Platform.

The Reconfigurable device (FPGA card) is connected to the host general purpose
processor and to the main memory through the Hyper Transport bus with a bandwidth
of 3.2 GBytes/sec throughput(unidirectional, 16-bit link width). On the host side, a
Linux driver has been developed to support the communication of the FPGA device with
the host and the main memory via system calls and interrupts. On the reconfigurable

10 CHAPTER 2. BACKGROUND

Figure 2.3: Overview of the HTX Platform.

device a module is used to interface with the high-speed link. The reconfigurable device
further contains the reconfigurable accelerator intended to speed-up a software function.
Various accelerators can be designed depending on the application running in the host.
Finally, a wrapper has been designed around the reconfigurable accelerator to support
the integration of the FPGA device in the platform.

Figure 2.4 offers a more detailed view of the modules designed in the FPGA device
and in particular the internals of the hardware wrapper. The IO module controls all
the memory-mapped IO of the device while DMA reads and writes are managed in the
wrapper through the address translation module. Address translation uses a TLB copy
to translate virtual addresses to physical before each DMA request. The ICAP controller
handles dynamic reconfiguration of the accelerator. It receives a bitstream through the
HTX bus and feeds it to the ICAP to perform partial reconfiguration. Finally, the
Interrupt Handler (IH) manages the interrupts raised by the device. Therefore the
wrapper does the following:

• controls the reconfigurable accelerator; that is, it dynamically reconfigures the
accelerator through the ICAP as well as initiates and controls it’s execution;

• maintains some memory-mapped IO regions: exchange registers (XREGs), a TLB
copy, as well as control and status registers; the control registers are used to pass
commands from the host to the FPGA device, while the status registers hold
information regarding the status of the device;

• the exchange registers (XREGs) are used for passing function-arguments from the
host to the accelerator and also to return execution results back to the host;

• handles interrupts generated by the FPGA device for various reasons, via the
interrupt handler (IH);

2.1. THE HTX PLATFORM 11

Figure 2.4: Modules implemented in the FPGA.

• performs Direct Memory Access(DMA) operations between the FPGA device and
the main memory of the host;

• translates virtual addresses to physical using a local copy of the host processor’s
TLB and handles all TLB misses (by raising an interrupt).

The platform supports three different types of communication between the host, the
memory and the FPGA device. The host can write and read data from the FPGA, the
FPGA can send data to the host, and the FPGA can read and write data to/from the
main memory. Their purpose and role in the platform is explained below.

• Host to/from FPGA: The host processor sends the arguments of the hardware-
accelerated function to the FPGA and also reads the result of the reconfigurable
accelerator. In addition, the host sends control signals to the FPGA in order
to initialize and reconfigure the device as well as to start the execution of the
accelerator. Finally, the host can write new entries to the TLB copy of the FPGA
device to support address translation;

• FPGA to Host: The FPGA initiates communication with the host by raising an
interrupt in case of a TLB miss, reconfiguration completion or execution comple-
tion;

• FPGA to/from Memory: The FPGA performs DMA reads and writes from and to
the shared main memory in order to read the bitstream of a new accelerator, to
feed the accelerator with input data and to write output data back.

12 CHAPTER 2. BACKGROUND

In the following subsections, I first present the mechanisms used to control and
integrate the FPGA device into the General Purpose System. Subsequently, I give an
overview of the functionality of our platform and describe the way device initialization
and hardware execution is supported.

2.1.1 Integration and Control of the Reconfigurable Device

The FPGA device is integrated in the platform through a Linux device driver. The
driver provides an Application Programming Interface for software to interact with the
device, it also performs the initialization of the device and handles interrupts caused
by the device. The FPGA device is controlled via system calls, automatically inserted
by a modified GCC compiler, while the configuration bitstreams are embedded in the
binary code running in the platform. In addition, the hardware accelerated functions
have direct access to the main memory, managed by the FPGA device.

Controlling the FPGA device via System Calls: System calls are used to con-
trol the FPGA device from the host via the Application Programming Interface provided
by the Linux driver. The following system calls are used to control the functionality of
the FPGA device:

• int open(const char *pathname, int flags);

• int close(int fd);

• ssize t read(int fd, void *buf, size t count);

• ssize t write(int fd, void *buf, size t count);

• off t lseek(int fd, off t offset, int whence);

• int ioctl(int fd, int request, ...).

The open() system call is used by a program, running on the host processor, to get a
lock on the device, while the close() system call releases the lock. The write() and read()
system calls are used to write the arguments of function calls to the (memory-mapped)
exchange registers (XREGs) of the FPGA device and to read the return values, respec-
tively. Furthermore, the ioctl() call can be programmed to pass commands to the device.
It is used to dynamically reconfigure the accelerator area of the FPGA (ioctl(SET)) as
well as to initiate the execution of the reconfigurable accelerator (ioctl(EXECUTE)).
Using system calls rather than for instance extending the ISA of the host processor,
like in [14], provides a more generic approach applicable to any system that supports a
connection to an FPGA device.

Compiler Support: The programmer indicates the functions to be executed in
hardware, by annotating them with GCC attributes: attribute ((user(“replace”))).
The compiler can then automatically insert the appropriate system calls to the driver’s
API in order to achieve the hardware execution of the function. To do so, a GCC 4.5
compiler was extended with a plugin which scans the source code for such annotated
functions. The body of such a function is then replaced with the required system calls.

2.1. THE HTX PLATFORM 13

Figure 2.5 illustrates an example of the system calls automatically inserted by the com-
piler to the original code in order to allow the hardware reconfiguration and execution
of a function in the FPGA.

Figure 2.5: System calls inserted.

First, the device is initialized (dev =open(DEVICE)), then, the hardware accel-
erator is configured (ioctl(dev, SET)),the function parameter is passed to the FPGA
(write(dev,a, 0)), subsequently, the function is executed in hardware (ioctl(dev, EXE-
CUTE)), and finally the result is returned to the host (b=read(dev, 1)). It is noteworthy
that the function arguments passed to the FPGA device cannot be more than 64-bit num-
bers, since this is the size of each FPGA XREG. This does not constitute a limitation
however since the FPGA can directly access larger data structures in the host mem-
ory. All that is required is to pass the pointer or address of the structure as a function
argument through the XREGs.

DMA: Direct Memory Accesses: The FPGA device accesses the main memory
using DMA reads and writes. The Reconfigurable accelerator places memory requests
and subsequently these are handled by the DMA manager located in the wrapper. The
DMA manager consists of two parts, one for reading and one for writing data to the
main memory. Read data are queued before being fed to the accelerator in order to
concurrently serve multiple outstanding requests. Similarly write requests from the ac-
celerator are queued before being served. Multiple requests can be active at the same
time while the reconfigurable accelerator continues processing. Furthermore, multiple
memory accesses to consecutive lines can be merged into one request reducing the pack-
etization overhead. The DMA manager then needs to ensure that all memory requests
are page-aligned; a single memory access cannot cross the page boundaries since this
would cause a problem in the address translation. Using DMA with queues results in
better utilization of the high-speed link and hides more efficiently the memory latency.

Address translation: The accelerated function operates in virtual addresses. Con-
sequently, in order to retrieve the physical address of a DMA request, address translation
is required. Address translation is performed in the wrapper of the FPGA. The virtual

14 CHAPTER 2. BACKGROUND

addresses are translated into physical using a local copy of the host CPU’s TLB kept in
the FPGA. The wrapper maintains a TLB copy of 512 entries. TLB misses are handled
by interrupts raised by the device. In such a case, the driver will write the missing entry
to the FPGA TLB which then will be able to proceed with the respective translation.
All pages stored in the FPGA TLB copy are then locked by the driver in memory, while
those pages whose entries were replaced should get unlocked. During this process the
driver should support memory protection. The reconfigurable device inherits the mem-
ory access permissions of the program that called it. The driver ensures that the FPGA
device receives new TLB entries only for pages that it has permissions to read or write.
Moreover, read-only pages are protected from write accesses. Another task of the driver
is related to memory paging. The driver checks whether a page accessed by the FPGA
device exists in the memory; in case a page is swapped out to disk, the driver loads it
back in memory. Finally, the driver maintains cache coherency after the completion of
a hardware-accelerated function. The above properties are implemented in the device
driver using two kernel functions. The first function is get user pages() and provides
memory protection and paging. In addition, get user pages() locks in memory all pages
used by the device; alternatively the FPGA TLB copy would have to be updated each
time a useful page were swapped to disk. Locking useful pages to the memory does not
limit the total number of pages used by the device. The maximum number of pages
locked by the device is equal to the number of FPGA TLB entries; it is however possible
to use more pages than that by replacing -and hence unlocking existing old TLB entries.
The second function used by the driver is pci map page() which is used for translat-
ing a virtual address to the current physical address and ensure the host remains cache
coherent if a page is modified by the FPGA.

Interrupts: The driver receives interrupts from the FPGA device in three cases:
on a TLB miss during address translation, when the reconfiguration of the device is
complete, and when the accelerator has completed execution. An interrupt caused by
the FPGA device is supported in the Interrupt Handler (IH) located in the wrapper.
Since the High-Speed link interface supports only one interrupt identifier, I use a status
device register to differentiate between the three types of interrupts above. This is
achieved by storing a different interrupt-id in a status register located in the IH. The
IH is further responsible for prioritizing multiple concurrent interrupts; this is possible
when the device hosts multiple parallel reconfigurable accelerators. Sending interrupts is
achieved by writing to a specific memory-mapped address using a write DMA operation.
This memory-mapped IO location is setup by the driver during the initialization of the
FPGA as a PCI device.

I next move on to the functionality provided by the FPGA.

2.1.2 Functionality of the Reconfigurable Device

The HTX platform uses the above described mechanisms to dynamically reconfigure and
execute hardware functions, as well as to initialize the FPGA device.

1. Initialization of the device: The Linux driver is responsible for the initialization of
the FPGA-device. When the driver is first loaded into the Linux-kernel, it registers
the FPGA device-id. Then, in case the kernel detects the FPGA device, the driver

2.2. INTRODUCTION TO DYNAMIC PARTIAL RECONFIGURATION 15

is notified and initializes the device as well as several related data structures within
the driver. First the driver maps the memory-mapped IO regions of the FPGA
device into the kernel’s address space. This allows the driver to access these regions
as if they were arrays in memory. Subsequently, the driver creates an interrupt-
id which can be used by the device, and registers the Interrupt Handler with
the kernel, providing the device with a memory location to be written to when
triggering an interrupt. Finally, the driver creates an entry (device node) in the
file system of the machine; this entry is then available to user-space programs in
order to exploit the device’s capabilities.

2. Dynamic Reconfiguration of Hardware Functions: The Dynamic Reconfiguration
of the accelerator FPGA-region is initiated by the program, which locks the de-
vice. This is performed through the ioctl(dev, SET) system call. Further details
are presented in the next chapter where I discuss the modifications made to the
platform to add partial reconfiguration.

3. Execution of Hardware Functions: Execution of a hardware function is initiated
by the program through the ioctl(dev, EXECUTE) system call. The parameters of
the function are passed to the XREGs of the device using write system calls before
execution starts. During execution the accelerator can perform DMA transfers and
use the XREGs for data exchange. Upon execution completion the device raises
an interrupt to notify the host, which then runs one or more read system calls to
read XREGs containing results. Additional results of the function may be located
already in the main memory, stored by the device through DMA writes.

In this section I discussed the HTX Platform and it’s basic functioning. I now move
on to dynamic partial reconfiguration. Before delving into the system level changes in
the next chapter, an introduction to the term and its use in the real world is presented.
Following this introduction, I present a few research and commercial machines which
have implemented the concept of FPGAs as a hardware accelerator for applications.
The chapter concludes with a discussion on automatic hardware generation from C code
and a few existing compilers that support such automatic conversion.

2.2 Introduction to Dynamic Partial Reconfiguration

Modern FPGAs such as the boards from Xilinx and Altera support Partial Reconfigu-
ration(PR). This allows a part of the FPGA design to be changed without affecting the
operation of the remaining part. A design which allows a part of it to be reconfigured
must therefore have at least two parts, a static part which is never changed and a recon-
figurable part which will be altered. Furthermore Xilinx boards also support dynamic
partial reconfiguration which allows the reconfigurable part to be altered without halting
the static part of the design. The basic idea behind partial reconfiguration can be shown
by Figure 2.6

The figure shows the static part of the design in white and the reconfigurable region
A in black. Such reconfigurable regions can be defined by using tools such as PlanA-
head. The design in the reconfigurable region can be modified by using either of the

16 CHAPTER 2. BACKGROUND

Figure 2.6: The basic premise of Partial Reconfiguration.

bitstreams shown to the right which are called partial bitstreams. Thus the functionality
implemented in Reconfigurable Block A is modified by downloading one of several partial
bit files, A1.bit, A2.bit, A3.bit or A4.bit which in hardware terms represent independent
circuits. They can be created using appropriate vendor tools specific to the board. It is
important to note that the static logic remains functioning and is completely unaffected
by the loading of a partial bit file. The reconfigurable logic is replaced by the design
specified in the partial bit file.

It is also worth mentioning that the design technique I have used with the HTX board
is known as the Hierarchical Design Methodology(HDM) [19]. HDM is a design approach
that leverages the natural logical hierarchy of a design to overcome the restrictions
imposed by a typical flat design flow. Simply put, it means that HDM enables the
designer to break up the design into smaller, logical blocks, allowing each major function
to be worked on independently. These blocks are referred to as Partitions and they can
be created using floor planning tools such as PlanAhead.

Therefore a Partition is a logical section of the design, defined by the user at a
hierarchical boundary and which can be considered for design reuse. This allows a
complex design to be broken up into smaller, more manageable pieces. Partitions create
boundaries or insulation around the hierarchical module instances, isolating them from
other parts of the design. At a hardware level this allows the circuits in each partition to
be shutdown, removed and replaced with another circuit without affecting neighboring
partitions.

Partitions are essential for a design that allows partial reconfiguration. To enable
PR a design partition is marked as reconfigurable and is thereafter referred to as a
Reconfigurable Partition(RP). Such a RP has a specific interface to the static part of the
design which implies that the ports crossing the PR boundary are fixed. There can be
multiple designs that can be accommodated in this RP and each such design must respect
the port interface to the rest of the design. These designs are called Reconfigurable

2.2. INTRODUCTION TO DYNAMIC PARTIAL RECONFIGURATION 17

Modules(RMs). Thus a single RP can have multiple RMs. A more complex design could
have multiple RPs each with its own set of RMs.

To allow signals to cross the partition boundary, Xilinx synthesis tools insert Partition
Pins. Partition Pins are the logical and physical connection between the static logic and
the reconfigurable logic. They are automatically created for the ports present in the RP.
In hardware the Partition Pin uses a single LUT1 element. In earlier uses of Partial
Reconfiguration this logic which allows signals to cross the partition boundary in either
direction; from RP to static or vice versa, was called as a Bus Macro. Its now been
changed with automatic insertion of the so called Proxy Logic.

Figure 2.7: Proxy Logic is realized using LUT elements as shown in this implementation
view of our design in PlanAhead.

The HTX Platform was upgraded to use the newer Hierarchical Design Method. This
allowed easier creation of RPs and more details could be observed during the synthesis
process. It also allowed us to experiment with different floor plans for the RP. The details
of the changes are presented in the next chapter. Now, I move on to discussing some real
world machines which have integrated FPGAs successfully as hardware accelerators.

18 CHAPTER 2. BACKGROUND

2.3 Reconfigurable High-Performance Computers

This section discusses how five existing machines have integrated an FPGA into a general
purpose machine. They were chosen on the basis of their similarity with our platform
and the various approaches utilized.

2.3.1 Convey

The Convey computer is an integrated system of hardware, software and execution mod-
els that accelerate single threads. The Convey HC-1 compute node is an Intel-based
x86 64 server system with a dual socket motherboard. One socket contains a dual core
Intel Xeon processor while the other is populated with a socket interface to a daughter
board. It is shown in Figure 2.8

Figure 2.8: Convey Computer. Source: http://www.conveycomputer.com/

This daughter board contains four Xilinx Virtex-5 FPGAs which are the main hard-
ware accelerators and are called Application Engines (AEs). The hardware accelerators
are supported by sixteen DDR2 memory cards on the same board. To provide high band-
width access to this memory from the host microprocessor, eight memory controllers are
also integrated into the board. Moreover, a host computer interface, or Application En-
gine Hub (AEH) provides access to the application engines from the CPU. The AEH
has access to a cache which is cache coherent with the host processor, acceleration units
(FPGAs), and the Intel I/O hub which has access to all memory on the system. It’s also
responsible for managing reconfiguration of the AEs and initiating their execution.

2.3. RECONFIGURABLE HIGH-PERFORMANCE COMPUTERS 19

The memory on the Convey daughter board along with the memory in the rest
of the system exist in the same virtual address space. This eliminates the need for
explicit transfer of memory blocks from the host processor to memory that is reachable
by acceleration processors. The acceleration processors can reference all the memory on
the host processor. Likewise, the host processor can access all memory physically located
within the sixteen DDR2 DIMMs on the acceleration board. This requires significant
bandwidth and is realized through the eight memory controllers on board which together
support up to 80GB/s of bandwidth.

The Convey System extends the x86 64 instruction set with instructions that are
implemented in hardware, specifically the Application Engines(AEs). This is achieved
through a Open64 based compiler which emits x86 64 code for both the host processor
and the instructions intended to be executed by the acceleration processors. At runtime
when an application arrives at the first accelerated instruction, the AEH signals the
Application Engines to reconfigure themselves into the appropriate state for running
that instruction. The next instruction may be a different accelerated instruction and
this prompts another reconfiguration. The machine claims that reconfiguration occurs
in real time with very little latency to the application. The system is programmed in
C/C++ or FORTRAN.

To abstract away the underlying electronic and hardware details, the system provides
a series of pre-built, common hardware personalities. These are basically hardware
configurations for groups of common instructions that are ready for use by a programmer.
They can be programmed into the machine at runtime.

2.3.2 SGI Altix

The SGI Altix is a computing machine targeting high performance computing applica-
tions. It provides hardware acceleration using two Virtex-4 FPGAs along with eight
Itanium-2 CPUs and 16 GB of main memory in the host. The program that provides
access to the underlying hardware is the Reconfigurable Application Specific Computing
(RASC) program. Connectivity among the system components is achieved through the
SGI NUMALink high speed interconnect which provides low latency and high band-
width. The link interconnects the FPGAs as a co-processor as well as the Itanium CPUs
and Static Random-Access Memory(SRAM) chips. The system provides a device driver
to allow accessing the FPGAs through system calls. Furthermore there is a library pro-
vided to enable even higher level access from user programs called as RASC Abstraction
Layer(RASCAL). The architecture of the SGI Altix is shown in Figure 2.9.

2.3.3 XtremeData DISC

XtremeData makes a module, called the In-Socket Accelerator(ISA), which is pin com-
patible with a CPU socket from Intel or AMD. Their product is the XD2000i and since it
sits in a CPU socket it allows the module to be a peer to the CPU and handle interrupts.
The module also uses HyperTransport which offers multiple links which are 16 bits wide
and allows transfer rates of 800MT/s(Mega Transfers per second). The platform is based
on the loosely coupled Massively Parallel Processing(MPP) approach.

20 CHAPTER 2. BACKGROUND

Figure 2.9: SGI Altix architecture showing how an FPGA is con-
nected to the NUMAlink interconnect and SRAM chips. Source:
http://www.sgi.com/products/servers/altix/numalink.html

The use of the XD2000i has been explained through the construction of a com-
mercially available Data Intensive Supercomputer, the XtremeData DISC. The primary
acceleration component of this system is the XtremeData dbX which is an FPGA-Based
device. The FPGAs are re programmable in-system but it is not clear from available
manuals whether run-time reconfiguration is available. The system consists of nodes
which are the places where computations actually occur. The nodes begin with the
Head Node coupled to N data Nodes. The system is scalable by adding more nodes.
Each node has its own CPU, FPGA and local storage. There can be up to 1024 nodes
when scaling up the system and all these nodes are controlled by a co-ordinator node.
There is a high speed InfiniBand interconnect between the nodes. Figure 2.10 shows a
block diagram of the XtremeData system.

The XtremeData system is used for data warehousing applications and is augmented
with external storage. One such system intended for data warehousing uses 16 nodes with
each dbX node having 2 FPGA accelerators. Important SQL operations that take too
much time on the CPU are accelerated in the FPGAs. Data movement capabilities are
also present in the hardware design along with statistics gathering. A MPP database
engine is built on top of this hardware. The system’s user interface is through Java
Database Connectivity or Open Database Connectivity Drivers. This allows the system
to be used without knowing low level VHDL programming. The XtremeData system
is a case of an application specific machine giving far higher performance than a more

2.3. RECONFIGURABLE HIGH-PERFORMANCE COMPUTERS 21

Figure 2.10: XtremeData Architecture. Source: http://www.xtremedata.com

general purpose computing system such as a Linux cluster. In this case SQL was run
in hardware. The structure of the system also allows it to be scaled up to tackle much
bigger amounts of data than would be possible through software alone.

The XtremeData system is claimed to have a low peak power consumption of 40
watts based on the FPGA in the ISA module.

2.3.4 DRC Computers

DRC Computers provides a commercial solution based on reconfigurable co-processors
that can be plugged into standard sockets provided by AMD. The approach can be clas-
sified as a very tightly-coupled FPGA to CPU interface. Their machines are constructed
to be like a standard PC enhanced with a RPU. The co-processors are designed to be

22 CHAPTER 2. BACKGROUND

directly plugged into a multi-way motherboard, which are boards that contain either 2
or 4 sockets (referred to as 2 way or 4 way respectively). Their DS2000 family of systems
provides a complete computer with 1 reconfigurable processing unit or RPU and 1 CPU
plugged into a Tyan 2 way board, or 2 RPUs and 2 CPUs plugged into a 4 way board.
Generally the CPU used is the AMD Opteron and there are high speed HTX links to
the CPU memory.

DRC’s RPU110-L200 module has a tight coupling to the CPU due to it’s location
on one of the motherboard sockets and an independent memory controller provides fast
access to main memory. In fact access to adjacent DDR memory and the Opteron
processors are at Hypertransport speeds. They further claim that the RPU110-L200
combines a physical interface with a small footprint and this makes efficient use of space
and power while reducing the number of nodes required to do computations.

The RPU is based off a Virtex-4 LX device and contains its own dedicated DDR
RAM. The computers run a custom built operating system known as the Milano Hard-
ware OS which enables runtime reconfiguration support without a system reboot. The
average reconfiguration time is stated to be in the range of about 2 seconds.

DRC computers are generally targeted towards data intensive applications for the
finance industry, time critical applications, oil and gas and biomedical markets. Appli-
cations that are search, sort, compress or encrypt intensive have their key algorithms in
the RPU. Their aim is to replace Linux cluster environments with a scalable system that
can handle high performance computing applications.

2.3.5 SRC Computers

SRC Computers makes the Series H MAP Processor which is a commercial FPGA-based
reconfigurable processor. They describe the computational logic running in the FPGA as
Direct Execution Logic(DEL) which is executed by a DEL processor. The DEL processor
is realized using the resources of an FPGA. Instead of describing an algorithm through
instructions intended to be executed in a traditional microprocessor, the DEL processor
uses a FPGA’s electronic resources directly to execute the logic. Since a FPGA based
design is inherently parallel with each functional unit in the design capable of becoming
active at every clock pulse, the algorithm can gain immensely from parallel execution
without any software overhead. An unique DEL processor can be created for every
application and represent the most efficient use of silicon for running that application’s
logic.

The MAP processors have been designed keeping in mind that it is efficient to run
only parts of an application in hardware. Serial code such as those dealing with user
interfaces, and file reads are best run in a traditional CPU. Therefore a DEL processor
is run in a closely coupled configuration with a Intel Xeon CPU.

SRC systems thus consist of DEL processors and microprocessors. A tool chain is
provided to automatically use hardware for a program’s logic. The tool chain accepts a
program written in a high level language such as C or Fortran and passes it to the MAP
compiling system.

The Direct Execution Logic is combined with code running on the microprocessor.
Interface logic is generated to co-ordinate the logic running in the MAP processor with

2.4. AUTOMATIC HARDWARE GENERATION 23

logic running on the microprocessor.

Name of Machine Focus Area Reconfigurable Hardware

Convey HC-1 Acceleration of single threads Dual Socket motherboard
with a Intel-Xeon in 1 socket
and daughter board with 4
Xilinx Virtex-5 FPGAs

XtremeData DISC Data Intensive Applications In-Socket Accelerator(ISA)
pin compatible with a CPU
socket from Intel or AMD

DRC Computers High Performance Computing
applications that are search,
sort, compress or encrypt in-
tensive

RPU110-L200 module based
of a Virtex-4 LX device with
dedicated DDR RAM plugged
into the remaining sockets of a
2 or 4 socket motherboard

SRC Computers Compute intensive applica-
tions in scientific research, oil
and gas, defense

Direct Execution Logic pro-
cessor realized using a com-
mercial FPGA running in a
closely coupled configuration
with an Intel Xeon CPU.

Table 2.1: Summary of various machines which integrate a reconfigurable device and
their focus areas.

In this section I discussed existing computing machines that integrate reconfigurable
devices. The machines are summarized in Table 2.1. In the next section I move on to
the software aspect of these machines. I discuss automatic hardware generation with a
focus on C/C++ as the primary input language.

2.4 Automatic hardware generation

As can be judged from the previous section a large number of machines incorporat-
ing microprocessors and FPGAs are now available. The main difficulty lies however in
programming them. Hardware is generally programmed in Hardware Definition Lan-
guages(HDLs) such as VHDL or Verilog. Software programmers are generally not fa-
miliar with these languages and are more comfortable in implementing algorithms in a
High Level Language(HLL). Furthermore efficient usage of a FPGA’s resources require
a detailed knowledge of timing information, the components present and concurrency.
These pose hurdles to hardware-software co-design and a steep learning curve to software
designers. Yet another issue is that if sections of a large software code base is written in
a HDL instead of the HLL in which the rest of the system is written, then there can be
difficulties in integrating both parts into a smoothly working solution. Coding using an
HDL is generally tedious and error prone to those who are not very proficient in it.

In spite of the above, C is one language which is equally familiar to both software and
hardware designers. Also applications which target machines incorporating hardware

24 CHAPTER 2. BACKGROUND

accelerators, generally get written in C or C++. This has lead to wide exploration
of techniques providing automatic conversion of C to VHDL. These techniques have
been incorporated into popular compiler frameworks such as SUIF [20] and the more
modern LLVM [21]. This has lead to increasing exploitation of hardware resources
by software application developers and utilization of the large speedups provided by
hardware through it’s inherently parallel nature.

In the following subsections I describe a few current C to VHDL conversion tools
that have appeared in literature or are currently in use.

2.4.1 DWARV

The DelftWorkBench automated reconfigurable VHDL generator [1] provides a C-to-
VHDL generation toolset and was developed in TU Delft. It aims to provide a semi-
automatic platform for hardware-software co-design using the DWARV toolset. The code
output is meant to run directly on the MOLEN polymorphic processor. The tool accepts
annotated C code and imposes a few restrictions on the C syntax. The annotations
specify the functions which are intended to be accelerated in hardware. The toolset
tries to harness the parallelism in the input C code. The current tool supports memory
addressing in one dimension and does not support structures, unions and floating point
data types. Iterations and conditions statements are limited to for and if statements.

Figure 2.11: The toolset for the DelftWorkBench. Source: [1]

The DWARV toolset has two main modules:

• The DFG Builder and

• The VHDL Generator

The input code first encounters the DFG Builder as shown in Figure 2.11. The DFG
Builder performs high level hardware optimizations and converts the code into a inter-
mediate form(IR) that is more suitable for mapping onto an FPGA’s resources. The
high level optimizations done are simplified scalar replacement, static single assignment,

2.4. AUTOMATIC HARDWARE GENERATION 25

common sub-expression elimination, and dead code elimination. The DFG Builder is
implemented as a pass within the SUIF2 compiler framework. The output of the module
is an IR in a form such that maximum parallelism is exposed for further exploitation dur-
ing VHDL code generation. Thus it’s output is a hierarchical data-flow graph (HDFG).
A HDFG is a directed acyclic graph with two types of nodes: simple and compound.
Simple nodes represent arithmetic and logic operations, registers, and memory transfers.
Compound nodes represent loops in the input code and contain a sub-HDFG of the loop
body. The edges of the graph represent data dependencies and the precedence order
between operations as in a dependency graph.

The IR form is further processed using the VHDL generator module. This module
carries out As Soon As Possible(ASAP) scheduling of the operations in the graph nodes.
Thus it requires the latencies of the operations in the nodes as input. The latencies are
in terms of CCU cycles and latencies below this is not currently allowed. The VHDL
module also requires the available memory bandwidth and delays for memory operations
as input. The output code is based on Finite State Machines(FSMs) and have an interface
that matches with the MOLEN CCU interface.

2.4.2 Handel C

Handel-C is a high level HDL and has a lot in common with ANSI-C. Handel-C allows
easy conversion of algorithms into a hardware implementation and also allows hardware
designers the freedom to easily write functional descriptions of hardware systems. While
Handel-C implements only a subset of the ANSI-C standard, it also includes a number
of hardware specific constructs to ease development of hardware. Handel-C code can be
parallelized by using the par construct. The par construct is an explicit command to the
synthesis tools that all program statements within the par block may be performed in
parallel. This allows the compiler to schedule operations in different functional units at
the same time step. Handel-C produces code that can be applied to almost any FPGA.

2.4.3 SRC’s MAP compiler and Carte

SRC’s MAP compiler can accept programs written in a FORTRAN and/or C and pro-
duces an unified executable that runs on MAP processors. MAP processors are present
in SRC machines and are basically realized from FPGA resources. The compilation sys-
tem extracts as much parallelism as possible from the program and chooses the parts
to be implemented in hardware. It then generates pipelined logic that is instantiated in
the MAP processor. Furthermore the compiler generates interface code to co-ordinate
data movement to and from the MAP processor and to co-ordinate the logic running in
the microprocessor with the logic running in the MAP processor. The MAP compilation
system is shown in Figure 2.12.

2.4.4 Catapult-C

Catapult C Synthesis is a commercial high-level synthesis tool by Mentor Graphics.
It can generate VHDL or System C RTL descriptions from untimed ANSI C++ and
System C code. The software algorithm is written as a bunch of C++ functions. A large

26 CHAPTER 2. BACKGROUND

Figure 2.12: The MAP Compiler from SRC Computers. Source: [2]

number of architectural constraints are allowed including target specific input and output
delays, power optimizations using clock gating etc. Loops can be unrolled or pipelined
to meet timing constraints. The tool is also capable of showing a GANTT chart with
the full datapath and times when the various functional unit are active. This allows finer
scheduling of the design. Resources allocated to each part of the C code can be viewed
or modified by a user before RTL generation. This includes I/O ports synthesized from
the parameters of the top level C/C++ function. Other types of resources are channels,
constant arrays (ROMs), and local arrays inside subprocesses. The compiler supports
pragmas for design specific things that do not change much, such as loop pipelining
and unrolling while directives can be used for constraints that change from solution to
solution.

2.4.5 Stream-C

Stream-C is an open source C to VHDL compilation tool. It was developed to support
the unique characteristics of stream oriented processing in the Streams-C system and
is based on the SUIF C-processing framework. The compiler is thus optimized for the
following:

• high-data rate flow of one or more data sources

• fixed size, small stream payload (one byte to one word)

• compute-intensive operations with low precision fixed point and

2.4. AUTOMATIC HARDWARE GENERATION 27

• access to small local memories holding co-efficients and other constants

The Streams-C compiler targets FPGA-based parallel computers and is capable of
synthesizing circuits for multiple FPGAs with a multi-threaded control program that
runs on a host processor . The Streams-C language is actually a small set of annotations
and library functions callable from a conventional C program. The annotations are used
to declare a process, stream, or signal and to assign resources on the FPGA board
to those objects. A process is basically an independently executing object created by
hardware generation from the C code of a subroutine. A process can run on the host
processor or on an FPGA chip. For an FPGA process, the process body accesses only
local data and is written in a subset of C supported by the Streams-C compiler. The
process is allowed to call upon library functions to communicate stream data to other
processes or send signals to other circuits. A typical process declaration in Streams-C is
shown in Figure 2.13

Figure 2.13: Declaration of Process in Stream-C. Source: [3]

The system also provides a functional simulation environment based on POSIX
threads, allowing a programmer to simulate the collection of parallel processes and their
communication at the functional level. The Impulse C high level compiler is also based
on Streams-C.

2.4.6 ROCCC

The Riverside Optimizing Compiler for Configurable Circuits (ROCCC) is a C to VHDL
compiler designed at the University of California and supported by Jacquard Computing
[22]. It supports modular design and generates code independent of any hardware.
Hardware specific optimizations are left up to the user. No extensions are made to the C

28 CHAPTER 2. BACKGROUND

syntax to support hardware generation. The compiler is based on the SUIF and LLVM
infrastructures and is open source.

The latest version of the compiler ROCCC 2.0 stresses on modularity and reusabil-
ity. It implements these two concepts through the creation and integration of modules.
Modules are generated from C functions that do not have use any memory references as
one of their arguments. Thus these functions have only the standard C data types such
as int, float or double as their parameters. They have a known number of inputs and
outputs, some internal computation, and a known delay. However they cannot contain
loops. Modules written in C can be kept in their original software function form or
converted to a hardware function thus leading to hardware acceleration. These are then
integrated directly into larger designs through standard C function calls which connects
to the hardware instance.

To allow memory references, ROCCC supports a code structure called as a System.
System’s code are generally critical loops of applications that perform computations on
large streams of data in memory. System code is therefore allowed to contain loops and
reference memory through array accesses. Data reuse between consecutive iterations
of the loop is detected and used to minimize memory fetches, with the necessary data
elements being stored in a smart buffer [23]. If there is no data reuse, FIFOs and internal
memories are generated to fetch and store data.

Name of Compiler Application Area Target Hardware &
Framework used

DWARV No restriction of the applica-
tion domain

Targets the MOLEN plat-
form, SUIF2 Compiler frame-
work

Handel-C Parallelism, general purpose
applications

No specific compiler frame-
work, targets all FPGAs

SRC’s MAP compiler Parallelism, automatic choice
of hardware targets

MAP processor

Catapult-C No specific domain, applica-
tions written in ANSI C/C++

Generates RTL(VHDL & Ver-
ilog) targeting ASICs and all
FPGAs

Stream-C Streaming data and compute
intensive applications

21C

ROCCC Critical region loop nests All FPGAs, based on SUIF
and LLVM

Table 2.2: Summary of various C to VHDL tools and their focus areas.

Moreover, the compiler also supports external cores to carry out specific functions in
hardware. This can include floating point multiplication and division, Discrete Fourier
Transform etc. The cores can be generated by hardware vendor’s specific tools such
as the Xilinx Core Generator. To use such tools inside modules or systems, the user
needs to specify the VHDL interface and latency for the core. Thereafter the compiler
is capable of automatically using the core whenever the related operation is seen in the
C code.

2.5. CONCLUDING THE DISCUSSION ON BACKGROUND WORK 29

The ROCCC compiler output is very well documented and it is easy to integrate into
a hardware platform. Furthermore it generates FPGA agnostic code. These were the
main reasons why I chose to integrate ROCCC into our tool-chain. Further details of
how this was accomplished is presented in the next chapter.

The compilers discussed in this section are summarized in Table 2.2.

2.5 Concluding the discussion on background work

In this chapter I presented some of the background work and literature surveyed before
carrying out modifications to the HTX Platform. I first presented an overview of the
platform and it’s distinguishing features. The mechanisms used to control the FPGA
namely the device driver and system calls were discussed. I then gave a brief introduction
to Dynamic Partial Reconfiguration and related terminology. Then I moved on to a
discussion on existing machines which support high performance computing. I found that
some of these machines also use the HTX bus and use dynamic partial reconfiguration
to adapt to different application requirements. I concluded with a discussion on the
techniques used by modern automatic hardware generation compilers. I specifically
discussed DWARV, Stream C, ROCCC and a few others.

Now I move on to the parts of the system modified in the HTX Platform during the
course of this thesis. In the next chapter I go into the details of these changes after a
brief diversion to discuss the hardware behind partial reconfiguration in Xilinx boards.

30 CHAPTER 2. BACKGROUND

System Level Support for
Dynamic Partial
Reconfiguration 3
This chapter discusses modifications done to the HTX platform during the course of this
thesis. It covers the changes to the design to access the ICAP component on the Virtex
4 board, the ICAP controller, compiler modifications, automatic hardware generation
and other optimizations carried out.

The organization of this chapter is as follows, in Section 3.1 I present the hardware
available on the Virtex 4 FPGA to support dynamic partial reconfiguration. This section
also discusses some of the commands in the Xilinx bitstream and the modifications done
to it for use with the ICAP. Next, in Section 3.2, I discuss the modifications done
to the GCC compiler via a plugin to support partial reconfiguration. I also explain
changes carried out to the hardware PCI driver to accommodate large bitstreams and
allow non blocking execution. Subsequently I present automatic generation of CCUs
from C code via the ROCCC C-to-VHDL compiler in Section 3.3. I especially focus on
the wrappergen program which is responsible for correctly wrapping ROCCC output.
The chapter concludes with a discussion of the optimizations done in the compiler to
get increased performance in Section 3.4 and a summary of the matter presented in
Section 3.5.

3.1 Dynamic Partial Reconfiguration on HTX

This section discusses the hardware used to carry out partial reconfiguration on the
HTX Platform and floor planning of the basic design. The most important hardware
component is the ICAP which supports a standard interface to configure any part of a
design which has been marked as reconfigurable. To allow the reconfiguration to occur
independently of the rest of the design, hardware logic is inserted automatically at the
interface of the reconfigurable part. I now proceed to the operation of the ICAP.

3.1.1 The Internal Configuration Access Port(ICAP)

Virtex-4 devices such as the one attached to the HTX platform are configured by loading
an application specific configuration data into an internal configuration memory. This
configuration is in the form of a stream of bits. As the configuration memory is volatile,
the device needs to be reconfigured each time the board is powered up. Configuration
occurs through configuration words which are loaded into configuration memory on the
ticks of a Configuration Clock(CCLK). Xilinx provides three configuration interfaces to
configure the FPGA, namely:

1. Serial

31

32 CHAPTER 3. SYSTEM LEVEL SUPPORT FOR DYNAMIC PARTIAL
RECONFIGURATION

2. JTAG

3. SelectMAP

The serial configuration involves loading one configuration bit per clock cycle as given
in [4]. JTAG configuration overrides all other modes and is always available through a
JTAG cable. However the last interface is the one that is most interesting for DPR as
it’s also used with the ICAP component on the Virtex-4 FPGA.

Figure 3.1: The SelectMAP Interface. Source: [4]

The SelectMAP interface is shown in Figure 3.1. It provides a 8-bit or a 32-bit
bidirectional data bus. These are respectively called SelectMAP8 or SelectMAP32. It can
be used to write to as well as readback configuration memory. CCLK is the configuration
clock while M[2:0] is used to set the mode. SelectMap Data is the bidirectional data bus.

The Internal Configuration Access Port (ICAP) allows access to configuration data
in the same manner as SelectMAP. ICAP has the same interface signaling as SelectMAP
other than the data bus, which is separated into read and write data buses.

The ICAP interface as shown in Figure 3.2 is derived from the SelectMAP interface
with a chip-select signal (CS), a read-write control signal (RD), a clock (CLK), a write
data bus (DIN), and a read data bus (OUT). Furthermore the ICAP can be configured
to two different data bus widths, 8 bits or 32 bits. I used the ICAP in 32 bit mode
which is the similar to the SelectMAP32 interface. The ICAP interface can be used to
perform readback operations or partial reconfiguration. When using ICAP for partial
reconfiguration, it is necessary to avoid changing the logic or interconnect to which
the ICAP itself is connected. This is ensured by keeping the ICAP Controller and the
ICAP primitive instantiation in the static part of the design. Furthermore in the HTX
Platform I needed to add timing constraints for th ICAP which lead to smooth partial
reconfiguration.

The ICAP can also be used to read or write to the configuration registers, such as
the STAT, CTL, or FAR registers. More details about these registers is provided in the
section on the Xilinx bitstream format. This proved to be an indispensable feature early

3.1. DYNAMIC PARTIAL RECONFIGURATION ON HTX 33

Figure 3.2: ICAP Interface. Source: [4]

on in the thesis when I was trying to achieve reliable partial reconfiguration through
the ICAP. Using this, the entire configuration of the device can be read back using the
SelectMAP interface through appropriate commands in the bitstream.

A brief summary about the location of the physical component and how it affected
our design is in order. The ICAP is located in two sites on the Virtex-4 board with
the condition that both cannot be active at the same time. Since the top one is used
by default, I placed the ICAP Controller close to the ICAP to eliminate any chances of
configuration failing due to timing issues in the data path.

I now move on to the bitstream format accepted by the ICAP.

3.1.2 Xilinx Bitstream Format

The default bitstream format used by Xilinx boards required modifications before it could
be used as a partial bitstream for the ICAP. I will first explain the standard bitstream
format as generated by the BitGen tool. I then go into the modifications I made to adapt
it for use with the ICAP.

Virtex-4 configuration memory is arranged in frames that are tiled about the device.
These frames are the smallest addressable segments of the Virtex-4 configuration memory
space. I used the XC4VFX100 board which uses frames for various purposes as shown
in Table 3.1:

Device Non-
Config.
Frames

Config.
Frames

Device
Frames

Frame
Length

Config. Array
Size

XC4VFX100 1,660 25,170 26,830 41 1,031,970

Table 3.1: Virtex 4 frames used for various purposes. Source: [4]

The configuration memory of Virtex boards can be written into using some standard
registers. The important registers relevant here are:

34 CHAPTER 3. SYSTEM LEVEL SUPPORT FOR DYNAMIC PARTIAL
RECONFIGURATION

1. Frame Address Register;

2. Frame Data Register, Input (write configuration data);

3. Frame Data Register, Output(read configuration data);

4. Command Register;

5. Control Register.

A typical bitstream illustrates the use of these registers for writing to the configura-
tion memory. A description of each command word is shown in Figure 3.3 below. This
was generated through a C program written by me to clearly comprehend the format
before attempting to change it.

Figure 3.3: The Xilinx bitstream format.

3.1. DYNAMIC PARTIAL RECONFIGURATION ON HTX 35

To summarize briefly, the bitstream is basically a sequence of 32 bit command words
intermingled with 32 bit data words. It begins with a header followed by commands
written to the command register to indicate that new configuration is being written.
Most of the bitstream after this consists of commands to write frame data to configuration
memory. This is achieved by writing the frame address into the FAR register followed
by an appropriate number of words in the FDRI register. The bitstream ends with the
Last FRaMe , desync and CRC check commands.

My modification to the bitstream was to discard the header and replace it with two
32-bit words. These two words contain the length of the bitstream that follows these
first two 32-bit words. This helps the ICAP controller request the correct number of
words from the main memory. I also inserted a large number of NOPs towards the end
to ensure the bitstream is completely flushed to the ICAP. This was done to ensure that
the configuration words preceding the NOPs were definitely loaded into configuration
memory as any internal buffers filled up with incoming words. The extra NOPs would
help in this and yet not affect or damage the board in any way. Apart from these changes,
the partial bitstream was usable for dynamic partial reconfiguration.

The next sub-section deals with bitstream delivery to the ICAP using the ICAP
controller developed by us.

3.1.3 The ICAP Controller

An ICAP controller was developed by us. It is capable of reading data buffered in the
BRAM or directly through the HTX Bus. It is a simple FSM based controller that
accepts the address of the bitstream in the host’s main memory and starts fetching the
configuration data when it receives a start signal. Figure 3.4 below demonstrates the
working of the ICAP controller.

The initial design of the controller was based on configuring the FPGA by fetching
the configuration data through the HTX bus and sending it immediately to the ICAP.
However this approach led to the FPGA chip entering an error state as the configuration
would not complete. I reasoned that this was due to the ICAP not seeing the words in the
right endianess or in the correct bit order. However changing the order of the bits or the
bytes in each word made no difference. The only other possibility was of the ICAP not
receiving all the words to finish the configuration which meant that there was a delay in
the delivery of the configuration words through the HTX bus. Since the ICAP requires
configuration words at a constant rate, any interruption could easily cause failure in
reconfiguration. I finally determined that the problem stemmed from low FIFO sizes
of about 1kb used by the DMA Read Manager while fetching the configuration data.
This became clear after I inserted the configuration bitstream in a BRAM located on
the device and this lead to the configuration proceeding smoothly.

Since the FIFO size used with the DMA Read Manager was initially of the order
of a few kilobytes while the bitstream size was considerably bigger at about 1 MB,
thus the ICAP would run out of data during the configuration. It may also not receive
configuration words for a few clock cycles. These were treated as NOPs in the middle
of the bitstream and lead to incorrect configuration of the FPGA. Since FIFOs are also
realized through BRAM resources, a simple increase of the Read FIFO to at least 64kb

36 CHAPTER 3. SYSTEM LEVEL SUPPORT FOR DYNAMIC PARTIAL
RECONFIGURATION

Figure 3.4: The operation of the ICAP Controller.

allowed the entire bitstream in the FIFO. This solved the partial reconfiguration issues
I faced early during the project.

3.1.4 Partially Reconfigurable Regions on the HTX board

As discussed in the previous chapter, the Hierarchical Design Methodology(HDM) was
employed to setup the HTX Platform for partial reconfiguration. This involved mak-
ing partitions in the initial flat design with most of the main modules in the wrapper
occupying separate partitions. The Custom Computing Unit(CCU) was the only Re-
configurable Partition(RP) in the design. A hierarchical view of the design is shown in
Figure 3.5 below.

I designed a number of CCUs during the course of this thesis. These CCUs were the
Reconfigurable Modules used for PR and could be swapped in and out of the single RP
using the ICAP. PlanAhead 12.2 is the primary Xilinx tool I used for defining partially
reconfigurable regions. The tools allows various Reconfigurable Modules(RMs) to be
imported as NGC netlists. This implies that individual CCUs should be independently
synthesized using XST or similar synthesis tool. A RM combined with the static logic
forms a single hardware configuration. Thus there are as many configurations possible as
there are combinations of RMs and the static logic. I had primarily two configurations
one being the AES and the other the Audio RM. An entire configuration is mapped,
place-routed and given to BitGen to generate the bitstream independently of the others.

I also experimented with a number of floor plans when I was trying to make PR

3.1. DYNAMIC PARTIAL RECONFIGURATION ON HTX 37

Figure 3.5: The hierarchy in our design.

work on the platform. Most of them involved placing the DMA Read Manager, the
Read FIFO and the ICAP Controller as close to the ICAP as possible to alleviate timing
issues. A particular challenge was accommodating very large designs like the Audio CCU
discussed in the next chapter. This CCU requires significant BRAM resources and I was
constrained by the fact that a RP can only be a single rectangular region. Furthermore
it was important to not bring critical resources required by the HTX Core under the RP.
The final floor plan that I settled upon is shown in Figure 3.6 below.

Another issue that I faced was during synthesis of the PR design. Certain floor
plans or excessive floor planning lead to very poor timing scores while others often do
not work at all. Certain components cannot be placed at specific places on the board
and this is clear only after a failure of the Place-and-Route Process. Converging on
the optimum floorplan that works every time is both a time-consuming and laborious
process. However PlanAhead did provide a clear cut process with appropriate tools and
Tcl/Tk command line support to allow us to change designs rapidly in case things did
not work as expected.

This section discussed the changes that I carried out to the hardware design of the
HTX Platform to add Dynamic Partial Reconfiguration. The next section delves into
the software changes which go with the above to complete the system.

38 CHAPTER 3. SYSTEM LEVEL SUPPORT FOR DYNAMIC PARTIAL
RECONFIGURATION

Figure 3.6: The Floorplan for the HTX Platform.

3.2 Compiler Support and Prefetching

As discussed in sub-section 2.1.1, the compiler plays a significant role in completing the
picture with regard to PR. An important step in the compilation process is linking the
hardware bitstream to the binary executable. This has the advantage that the delay in
reading the bitstream from a separate file is avoided as the bitstream gets loaded into
the host’s memory along with the program. Thus the reconfiguration latency is reduced.
I achieved the linking using the objcopy program in Linux.

~# objcopy --input binary --output elf64-x86-64 --binary-architecture i386 ccu.bit ccu.o

When objcopy does the above conversion it adds the following linker symbols to the
created object file: binary ccu bit start binary ccu bit end

This embeds the bitfile ccu.o inside the executable file which in Linux is in the
ELF(Executable and Linkable) format and allows the bitstream to be accessed by the
program during runtime to send to the FPGA. However for this to happen the decla-
rations above need to be inserted into the global variable region of the program. Also
proper function calls need to be inserted at the appropriate places in the C code. Before
discussing the calls themselves I will talk briefly about how they were inserted in the
code as it was a part of my thesis.

A GCC 4.5 compiler was modified via a plugin to achieve the modification in the
code. To build the plugin I studied the process used by the GCC compiler to take C code
text towards RTL code in preparation for conversion to binary. It is shown in Figure 3.7
below:

3.2. COMPILER SUPPORT AND PREFETCHING 39

Figure 3.7: The GCC compilation process.

The only two formats that were relevant to me for the plugin were:

1. GENERIC: This is the format emitted by the code text parser. A code text parser
may use any internal representation for its own use but at the end it must convert
the code text to GENERIC. All GCC front-ends share this representation.

2. GIMPLE: This is essentially a simplified form of GENERIC. A restricted grammar
is used in GIMPLE representation to simplify the job of code optimizers. Figure 3.8
shows how code looks like in this format.

The plugin modifies the tree representation used for the GIMPLE format and inserts
extra edges to the Control Flow Graph whenever new function calls are added. The most
important call required is the ioctl(address, SET) call used to start configuration of the
FPGA device. The address parameter refers to the linker symbol binary ccu bit start
whose insertion into the symbol table of the executable was discussed earlier. This ioctl
call needs to occur prior to execution of a function in the hardware as the hardware may
not be ready. I inserted this call at the top of main() to allow prefetching to start as
soon as the process begins executing.

After the ioctl() call occurs at program runtime, control passes to the Linux PCI
driver. The memory location where the configuration is stored is received in the address
parameter. This address is written to the FPGA using a special register that the FPGA
is able to read. This communication is setup using a memory-mapped I/O region at
driver initialization. Now the C program is suspended and a signal sent to the FPGA
using a control register to start configuring the reconfigurable partition. The signal ends
up in the ICAP controller and it starts fetching configuration data from the address
specified. The length of the bitstream is embedded as a header and is the first 64-bit
word read by the ICAP Controller. It decides how many requests for 4KB data pages

40 CHAPTER 3. SYSTEM LEVEL SUPPORT FOR DYNAMIC PARTIAL
RECONFIGURATION

Figure 3.8: The conversion of C code from GENERIC to GIMPLE.

will be made. Thus the ICAP Controller never reads beyond the bitstream boundaries in
the host’s main memory. Once all the pages containing configuration data is read by the
ICAP Controller and sent to the ICAP, it sets a DONE signal which causes an interrupt
to be sent back to the driver. The driver then wakes up the process running the user
program and allows it to use the hardware.

The above approach is sufficient for supporting basic partial reconfiguration. How-
ever suspending a process reduces throughput as time is wasted in not executing other
instructions which are not dependent on the accelerated function’s output. This becomes
quickly apparent when two or more functions are accelerated in hardware. It’s vital to
configure the FPGA in the background while the program is busy running normal soft-
ware code. Then when control lands on the hardware accelerated function there is no
time wasted in configuring the FPGA before it can be used. Hiding this latency is an
important stumbling block in getting application acceleration with FPGAs and therefore
I proceeded to modify the driver to prefetch the bitstream while the process owning the
user program continues to run without blocking.

The basic hurdle in achieving non-blocking execution was locking of user pages in
memory before giving their contents to the FPGA. Locking of user pages is important for
preventing delays in hardware execution of a function due to the delay involved in reading
in pages from secondary storage. It is even more important for partial reconfiguration
because the ICAP component on the FPGA requires data at a constant rate especially
if insufficient buffer e present on the FPGA. However the pages of a running process
cannot be locked in memory or at least I was not able to do so.

3.3. HARDWARE GENERATION USING THE ROCCC COMPILER 41

My solution to this was to copy the bitstream to kernel space. For this to be possible
a region of kernel memory needs to be pre-allocated, that can be directly accessed by
PCI devices (recall that the FPGA is treated as a PCI device in Linux). This region
is large enough to accommodate the largest bitstream size which was 1.1 MB in my
case. The Linux PCI API function pci alloc consistent() allocates consistent memory
and returns an address through which the CPU can reach this memory. When the user
program attempts to configure the FPGA, I copy the bitstream data from user space
into this pre-allocated kernel space memory. Then I give the FPGA the CPU address
returned by pci alloc consistent() and signal the FPGA to start configuring. The signal
ends up in the ICAP controller as before, which immediately tries to get the physical
address corresponding to the virtual address of the bitstream.

Our design maintains a copy of the TLB in the host as well as in hardware BRAM
in the FPGA as has been discussed in the previous chapter. Whenever an address
translation is needed, the FPGA looks there first. It’s possible to pre-fill this TLB with
addresses which will not change during the program’s run. Such a case exists for kernel
space addresses because kernel pages are never swapped out.

I used this fact to my advantage by prefilling the bitstream addresses in the TLB copy
of the FPGA and to compensate for the delay introduced by copying the bitstream from
user space to kernel space. This allows the FPGA to immediately know the physical
address of the bitstream in memory without incurring a delay in sending an address
translation interrupt and having the driver write the correct physical address to the
FPGA’s copy of the TLB. Finally, the physical address is handed over to the DMA
unit which takes care of transfer of data using the HTX bus. This design choice had
the added benefit of not having to modify the existing address translation method for
accessing data from user space memory.

As a result of the above mechanisms the HTX Platform allows partial reconfiguration
in the background while the user process continues running. When running more than
one CCU such as the AES and Audio CCU together in the same program, the bitstream
of the first CCU can be sent to the FPGA at the beginning of the program before control
lands at the hardware accelerated function call. This is called prefetching and it allowed
me to hide the latency involved with configuring the FPGA to a large extent. I discuss
the use of prefetching in different ways while evaluating it’s benefits in the next chapter.

This section elaborated on the modifications made to the compiler and the Linux
driver to support Partial Reconfiguration on the HTX Platform. The final section of
this chapter follows and it will deal with automatic generation of hardware using the
ROCCC compiler.

3.3 Hardware generation using the ROCCC compiler

In this section I discuss the integration of ROCCC into our platform. The goal for
integration of ROCCC was to enable generation of a complete CCU from C code thus
eliminating the overhead in terms of time and effort required for constructing a CCU by
hand. Generation of CCUs for the HTX Platform is possible now through a C program
called wrappergen written by me. This program generates a CCU wrapper for ROCCC
generated VHDL code. The CCU wrapper’s job is to read data from the host’s main

42 CHAPTER 3. SYSTEM LEVEL SUPPORT FOR DYNAMIC PARTIAL
RECONFIGURATION

memory and supply it with correct timing to the enclosed ROCCC module. This is
elaborated in Figure 3.9 and basically consists of a number of FSMs working in parallel.

Figure 3.9: The wrappergen program generates FSM based VHDL code to manage the
ROCCC output within the CCU.

Before discussing the wrapper generation itself I will present some details regarding
the phases of compilation in the ROCCC compiler. Following that I will discuss how
wrapper generation was added.

ROCCC is split up into a number of phases. These are shown in Figure 3.10 below:

The C code is accepted through the GCC C front end. A modified GCC 4.0.2 com-
piler then converts this text to the GCC GENERIC representation. A program written
specifically for ROCCC then translates the GENERIC representation into SUIF(Stanford
University Intermediate Format) as the next step, which does high level optimizations,
requires the abstract tree in this format. The SUIF code of the program is then handed
over to the Hi-CIRRF passes, where CIRRF stands for Compiler Intermediate Represen-
tation for Reconfigurable Fabrics. It is nearly identical to ANSI C with expressions and
statements very similar to the original C code. The high level compiler transformations
done in this step are the usual:

• Multiply and division by Constant Elimination;

• Loop unrolling;

• Systolic Array Generation;

• Temporal Common Sub-Expression Elimination and others.

At the end of the Hi-CIRRF passes, two files are generated which contain the C code
converted to Hi-CIRRF. These are the roccc.h and the hi cirrf.c files. The next step is
the Lo-CIRRF passes which actually generates VHDL code representing the hardware.

3.3. HARDWARE GENERATION USING THE ROCCC COMPILER 43

Figure 3.10: The phases in the ROCCC compilation process.

A number of Lo-CIRRF passes are now used to reduce hardware and pipeline
the code. The Lo-CIRRF passes are implemented using the Low Level Virtual Ma-
chine(LLVM) toolset. Retiming also occurs in this phase. The output of the Lo-CIRRF
phase is VHDL entities which can be wrapped appropriately for use in any FPGA based
platform. Furthermore I have ensured the creation of a sqlite3 database which contains
the details regarding the ports generated and the paths of VHDL files. This is used for
generating a wrapper for the HTX platform.

As mentioned earlier in Chapter 2, ROCCC supports the creation of modules and
systems. These are created from C or C++ functions only. Thus a complete program
cannot be handed over to ROCCC for automatic profiling and hardware implementation
of appropriate regions. Modules and systems are generated for two different types of
functions distinguished on the basis of whether one of their parameters is a memory
pointer or not. Each of these entities require a different type of wrapper and will therefore

44 CHAPTER 3. SYSTEM LEVEL SUPPORT FOR DYNAMIC PARTIAL
RECONFIGURATION

be discussed separately.

3.3.1 Wrapping ROCCC Modules

A module is generated from a C or C++ implementation function which does not operate
on arrays or try to use pointers in any way. The parameters of such a function are passed
by value and thus it needs to operate only within its local scope. In response to such
code ROCCC generates hardware which always has the following six ports:

• clk;

• rst;

• inputReady;

• outputReady;

• done;

• stall.

Figure 3.11: The VHDL top level entity generated for a ROCCC module for a 5-Tap
FIR filter.

The above ports are shown in Figure 3.11 for a sample module which implements a
FIR filter. The most important ports that are generated are the ones on the left and right
side of the figure. These are the input and output registers. All single variable inputs
in the function parameter list are converted to registers which are loaded through an
unique input data port in the top level entity. The same applies for the output variables

3.3. HARDWARE GENERATION USING THE ROCCC COMPILER 45

for whom output data ports are generated. Any internal variables used are converted to
internal registers.

However the restriction of being unable to pass memory pointers has been eliminated
through the program wrappergen. This program generates CCU wrappers for both mod-
ules and systems. A FSM based wrapper is created with one FSM dedicated to reading
in the values for the ports from the host’s main memory and another for writing the
output values back to main memory. This wrapper is a part of the CCU in the larger
HTX Platform design as mentioned earlier. The ROCCC modules form the other parts
of the CCU.

A C program running on the HTX platform and trying to use a design which incor-
porates a ROCCC module needs to simply pass an array with the values of the function
parameters present in it in the correct order. This array is read by the Read FSM in the
CCU wrapper and the values are fed to the ROCCC module with appropriate timing
to ensure the values get properly clocked into their registers. The output is similarly
read back into an output array from the output ports. The only other inputs the calling
program needs to provide are the number of inputs and the number of outputs such that
illegal reads of the host’s memory do not occur.

Wrapping a module was therefore quite straight forward. The next sub-section deals
with wrapping ROCCC systems which directly try to access memory.

3.3.2 Wrapping ROCCC Systems

ROCCC systems are generated from C or C++ code which has a memory pointer as
one of it’s parameters indicating that the function code accesses and modifies values
in memory. Such a case can arise from functions which read a single element array
,operate on it and write back the results immediately in a streaming mode of operation.
Accordingly ROCCC treats array addresses as stream addresses that are used to access
data in a loop. The operations inside the function results in output streams which are
supposed to end up back in the memory. Normal variables which are called as scalar
values are also allowed as the parameters of a stream oriented function and these are
converted to registers as in the case of modules.

Figure 3.12 shows the C code intended to be a ROCCC System. The code simply
checks if the passed points are within the bounds of a particular region and writes the
results back. As indicated by the example, the C/C++ code for systems is assumed
to have all the logic of the system inside the loop which accesses external data. This
is important for proper optimization of the generated code and is the basis of ROCCC
systems. The system logic can also be confined to a ROCCC module and then the
module can be called as a simple function call from inside a ROCCC system. This lends
modularity to a larger and more complex design. Additionally these conditions apply
for code intended to be treated as a ROCCC system:

• Non-array variables declared inside a function that are only read get treated as
input scalar ports;

• Non-array variables inside a function that are only written to are treated as output
scalar ports;

46 CHAPTER 3. SYSTEM LEVEL SUPPORT FOR DYNAMIC PARTIAL
RECONFIGURATION

• Variables that are both read and written to are treated as internal variables;

• If one of the above variables are read before writing to it, the hardware will generate
an input port for setting its initial value;

• If the last thing done with one of the internal variables is a write to it, an output
port is generated holding it’s final value;

• Return statements are ignored inside the loop construct.

The iterations of the loop decides the size of the input and output streams and the
appropriate amount of data must be supplied before the output can be produced.

Thus for a simple system such as the one shown in Figure 3.12, the hardware gen-
erated is shown at the right. The points pointer is made into an input stream and the
results pointer into an output stream. The rest of the scalar values are turned into reg-
isters with an input port for each. Every input stream gets a standard set of interfacing
signals to load data into it. These are the following:

• Write Clock In: clock used for writing to this stream;

• Channel In bus: bus containing the data to be loaded in the current clock cycle;

• Channel Address Out bus: bus containing the address from where the system is
requesting data;

• Full Port Out: goes high if the stream is full;

• Write Enable In: has to be pulled high externally when data is ready in the Channel
In bus;

• Write Stall In: has to be pulled high externally if the internal FSM should be
stalled temporarily.

An output stream also gets it’s own set of interfacing signals similar to the input
streams

• Read Clock In: clock used for reading from this stream;

• Channel Out bus: bus containing the data that can be read in the current clock
cycle;

• Channel Address Out bus: bus containing the address from where the data from
the above data bus should go;

• Empty Port Out: goes high if the stream is empty and no more data can be read
from the stream;

• Read Enable In: has to be pulled high externally when data should be placed on
the data bus for reading.

3.3. HARDWARE GENERATION USING THE ROCCC COMPILER 47

Figure 3.12: The VHDL top level entity generated for a simple ROCCC System called
WithinBounds.

These interfacing ports are generated for each pointer variable in the function’s pa-

48 CHAPTER 3. SYSTEM LEVEL SUPPORT FOR DYNAMIC PARTIAL
RECONFIGURATION

rameter list. Thus a wrapper needs to interface with these signals correctly so that
a stream gets loaded and unloaded at the appropriate time. Since the HTX platform
supports simultaneous reads and writes I generate two FSMs one for loading data into
the input streams and one for unloading results from the output streams. These run
concurrently in hardware and synchronize with the ROCCC system using the provided
interface. The output ports are similarly unloaded by a single FSM. This resulted in a de-
lay in the operational speed of the ROCCC system which waits during each iteration for
data to finish loading in all the input streams, and after the system logic completes, for
data to be unloaded from all the output streams. However I carried out an optimization
to eliminate this issue as discussed in the next section.

Now I move on to the various optimizations done after the modifications and features
added to the HTX Platform, to get the best possible results.

3.4 Optimizations

A number of optimizations were carried out during the course of my thesis to extract
the maximum performance from the HTX Platform. These optimizations related to the
C code and to VHDL generation and are discussed in the sub-sections below.

3.4.1 Optimizations on the C code

An important optimization was related to prefetching when using two different hardware
accelerated functions in the same program. These optimizations related to hiding the
reconfiguration latency of the FPGA before it can be used to execute the hardware
accelerated function. Let us assume that there are two bitstreams for two different
functions in the executable - say func1() and func2(). In the C code there may be a
straight line of execution without any branches but containing two calls to say func1().
In that case there is no need to configure the FPGA twice. This optimization was
extended to include the case where func1() is the only function within the bounds of a
loop. This implies that multiple iterations of the loop call the function each time and
the FPGA need not be reconfigured except just before entering the loop.

Yet another case is when there is a call to another hardware accelerated function
func2() in between two calls to func1(). Then it becomes necessary to reconfigure the
FPGA each time and a delay is incurred before the function can be executed. However an
optimization can still be affected by starting the reconfiguration for func2() immediately
after func1() returns. This increases the possibility that by the time control lands on
func2(), the FPGA will be ready or at least some of the reconfiguration latency will have
been overlapped with useful work. Conditional branches can lead to more complicated
situations and as of now I insert a call to configure the FPGA in case such statements
are present, to be on the safe side. These optimizations are shown in Figure 3.13.

3.4.2 Optimizations on the hardware wrapper for ROCCC output

There were also optimizations done while generating the wrapper for ROCCC modules
and systems. One of them was parallely loading data for systems. All input streams can

3.4. OPTIMIZATIONS 49

Figure 3.13: Optimizations done by the modified GCC 4.5 compiler.

be loaded concurrently if concurrent requests are sent out to the host’s main memory
using the HTX bus. However our design does not currently support IDs attached to
requests so that they can be identified and sent to their respective streams in the CCU
when the data has been fetched. There is a field present in the HTX Bus packet format
which does allow such a field to be set during a data request and it provides scope for
future work. The way I currently handle parallel loading is by requesting less data for
the first stream say about one-fourth of the maximum amount required. Such a request
completes faster than a request for the complete amount of array data and consequently
the data for the next stream can be requested immediately. Such a design requires
keeping track of the address from where the last data fetch was done as well the size
of each request. But the additional hardware is minimal and performance was slightly
improved.

In addition to the above some algorithms such as the Secure Hashing Algorithm
1(SHA1) algorithm, used for generating fingerprints of messages in security applications,
required a significant rewrite to successfully generate hardware using ROCCC. This
is primarily due to the fact that ROCCC is optimized to generate hardware for loop
nests and the entire logic of the algorithm should be present inside the loop. The
transformation required to adapt the C code to a form accepted by ROCCC is shown in
Figure 3.14 along with the ports generated for the top-level entity.

Yet another case is when the algorithm cannot be modified to fit the entire logic into a
single large for-loop or nest of loops. Such a case exists for the x264 video encoder, whose
most computer intensive function has a series of for-loops. These loops are converted
to separate ROCCC systems as shown in Figure 3.15. Since the algorithm entails that
the output of one loop goes to the next one thus these systems are managed by separate
FSMs and their outputs and inputs are connected using FIFOs. I hereafter refer to
such systems as Chained Systems. Chained Systems increase the scope of usage of the
hardware generation process of the HTX Platform as the logic of many algorithms cannot
be expressed within a single loop.

50 CHAPTER 3. SYSTEM LEVEL SUPPORT FOR DYNAMIC PARTIAL
RECONFIGURATION

Moreover the concept of Chained Systems was extended to support parallelism. If
multiple systems are required to express an algorithm in hardware then wrappergen
generates an FSM for each of these systems. These FSMs supply the data in the correct
timing sequence to the wrapped ROCCC system. In the case where a loop produces
output that another loop can immediately consume, the FSMs for both systems can be
started at the same time. Data can be passed from the producer to the consumer system
using FIFOs and synchronization is acheived by separate signals or through the FIFO
becoming full or empty which halts the producer FSM or consumer FSM respectively.
This method has the added advantage that data required by a consumer FSM need to
be read again from the host’s main memory after the producer has written it there, thus
avoiding read/write delays. It does however require FIFO resources on the FPGA but
the FIFO sizes can be kept quite small depending on the amount of data passed between
the FSMs.

3.4.3 Optimization of the CCU generation process

It is worth noting another feature which I added to the system. The CCU creation
process is fully automated with the user only having to provide the C code and then
press a button. Complete synthesis, mapping and place route is then done automatically
with generation of supporting test benches and test programs for verifying the created
CCUs.

This section discussed the optimizations done to extract maximum benefits from the
work done by me on the HTX platform. In the next chapter I present the setup for
evaluating this performance. I finally come to the conclusion of this chapter.

3.5 Conclusion

In this chapter I talked about the modifications done to enable partial reconfiguration on
the HTX Platform. I began with a discussion about the interfaces provided by Xilinx to
configure their FPGAs and went into particular detail about the Internal Configuration
Access Port. Subsequently I discussed the modifications that were applied to the Xilinx
bitstream format before it could be used to configure the FPGA. I also discussed the
development of the ICAP Controller and how the size of Read FIFOs affected the design.
Then I focused on floor planning of components for our platform and the final plan I
settled on for getting optimum timing results for our design. This was followed with a
discussion about compiler support for partial reconfiguration and driver modifications
done for non-blocking execution of the calling process. This enabled us to add support for
prefetching in the design. I finally talked about hardware generation using the ROCCC
compiler and wrapping ROCCC systems and modules through the wrappergen program.
In the last section I concluded with a discussion of the optimizations done to extract the
best possible performance from the system.

I now proceed to the analysis of my work in the next chapter. After explaining the
experimental setup for this analysis I go into the results obtained and it’s interpretation.

3.5. CONCLUSION 51

Figure 3.14: Transformations done to the SHA1 transform block function to allow auto-
matic hardware generation by ROCCC.

52 CHAPTER 3. SYSTEM LEVEL SUPPORT FOR DYNAMIC PARTIAL
RECONFIGURATION

Figure 3.15: Conversion of the x264 kernel into hardware using Chained Systems.

Evaluation 4
In this chapter I describe the application used to evaluate my work on the HTX platform.
The application considered is for secure audio processing. Secure audio is used for secure
teleconferencing and to secure telecommunications, e.g. in defense, business, financial,
public administration, homeland security etc. The application first processes the input
of 16 audio channels using the beamforming technique and subsequently the output
of the audio processing is encrypted using AES encryption. In the experiments, both
beamforming audio processing and AES encryption functions are dynamically installed
and accelerated in reconfigurable hardware.

After explaining the application in sufficient detail in Section 4.1, I present the results
of accelerating this application on the HTX Platform. Also, I interpret these results and
point out where dynamic partial reconfiguration is interesting. Then in Section 4.3 I
describe how the wrappers generated by wrappergen were verified. Finally I conclude
this chapter in Section 4.4.

Now I proceed to an explanation of the kernel used for beamforming Audio processing
and the AES kernel which are used in the application.

4.1 The AES and Audio cores

In this section I describe the CCUs used to evaluate my work for the thesis. The Audio
CCU is used for beamforming audio processing, and uses the design proposed in [24].
Beamforming is a signal processing technique that improves the signal strength received
from a specific location. It has already been used for many years in areas of SOund
Navigation And Ranging (SONAR), RAdio Detection And Ranging (RADAR) etc. The
design used for this specific case is of a non-adaptive beamformer, which can be used in
small hand-held devices as well as in large 3-D audio systems. Further details can be
found in [25].

The AES security kernel, used to encrypt the audio processing output, is an Advanced
Encryption Standard (AES) cryptography application, the design of which was proposed
in [17]. The AES is a streaming application that encrypts data using the Rijndael
algorithm. The hardware accelerated function uses a 256-bits key, and supports both
ECB and CBC cyphering modes. The application encrypts data blocks of 128 bits at a
time reading them sequentially. The processing of each data block takes 14 clock cycles,
plus 2 additional cycles for read and write.

Now I move on to the performance of these kernels when combined into a real world
application and the interpretation of these results.

53

54 CHAPTER 4. EVALUATION

4.2 Results using DPR

In this Section, I describe the experimental results from utilizing the HTX Platform
for secure audio processing. I also present the operating frequency and area overhead
of the FPGA hardware modules. Subsequently, I evaluate the latency of dynamically
reconfiguring hardware functions of various bitstream sizes. Finally, I use the secure
audio processing application, described earlier, to evaluate the performance of the HTX
system versus software, using static and dynamic hardware acceleration.

Slices FFs LUTs BRAMs ICAP

HTX In-
terface

5,369 4,961 7,347 36 0

Wrapper 2,519 1,426 4,007 69 1

Max PR
Region

10,368 20,736 20,736 144 0

Audio
design

9,274 10,490 11,123 143 0

AES design 5,225 2,010 9,196 0 0

Total 18,256 27,123 32,090 249 1

Table 4.1: Usage of various types of components in the FPGA.

Table 4.1 presents the area requirements of the FPGA modules. The HTX interface
occupies about 5,000 slices and 36 BRAMs. That is due to multiple queues needed for
communication with the HyperTransport bus and the tables required to keep track of
ongoing transactions. The wrapper needs more than 2,500 slices and 69 BRAMs; it is
worth noting that address translation and the DMA manager occupies the largest part of
the wrapper, mostly due to it’s large queues and memory blocks. The maximum size of
the partially reconfigurable region consists of 10,000 slices and about half of the BRAMs
in the FPGA (144 BRAMs). The Audio processing accelerator requires 9,000 slices and
143 BRAMs, while the AES accelerator covers 5,000 slices. Although the rest of the
design can operate at 200MHz, the frequency of the entire FPGA device is limited by
the AES accelerator to 100 MHz.

Next the latency of the dynamic partial reconfiguration for the HTX platform is
measured. Figure 4.1 shows the variation of reconfiguration latency with the bitstream
size. As expected a larger bitstream causes a higher latency in reconfiguring the FPGA.
Also a drop in the reconfiguration latency at about 600kb before again beginning to
rise at about 1.1mb can be attributed to variations in the speeds of the HTX bus. At
about 600k HTX packets have a relatively higher ratio of data versus packet header
information. This would have caused a slight variation in the speed at which the packets
were delivered to the FPGA. Once the reconfiguration process has been initiated by the
ICAP controller, the bitstream needs to be fed to the ICAP without any interruptions.
In order to ensure this, a large part of the bitstream (128KBytes) needs to be read and
stored in the Read DMA Queue before starting the reconfiguration. This increases the
required size of the DMA queue which leads to an increase in the reconfiguration latency
compared to the theoretical minimum. Bitstreams of a few tens of Kbytes require less

4.2. RESULTS USING DPR 55

Figure 4.1: Bitstream configuration latencies.

than a millisecond to be configured, a 256 KByte bitstream roughly needs about 10
milliseconds, while bitstreams larger than a MByte have a reconfiguration latency of
more than 30 milliseconds.

Large latencies offered by the FPGA pose a major impediment to getting impressive
accelerations. To hide such latencies prefetching techniques were used as discussed below.

The performance of the HTX system was evaluated using the secure audio application
described earlier. The application consists of two kernels - the Audio processing and
AES kernel, which do not fit together in the largest possible partially reconfigurable
region of our design. This is largely due to the size of the Audio Kernel which requires
significant amounts of BRAM resources amounting to nearly half of the total present on
the FPGA board. Thus the two kernels are time multiplexed into the FPGA through
partial reconfiguration with the Audio CCU going first. I measure and compare the
following alternative implementations of the application under study:

1) a purely software implementation, having both the Audio and the AES kernels
running on the AMD host processor; 2) both the Audio and the AES kernels acceler-
ated in the reconfigurable hardware, the first one statically preconfigured and the second
one dynamically reconfigured on the fly; 3) the software Audio implementation and the
hardware AES version, dynamically configured with the prefetching option used in the
compiler; 4) the software Audio implementation and the hardware AES version, dynam-
ically configured without prefetching the bitstream; 5) the Audio kernel accelerated in
hardware (statically preconfigured), and the AES kernel implemented in software.

Figure 4.2 shows the execution time of the five implementation alternatives for dif-
ferent input sizes of audio input, while Figure 4.3 shows the speedup of the hardware
approaches compared to the software implementation of the application. The latter
graph shows minor oscillations due to variations in the reconfiguration time as reconfig-

56 CHAPTER 4. EVALUATION

Figure 4.2: Execution Time versus bitstream size.

Figure 4.3: Speedup versus bitstream size.

uration is initiated through the process running in the host CPU. The operating system
in the host CPU may schedule this process at random times leading to speedup which

4.3. TESTING ROCCC CODE THROUGH AN IMPLEMENTATION OF THE AES
ALGORITHM 57

varies slightly from the expected linear increase. For small input sizes, the purely soft-
ware implementation is better than the purely hardware one, due to the reconfiguration
overhead of the AES kernel; in these cases the overall execution time is a few tens of
milliseconds, which is comparable to the 30 msec reconfiguration latency of the AES.
Even for such small input sizes, accelerating only the Audio kernel(implementation-5)
is 3 to 7 times better than software. For input sizes larger than 128 KBytes the purely
hardware solution is better than the purely software implementation, however it is still
worse than executing only the audio kernel in hardware; this is again due to the extra
latency introduced by the dynamic AES reconfiguration in the former case. For inputs
larger than 8 MBytes the execution times are in the range of seconds, thus the reconfig-
uration latency becomes negligible compared to the total latency, as well as compared to
the benefits of hardware acceleration. The purely hardware solution is then the fastest
choice; it achieves an increasing speedup which, for 2 GBytes inputs, is over 12 times
better than software. Accelerating only the Audio processing part in hardware achieves
a speedup of up to 8 compared to software. Accelerating only the second (AES) kernel in
hardware, while running Audio processing in software, has only a marginal improvement
over purely software solutions which is not evident in the graphs.

This is primarily due to the fact that Audio processing is the most computationally
intensive kernel, covering about 95% of the total execution, consequently, accelerating the
AES in hardware gives only a 2-4% performance improvement. I evaluated two different
implementations for accelerating only the second AES kernel in hardware. The first one
is with prefetching of the AES configuration and the second without prefetching. For
small input sizes the benefit of prefetching(implementation-3) is evident being 1.2-1.9
faster compared to implementation-4.

To summarize, it was found that dynamic reconfiguration is interesting in cases where
the hardware-accelerated function has execution times larger than the reconfiguration
latency and a significant speedup over software implementations. In the case of the
HTX this was true for input sets larger than a MByte. The above is illustrated better in
Figure 4.4, which in addition shows that the Audio is the most computationally intensive
part. Yet another point to be observed is that the AES latency becomes significant
(30-40% of the total execution time), when Audio is the only kernel implemented in
hardware (implementation-5). Finally, the effect of prefetching is noticeable in Figure 4.4;
the reconfiguration overhead is gradually hidden in implementation-3 as opposed to
implementation-4, which does not prefetch the reconfiguration bitstream.

I now move on to the tests carried out to verify the wrapper generated for the ROCCC
output, by the wrappergen program.

4.3 Testing ROCCC Code through an implementation of
the AES algorithm

This section describes the experimental verification of the automatically generated CCUs.
Three particularly demanding applications were chosen to test the wrapper generated by
wrappergen. Their compute intensive functions were determined through profiling and is
shown in Table 4.2. They were chosen on the basis of the varying approach required to

58 CHAPTER 4. EVALUATION

convert them to hardware which in turn required extensions to the wrappergen program.

Algorithm Compute-Intensive Func-
tion

Changes required in the C
code

SHA1 Transform Message Block
Function

The multiple for-loops were
converted into a functionally
equivalent single for-loop with
appropriate conditional state-
ments

X264 Encoder Pixel Averaging Function Each of the for-loops were
converted into an unique
ROCCC system and chained
together in the CCU.

Fast Fourier
Transform

FFT Butterfly operation The criss-cross butterfly con-
nections were coded as one
stage in a module and this was
called multiple times within a
loop

Table 4.2: The algorithms chosen to test the output of wrappergen.

The CCU is generated completely without any user intervention. However there was
in general a reduction in performance a compared to purely hand designed VHDL imple-
mentations. This can be attributed to the highly generic nature of the FSM based code
produced by ROCCC which lacks the many optimizations possible in a pure handcrafted
solution. Automatic CCU generation does save time and effort on the part of the user
however and therefore the boost in productivity compensates for the loss in performance.

This concludes the evaluation of the system. I conclude this chapter in the next
section and then move on to the final chapter which sums up my work.

4.4 Concluding the Evaluation

In this chapter I presented the experimental setup for evaluating the performance of the
HTX Platform after it was augmented with Partial Reconfiguration. A secure audio pro-
cessing application was presented along with it’s use in the real world. I then explained
how such an application can be accelerated on the HTX Platform by time multiplexing
the Audio and AES cores in the FPGA. The working of the Audio and AES cores were
described with particular attention paid to the AES core which was a part of my work.
The performance of the cores were then examined through the variation of their com-
bined execution speed and speedup as a function of the input data size. I also presented
the variation of reconfiguration latency as a function of the configuration bitstream size
and highlighted the need to hide this latency through prefetching methods. I evaluated
our approach using a secure audio application composed of beamforming audio process-
ing and an AES encryption kernel. I measured the reconfiguration latency in the system
and evaluated the performance gain of various implementation alternatives compared to

4.4. CONCLUDING THE EVALUATION 59

Figure 4.4: Breakup of Execution Time versus total time.

purely software solutions.
The enhancements done to the HTX platform resulted in the secure audio application

running up to 12.6 times faster than software when both kernels are accelerated in the
FPGA device using dynamic partial reconfiguration. The overhead of reconfiguration and
the benefit of prefetching a configuration bitstream in the device was analyzed in detail
with prefetching reducing the execution time by up to 1.9 times. Furthermore dynamic
reconfiguration was proven to be beneficial in large input sets where the execution time
of the accelerated function was significantly higher than the reconfiguration latency.
Finally the efficiency of CCUs created through ROCCC and wrappergen was examined
by automating the hardware generation of a software intensive function in the AES
algorithm. In the next chapter I briefly recall the work presented in my thesis and
it’s real world applications. I wrap up this thesis with suggestions for future work and
possible improvements to the existing system.

60 CHAPTER 4. EVALUATION

Conclusion 5
Hardware acceleration of general purpose applications through optimum use of reconfig-
urable devices has been the focus of this thesis. I described the HTX Platform which
demonstrates a way to integrate reconfigurable computing with general purpose comput-
ing machines. The distinguishing factor in our platform is the multi-gigabit high speed
link which provides low latency access to the host’s memory from the FPGA device.
Existing support for running programs on the HTX Platform at the time I began my
work was described. I then elaborated on my enhancements to it as well as my attempts
to ease the usage of such platforms through the integration of a C to VHDL compiler.
Optimizations done to achieve the best possible outcomes of my work were discussed
along with the setup used to evaluate the end results.

In this chapter I summarize the work presented in each chapter in Section 5.1 and
provide directions for future work on the HTX Platform in Section 5.2.

5.1 Summary and contributions of this thesis

I began with an introduction to reconfigurable computing and the goals of this thesis in
Chapter 1.

In Chapter 2 I discussed the HTX Platform and how it offers a new approach towards
a general-purpose system with reconfigurable acceleration. I discussed how the FPGA
was integrated and the mechanisms available to control it. This chapter also provided an
introduction to the basic premise of dynamic partial reconfiguration and the adaptations
required in a typically flat design to add partially reconfigurable regions. I discussed the
hierarchical design methodology and some of the terminology associated with this flow.
I then moved on to describe some existing commercial and research machines existing
today that have similarities to the HTX Platform. This included the Convey Computer,
the XtremeData DISC, SRC Computers and machines from DRC. Finally I touched
upon the state of current research in C-to-VHDL compilers and a few existing solutions.
These were the DelftWorkBench, Handel C, Catapult C, SRC’s Map compiler and a
few others. I concluded with a discussion of the ROCCC compiler and the reasons for
integrating it into our platform.

Moving on, in Chapter 3 I talked about the modifications done to enable partial
reconfiguration on the HTX Platform. I began with a discussion about the interfaces
provided by Xilinx to configure their FPGAs and went into particular detail about the
Internal Configuration Access Port. Subsequently I discussed modifications that applied
to the Xilinx bitstream format before it could be used to configure the FPGA through
the ICAP. I also discussed the development of the ICAP Controller and how the size
of Read FIFOs affected the design. Then I focused on floor planning of components
for our platform and the final plan I settled on for getting the optimum timing results

61

62 CHAPTER 5. CONCLUSION

for our design. This was followed with a discussion about compiler support for partial
reconfiguration and driver modifications done for non blocking execution of the calling
process. This enabled us to add support for prefetching in the design. I finally talked
about hardware generation using the ROCCC compiler and wrapping ROCCC systems
and modules through the wrappergen program. The chapter concluded with a discussion
of the optimizations done to extract the best possible performance from our system.

Ultimately in Chapter 4 I described the secure audio processing application used to
evaluate my work. I discussed the Audio and AES cores and the resources occupied by
them. Then I moved on to a discussion about the execution time obtained for different
input data sizes and the variation of speedup with the same sizes. I also compared five
different prefetching techniques and the performance each of them delivered. Towards
the end I delved on the function used to test the CCU wrapper generated by wrappergen
around the ROCCC output modules. I concluded with a comparison of execution time
for each kernel used to benchmark our design , as a percentage of the total time of
execution of the secure audio processing application.

Furthermore this thesis added several features to the HTX Platform related to dy-
namic partial reconfiguration. It’s most important contributions were the prefetching
techniques enabled through modifications of the host side driver. Compiler enhance-
ments allowed hardware descriptions of functions to be included in the executable binary
code and then get dynamically installed on-demand during program execution. The suc-
cessful integration of an open source and actively developing C to VHDL compiler lowers
the barriers for usage of the platform for software programmers. It also increases the
scope of application of the platform with hardware acceleration support for any general
purpose application now easily possible without manually building the hardware. Its
worth noting that at this point most of the suggestions in [26] have been realized for the
HTX Platform.

I now finish this presentation with suggested directions for future research.

5.2 Proposed directions for future research

Reconfigurable devices offer considerable benefits with regard to performance versus
price and performance versus power. The idea of a general purpose computing machine
integrated with a large reconfigurable device leads to a very attractive picture of ma-
chines with “under the hood” acceleration. Adoption of such technologies will however
be decided largely by the success in addressing latency and ease of use issues which ac-
company FPGAs. This thesis attempted to address some of these issues. The possible
improvements to the current HTX platform involve adding support for parallel data load-
ing to start CCU execution as quickly as possible, use of branch prediction techniques
to reconfigure the FPGA before it’s scheduled use, runtime profiling and decisions for
hardware usage and further improvements to the C-to-VHDL compiler platform.

5.2.1 Parallel Data loads

As discussed in the section on Optimizations in the previous chapter, ROCCC systems
can benefit from loading data streams in parallel. This can be supported in the HTX

5.2. PROPOSED DIRECTIONS FOR FUTURE RESEARCH 63

Platform through the SeqID field in the HyperTransport request and response command
packet. If a ROCCC system has multiple streams which require to be loaded before it
can begin then the streams can be numbered. The data for each input stream can be
requested in parallel with the SeqID set to the stream number. When the response is
available, the SeqID can be read from the response packet and the data directed to the
appropriate stream. This technique can be combined with interleaving of smaller chunks
of data such that the CCU is never starved for data and consequently paused for multiple
clock cycles.

5.2.2 Branch prediction techniques for runtime configuration decisions

Static branch prediction techniques that examine the frequency of branches taken and
accordingly schedule instructions can be used to configure the FPGA at the correct time.
This can be done at compile time. Using static brnach prediction the compiler could
choose to reconfigure the FPGA beforehand if the likelihood of it’s being used inside a
branch is high. On the other hand it may choose not to configure it at all if the only
call to the FPGA is from a branch with a low chance of being taken. It may instead
configure the FPGA with a function that may be called further down the sequence
of instructions thus providing more time for the reconfiguration to complete. These
techniques can overlap considerable reconfiguration time with execution on the host
CPU if implemented correctly. In a sense hiding reconfiguration latency then becomes
similar to attempts to hide main memory access latency and a cache of bitstreams may
well serve a similar purpose here.

5.2.3 Profiling for deciding hardware usage

As can be seen in the results presented in the previous chapter, both the Audio and the
AES kernels have quite linear increase in their execution time versus the input size. In
such cases, one may estimate at runtime the overall execution time of tasks running in
software and in reconfigurable hardware, based on the input set. This can be achieved
using profiling information. In doing so, it can be predicted dynamically at runtime
whether or not dynamic partial reconfiguration and hardware acceleration of a function
would deliver speedup. The HTX platform supports such runtime decisions since both
software and hardware implementation co-exist in the same binary code and the most
suitable one can be chosen dynamically on-demand. Note that this is different from
scheduling hardware reconfiguration as presented in the previous sub-section as this
deals with whether or not to use the hardware at all.

5.2.4 Improvements to the C-to-VHDL compiler platform

The C-to-VHDL compiler can be improved with specific passes introduced at the Lo-
CIRRF level for generating CCUs directly as ROCCC output. This eliminates the need
for separately wrapping the generated modules later on through another program such
as wrappergen. Also some optimizations specific to the HTX Platform can be enabled
which will lead to timing improvements and higher speedups.

64 CHAPTER 5. CONCLUSION

Bibliography

[1] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. N. Gaydadjiev, Y. Lu, and S. Vas-
siliadis, “Dwarv: Delftworkbench automated reconfigurable vhdl generator,” in In
Proceedings of the 17th International Conference on Field Programmable Logic and
Applications (FPL07), pp. 697–701, August 2007.

[2] “SRC Computers,” http://www.srccomp.com/.

[3] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski, “Stream-oriented fpga comput-
ing in the streams-c high level language,” in Field-Programmable Custom Computing
Machines, 2000 IEEE Symposium on, pp. 49 –56, 2000.

[4] “Virtex-4 FPGA Configuration User Guide,” June 2009. Xilinx Inc.

[5] P. Bertin and H. Touati, “Pam programming environments: practice and experi-
ence,” IEEE Workshop on FPGAs for Custom Computing Machines, pp. 133–138,
April 1994.

[6] J. M. Arnold, “The splash 2 software environment,” J. Supercomput., vol. 9, no. 3,
pp. 277–290, 1995.

[7] J. Hauser and J. Wawrzynek, “Garp: a mips processor with a reconfigurable co-
processor,” The 5th Annual IEEE Symposium on FPGAs for Custom Computing
Machines, pp. 12–21, April 1997.

[8] S. Hauck, T. Fry, M. Hosler, and J. Kao, “The chimaera reconfigurable functional
unit,” The 5th Annual IEEE Symposium on FPGAs for Custom Computing Ma-
chines, pp. 87–96, April 1997.

[9] R. Wittig and P. Chow, “Onechip: an fpga processor with reconfigurable logic,”
FPGAs for Custom Computing Machines, 1996. Proceedings. IEEE Symposium on,
pp. 126–135, April 1996.

[10] “Intel Quickpath.,” http://www.intel.com/technology/quickpath/.

[11] “Hyper Transport Bus.,” www.hypertransport.org.

[12] “DRC Computers,” http://www.drccomputer.com/.

[13] J. Villarreal, A. Park, W. Najjar, and R. Halstead, “Designing modular hardware
accelerators in c with roccc 2.0,” in Proceedings of the 2010 18th IEEE Annual Inter-
national Symposium on Field-Programmable Custom Computing Machines, FCCM
’10, (Washington, DC, USA), pp. 127–134, IEEE Computer Society, 2010.

[14] “Mentor Catapult C.,” http://www.mentor.com/esl/catapult/overview.

[15] “Handel-C Overview,” http://www.celoxica.com.

65

66 CHAPTER 5. CONCLUSION

[16] “HTX Board,” http://ra.ziti.uni-heidelberg.de/index.php?page=projects&id=htx.

[17] A. Brandon, I. Sourdis, and G. N. Gaydadjiev, “General purpose computing with re-
configurable acceleration,” in 20th International Conference on Field Programmable
Logic and Applications (FPL), pp. 588–591, August 2010.

[18] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. M.
Panainte, “The Molen Polymorphic Processor,” IEEE Transactions on Computers,
vol. 53, pp. 1363–1375, 2004.

[19] “Hierarchical Design Methodology Guide,” March 2011. Xilinx Inc.

[20] “The SUIF Compiler System.,” http://suif.stanford.edu/.

[21] “The LLVM Compiler Infrastructure.,” http://llvm.org/.

[22] “Jacquard Computing.,” http://www.jacquardcomputing.com/.

[23] Z. Guo, B. Buyukkurt, and W. Najjar, “Input data reuse in compiling window opera-
tions onto reconfigurable hardware,” in Proc. ACM Symp. On Languages, Compilers
and Tools for Embedded Systems (LCTES, pp. 249–256, ACM Press, 2004.

[24] D. Theodoropoulos, Custom Architecture for Immersive-Audio Applications. PhD
thesis, May 2011.

[25] V. Venkatasubramanian, “Hardware support for dynamic partial self-
reconfiguration of the htx reconfigurable platform,” Master’s thesis, Delft
University of Technology, September 2011.

[26] A. Brandon, “General purpose computing with reconfigurable acceleration,” Mas-
ter’s thesis, Delft University of Technology, November 2010.

Curriculum Vitae

Abhijit Nandy was born in Jamshedpur, India
on 24th March in 1984. He finished his school-
ing from Loyola School, Jamshedpur in 2002 with
a GPA of 8.0/10.0. He then went on to pursue
an interest in Computer Science at Utkal Univer-
sity, India graduating with a Bachelor’s degree in
2006. His Bachelor’s thesis was related to pattern
recognition using the Particle Swarm Optimiza-
tion technique.

After graduation he joined the Tata Group
working for the Tata Consultancy Services from
2006 to 2009 mainly working with Teradata data
warehouses and application development in Java.
In 2009 he decided to pursue his interest in
hardware acceleration using FPGAs at TU Delft
and joined the Computer Engineering program in
September 2009. He finished this M.Sc. thesis
under Ioannis Sourdis and Georgi Gaydadjiev.

His research interests include hardware accel-
eration in FPGAs, networks on chip, embedded
systems and physics simulation on the GPU. He
is an active code contributor to the BRL-CAD
open source solid modeling tool and the Orbiter
space flight simulation software.

	List of Figures
	List of Tables
	Acknowledgements
	Achievements
	Introduction
	Problem Statement
	Objectives
	Overview

	Background
	The HTX Platform
	Integration and Control of the Reconfigurable Device
	Functionality of the Reconfigurable Device

	Introduction to Dynamic Partial Reconfiguration
	Reconfigurable High-Performance Computers
	Convey
	SGI Altix
	XtremeData DISC
	DRC Computers
	SRC Computers

	Automatic hardware generation
	DWARV
	Handel C
	SRC's MAP compiler and Carte
	Catapult-C
	Stream-C
	ROCCC

	Concluding the discussion on background work

	System Level Support for Dynamic Partial Reconfiguration
	Dynamic Partial Reconfiguration on HTX
	The Internal Configuration Access Port(ICAP)
	Xilinx Bitstream Format
	The ICAP Controller
	Partially Reconfigurable Regions on the HTX board

	Compiler Support and Prefetching
	Hardware generation using the ROCCC compiler
	Wrapping ROCCC Modules
	Wrapping ROCCC Systems

	Optimizations
	Optimizations on the C code
	Optimizations on the hardware wrapper for ROCCC output
	Optimization of the CCU generation process

	Conclusion

	Evaluation
	The AES and Audio cores
	Results using DPR
	Testing ROCCC Code through an implementation of the AES algorithm
	Concluding the Evaluation

	Conclusion
	Summary and contributions of this thesis
	Proposed directions for future research
	Parallel Data loads
	Branch prediction techniques for runtime configuration decisions
	Profiling for deciding hardware usage
	Improvements to the C-to-VHDL compiler platform

	Bibliography

