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ARTICLE INFO ABSTRACT

Keywords: Accurate simulation of multiphase flow in subsurface formations is challenging, as the formations span large
Multiscale length scales (km) with high-resolution heterogeneous properties. To deal with this challenge, different multiscale
Homogenization

methods have been developed. Such methods construct coarse-scale systems, based on a given high-resolution
fine-scale system. Furthermore, they are amenable to parallel computing and allow for a-posteriori error control.
The multiscale methods differ from each other in the way the transition between the different scales is made.
Multiscale (finite element and finite volume) methods compute local basis functions to map the solutions (e.g.
pressure) between coarse and fine scales. Instead, homogenization methods solve local periodic problems to
determine effective models and parameters (e.g. permeability) at a coarser scale. It is yet unknown how these two
methods compare with each other, especially when applied to complex geological formations, with no clear scale
separation in the property fields. This paper develops the first comparison benchmark study of these two methods
and extends their applicability to fully implicit simulations using the algebraic dynamic multilevel (ADM) method.
At each time step, on the given fine-scale mesh and based on an error analysis, the fully implicit system is solved on
a dynamic multilevel grid. The entries of this system are obtained by using multiscale local basis functions (ADM-
MS), and, respectively, by homogenization over local domains (ADM-HO). Both sets of local basis functions (ADM-
MS) and local effective parameters (ADM-HO) are computed at the beginning of the simulation, with no further
updates during the multiphase flow simulation. The two methods are extended and implemented in the same
open-source DARSim2 simulator (https://gitlab.com/darsim2simulator), to provide fair quality comparisons. The
results reveal insightful understanding of the two approaches, and qualitatively benchmark their performance. It
is re-emphasized that the test cases considered here include permeability fields with no clear scale separation. The
development of this paper sheds new lights on advanced multiscale methods for simulation of coupled processes
in porous media.

Algebraic dynamic multilevel
Adaptive mesh refinement
Flow in porous media

Fully implicit simulation

1. Introduction

Geological formations span large (km) length scales, having hetero-
geneous properties characterized at high resolutions (cm and below).
As for the uncertainty within the integrated field data, typically, sev-
eral equiprobable realizations of the property fields are generated to
study and simulate the fluid flow and transport. Classical simulation ap-
proaches are too expensive for such studies. Therefore, advanced sim-
ulation methods are required to allow for an accurate representation
of the heterogeneous properties. At the same time, they should pro-

* Corresponding author.

vide an efficient simulation framework to study multiple realizations
Jansen et al. (2009); Wachspress (1966).

Model order reduction techniques have been developed to provide a
meaningful approximate simulation framework. Such techniques have
to be fast enough to be applied to large-scale computational domains.
In this sense, any advanced method of this type can be seen as field
applicable only if it allows for reducing the error below any desired
threshold value Hajibeygi et al. (2012).

Here we only consider numerical model order reduction tech-
niques, among which multiscale Efendiev and Hou (2009); Hou and
Wu (1997) and homogenization Weinan (2011) methods stand very
promising.
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These approaches are different in the sense that the multi-
scale method deals with crossing the solution, e.g., the pressure,
across the scales Aarnes and Hou (2002); Jenny et al. (2003);
Hajibeygi et al. (2008); Chung et al. (2015), whereas in the latter
effective, lower-resolution parameters and functions like the perme-
ability or the transmissibility, are derived Weinan and Yue (2004);
Abdulle et al. (2012); Weinan et al. (2007); Li et al. (2020); Singh and
Wheeler (2018); Vasilyeva et al. (2020). Moreover, while the multiscale
basis functions have been expressed in a purely algebraic formulation
Wang et al. (2014), the same does not hold for the homogenization ap-
proach. Specially the integration of homogenized parameters within the
fully implicit framework in an algebraic manner has not yet been devel-
oped so far. The present work is a first step in this direction.

At the same time, the two methods have many similarities. Both find
their mapping strategy via local solutions of the original governing equa-
tions with local boundary conditions. Multiscale basis functions often
employ reduced-dimensional boundary conditions Tene et al. (2015);
Mgyner and Lie (2016), while homogenization schemes impose peri-
odic boundary conditions on local problems, and consider local rep-
resentative micro-structures even in the case of non-periodic prop-
erties Allaire (1992); Abdulle and Weinan (2003); Arbogast and
Xiao (2013); Bastidas et al. (2019); Brown et al. (2013). Both meth-
ods are effective for global equations within the fully coupled sys-
tem of local-global unknowns, e.g., the global pressure and the lo-
cal saturation. Both have been extended to nonlinear and geologically
complex models Amanbek et al. (2019a); HosseiniMehr et al. (2018);
Singh et al. (2019a). Recent developments of these two classes of ap-
proaches have introduced a fully-implicit dynamic multilevel simula-
tion framework (ADM) in which heterogeneous detailed geo-models
are mapped into adaptive dynamic coarser mesh Cusini et al. (2018);
Faigle et al. (2014); Klemetsdal et al. (2020); Carciopolo et al. (2020).

The ADM method develops a fully-implicit discrete system for cou-
pled flow and transport system of equations, in which each equa-
tion can be represented at a different resolution than the defined
fine-scale one. More importantly, the procedure can be done fully
algebraic, with the dynamic mesh resolution defined based on a
front-tracking strategy. In contrast to the rich existing literature of
Adaptive Mesh Refinement (AMR) methods Pau et al. (2009, 2012);
Berger and Oliger (1984); Schmidt and Jacobs (1988); Edwards (1996);
Sammon (2003); Klemetsdal and Lie (2020), ADM can be defined as an
adaptive mesh coarsening strategy which is conveniently applicable for
heterogeneous and nonlinear coupled systems Cusini et al. (2016).

Irrespective of the choice of the dynamic mesh strategy, it is al-
ways a challenge to construct adaptive multiscale entries of the im-
plicit systems. The ADM method so far has included multiscale basis
functions Cusini et al. (2016). In addition, homogenization methods
have also been developed for multiphase simulations on dynamic grids
Amanbek et al. (2019a); Cusini et al. (2019). In this context, two aspects
can be of interest: the study of the homogenization-based coarser system
entries and the development of a benchmark study of the quality of the
two approaches of ADM-multiscale (ADM-MS) and ADM-homogenized
(ADM-HO) for coupled implicit multiphase flow scenarios.

This paper develops such a unified framework in which the ADM
method is extended to account for both multiscale and homogenization
schemes for multiphase flow simulations. This development makes it
possible to allow for different coarse-scale entries for dynamic simula-
tions, and importantly to benchmark the two classes of multiscale and
homogenization strategies. Noteworthy is that, once the effective pa-
rameters are computed, all other homogenization procedures are imple-
mented algebraically. This is done by introducing constant unity local
basis, with the support of primal (non-overlapping) coarse-scale parti-
tions. The multiscale ADM is implemented fully algebraic since local
basis functions are also solved algebraically over the overlapping (dual)
coarse grid domains Zhou and Tchelepi (2012). The outcome of this de-
velopment is made available to the public via an open-source DARSim2
simulator, https://gitlab.com/darsim2simulator.
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Numerical test cases are considered for the challenging, highly het-
erogeneous SPE10 Christie and Blunt (2001). The number of active grid
cells, pressure and saturation errors, and the solution maps are all re-
ported in detail. The development of this paper sheds new lights in the
application of multiscale and homogenization approaches in advanced
next-generation environments for field-relevant simulation scenarios.

The paper is structured as follows. Next, in Section 2, the mathe-
matical model is stated briefly. Section 3 presents the computational
framework for both multiscale and homogenization ADM methods.
Section 4 presents the test cases, and conclusions are drawn in Section 5.
The Appendix gives more details on the multiscale and the homogeniza-
tion approaches.

2. Governing equations

We consider flow of two immiscible and incompressible phases of
a and p through a heterogeneous porous medium. At the Darcy scale,
mass balance for the phase i € {e, f} reads

2 ($0,5)= V- (A (Vp= pgV2) = pya M

Here, ¢ is the porosity of the medium, p; [kg/m3] and S; are the density
and saturation of the phase i, respectively. The phase mobility tensor
4; is equal to KK!/u;, where K [m?] is the rock absolute permeability
tensor, and K ; =K ; (S;) is the saturation-dependent relative permeabil-
ity of phase i. Moreover, u [Pa.s] is the phase viscosity. For the ease
of presentation, the two phase pressures are assumed equal, p = p, = p;
[Pa] (see e.g. Aziz and Settari (2002)). However, the extension to mod-
els involving a saturation dependent capillary pressure is also possible.
In addition, g [m/s?] is the gravitational acceleration which acts on Vz
direction, and q [1/s] is the phase source term.

Here it is assumed that the two fluids are occupying completely the
pore space, and no other fluid phase is present. This gives the constraint
Sy +S5=1, which reduces the number of unknowns in the above equa-
tions to two: S, (in short from here on, S) and p. Finally, the model is
completed by initial conditions for the saturation, and with boundary
conditions. We do not specify them explicitly since none of them play a
role in the multiscale strategy.

The fully-implicit coupled simulation approach Aziz and Set-
tari (2002) estimates all the parameters at next time step (n+ 1). As
such, the semi-discrete nonlinear residual for the phase i € {a, #} reads

n+l (¢Px5f)"+l - (4’:0;5:')"
B At

i = [pial]

+V. (p,-)»i . (Vp - p,-sz))"H.
(2)

For finding the solution pair (p"*!, S"*!) one needs to employ a
linearization scheme. Here we restrict the discussion to the Newton
scheme, which is 2nd-order convergent but requires a starting point that
is close enough to the solution. In other words, the time step may be sub-
ject to restrictions also depending on the mesh size. Alternatively, one
may consider approaches like the modified Picard Celia et al. (1990) or
the L-Scheme Radu et al. (2017), which are less demanding from the
computational point of view, or more robust w.r.t. the starting point
and mesh resolution, but converge slower than the Newton scheme

Bastidas et al. (2019). Applied to (2), the Newton linearization reads
n+1 v ar ve v+l ar v v+1

~ —1"6 — Y68V, 3
r r'+ ap| Pt oS | 3)

which can be expressed algebraically as J'6x"+! = —r", i.e.,

v

ar_" aﬁ v+l v
op 25 op —_ | @)
Zpo | [8S ral
ap 28
f 8x r

In each time step, the linear Eq. (4) is solved iteratively (inner loop)
several times until nonlinear convergence (outer loop) is reached. The



H. Hajibeygi, M.B. Olivares and M. HosseiniMehr et al.

Advances in Water Resources 143 (2020) 103674

ening level. Moreover, y! is the coarsening ratio which is defined as

lel Nl_l

[ B A X y

v =0 }’y)—< NN ) ®
x y

for two-dimensional (2D) domains. The ADM grid is constructed by as-
sembling a combination of cells at different resolutions within the com-
putational domain. By using the sequence of restriction (R) and prolon-
gation (P) operators, one can express the ADM system as

Bl T
| |
T T
Il 1
T T
I I
T T
i ik
T T
1 il 1
T T T
|
2k 1 ol

HHHHH

Fig. 1. Example of an ADM grid (4th from the top), obtained by combining
fine-scale (top) and coarser resolutions of level 1 (2nd from the top) and level
2 (3rd from the top). Also shown is the saturation profile corresponding to the
ADM grid (bottom).

overall computational complexity of the simulation depends highly on
the complexity of the solution of this linear system. Advanced multiscale
and homogenization methods aim at solving this linear system on a dy-
namic multilevel mesh. Note that, as shown before Cusini et al. (2018),
the overall efficiency of any advanced method should include not only
the speedup of solving the linear Eq. (4) but also the count of the Newton
(outer) loops. Next, the ADM method based on multiscale and homoge-
nization formulations is presented.

3. Dynamic multilevel simulation based on multiscale and
homogenization methods

3.1. ADM Framework formulation

The fully-implicit linear system (4) is too expensive to be solved for
real field scenarios. A multilevel dynamic mesh, as shown in Fig. 1, is
generated within the ADM framework, based on an error estimate strat-
egy. The error estimate is developed based on a front tracking criterion,
which applies fine-scale grids only at sub-regions with sharp gradients.
The fine-scale system is then algebraically reduced into this multilevel
grid, through sequences of restriction and prolongation operators. To
obtain the ADM grid, first, sets of N' = N/ x N ; hierarchically nested
coarse grids are imposed on the fine mesh. Here, [ indicates the coars-

RI-1 RO pl p! IS Ri-1 RO
RITROJPL P sxapy = —RITTLRYr. 6)
N ——
JADM l’=ADM

Here, ﬁf‘l is the restriction operator which maps the parts of the
solution vector that are at level (/ — 1) to level L. Similarly, the prolonga-
tion operator IA’LI maps the parts of the solution vector that are at level
[ to level / — 1. Once the ADM system (6) is solved, the approximated
fine-scale solution éx; can be acquired by prolonging the ADM solution

6X Apm> 1-€.
xg m oxly =P} .. Pl Sxppy. ©)

The ADM Restriction fli‘l and prolongation f’;_l operators are as-
sembled using the static multilevel multiscale restriction Rf‘l and pro-
longation P;_ | operators, respectively. They are constructed only at the
beginning of the simulation and are kept unchanged throughout the en-
tire simulation.

The static prolongation operator PL | Is constructed as an assembly
of the locally computed basis functions at each coarsening level [ and
reads

(P! 0
P = < -1 > . 8)
0 (Ps)i—l Ni_1xN;

Here, (Pp)f_1 and (PS)L1 are the two main diagonal blocks corre-
sponding to main unknowns (i.e., pressure p and saturation S). In the
case of using the homogenization scheme, i.e. ADM-HO, as will be de-
scribed in Section 3.3), constant basis functions for pressure are used.
However, for the multiscale-based ADM, i.e. ADM-MS, as will be de-
scribed in Section 3.2, locally-computed basis functions are used. Note
that the saturation prolongation operator for both approaches is con-
stant unity function at all coarsening levels, which represents the con-
servative finite-volume integration.

The static restriction operator R/~! reads

-1
Rl_] = (R)I 0 > . 9
! < 0 (R)f_l NiXN;_; ©

In this work, a finite-volume restriction operator is used to guarantee
local mass conservation, i.e.

R ) = 1 if cell iis inside coarser cell j, (10)
! 0 otherwise.

3.2. ADM Using multiscale (ADM-MS)

In the ADM-MS method, the prolongation operator for pressure is
found based on multiscale basis functions. These local basis functions
are computed algebraically Wang et al. (2014), based on the steady-state
pressure equation. In this study, the incompressible flow equation (ellip-
tic pressure equation) is used to construct the multiscale basis functions
Tene et al. (2015). An example of a basis function is shown in Fig. 2.

The coarse grid construction and computation of multiscale basis
functions are explained in more details in Appendix A.

3.3. ADM Using homogenization (ADM-HO)
Homogenization is another method that can be applied to problems

involving multiple scales. In this method, one uses the mathematical
models at micro (fine) scale (1) to derive effective upscaled models
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Fig. 2. An example of a basis function belonging to the middle coarse node of
a heterogeneous 2D domain.

Fig. 3. Sketch of the coarse partition of @ when using two coarsening levels.

and parameters in which the rapidly oscillating characterstics are av-
eraged out. In doing so, the upscaled model may have a different struc-
ture than the ones at the fine scale. We refer to Amaziane et al. (2017);
Bourgeat et al. (1996); Hornung (1997); van Duijn et al. (2007) for the-
oretical details.

The goal of this work is to build a unified ADM platform where the
multiscale and homogenization methods can be compared. Therefore,
here, the homogenization method is used only to construct effective
properties at the dynamic multilevel mesh. In this setup, the homoge-
nized properties of ADM-HO at multilevel mesh are found as in ADM-MS
by solving local flow (pressure) equations based on an incompressible
(elliptic) equation.

More precisely, one assumes that a scale separation holds and dou-
bles the spatial variable into a fast and a slow one. The method relies on
the homogenization ansatz, meaning that all quantities in (1) can be ex-
panded regularly in terms of a scale separation parameter. Such ideas are
employed in Bastidas et al. (2019); Abdulle and Nonnenmacher (2009);
Amanbek et al. (2019b); Amaziane et al. (1991); Singh et al. (2019b);
Szymkiewicz et al. (2011); Henning et al. (2015, 2013) to develop ef-
fective numerical simulation schemes even in case of non-periodic me-
dia. More details about the homogenization procedure can be found in
Appendix B.

In the present context, for a given fine-scale effective permeability
K and for each coarsening level I, an effective permeability tensor K' is
computed locally in a pre-processing step. First the domain Q c R? is
divided into coarse cells Q; that correspond to a partition of the domain
Q as shown in Fig. 3.

Advances in Water Resources 143 (2020) 103674

Fig. 4. Example of the local solutions ! (top right, for x-direction) and w?
(bottom right, for y-direction) for a coarse cell inside a 2D domain. The hetero-
geneous permeability field is also shown for the entire domain (left).

For each coarse cell ©; at level [, the components of the effective
permeability tensor are calculate as
K| =/ (K (e; + Va')) - ¢, dy. (1n
Q Q

for i, j = 1,2. Here &/ are the periodic solutions of the pressure equation
on local domains (known as micro-cell equation in HO literature), i.e.

-V (K (V,0 +¢;)) =0, forally € Q. (12)

We remark that {e; }12,=1 is the canonical basis of dimension 2 and K is the
above mentioned permeability tensor. To guarantee the uniqueness of
the solution @' one assumes that its average value over the local coarse
cell Q; is 0.

To determine the value of the effective permeability tensor at each
coarse cell Q;, two local (micro-cell) problems (12) are solved for each
spatial direction in 2D. Fig. 4 provides an illustration of these local so-
lutions for a coarse element.

Note that the local problems (12) capture the rapidly oscillating char-
acteristics within a coarse element, completely decoupled from other
coarse elements. The homogenized parameters, like multiscale bases,
are computed at the beginning of the simulation. Fig. 5 illustrates the
calculation of the effective permeability at different levels.

The homogenized parameters are used to construct the coarse sys-
tem entries. More precisely, the homogenized value in a coarse cell is
distributed equally to the fine cells constructing it. Then the fine-scale
Jacobian and residual are computed with the fine-scale saturation field.
This system is then mapped to the ADM resolution by setting prolonga-
tion operators in (6) to unity. This is a convenient procedure, developed
in this work, to integrate the numerical homogenization method with
an existing advanced simulator.

Notice that based on the features of the permeability tensor K, the
resulting effective parameter K may depend on the macro-scale loca-
tion and the size of the coarse-scale partition. Nevertheless, one can
show that in practice, the adaptive refinement of the mesh is an impor-
tant aspect that improve the calculation of the effective parameters (see
Bastidas et al. (2019) and Fig. 5).

The ADM procedure is sketched in Fig. 6. More details about the role
of the homogenization in the offline stage and the complete algorithm
of ADM-MS and ADM-HO can be found in Algorithm 1.

4. Simulation results

To benchmark the homogenization and multiscale based solutions
for the dynamic mesh on heterogeneous media, two heterogeneous non-
periodic permeability fields from the top and bottom layers of the SPE
10th Comparative Solution Project Christie and Blunt (2001) are con-
sidered. For both test cases, the computational domain entails 216 x 54
grid cells at fine-scale with Ax = Ay = 1[m]. A no-flow condition is im-
posed on all boundaries. Initially the reservoir contains only the 2nd
phase (e.g. oil), i.e. S = 0. The 1st phase (e.g. water) is injected from an
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0 0.2 0.4 0.6 0.8 1

Fig. 5. Example of four different levels of homogenized permeability values: fine scale (bottom right), coarse level 1 (bottom left), coarse level 2 (top right) and

coarse level 3 (top left).

Algorithm 1 The ADM algorithm using multiscale basis functions
(ADM-MS) or homogenization (ADM-HO).
Start of the simulation;
Read the input files and scan the keywords;
Given a fine scale permeability (K) and the number of coarsening levels
(L):
if Multiscale then
for/=0to L do
| Compute the multiscale basis functions CI)’M o
end

else

Homogenization is chosen.

for/=0to L do
Compute the homogenized K/;
Compute the constant basis functions ®!

end

! .
Const’

end
for time step t" do
Select ADM grid resolution;
Build ADM prolongation and restriction operators;
Take iter = 1 and use initial pressure and saturation;
while error > tolerance & not converged do
Assemble fine scale system;
Solve the ADM system;
Prolong solution back to fine scale;
Update properties;
if error < tolerance then
| Converged.
else
| Not converged.
end
Next iteration i =i+ 1

end
Next time step (r = ¢ + At)

end

Table 1

Input parameters of fluid and rock properties.
Property value
Porosity (¢) 0.2
Water density (py,) 1000 [Kg/m3]
0il density (p,) 1000 [Kg/m3]
Water viscosity (u,,) 1073 [Pa - s]
0il viscosity (u,) 1073 [Pa - s]
Initial pressure (py) 107 [Pa]

Connate water saturation (S,,.) 0 [-]

Residual oil saturation (S,,) 0[-]
Injection pressure (pj,;) 2 x 107 [Pa]
Production pressure (pyoq) 0 [Pa]

injection well, while the reservoir fluid is produced from the production
well. The locations of the injection and production wells are specified
in each test case.

Table 1 shows the input parameters of the fluid and rock properties
used in all test cases. Note that the density and viscosity ratios are as-
sumed to be 1. Since compressibility and gravitational forces are both
neglected, the density values have no influence on the results.

The numerical results provided by the ADM-MS and ADM-HO meth-
ods are compared to those obtained from simulation at fine scale (ref-
erence). Both ADM methods employ the coarsening ratio of 3 x 3 with
two coarsening levels. This is set according to the size of the domain.

4.1. Test case 1: SPE10 top layer

In this test case, one injection well and one production well are
placed in the bottom left corner and top right corner of the domain,
respectively. The simulation time is 7 = 1000 [days] and the results are
reported on 100 equidistant time intervals. The permeability distribu-
tion of the SPE10 top layer is shown in Fig. 7.

Fig. 8 shows the homogenized version of the permeability at two dif-
ferent levels. We highlight that the homogenized permeability at both
coarse levels preserves the structure of the original fine-scale permeabil-
ity. The high and low permeable zones remain clearly detectable.
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Fig. 6. Schematic description of ADM reservoir simulation.
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Fig.7. Fine-scale permeability (Log,, scale) from top layer of the SPE10 dataset.
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‘ 30e-18

(b) Level 2 (24 x 6 cells).

Fig. 8. Homogenized permeability of the top layer of the SPE10 with coarsening
ratio 3.

(c) Fine-scale (Reference solution).

Fig. 9. Saturation profiles at 2000 days. The threshold value for the front track-
ing criterion is AS = 0.3.

The saturation and pressure fields at the final time step are shown
in Fig. 9 and Fig. 10, respectively.

From these results, it is understood that ADM-HO on a coarse cell
containing high and low permeable fine cells can lead to a higher flow
leakage, as compared to fine-scale and ADM-MS approaches. This effect
can be seen in Fig. 9. Fig. 11, illustrating the adaptive mesh at 2000 days
after injection. Notice that the refinement of the permeability is most
dominant at the saturation front, due to the chosen mesh refinement
criterion. For this figure, the coarsening threshold value is AS = 0.3,
i.e., a cell is successively coarsened if AS is lower than 0.3.

The error history maps for both ADM-MS and ADM-HO are shown
in Fig. 12. The relative errors, presented in Fig. 12 and Fig. 14, are
expressed in terms of the L2 norm over the entire medium, calculated
with respect to the fine-scale solution as

Ser = S,
Error(s) = 13t — Sapulla (13)
ISt Il

P..—P
Error(P) = 1Pt ADM”Z. (14)

[ Preg ll2
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(a) ADM using homogenized permeabilities.

(b) ADM using multi-scale basis functions.

(¢) Fine-scale (Reference solution).

Fig. 10. Pressure profiles at 2000 days. The threshold value for the front track-
ing criterion is AS = 0.3.

PERMX

[ i
ssses

Fig. 11. Adaptive mesh and homogenized permeability for the SPE10 top layer
test case. The threshold value for the front tracking criterion is AS = 0.3.

The results indicate that the homogenization-based simulations have
higher errors compared with the multiscale-based simulations. They
both have similar average usage of active grid cells, with ADM-MS hav-
ing slightly fewer grid cells. This is shown in Fig. 13. Note that the
grid cells around wells are kept at the fine-scale resolution permanently.
Furthermore, for tighter error tolerance values, the quality of both ap-
proaches become comparable.

Fig. 14 provides the average pressure and saturation errors together
with the average percentage of active grid cells during the whole simu-
lation time as functions of the coarsening criterion threshold.

4.2. Test case 2: SPE10 bottom layer

In the second test case the permeability distribution of the SPE10
bottom layer, presented in Fig. 15, is considered. The location of the
injection and production wells are the top left and the bottom right cor-
ners, respectively. The simulation time is 20 [days]. All other simulation
parameters remain unchanged.

Fig. 16 shows the homogenized permeability values at two different
levels. Due to the many high contrast channels, more active cells are
employed compared with the SPE top layer, as shown in Fig. 17.

The saturation and pressure maps at the final time step are shown in
Fig. 18 and Fig. 19, respectively.

Similar to the previous test cases, Fig. 20 compares the error between
the two ADM approaches. Moreover, in Fig. 21, the percentage of active
grid cells per each time-step is shown.
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Fig. 12. Comparison of the saturation and pressure error using ADM-MS and
ADM-HO and 3 different values for the front tracking criterion.
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Fig. 13. Comparison of the active grid cells using ADM-MS and ADM-HO and
3 different values for the front tracking criterion.

Fig. 22 illustrates the average values of the errors in the pressure
and the saturation, and the percentage of the active grid cells for each
coarsening criterion threshold.

The results indicate a noticeable difference in the errors of ADM-
MS and ADM-HO. The pressure error in ADM-HO is significantly higher
since ADM-HO uses homogenized effective parameters. This aspect can
be improved by employing first order corrections. However, such an
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Fig. 14. Average errors for the pressure and saturation and average active grid
cells for each strategy (ADM-MS and ADM-HO).
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Fig. 15. Fine-scale permeability (Log;, scale) from bottom layer of the SPE10
test case.
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Fig. 16. Homogenized permeability of the SPE10 bottom layer with coarsening
ratio 3.
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Fig. 17. Refinement of the permeability of the bottom layer of the SPE10 using

ADM-HO after 20 days. The threshold value for the front tracking criterion is
AS =0.3.
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(c) Fine-scale (Reference solution).

Fig. 18. Saturation profiles at 20 days. The threshold value for the front track-
ing criterion is AS = 0.3.

(a) ADM using homogenized permeabilities.

(b) ADM using multi-scale basis functions.

(c) Fine-scale (Reference solution).

Fig. 19. Pressure profiles at 20 days. The threshold value for the front tracking
criterion is AS = 0.3.

approach would deviate from the ADM framework, and requires more
computational effort, therefore it is not adopted here. ADM-MS instead
employs multiscale basis functions. Due to the more accurate pressure
calculations, the ADM-MS saturation error is also lower than that of
ADM-HO. The difference in the percentage of active grid cells used in
the two approaches is less noticeable than the difference in the errors.
However, the ADM-HO uses more active grid cells, especially in this
SPE10 bottom layer test case.
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Fig. 20. Comparison of the saturation and pressure error using ADM-MS and

ADM-HO and 3 different values for the front tracking criterion.
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Fig. 21. Comparison of the active grid cells using ADM-MS and ADM-HO and
3 different values for the front tracking criterion.
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Fig. 22. Average errors for the pressure and saturation and average active grid
cells for both approaches (ADM-MS and ADM-HO).

5. Conclusion

Homogenization and multiscale methods have been developed and
evolved during the past decade as promising advanced simulation ap-
proaches for large-scale heterogeneous systems. In this work, the two
methods were investigated, extended into a unified fully-implicit frame-
work, and benchmarked for simulation of multiphase flow in porous me-
dia. It was shown that the two methods allow the construction of coarser
level systems, and both rely on local solutions to find their correspond-
ing maps. While homogenization methods deliver effective models and
parameters, multiscale methods find an interpolation of the solution
(pressure) across scales. This is the main difference between the two
approaches.

For highly heterogeneous test cases, it was shown that the two ap-
proaches provide accurate solutions. With the developed multiscale nu-
merical strategies, the ADM-MS solutions are more accurate when com-
pared to ADM-HO. The use of a constant effective parameter instead
of local multiscale basis functions results in relatively higher errors. In
addition, using constant unity prolongation operator along with the ef-
fective coarse-scale parameters allows for straightforward implementa-
tion of the ADM-HO method for domains with non-periodic permeabil-
ity fields. The study of this paper sheds new light on the application
of multiscale and homogenization methods for real-field simulation of
multiphase flow in porous media. Note that the computational costs of
the two approaches were comparable, as they applied almost the same
active cells during the simulation. Ongoing study includes benchmark
studies of ADM-HO and ADM-MS for 3D fractured porous media, on
compilable simulation platform, which allows scientific CPU compari-
son study.
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Appendix A. ADM based on multiscale method

In the ADM-MS approach, multiscale finite volume method (MSFV)
Jenny et al. (2003); Cortinovis and Jenny (2014) is used to compute lo-
cal basis functions at multiple coarsening levels. The computation of ba-
sis functions ® is done by solving the incompressible fluid flow equation
(elliptic part of the mass balance) Cortinovis and Jenny (2017) which
reads

-V-(4-V®)=0. as)

The incompressible basis functions are found to be the most efficient
ones, compared with the compressible and more complex formulations
Tene et al. (2015). The first step is to impose coarse grids on top of the
fine mesh, for the coarse level 1. Here, to simplify the visualization, a
2D 15 x 15 discrete domain is considered (see Fig. 23). By connecting
the centers of the coarse cells, the dual-coarse grid is obtained. The dual
grid makes an overlapping partitioning of the fine-scale domain, with 3
categories of interior (white), edge (green), and vertex (blue) cells. The
coarsening ratio in the illustrated example of Fig. 23 is 5 x 5.

The Eq. (15) is solved at each dual coarse grid h and for each coarse
node (vertex) k, i.e., =V - (4 - V(DZ) = 0. In order to solve this local sys-
tem, Dirichlet boundary conditions of 1.0 (for the corresponding coarse
node) and 0.0 (for the other three coarse nodes) are imposed. These
Dirichlet values allow to solve the basis functions on the edges, if a re-
duced dimensional (1D) elliptic problem is considered. The solution at
the edge and vertex cells are then imposed as Dirichlet boundary con-
dition for the full 2D problem. The solution of this well-posed system is
the basis function of the corresponding coarse node at the correspond-
ing dual coarse grid. Fig. 24 shows a schematic of the mentioned dual
coarse grid h and an example of a basis function belonging to the bottom
left coarse node ().

Fig. 25 shows all the four basis functions for the mentioned dual
coarse grid h.

The combination of the basis functions at all the dual coarse grid
cells surrounding the corresponding coarse node forms the basis func-
tion belonging to that coarse node. Fig. 26 illustrates an example of a

Dual coarse grid «================--1

.

W |

g
]
:

P I ——

2 i B

Fig. 23. Construction of the coarse and dual-coarse grids on the fine-scale dis-
crete domain. Fine cells are partitioned w.r.t. the dual coarse mesh as: interior,
edge and vertex cells.

i
Primal coarse grid «----!

Advances in Water Resources 143 (2020) 103674

E.N...« AL «...E
it i

Fig. 24. Illustration of a dual coarse grid and a basis function belonging to the
bottom left coarse node. As it can be seen, the value of the bottom left coarse
node is set to be 1.0, while the other three vertex cells are set to 0.
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Fig. 25. All the four basis functions belonging to the dual coarse grid h. Shown
below each plot is the Dirichlet value at the corner of each dual coarse cell for
the plotted basis function.
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Fig. 26. An example of a basis function belonging to the bottom left coarse
node of a heterogeneous domain with 27 x 27 grid cells. The coarsening ratio
here is 9 x 9.

basis function belonging to the bottom left coarse node of an example
heterogeneous 2D domai.

To obtain the basis functions at higher coarsening levels, the hierar-
chically nested coarse grid is constructed on the same domain. The same
procedure is followed to compute the basis functions at higher coarsen-
ing levels. Fig. 27 shows the coarse grid construction at 2 consequent
coarsening levels, for a 2D domain with 75 x 75 fine cells.

Note that, according to the vast multiscale literature, construction
of basis functions can be done purely algebraic, once the wire-basket
decomposition of the fine cells into Vertex, Edge, Face, and Interior is
known Tene et al. (2016). A partitioning method should be applied
for complex mesh Mgyner and Lie (2016); Parramore et al. (2016);
Shah et al. (2016); Gulbransen et al. (2010); Bosma et al. (2017);
Mehrdoost (2019); Mehrdoost and Bahrainian (2016).

Appendix B. ADM based on homogenization theory

The main idea of the ADM-HO is to use a homogenized version of
the permeability K instead of volume-averaged permeabilities at differ-
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Fig. 27. Coarse grid construction at 2 consequent coarsening levels for a 2D
domain with 75 fine cells. The coarsening ratio of 5 x 5 is chosen. The grid sizes
of coarse level 1 and 2 are 15 x 15 and 3 X 3, respectively.

ent coarse levels. In doing so, two assumptions are commonly made: the
permeability is periodic at each of the coarsening levels, and the scales
are well separated. We refer to Allaire (1992) for the rigorous mathemat-
ical support of this approach. Although the test cases considered here do
not satisfy the two assumptions stated before, the homogenization idea
can still be considered for developing multiscale simulation tools, and
in this sense we refer to Bastidas et al. (2019); Amanbek et al. (2019a);
Singh et al. (2019a); Amanbek et al. (2019b); Singh et al. (2019b).

At each coarsening level I, we call micro-scale cell (i.e., local coarse
cell) the region ©; wherein the parameters change rapidly. For each €,
the characteristic length is #, where L is the characteristic length for the
macro-scale domain Q. The factor ¢ := £ reflects the scale separation.
To identify the fast changes in the parameters we double the variables
and define the fast variable y := ’;‘ In the non-dimensional setting, Q
can be written as the finite union of the local cells Q;. We let Q = u;Q,
for some set of indices I.

For calculating the homogenized permeability we consider an auxil-
iary elliptic problem: Auxiliary problem. Given a fine-scale permeabil-
ity K, find a function u¢ that satisfies

V.(K-Vu)=0 inQ,
u* =0 onoQ. (16)

Here the boundary conditions are specified for completeness.
We employ the homogenization ansatz, meaning that the unknown u¢
can be written as

ué(x) = iy + ety + €2y + ..., a7

where each #;(x,y) is periodic.
Due to the doubling of variables, the gradient and divergence oper-
ators become

1 . . 1.
V=V, + ;Vy and div =div, + Zley,

Inserting (17) and the two scale operators above in the auxiliary problem
(16), one gets

. 1.. 1 - - 2
(lex + ;dlvy)<(vx + ZVy>(u0 +eiy +O(e ))) =0,
fy + ety + O(e*) = 0.
Collecting the terms with factor e~> we obtain for each domain &;
V, - (KViy) =0for ally € Q,, (18)

Clearly, any u( = uy(x) which does not depend on the fast variable y
is a solution of the problem (18). Thus, one can prove that all solutions
depend only on x. The function uy, is in fact the macro-scale approximation
of the original unknown u¢.

On the other hand, for the ¢~! terms one has

V, - (K(Vyig+V,i;)) = Ofor ally € Y.
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One can determine #; as a function of 4, and eliminate it from the
system. To this end, 4, is written as a linear combination of functions
; L1 90 -
@, and with f as coefficients
j

. B dim 0ﬁ0 x) a}/
i (X’ Y) = Igl axj (X, Y)

The functions o' are solutions of the micro-cell (local domain) prob-
lems defined on each €

J oz -
v, (A(va,+5)) =0
w/isperiodicinY’.

forally e Y,

Here, {e?j}f_1 is the canonical basis of dimension 2. To guarantee the

uniqueness_of the solution one requires that

@ =0dy,for all Q.
o7

The homogenized permeability in the auxiliary problem is obtained
by considering the terms of order ¢°, in which 4, appears. Averaging
these terms and using the periodicity of the functions on the right hand
side of (17), one obtains that the auxiliary unknown #(x) solves the
homogenized problem

V-(K'-Vig) =0 inQ,
4y =0 on Q. (19)

Here the matrix valued function K/ : Q — R?*? has the elements
I _ = iy .z
Kifo, = [, (K +V,0) 2y

Note that these steps are carried out only to determine the effective
permeability tensor K. The solution i, of the effective problem (19) is
not of interest here. In other words, we use the auxiliary problem for
the sole purpose of defining an effective parameter that could be used
at each level of the dynamic multilevel algorithm.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.advwatres.2020.103674.
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