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Subspace ldentification of Local Systems in One-Dimensional
Homogeneous Networks

Chengpu Yu

Abstract—This note considers the identification of large-scale
one-dimensional networks consisting of identical LTI dynamical
systems. A subspace identification method is developed that only
uses local input-output information and does not rely on knowl-
edge about the local state interaction. The proposed identification
method estimates the Markov parameters of a locally lifted sys-
tem, following the state-space realization of a single subsystem.
The Markov-parameter estimation is formulated as a rank minimiza-
tion problem by exploiting the low-rank property and the two-layer
Toeplitz structural property in the data equation, whereas the state-
space realization of a single subsystem is formulated as a struc-
tured low-rank matrix-factorization problem. The effectiveness of
the proposed identification method is demonstrated by simulation
examples.

Index Terms—Large-scale 1-D distributed systems, rank mini-
mization problem, two-layer Toeplitz structure.

|. INTRODUCTION

We consider the identification of large-scale one-dimensional (1-D)
homogeneous networked systems, which often result by discretizing
dynamical systems described via partial differential equations [1]—[3].
Instead of identifying the global networked system in a centralized
manner, a distributed identification method is developed, i.e., the local
system dynamics is identified by using local data only. The difficulty of
this identification problem is that the local system states and the inter-
connection signals between neighboring subsystems are unmeasurable.
In other words, some input sequences are missing for the concerned
local network identification problem.

To cope with the challenging local network identification problem,
the property that the inverse of the observability Grammian is off-
diagonally decaying was used in [2] to approximate the unmeasurable
interconnections, influencing the local system dynamics to be identi-
fied, via an (unknown) linear combination of locally neighboring inputs
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Fig. 1. lllustration of a cluster of subsystems in a neighborhood of the
subsystem X; with radius R. The states z;_p_; (k) and =, p+1 (k) are
explicitly indicated. They are like all other states unmeasurable.

and outputs. The selection of these neighboring input and output quan-
tities requires, however an exhaustive search, which is computationally
demanding. As a complementary work to [2], a nuclear norm identifi-
cation solution was provided in [4] to separate the local dynamics and
global dynamics by exploiting their distinct rank and order properties;
however, it did not consider the identification of the interconnections
between the subsystems.

A new subspace identification method is presented, which is to iden-
tify the Markov parameters of a locally lifted system first, following
the state-space realization of the single subsystems. To identify the
Markov parameters, we fully exploit the rwo-layer structure of the
block Toeplitz matrices in the data equation of a lifted state-space sys-
tem and formulate a rank minimization problem for which the optimal
solution can yield (parts of) the true Markov parameters of the locally
lifted system. The state-space realization of an individual subsystem
from the estimated Markov parameters is inherently a structured state-
space realization problem for which the optimal solution can yield the
estimates of system matrices up to a similarity transformation.

The rest of this note is organized as follows. Section II describes the
concerned identification problem and shows the challenge of dealing
with the identification of a small cluster of subsystems in a large-scale
network. Section III presents a method for identifying the Markov
parameters of locally lifted state-space models. Section IV provides a
solution to the state-space realization of a single subsystem. Section V
provides numerical simulation results. The conclusions are provided in
Section VL.

Il. PRELIMINARIES AND PROBLEM DEFINITION

We consider the linear time-invariant (LTI) systems {3, } , con-
nected in a homogeneous 1-D network as shown in Fig. 1. Denote
by z; (k) € R", u; (k) € R™, y; (k) € R?, and ¢; (k) € R? the state,
input, output, and measurement noise of the ¢th subsystem, respec-
tively. By lifting all states x; (k) into the vector z(k) as x(k) =
[T (k) --- 2% (k)]T and doing the same for the inputs, outputs,
and noises defining, respectively the vectors u(k), y(k), and e(k), the
global networked system has the following state-space model:

x(k+ 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + e(k) (1)

0018-9286 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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where A, B,C are N x N block matrices which have the following
forms:

rA A,

Ao | A A 7
LA,
L A4 A
[ B c
B c

B= ,C=

L B c

For a large-scale distributed system, we always assume that N > n
and n > max{p, m}.

To identify the system model in (1), the existing system identification
(SID) methods only estimate the triplet (A, B,C) up to a similarity
transformation, thereby not preserving the special block-diagonal and
block-tridiagonal structures of these system matrices. In addition, the
computational complexity of SID methods, which is at least O(N?)
with N being the number of subsystems in the network, may easily
disqualify their use for the identification of large-scale networks.

To deal with the high computational complexity for identifying the
global system model in (1), we consider the identification of a cluster
of subsystems {; }:ii » in a neighborhood of ¥, with radius R
satisfying R <4 < N — Rand R < N, as shown in Fig. 1. The lifted
state-space model of this cluster is represented as

Z; (k + 1) = ARL (k) +§R%(k) + Q}i’ﬂi(k)
y (k) = QRL‘(]@) +¢; (k)

Y, (@)
withz; (k), u; (k). y, (k) the subparts of z(k), u(k), y(k), respectively,
from the block rows (i — R) to (i + R); Ap, B, Cp are (2R + 1) x
(2R + 1) block matrices which have forms similar to 4, B,C in (1),
respectively; the (2R + 1) x 2 block matrix D, and the vector v, (k)
are defined as

A0
0 0
. . | mispoi (k)
Dy = : . ) Qz‘(k) = [Ii+R+1(k):| .
0 0
0 A,

The problem of interest is to identify the system matrices
A, A, A, B,C of a single subsystem using only the local input se-
quence u; (k) and the local output sequence y (k). More specifically,
the system matrices are to be identified up to a similarity transfor-
mation, i.e., the estimates A, AT,A[, B, C of A, A, Ay, B, C satisfy
A=Q'AQ, A=Q'AQ, A, =Q'AQ, B=Q'B, C=
C'Q with @ € R"*" being a nonsingular transformation matrix.

To address the concerned identification problem, we stipulate the
following assumption.

Assumption A.1: The global system (A, B, C) and the locally lifted
system (Ag, By, Cpr) are assumed to be minimal.

The persistent excitation of the input signal « (%), which will be used
for the identifiability analysis in the sequel, is defined below.

Definition 1: A time sequence u(k) € RV™ is persistently exciting
of order s if there exists an integer h such that the (block-) Hankel matrix

u(k)
u(k+1)

u(k+1)
u(k +2)

u(k+h—1)
u(k+ h)

u(k+’571) u(k+s) u(k:+s'+h72)

has full row rank for any positive integer k.

Il. IDENTIFYING THE MARKOV PARAMETERS OF THE LOCALLY
LIFTED STATE-SPACE MODEL (2)

In this section, the Markov parameters of the state-space model in (2)
are to be estimated for which a rank minimization problem will be for-
mulated by exploiting the low-rank property of the unmeasurable-state
related terms and the specific block Toeplitz structure of the convolu-
tion matrix in the data equation. It will be shown in Theorem 1 that,
under some mild conditions, the optimal solution to the proposed rank
minimization problem can yield (parts of) the true Markov parameters.

A. Formulation of a Rank Minimization Problem
The data equation of the local state-space model (2) is given as
follows:

Yei,h = OswL + 7:»BR Uih + T;DR VJ,h + Eki

s,h*

3
In this equation, the (block-) Hankel matrix Y, is defined as

%(s) gi(h +.s— 1)

with the superscript ¢ being the spatial index of the subsystem 3J;,
the subscripts s, h, respectively, being the number of block rows
and the number of block columns. Analogous to Y/, , we define
the block-Hankel matrices U!,, V/,, E!, from the sequences
w,; (k), v; (k), e; (k), respectively. The matrix 72 is a block Toeplitz
matrix defined from the triplet (A5, By, Cr) as

0
TEr — CrBg 0

s

CrAy "By CrBp 0

and 7.P# is defined in a similar way from the triplet (A, Dy, Cp).
The final matrix definitions in (3) are

Cr
CrAp
Os = .

CrAy!
and
), = [z;(k) -z (k+h—1)].

Due to the unmeasurable state sequences in a network, the matrix
sum O,z% + TPr VI, in (3) is unknown. However, this matrix sum
has a low-rank property that will be exploited as a solution in the new
subspace identification method.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 11,2021 at 10:46:47 UTC from IEEE Xplore. Restrictions apply.
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Lemma 1: For the data equation (3), when h > ps or Y/, is a fat

matrix, the sum O, z), + 7.7 %V satisfies the following rank property

rank (O, ), + TP th) <(2R+1)n

+min{(s — 1)sp,2(s — 1)n} (4
where (s — 1)sp and 2(s — 1)n denote the number of non-zero rows
and columns of 7P ® , respectively.

Proof: From the structures of O, and 7%, we can get
that rank (O, z},) < rank (O,) < (2R 4 1)n and rank (7”7 V], ) <
rank (7,”#) < min{(s — 1)sp, 2(s — 1)n}. Thus, the result in the
lemma is straightforward. |

From Lemma 1, we can derive a condition to select the parameter
s in the data (3) and the cluster radius R, defined above (2), such that
the sum O, ) + 7”7 V!, is of low rank (or rank deficient). This
condition reads

2R+ 1)sp > (2R+ 1)n + min{(s — 1)sp,2(s — 1)n}.  (5)
The above condition means that the number of the rows of the matrix
O, + TPr V!, islarger than an upper bound of its rank. In practice,
by fixing a value of s satisfying that s > , we can always find a value
of R such that the above inequality holds. Therefore, in the sequel, we
assume that the matrix sum O, ), + T.”% Vs of low rank (or rank
deficient).

Denote the noise-free output as §; (k) = y, (k) — ¢; (k) and its re-
lated block Hankel matrix Y] ;- Based on the rank property discussed
above, a low-rank regularized optimization problem is then proposed
as follows:

h+s—1

> g -y, 0

t=1

min

ORI Y en

- rank [V, - 077U, | (©)
where 7 and H denote, respectively, the set of block Toeplitz and block
Hankel matrices with appropriate block sizes, and the regularization
parameter A allows to make a tradeoff between the two terms in the
cost function. It is noted that the matrix set 7 has a two-layer block
Toeplitz structure: the first layer is the block Toeplitz structure of 7.2 #
with respect to its block entries C'p, Aﬁ% By ; the second layer is the
partial block Toeplitz structure inside the block entries C'p, A';{ By, as
highlighted in the following example and lemma.

Example 1: If we take R =3 and assume that each block in
Ap,Bp,Cp hassize 2 x 2, then a visual illustration of the structures
of the matrices {M; = QRA%ER }?:1 is given in Fig. 2 .

Based on the matrices A, B, Cj, defined in (2), it can be verified
that the matrix product M ; = C'p, A’j{ B, has the following properties:
1) M is a banded block matrix, with block bandwidth j;
2) the submatrices of M s for 7 < 2R + 1, at the [th block row
and gth block column with , ¢ € {1,--- ,2R + 1}, are inside the
partial block-Toeplitz region for the index-pair (I, ¢) satisfying

i+1<l4+q<4R+3—i.

For the uniqueness property of the rank minimization problem, use
will be made of the following time-varying observability matrix O ,
which is a submatrix of the extended observability matrix O; defined
in (3), consisting of the block rows corresponding to the second-layer
block Toeplitz part of 727 .

Fig. 2. lllustration of the partial Toeplitz structure of the matrices
{Mj = QRA{?QR }3:1: Top left for j = 1 with block bandwidth 1; Top
right for j = 2 with block bandwidth 2; Bottom for j = 3 with block band-
width 3. The deep blue color represents zero entries. The parts sur-
rounded by red curves have block Toeplitz structures.

Definition 2: Let G; be a j x (j + 2) block Toeplitz matrix of the
form

A A A,
A A A,
A A A,
Denotes C'; = I; @ C'. A time-varying observability matrix O ., for
J > 2(k — 1), is defined in terms of the matrix pair (C;, G;) as [5,
Ch. 3]

c
C; Gl

0, = CjaGiaGj

jSz(k’UG]'*?(kfl) e G]‘*Z

Theorem 1: Suppose that the following assumptions are satisfied.
1) The global system input u(k) to (1) is persistently exciting of order
Nn + s.
2) The measurement noise is absent, i.e., §; (k) = y, (k).
3) The matrix pairs (A4;, B) and (A, , B) have the full row rank.
4) Assumption A.1 holds and v, is the observability index of the pair
(AR ’ QR )
5) The cluster radius R of the lifted model in (2) and the dimension
parameter s in (3) satisfy

s>v,, R>s—1.

6) The time-varying observability matrix Osp.1 -1, defined in
Definition 2, has the full column rank.

Then, the submatrices of the Markov parameters M i = Cr Aﬁ Bp,
forj =0,1,...,s — 2, contained in block-Toeplitz regions of the ma-
trix 7,27 in (3) can be computed in a unique manner from the following
low-rank optimization problem:

for R+s<i1< N —R-—s.

®)

min rank [Y,, — U, ],
p s Ysih
o, ety
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The proof of the above theorem can be found in [6]. The cor-
rect recovery of certain parts of the Markov parameters as shown in
Theorem 1 implies that the rank minimization problem in (6) is a
reasonable formulation.

Since the optimization problem in (6) is nonconvex, it is difficult to
obtain an optimal solution under a mild computational burden. In this
note, the reweighted nuclear norm optimization method [7] is adopted,
which is an iterative heuristic for the rank minimization problem (6).

IV. STATE-SPACE REALIZATION OF A SINGLE SUBSYSTEM

In this section, we shall study the final realization of the system matri-
ces {C, A, A;, A,, B} from the estimated submatrices of the Markov
parameters M ; = QRALQR, for j =0,1,...,s — 2, contained in
second-layer partial Toeplitz regions of the matrix 7.2 in (3).

We start the solution by developing expressions of the submatrices
in the second-layer Toeplitz regions in terms of the system matrices
{C, A, A;, A,, B}. This is done in the following Lemma.

Lemma 2: Consider the block matrices A, B, and Cj, defined
in (2). Let the sequence of non-zero block entries from left to right
of the (j + 1)th block row of the matrix C, A%, B, be denoted as
{F; _j,Fj1_j,...,F; j_1,F;;}, then these matrix entries satisfy the
following relationship:

J
Y Fuzt=C(Az" + A+ Az)B

k=—j

(C)]

where z € C.
Proof: The above result can be derived using the filter bank theory
in [8].

As F} ;. are the Markov parameters inside the second-layer block
Toeplitz part of 7. , the values of F} ;. forj € {0,1,...,s — 2}, k €
{—J,...,Jj} are assumed to be available in this section. Based on these
values F}; ;., we will address the problem of estimating the matrices
{C, A, A;, A, , B} up to a similarity transformation.

Dual to Definition 2, we shall define a time-varying controllability
matrix C; ;., which is a submatrix of the extended controllability matrix
determined by (A, Bp).

Definition 3: LetT'; be a (j + 2) x j block Toeplitz matrix of the
form

A,
A A,
A
Al 7
A |

Denote B; = I; ® B. A time-varying controllability matrix C; ., for
J > 2(k — 1), is defined in terms of the matrix pair (I';, B,)

Cir = [QilFJ*ZEJ'Jl’ o |F/*2 ”'FJ'*Z(’f*)EJ'*?(k*l)} :

In the sequel, let s be an even integer such that s/2 is an inte-
ger as well. The solution to the realization of the system matrices
{C, A, A, A, B} is done in two phases. In the first phase, the struc-
tured time-varying observability matrix Osz 1 /2 and the structured
time-varying controllability matrix Cy 1 /2 are to be estimated from
the available matrix values F; ;. In the second phase, the system ma-
trices {C, A, A;, A, , B} are derived from these time-varying observ-
ability and controllability matrices. For the notational simplicity, the
subscripts are denoted by M = 2R + 1 and L = s/2.

A. Determining the Time-Varying Observability and
Controllability Matrices

In this section, the determination of Oy, ; and C,; ; will be formu-
lated as a structured low-rank matrix-factorization problem. More im-
portantly, we show that the optimal solution to this matrix-factorization
problem can yield the estimates of Oy, ; and C,; ; up to a block-
diagonal ambiguity matrix with identical block-diagonal entries. This
is crucial to identify the system matrices {C, A, A;, A,, B} up to a
similarity transformation.

First, by the definitions of Oj; ; and Cj; 1, we can find that the
product of Oy, ; and C,; ; is equal to a matrix constructed from
{F_;',k}i:i/,- for j =0,1,...,s — 2. Here, the product of O,; ; and
C) .1 is represented as

Oy Cyr=H an

where H is a (2R + 1) x (2R + 1) block matrix constructed by the
block entries F ;. that are assumed to be known.

Given the matrix H, the problem of interest is to determine O,
and C, 1 from (11). Denote by O, 1, the set of block matrices having
the same structure as O, 1, and Cyy 1 the set of block matrices having
the same structure as C,; ;. We then propose the following structured
low-rank matrix-factorization problem:

[1sele]l3

min
[eXe]

st. O¢e OAI,L s Ce CAI,L . (12)

According to the structures of O, ; and C,; ; described in
Definitions 2 and 3, we will show in the following theorem that the
optimal solution to (12) can yield the estimates of O, 1 and Cy/ 1
up to a block-diagonal ambiguity matrix with identical block-diagonal
entries.

Theorem 2: Consider the optimization problem in (12). Suppose
that the following assumptions are satisfied.
1) The values of R and s satisfy R > s — 2, and s is a positive even
integer.
2) The matrices O; /5 and C; /o, for any j > min{2s — 3, 2R},
have full column and row rank, respectively.
3) The matrix H satisfying (11) is known exactly.

Then, any optimal solution pair {O, C} to the optimization problem

(12) satisfies

O0=0,.:Q

C=Q'Cu, (13)

where Q = Irg 1 ® Q with@ € R"*" being a nonsingular ambiguity
matrix.

The proof of this theorem can also be found in [6].

The concerned optimization problem in (12) is bilinear and non-
convex. In this note, this problem is solved using the method devel-
oped in our previous work [9]: the bilinear optimization problem (12)
is recast into a rank-constrained optimization problem, and further a
difference-of-convex optimization problem, which is then solved using
the sequential convex programming method.

B. Determining the System Matrices { A, A;, A,., B,C'}
We assume that the obtained estimates (A)M. 1, and (AJM. 1 satisfy
OM,L =0,:Q

CM,L = QilCM,L (14)

Authorized licensed use limited to: TU Delft Library. Downloaded on January 11,2021 at 10:46:47 UTC from IEEE Xplore. Restrictions apply.
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Algorithm 1: Local identification for 1D distributed systems.

Step 1 Construct a spatially stacked state-space model (2) and its
temperally stacked equation (3) based on local observations;

Step 2 Estimate 7.2# from the optimization problem (6);

Step 4 Estimate O, ; and C,; 1 from the optimization problem
(12);

Step 5 Extract the estimates of C' and B from the estimates of
O,r,r and Cyy 1, respectively;

Step 6 Estimate A;, A, A, by solving the optimization problem in
(16).

where Q = L1 ® Q with Q € R"*" being nonsingular. Based on
these estimates, we will address the identification of the system matrices
{A, A, A,, B,C} up to a similarity transformation.

First, the shifting structure of the time-varying observability matrix
O, will be explored. Denote

Ciop, Giany - Gjoa
Ciarye1)Gi2(ki41) - Gja
Ojikyiky = .
Ciopy Giany - Gjoa

where 0 < k; < ky < s/2—2 and 2ky; < j < 2R+ 1. The matrix
Oj &, :x, above is constructed by the block rows of O; ; with block-
row indices from k; to ko. Then, the structure-shifting property of
O, 1, can be represented as

O2p 1,0:5/22Gor1 = Ogri1,1:5/21 (15)

where Ogp_10:5/2-2 and Ospiy 1521 are submatrices of
O2r11,5/2, and Gag_; is a block Toeplitz matrix defined in
Definition 2.

Based on (15), we formulate the following structured least-squares
optimization problem to identify the matrices A;, A, A, based on the
estimate 021{+ 1,8/2

HlGiH 025 1.0:5/2-9G — Ospi11:s/0 1 ||%

st. G € gng_l (16)

where G, 1 denotes a set of matrices having the same structure as
Gyr 1, as shown in Definition 2.

The optimal solution to (16) has properties shown in the following
lemma.

Lemma 3: Let 02R+ 1,s/2 satisfy (14). Assume that OQR,l 0:s/2-2
has full column rank. Then, the optimal solution G to the optimization
problem in (16) satisfies

G = (Lro1 ®Q7") Gapo1 (Iap1 ®Q)

where () € R™*" is a nonsingular transformation matrix.

The above lemma can be derived straightforwardly based on (14) and
the optimization formulation (16). Lemma 3 implies that the matrices
A;, A, A, can be determined up to a similarity transformation, i.e.,

=QAQ, A=Q'AQ, A =Q'AQ.

In addition, accordmg to (14), the estimates C and B can be extracted,
respectively, from O\; 1, and C M. 1 » satisfying that

a7

C=CQ, B=Q'B.

To ease the reference, the proposed local-network identification al-
gorithm is summarized in Algorithm 1.

107
—%—CAB
& CA'B
—»—CA.B
1072 E

Normalized fitting error
)
w

_.
S,
S

10
100

SNR (dB)

Fig. 3. Normalized fitting errors under different noise levels.

V. NUMERICAL SIMULATION

In this section, numerical simulations are provided to demonstrate
the effectiveness of the proposed identification method—Algorithm 1.
In the simulation, the distributed system is constructed by connecting
40 identical subsystems in a line, and the identification for the 20th
subsystem is performed. The system matrices (A4, A;, A, , B, C') with
A AL A € R¥ B e R¥2, and C € R**? are randomly generated
such that Assumption A.1 is satisfied and the 1-D networked system is
stable.

The system input and the measurement noise are generated as white
noise sequences, and the data length is set to 1200. The regularization
parameter A in (6) is chosen using the cross-validation method [10,
Ch. 5], i.e., A is determined by computing solutions using half of the
available data for 20 logarithmically-spaced values of A in the interval
10~* to 10%, and selecting the value of A yielding the best fit on the
other half of the available data.

To evaluate the identification performance against the noise effect,
the criterion signal-to-noise ratio (SNR) is adopted, which is defined
as

var(e; (k))

In the sequel, we shall carry out numerical simulations with the SNR
ranging from O to 95 dB.

We use the criterion impulse-response fitting to evaluate the perfor-
mance of the proposed identification method. The normalized fitting
error of the impulse-response sequence C' A’ B is defined by

TZ

where 7" is the number of randomly generated networked systems
and {C;, A;, B, } are the estimates of {C, A, B} of the jth generated
network model. Similarly, we define the normalized fitting errors for
the impulse-response sequences C Al B and C Al B
Fig. 3 shows the impulse-response fittings of individual subsys-
tems against the SNR, where the dimension parameters involved in
the proposed identification method are set to R = 5 and s = 8. The
normalized fitting errors are calculated by averaging the results of 50
randomly generated networked systems. It can be observed from Fig. 3

SNR = 10log (M) )

Sl ICA B — C; AL By ||
Sl ICAB|p
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Fig. 4. Normalized fitting errors against the dimension parameter R.

that, using the proposed identification method, the normalized fitting
error decreases along with the increase of the SNR. When the SNR
is larger than 50 dB, the normalized fitting error can be smaller than
10~*, indicating that the state-space model of a single subsystem can
be accurately identified at a low noise level.

Fig. 4 shows the impulse-response fidelity of individual subsystems
against the dimension parameter 17, where s = 8 and SNR= 15 dB. It
can be seen that the better identification performance can be achieved
by choosing a larger value of R. This can be explained by that, as the
radius of the local cluster R becomes larger, more input and output
data can be used for the system identification.

VI. CONCLUSION

The local identification of 1-D large-scale distributed systems has
been studied. Compared with the classical system identification prob-
lems, the challenging point of the local system identification is that there
are two unknown system inputs, which are the states of its neighbor-
ing subsystems. By exploiting both the spatial and temporal structures

of the distributed system, especially the two-layer Toeplitz structure
of the Markov-parameter matrix, a rank minimization problem has
been provided for identifying the Markov parameters of a local clus-
ter of identical subsystems, where the associated optimal solution can
yield (parts of) the true Markov parameters. Moreover, the structured
state-space realization of the local cluster is formulated as a structured
low-rank matrix-factorization problem, showing that the system matri-
ces can be determined up to a similarity transformation by enforcing
the structure of the generalized observability/controllability matrix.

Although we only consider the identification of 1-D homogeneous
networked systems, it can be extended to 2-D homogeneous networks
by using the same identification framework, namely exploiting both
the spatial and temporal structures of the concerned distributed system.
In our future work, the identification of large heterogeneous networks
will be investigated.
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