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Internal multiple elimination: Can we trust an acoustic
approximation?

Christian Reinicke∗†, Marcin Dukalski∗ and Kees Wapenaar†

ABSTRACT

Correct handling of strong elastic, internal, multiples remains a challenge for seismic
imaging. Methods aimed at eliminating them are currently limited by monotonicity
violations, a lack of a-priori knowledge about mode conversions, or unavailability of
multi-component sources and receivers for not only particle velocities but also the
traction vector. Most of these challenges vanish in acoustic media such that Marchenko-
equation-based methods are able in theory to remove multiples exactly (within a certain
wavenumber-frequency band). In practice, however, when applied to (elastic) field
data, mode conversions are unaccounted for. Aiming to support a recently published
marine field data study, we build a representative synthetic model. For this setting,
we demonstrate that mode conversions can have a substantial impact on the recovered
multiple-free reflection response. Nevertheless, the images are significantly improved by
acoustic multiple elimination. Moreover, after migration the imprint of elastic effects
is considerably weaker and unlikely to alter the seismic interpretation.

INTRODUCTION

The subsurface offshore Middle East bears large amounts of hydrocarbons, however, their
exploration and hence value, depend on reliable seismic images. The geology of the region is
comprised of many, predominantly horizontal strata and occasional low relief structures (the
exploration targets), that are buried under a water layer. As a result, the actual horizons
and the imaging artifact resulting from any of the countless multiple reflections are visually
indistinguishable, making multiple suppression particularly challenging. Moreover, in such
strongly and frequently scattering media, one expects internal multiples to be visible as
a complex wavefield rather than individual events (O’Doherty and Anstey, 1971; Resnick
et al., 1986). As a result, kinematic prediction of internal multiples followed by adaptive
subtraction (e.g. Weglein et al., 1997; Jakubowicz, 1998; Ikelle, 2006) poses a high risk of
primary energy damage. In contrast, Marchenko-equation-based demultiple methods at-
tempt to handle internal multiples not only kinematically but also with correct amplitude.
The demultiple step itself is often formulated either as an Amundsen (2001)-type decon-
volution (van der Neut and Wapenaar, 2016), or as a multidimensional convolutional filter
(Dukalski and de Vos, 2020a).

Recently, there have been several attempts to study the applicability of Marchenko
methods to region-characteristic geological settings. Elison et al. (2020) as well as Reinicke
and Dukalski (2020) have shown acoustic synthetic examples where Marchenko multiple
elimination suppresses multiple-induced complex interference patterns. These implementa-
tions are relatively simple as they only require a single user-defined temporal mute and there
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is no need to identify primaries to predict multiples. Moreover, Marchenko methods have
shown to correctly handle all multiple generators simultaneously thanks to higher order
term corrections. The success of this completely data-driven approach is contingent on the
data being an accurate representation (in amplitude and phase) of the physical scattering
processes in the subsurface.

Subsequently, Staring et al. (2020) applied acoustic Marchenko multiple elimination on
marine field data acquired in the region. Unlike the acoustic synthetics, however, the field
data contain mode converted events generated by scattering below the water bottom. Thus,
the data are inconsistent with the acoustic scattering assumption of the used algorithm,
casting some doubt over the validity of the results. In contrast to kinematically predicting
and adaptively subtracting multiples, Marchenko methods rely on higher order terms to
retrieve true amplitude predictions and to suppress crosstalk. This higher amplitude fidelity
could potentially result in a higher sensitivity to ignoring elastic effects. To date, the validity
of such acoustic approximation had been largely unexplored and poorly understood, with
no clarity over the nature and the severity of the potential errors. To better understand
the suitability of the acoustic Marchenko algorithm in the region and to validate the work
of Staring et al. (2020), we conduct an elastic synthetic study using a region-representative
2D model based on well-log measurements. We further contrast their approach to what
ideally the fully elastic demultiple method would require over its acoustic counterpart. A
few simpler examples of applying an acoustic Marchenko scheme on a known elastic medium
can be found in the literature (da Costa Filho et al., 2016, 2018). In our discussion, we
consider three key aspects (i) availability of multi-component data with true amplitudes,
(ii) a temporal mute and (iii) a monotonicity assumption.

In acoustic media, these requirements can be realistically met. The multi-component
data can be reduced to a single (compressional) mode and the temporal mute is derived
from a single pseudo-boundary (similarly to the mute used by van Borselen, 2002; Berkhout
and Verschuur, 2005; Ikelle, 2006). The assumption (iii), monotonicity, requires “correct”
temporal ordering of events (Nita and Weglein, 2009; ten Kroode, 2002). Although often
satisfied, this assumption can be violated, particularly in the presence of large velocity vari-
ations and steep angles of incidence, e.g. the far-offset water bottom reflection. Evaluating
the Marchenko solver with these monotonicity violations can lead to amplitude errors which
can negatively impact the demultiple result (Reinicke et al., 2020). However, monotonicity
violations can often be reduced using simple preprocessing tools such as dip-filtering.

For elastodynamic waves, Marchenko methods (Wapenaar and Slob, 2015; Reinicke
et al., 2020) alike other notable internal demultiple methods (e.g. the elastic inverse scatter-
ing series, Coates and Weglein, 1996) encounter fundamental challenges. The requirement
(i) is naturally violated by streamer acquisition, which only measures pressure (i.e. tensile
stress) and in modern systems also particle velocities but not the shearing stresses. Further-
more, the temporal mute (ii) generalizes to one pseudo-boundary for each source-receiver
combination of pressure and shear waves, which increases the dependency on the user and
the knowledge of the subsurface. In contrast to the acoustic case, the requirement (iii) can
be easily violated due to coupling between modes with significant differences in propagation
speeds (Sun and Innanen, 2019; Reinicke et al., 2020). As a result, even for small angles of
incidence, elastic data can easily violate monotonicity. Contrary to the acoustic case, the
monotonicity problem is typically no longer localized in the wavenumber-frequency domain
and cannot be handled by dip discrimination.
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In this work, we first summarize the theory of the Marchenko demultiple method. Sec-
ondly, we explain how the synthetic model is built and compare the acoustic with the marine
reflection response. Thirdly, the reflection responses are used to retrieve Marchenko multi-
ple elimination results for structural imaging. Without further research, it is not possible
to provide a meaningful amplitude-versus-offset (AVO) analysis because, to date, there is
insufficient evidence that the presented acoustic Marchenko demultiple scheme preserves
the true AVO behavior at the target level. Finally, the acoustic and marine results are re-
spectively used to analyze the nature of the predicted multiples and the impact of ignoring
elastic effects. Since our analysis excludes surface-related multiples, henceforth, the term
multiples refers to the internal ones only.

A BRIEF THEORETICAL OVERVIEW

Data-driven demultiple methods assume consistency between the medium, the data and the
algorithm, i.e. all three should be either acoustic or elastic. Violations of this consistency
can lead to errors, e.g. by processing elastic data with acoustic demultiple algorithms.
In a marine acquisition configuration, however, an elastic reflection response is recorded
in an acoustic layer, i.e. we measure compressional data which have an imprint of elastic
scattering effects that occur below the water bottom. Therefore, it remains unclear whether
we should opt for an acoustic or elastic demultiple algorithm. Here, we discuss the acoustic
version of the Marchenko demultiple theory used in the field data example by Staring et al.
(2020) in the context of elastic waves. This discussion also highlights theoretical challenges
of elastic Marchenko demultiple methods, particularly for marine data, which are ignored
by the acoustic algorithm and will help to understand resulting artifacts in the numerical
results. The theory section focuses on challenges and differences that occur when applying
Marchenko methods in the elastic and marine cases as opposed to the acoustic one. Readers
who are less familiar with Marchenko methods may find it helpful to start with the acoustic
theory. As introduction to Marchenko redatuming and demultiple, we would respectively
refer to the work by Wapenaar et al. (2014) and Slob et al. (2014) as well as by van der
Neut and Wapenaar (2016), Elison et al. (2020), Dukalski and de Vos (2020a) and Reinicke
et al. (2020), in this order.

Marine acquisition

Elastodynamic wavefields in 3D laterally-varying media are a function of five variables: (1)
source- and (2) receiver-side field types for P-, S1- and S2- waves, their respective locations,
(3) x = (x, y, z) and (4) x′, as well as (5) the angular frequency ω. For our purposes, we
organize these fields in 3× 3 matrices in the P-S space,

D(x′,x, ω) =

DP,P DP,S1 DP,S2

DS1,P DS1,S1 DS1,S2

DS2,P DS2,S1 DS2,S2

 (x′,x, ω). (1)

For example, the DS1,P (x′,x, ω) component is the response to a dipole P-wave source
with frequency ω at x, recorded as an S1-wave by a monopole receiver at x′. Moreover,
wavefields are wavelet-free unless specified explicitly and the medium is lossless. In 2D
space, the wavefield matrices can be reduced to 2× 2 as the DS2,S2 element is decoupled.
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Data-driven demultiple methods rely on temporal convolutions and correlations com-
bined with matrix multiplications in the P-S space and summations of sources and receivers.
Using detail-hiding operator notation (Berkhout, 1982; Wapenaar, 1989), products such as
DADB represent the extrapolation of the field DB(x′′,x, ω) with DA(x′,x′′, ω) according
to,

DADB =

∫
DA(x′,x′′, ω)DB(x′′,x, ω)d2x′′, (2)

which is evaluated for all frequencies ω and where the integrand involves matrix multipli-
cations in the P-S space.

We consider a marine acquisition with sources and receivers inside the water layer at
z0 = 0 m (no free surface). The water layer does not support shear wave propagation and
hence only P-waves can be injected and recorded (see illustration in Figure 1), resulting in
a reflection response with a single non-zero component,

R∪(x′0,x0, ω) =

R∪P,P 0 0

0 0 0
0 0 0

 (x′0,x0, ω). (3)

The contributions to the R∪P,P component include,

1. non-converted primaries and multiples (they travel as P-waves only),

2. mode-converted primaries and multiples (they partially travel as S-waves below the
water bottom),

3. head and surface waves originating from the elastic medium including the fluid-solid
interface at the water bottom (e.g. see de Hoop and van der Hijden, 1984, for more
details).

These three contributions are depicted in Figure 1 in green, red and purple, respectively.
We exclude head and surface waves from our analysis because the literature offers little
analysis whether, or how, they are handled by demultiple methods.

Fully acoustic media (zero shear wave velocity everywhere) on the other hand do not
support S-waves. The resulting acoustic reflection response only contains non-converted
P-waves which are kinematically identical to those in the marine data (contributions 1 and
partially 3). The amplitudes of these non-converted P-waves, however, differ for acoustic
and marine data. Given this difference, we use the term marine data in our paper exclusively
to refer to elastic data.

Data-driven multiple elimination

Data-driven demultiple methods can be sensitive to differences between acoustic and marine
data. This is particularly true for the amplitude-preserving Marchenko methods. Dukalski
and de Vos (2020a) show that Marchenko demultiple algorithms can be seen to provide
higher order terms (involving more than a single correlation and convolution of windowed
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Figure 1: Illustration of the reflection response (R∪P,P component) in a marine configuration
with sources and receivers in the water layer. The acquisition level is inside an acoustic
medium (water) which only supports propagation of P-waves such that S-waves are absent.
However, below the water bottom the medium is elastic (solid) and thus generates primaries
and multiples not only for non-converted (green) but also for mode-converted (red) P-waves.
Moreover, the reflection response can contain head and surface waves (purple).

data) to the scheme by van Borselen (2002) and Ikelle (2006), and thus, we review the two
latter ones first.

Consider a pseudo-boundary that separates the overburden (z0 < z < zi) from the target
(z > zi). Based on the corresponding primaries, the data are segmented in a shallow (s)
and a deep (d) part which are respectively preserved by the disjoint mutes (complementary
time windows) Θ∪s [·] and Θ∪d [·] with,

P = Θ∪s [P] + Θ∪d [P] . (4)

Here, the mute functions include the required domain transformations. Next, e.g. using van
Borselen (2002), first order multiples with two bounces below and one above the aforemen-
tioned pseudo-boundary are kinematically predicted using temporal data correlation and
convolution according to,

Θ∪d
[
R∪
]
Θ∪s

[
R∪
]∗

Θ∪d
[
R∪
]
, (5)

where the superscript ∗ denotes complex-conjugation in the space-frequency domain (x′,x, ω).
The resulting predictions are adaptively subtracted from the input data, which bears the
risk of damaging desired primaries. Moreover, this strategy is sensitive to erroneous pre-
dictions when the shallow data Θ∪s [R∪] contain multiples that are correlated with the
deep data Θ∪d [R∪], a so-called multiple leakage. Even in acoustic media, the leakage can
grow significantly with an increasing number of reflectors. In the marine case, however,
the number of primaries and multiples increases drastically as the data contain converted
modes (contributions 1 and 2). Hence, compared to acoustic data, there is an even higher
risk for marine data of erroneous predictions and of damaging primaries via adaptive sub-
traction. The leakage can be reduced by using a recursive top-down approach where the
pseudo-boundary is moved from shallower towards deeper levels.

Marchenko methods use higher order terms allowing them not only for kinematic but
also for true-amplitude predictions of multiples. This amplitude fidelity removes the need for
adaptive subtraction such that the nature of multiples is no longer restricted to individual
events. Contrary to the top-down approach of lower order approximations, Marchenko



Reinicke, Dukalski & Wapenaar 6 Acoustic Marchenko IME on elastic data

methods are free of leakage such that they can handle the entire overburden at once, e.g.
see analytic example by Slob et al. (2014) or elastic example with numerical accuracy by
Reinicke et al. (2020). Nevertheless, the input data must be consistent with the scattering
relations of the Marchenko algorithm (derived from the acoustic or elastic wave equation
in heterogeneous media). This requirement is violated when applying acoustic Marchenko
methods on marine data that contain elastic contributions (see points 1 and 2 discussed
below Eq. 3). Attempts of marine field data applications still show seismic-like results,
however, without offering any proof of correct multiple elimination (e.g. Ravasi et al.,
2016; Jia et al., 2018; Mildner et al., 2019; Staring et al., 2020). Assessing the results can
be challenging without a reference, especially, when multiples generate complex interference
patterns dominated by specific frequencies. Such nature of the multiples is likely to be
observed in field data as geological media, particularly in the region, often contain numerous
reflectors (O’Doherty and Anstey, 1971). Hence, it is necessary to investigate on synthetic
models (a) whether the nature of multiples observed in field data can be reproduced and
(b) in which setting acoustic approximations produce reliable demultiple results. In this
study, we carry out such complex synthetic investigation to validate the field data result by
Staring et al. (2020).

(Acoustic) Marchenko demultiple theory

In the Marchenko demultiple method the key element is the dereverberation operator
V(x0,x

′
0, ω) which is used to remove multiples from the reflection response R∪. Note

that all equations in this work are derived from fundamental scattering relations and can
be interpreted in the context of both acoustic and elastic waves.

Under assumptions discussed below, the dereverberation operator can be retrieved in a
data-driven way through the relation,

V =
∞∑
k=0

Ωk with Ωk = Θs

[
Θ∪s

[
Ωk−1R

∪]R∪∗] , (6)

as initially proposed for acoustic waves by van der Neut and Wapenaar (2016) where V is
denoted as v+. The series is initiated with an identity operator I (e.g. a band-limited delta
spike at zero-offset and zero time),

Ω0 = V −Θs [V] = I, (7)

and a single temporal horizon to define the mute Θ∪s [·] (the latter is identical to van Borse-
len, 2002; Ikelle, 2006). Moreover, the temporal mute Θs [·] separates the dereverberation
operator in an identity and a coda (see Eq. 7).

Two underlying assumptions of this strategy can be violated in the acoustic case. Firstly,
the identity and the coda can overlap in the time domain due to short-period multiples.
Hence, insisting on an identity as initial value Ω0 leads to an erroneous solution (Slob et al.,
2013). Nevertheless, in some cases, the true V can still be recovered using additional con-
straints (Dukalski et al., 2019; Elison et al., 2020). Secondly, the function Θ∪s [·] uses a
time horizon to separate the data into a shallow and deep part which contain overburden-
and target-borne primaries, respectively. This temporal separation can be accomplished
only if so-called monotonicity conditions are satisfied, which we discussed recently for the
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elastic Marchenko demultiple method (Reinicke et al., 2020). Although monotonicity viola-
tions can also occur in acoustic media (discussed by Nita and Weglein, 2009, in the context
of another demultiple algorithm), they are fortunately not an issue for reflection data of
nearly 1.5D media such as the region. An exception is the water bottom reflection which
is recorded after primary reflections of deeper structures at far-offsets (see Figure 5 before
wavenumber-frequency filtering). In nearly 1.5D media, however, these components can be
easily and inconsequentially removed during preprocessing e.g. via dip-filtering (see Figure
5). In the next section, we will see that the monotonicity issue is even more challenging in
the elastic case.

The actual demultiple step is the so-called double dereverberation (DDR),

R∪ddr = VΘ̄
∪
d

[
R∪V̄

]
. (8)

Dukalski and de Vos (2020a) show that the DDR exactly removes source- and receiver-
side reverberations generated by the overburden only (i.e. primaries and peg-leg multiples,
compare Figures 2a and 2b). Alternatively to the DDR in Eq. 8, the retrieved derever-
beration operators can be used either indirectly in a multi-dimensional deconvolution-like
equation (van der Neut and Wapenaar, 2016), or directly in a closed-formula (Dukalski and
de Vos, 2020a), to remove a wider class of multiples including overburden-only as well as
overburden-target reverberations. The remaining target-only multiples could potentially
be removed by retrieving the dereverberation operator not for a single, but for a range
of pseudo-boundaries (analogous to the Marchenko multiple elimination schemes by Ware
and Aki, 1969; Zhang et al., 2019). In terms of computational costs, however, the DDR is
advantageous particularly in 3D cases because it requires neither a multi-dimensional de-
convolution nor the retrieval of dereverberation operators for a range of pseudo-boundaries.
The dereverberation operators with and without a bar (see Eq. 8) act on the source- and
receiver-side respectively. For sufficiently flat reflectors, the two operators are related to
a very good approximation via source-receiver reciprocity which was exploited by Staring
et al. (2020). For elastic waves, this approximation includes a transpose in the P-S space
(superscript T) according to,

V(x0,x
′
0, ω) = V̄T(x′0,x0, ω). (9)

In a more general situation, the source-side operator V̄ can be retrieved analogously to Eq.
6, except that the reflection operator is applied on shot gathers (i.e. R∪ acts from the left
instead of the right side) and the separation functions Θ̄s [·] and Θ̄

∪
s [·] need to be defined

for interchanged sources and receivers.

Theoretical challenges of Marchenko demultiple in the marine case

For marine data, three problems can occur in the Marchenko demultiple scheme in Eqs.
6 - 8: (1) non-invertible transmissions and hence (non-)existence of the dereverberation
operator V, as well as (2-3) challenging implementation of the separation functions (2)
Θs [·] and (3) Θ∪s [·].

We analyze the overburden transmissions T↑s(x0,xi, ω) and T↓s(xi,x0, ω) as their inverses
can be used to define the dereverberation operator. These transmissions are associated with
a shallow medium (indicated by subscript s as in Eq. 4) that is identical to the true one
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Figure 2: Illustration of different classes of multiples. (a) The reflection response R∪

contains primaries (green) and multiples that are generated only by the overburden (red)
or the target (white), or by the overburden and the target together (black). (b) Double
dereverberation retrieves a reflection response R∪ddr without source- and receiver-side peg
leg multiples and without overburden-borne primaries (see Eq. 8). For acoustic media, the
solid arrows represent non-converted P-waves. In elastic media, however, the solid arrows
represent forward-scattered waves as indicated in (c).

in the overburden but homogeneous below (z > zi). Shear waves cannot be measured or
injected in the water layer such that the transmissions reduce to,

T↑s =

T ↑P,P T ↑P,S1 T ↑P,S2
0 0 0
0 0 0

 , (10)

and,

T↓s =

T ↓P,P 0 0

T ↓P,S1 0 0

T ↓P,S2 0 0

 . (11)

Moreover, the transmissions are split in a direct part and a coda, e.g. according to,

T↑s = T↑s,dir + T↑s,coda. (12)

In simple cases, the direct transmission T↑s,dir can be a direct wave. Its physical meaning,
however, can be much more general and depends on our choice for the separation function
Θs [·] which we will discuss later.

Next, the dereverberation operator can be defined as an inverse transmission that is
extrapolated by its direct part. Hence, we can write the receiver- and source-side operators
respectively as,

V = T↑s,dirT
↑−1
s , (13)

and,

V̄ = T↓−1s T↓s,dir. (14)
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With Eqs. 12 and 13 it becomes clearer why the dereverberation operator V is an identity
plus a coda (see Eqs. 6 and 7). In the marine case, however, the definition in Eqs. 13 and

14 is problematic because the matrices T↑s and T↓s are not invertible (see Eqs. 10 and 11).
To resolve this issue, we generalize the matrix inverse to a Moore-Penrose pseudo-inverse∗.
Thus, the dereverberation operators V and V̄ can be seen as a product of a row and a
column matrix (see Eqs. 10 - 11 and Eqs. 13 - 14), resulting in a single non-zero element,
e.g.,

V = T↑s,dirT
↑−1
s =

VP,P 0 0

0 0 0
0 0 0

 . (15)

The reduction of V from a matrix to a scalar makes Eqs. 6 and 8 dimensionally consistent.
It remains unclear, however, whether VP,P or another scalar filter exists that correctly
removes (mode-converted) multiples according to the DDR in Eq. 8 (or using the larger
closed-form formula from Dukalski and de Vos, 2020b). Even if it does, it is not clear
whether it is obtained by evaluating Eq. 6.

The second problem involves the function Θs [·] which ought to separate the dereverbe-
ration operator V into an identity I and a coda V−I. The explicit definition of Θs [·] must

be consistent with our choice for the direct transmission (T↑s,dir and T↓s,dir) which in turn
affects the dereverberation operator (see Eqs. 13 and 14). This mutual dependency between
the separation function Θs [·] and the direct transmission plays a pivotal role. On the one
hand, a simple direct transmission is desirable because application of the dereverberation
operator removes the effect of the transmission coda T↑s,coda but not of its direct part T↑s,dir
(see Eqs. 12 and 13). On the other hand, we would like for the implementation of the sepa-
ration function Θs [·] to require a minimum amount of prior information to keep the method
data-driven. Existing implementations define the function Θs [·] as a temporal mute that
preserves causal parts only such that the direct transmission is ”chosen” implicitly. For
nearly 1.5D acoustic media, the resulting direct transmission can be as simple as a direct
wave (van der Neut and Wapenaar, 2016). In presence of thin layers such as in the region,
however, the direct transmission can also include short-period multiples (Dukalski et al.,
2019; Elison et al., 2020). For more complicated geometries as well as for elastic media, the
direct transmission can generalize even further to: (a) waves that scatter without changing
their vertical propagation direction as depicted in Figure 2c (aka forward-scattered waves
Wapenaar, 2014), and (b) (fast) multiples that arrive before the direct wave (see Figure 3 in
Reinicke et al., 2020). In realistic media, the remaining impact of such direct transmission
could be a significant source of interference. Hence, the elastic DDR would benefit from a
smarter definition of the function Θs [·], additional constraints, or both.

The third problem occurs because monotonicity violations are much more likely in elastic
media compared to acoustic ones, particularly for large differences between the P- and S-
wave velocities, cp and cs. This is often the case for geological media and increases the
possibility of multiples ”outpacing” their generating primaries (Reinicke et al., 2020). The
latter work demonstrates that insisting on a simple temporal mute for the function Θ∪s [·]
can lead to an erroneous dereverberation operator. Since such artifacts are due to undesired
temporal overlaps, they are expected to be more noticeable for steeper events. The three

∗We still denote pseudo-inverses by the superscript −1 instead of + to avoid confusion with downgoing
waves which are often denoted by superscript +.
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discussed problems address fundamental questions beyond the scope of our paper but will
be subject to future research.

In view of the theoretical challenges, we apply an acoustic Marchenko demultiple scheme
in this paper and assess the impact of ignoring elastic effects. This analysis considers the
parameter regime needed for structural imaging in nearly 1.5D media such as the region.
We hypothesize that, in this setting, forward-scattering and monotonicity violations are
dominated by mode conversions which are weak for small angles of incidence, and thus, these
effects can be reduced by dip-filtering. Remaining (mode-converted) forward-scattering and
monotonicity violations may potentially cause artifacts when applying acoustic Marchenko
demultiple schemes. For sufficiently large cp/cs ratios, however, these artifacts have different
moveout behavior than the non-converted P-waves, and thus, perhaps may be suppressed
further during migration.

Lastly, we would like to make a remark on notation. For acoustic and marine data, all
fields in Eqs. 6 - 8 reduce from 3×3 matrices in the P-S space to a single (P,P ) component per
frequency and source/receiver location, VP,P and R∪P,P . Thus, we use a simplified notation,

R∪P,P → R, R̃,

VP,P → V , Ṽ ,

V̄P,P → V̄ , ˜̄V ,

Θs,d [·] ,Θ∪s,d [·] → Θs,d [·] ,Θ∪s,d [·] ,
Θ̄s,d [·] , Θ̄∪s,d [·] → Θ̄s,d [·] , Θ̄∪s,d [·] , (16)

where fields without and with a tilde are associated with acoustic and marine data respec-
tively.

APPLICATION TO MARINE DATA OF SYNTHETIC MODEL OF
THE REGION

In this section, we want to better understand the nature of multiples and impact of elastic
effects in a very realistic example. For this purpose, we conduct a synthetic study that aims
to be representative for the field data example presented by Staring et al. (2020) and apply
the workflow summarized in Figure 3. This processing workflow is designed for the acoustic
case where the assumptions of the Marchenko demultiple theory can be satisfied sufficiently
well. Except for modeling, the marine dataset is subject to identical processing steps such
that we can assess the impact of ignoring elastic effects on the demultiple results.

Firstly, acoustic and marine reflection responses are modeled using sources and receivers
inside the water layer. Secondly, preprocessing steps are applied to closely meet the as-
sumptions of the Marchenko series in Eq. 6, at least for the acoustic case. Thirdly, the
dereverberation operator is retrieved, the DDR is applied and the results are migrated.
Finally, the observations made in the acoustic and the marine experiments are evaluated.

Modeling acoustic and marine reflection responses

A 2D synthetic model (x-z space) is built based on a well-log from the region including P-
and S-wave velocities (cP/S) as well as densities (ρ). The model building includes four steps.
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Figure 3: Overview of the synthetic experiments including the processing workflow (top)
and the evaluation of the results (bottom). The experiments are repeated using firstly
acoustic and secondly marine reflection data. After preprocessing including wavelet decon-
volution and wavenumber-frequency filtering, the acoustic data satisfies the assumptions of
the Marchenko series in Eq. 6 to a high degree, and thus, allows us to analyze the nature
of (some of) the overburden-borne multiples and serves as benchmark. The marine data,
however, violates several of the aforementioned assumptions even after preprocessing, which
can (and will) lead to erroneous demultiple and imaging results. The acoustic benchmark
allows us to assess the properties and the severity of the errors caused by elastic effects.
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Figure 4: Synthetic model representative for the region: (a) P- and (b) S-wave velocity
models. Dashed white lines indicate the recording level z0 and the boundary between the
overburden and the target at zi. The dotted black rectangle indicates the imaging area.
(c) Reference P-wave velocity model with smooth overburden. The density models are not
shown but have the same geometry as the respective P-wave velocity models.
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Firstly, the well-log measurements sampled at every 0.5 ft are interpolated to a regularized
grid of 0.1 mm. Secondly, the resulting log data is band-limited according to the desired
depth sampling interval ∆z (10 m) and down-sampled correspondingly. Thirdly, the well-
log only provides recordings below a depth of about 75 m. The bathymetry is known and
allows us to extrapolate the well-log for the top 25 m. For the remaining 40 m between the
water bottom and the onset of the well-log, we duplicate the top 40 m that are recorded and
multiply each of its entries by a random number between 0.95 and 1.05. The strength of the
resulting water bottom reflection is in agreement with the field data used by Staring et al.
(2020). Fourthly, as the regional geology is considered to be nearly 1.5D, we include small
variations of layer thicknesses, a gentle regional dip as well as minor faults and channels
(see Figures 4a and b). For steps one to three, we observe that different parameter choices
(different interpolation schemes, ∆z ∈ {2 m, 5 m, 10 m} as well as soft and hard water
bottoms) lead to nearly identical reflection responses using a 30 Hz Ricker wavelet.

In this controlled experiment, acoustic and elastic reflection responses, R and R̃ re-
spectively, can be modeled using the modeling tool fdelmodc by Thorbecke and Draganov
(2011). Since the presented theory excludes surface-related multiples, the reflection data
are modeled using absorbing boundary conditions. This simplification allows us to exclude
potential inaccuracies due to surface-related multiple elimination from our analysis. The
reflection responses are acquired at z0 = 0 m inside the water layer using vertical dipole
sources convolved with a 30 Hz Ricker wavelet and monopole receivers. In this experiment,
we use 401 collocated sources and receivers with spatial and temporal sampling rates of
∆x = 12.5 m and ∆t = 4 ms, respectively. The choice of source/receiver types and sam-
pling intervals is important because Eq. 6 relies on recursive wavefield extrapolations which
require correctly-scaled spatio-temporally unaliased data. The resulting reflection responses
R and R̃ as well as their difference are shown in Figure 5.

Data preprocessing

Next, two preprocessing steps are applied to ensure that the data closely meet the re-
quirements of the Marchenko demultiple method. These steps include firstly source wavelet
deconvolution and secondly a wavenumber-frequency (kx-f ) filter (see kx-f panels in Figure
5).

The second step is discussed in more detail because it can play an important, however
poorly explored, role for Marchenko demultiple methods. According to the presented theory,
this filter is needed to exclude wavenumber-frequency components that are associated with
evanescent waves on the boundaries of the overburden at z0 and zi. As a side effect, at
least in nearly 1.5D media, the filter removes (some of the) steeply dipping events in the
offset gathers which violate monotonicity assumptions e.g. the water bottom reflection at
far offsets. An additional practical reason for wavenumber-frequency filtering, however,
is to avoid divergence of Eq. 6 e.g. due to spatio-temporally aliasing without denser
sampling. In our experience, divergence or the emergence of strong artifacts can also be
caused by other effects. Hence, choosing an appropriate wavenumber-frequency support is
not always straightforward. To keep the spectrum as wide as possible, increasingly narrower
wavenumber-frequency filters are tested until the series in Eq. 6 converges reasonably well
within 20 iterations (see Figure 6). The chosen wavenumber-frequency filter is defined by
the velocity c = 3.50 km s−1 and the maximum frequency fmax = 80 Hz.
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Figure 5: Reflection responses of the acoustic and elastic models as well as their difference
(see columns one, two and three respectively). The responses are shown before (rows one
and three) and after (row two) applying a (tapered) wavenumber-frequency (kx-f ) filter,
defined by c = 3.50 km s−1 and fmax = 80 Hz (indicated by the black shadow with a
white outline in right-most kx-f panel). In all figures, we show the temporal instead of the
angular frequency with f = ω

2π . Moreover, the color-coded central traces allow for a better
amplitude comparison. The wavenumber-frequency panels show that kx-f filtering removes
the most significant differences between R and R̃. In the kx-f panels, source wavelet
deconvolution has been applied and red dashed lines indicate the maximum velocity on the
boundaries z0 and zi (cp = 3.78 km s−1). The space-time and the wavenumber-frequency
panels respectively are clipped at 5 % and at 50 % of the maximum value of the panel in
the first column.
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Figure 6: Convergence of the Marchenko series in Eq. 6 using the wavenumber-frequency
filtered reflection data shown in Figure 5. The series is initiated with an identity and only
updates the coda of the dereverberation operator. Therefore, the convergence is measured
via the L2 norm of the coda update Vk − Vk+1 at each iteration k + 1. The black and red
lines are associated with the acoustic and marine data, respectively.

Marchenko solver

Acoustic and marine dereverberation operators (V and Ṽ ) are retrieved using 20 terms of
Eq. 6. The separation function Θs [·] is defined as a tapered Heaviside function H(t −
|x0−x′0|

c − ε) in the time domain. It removes the spatio-temporally band-limited identity
with c = 4.5 km s−1 and a small ε > 0 s to account for the temporal width of the source
wavelet. The separation function Θ∪s [·] on the other hand applies a tapered temporal mute
that removes arrivals after the two-way P-wave travel time through the overburden. The
convergence curves and the retrieved dereverberation operators are shown in Figures 6 and
7, respectively. The convergence behavior is very similar to the one observed in the comple-
mentary field data study (compare to Figure 7 in Staring et al., 2020). Further, the series
converges slightly faster for the marine (Ṽ ) than the acoustic (V ) solution. We speculate
that the convergence rates of the series differ because in this case the marine reflection data
contains slightly weaker non-converted P-waves than the corresponding acoustic data.

Multiple elimination and migration

The dereverberation operator retrieval is followed by two processing steps. Firstly, the
DDR is evaluated with the aim to remove peg-leg multiples, and secondly, the results are
migrated.

The impact of the dereverberation operator can be seen by comparing the following four
quantities:

1. The late reflection response, Θ̄∪d [R],

2. the so-called single dereverberation (SDR), Θ̄∪d
[
RV̄

]
,

3. the DDR, V Θ̄∪d
[
RV̄

]
, and,

4. the predicted multiples, R − V Θ̄∪d
[
RV̄

]
.

Here, the source-side dereverberation operator V̄ is obtained using Eq. 9, which is a very
good approximation in this case because the medium is nearly horizontally layered. For the
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Figure 7: Dereverberation operators V and Ṽ retrieved via Eq. 6 using the preprocessed
acoustic and marine reflection responses R and R̃, respectively. The x-t and kx-f panels are
respectively clipped at the 99 percentile of the panel in the first column. The amplitudes of
the x-t panels can be compared easier via the color-coded central traces shown at the bottom.
Moreover, the kx-f panels only show the coda of the dereverberation operator because the
initial estimate (an identity) firstly is not retrieved but user-defined and secondly only adds
a constant to the spectrum. The dashed red lines are associated with the same velocity as
in Figure 5 (cp = 3.78 km s−1) to simplify the comparison of wavenumber-frequency spectra
across figures. The white arrows point to maxima in the wavenumber-frequency spectrum
that, as will be shown later, fill in multiple-induced notches when the DDR is applied.
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marine case, the above quantities are obtained by replacing the acoustic responses R and
V with the marine ones R̃ and Ṽ . All of these responses are shown in the offset gathers
and wavenumber-frequency spectra in Figures 8 and 9, respectively.

Next, the target reflection responses shown in Figures 8 and 9 are migrated (see Figure
10). The imaging area (D) is restricted to the black rectangle in Figure 4a, which is shown
as a close-up in Figure 10. The choice of the migration algorithm should not matter for
our purposes. In this example, we use a pre-stack Kirchhoff depth migration (PSKDM)
algorithm (e.g. Schneider, 1978), combined with a smooth velocity model. Further, a max-
imum offset of ±1.6 km is considered for the migration (see dashed white lines in Figure
8). The band-limited reflectivity of the target area could be a good reference if the target
were simple, velocity variations were small and the DDR aimed to remove all multiples
(generated within the overburden, within the target and between the overburden and the
target). However, these conditions do not apply to the presented example and thus the
band-limited reflectivity is not shown.

Evaluation

The assumptions of the Marchenko method are closely satisfied by the preprocessed acoustic
data. Thus, we first inspect the acoustic results to evaluate the nature of the predicted mul-
tiples and compare the retrieved DDR response against an approximate modeled reference
(see ”Acoustic results” in Figure 3). Secondly, we benchmark the marine results against
the acoustic ones to analyze the impact of ignoring elastic effects and violating some of the
assumptions of the Marchenko demultiple method (see ”Marine results” in Figure 3).

Acoustic results

Firstly, the impact of the DDR on acoustic data is analyzed in the offset gathers before and
after migration. The retrieved dereverberation operator V is predominantly characterized
by a complex interference pattern rather than individual events (see top-left panel in Figure
7). Correspondingly, the SDR and the DDR appear to remove a significant amount of
strongly-interfering multiples from the input data (compare the four top-left panels in Figure
8). Here, we focus on times between t = 1 s and t = 1.3 s because this time window is used
for the migration of the selected imaging area. Within this window, the SDR and DDR
results reveal previously hidden arrivals which potentially are desired primaries (see white
arrows in the three top-left panels in Figure 8). An analogous observation can be made in
the migrated images where the DDR uncovers structures that were originally masked by
complex, potentially multiple-induced artifacts (see the three top-left panels in Figure 10).
There is a subtle amplitude difference between the migrated DDR result and the reference
in the vicinity of (x, z) = (0.0 km, 2.0 km) in Figure 10. This difference is the imprint of
an overburden-target multiple that is not meant to be removed by the DDR and that is
not generated by the approximate reference with a smooth overburden. The overburden-
target multiple can be removed by applying a deconvolution-based Marchenko demultiple
scheme instead of the DDR (the respective result is shown in Fig. 6.11 Reinicke, 2020).
The discussion of deconvolution-based schemes is outside of the scope of this paper, which
focuses on the impact of elastic effects on the dereverberation operator recovery, rather than
on how the latter is used in multiple suppression.
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Figure 8: Target reflection responses and multiples predicted by the DDR. The target
responses include late data (Θ̄∪d [R]), single and double dereverberation results (Θ̄∪d

[
RV̄

]
and V Θ̄∪d

[
RV̄

]
) and the modeled reference (R(ref)). The panels in the first and second row

are retrieved from the acoustic and marine data, respectively. The multiples predicted by
the DDR are not dominated by individual events but appear as a complicated interference
pattern. The difference between the DDR results obtained from acoustic and marine data
is dominated by steep events that are associated with conversions to slow propagating S-
waves. The dashed white lines indicate the maximum offset that will be used for migration.
Except for the modeled reference R(ref), all panels are clipped at the 99 percentile of the late
acoustic data Θ̄∪d [R]. As the modeled reference R(ref) does not include overburden-borne
transmission losses, it is clipped independently at its 99 percentile.
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Figure 9: Similar as Figure 8 but after transformation to the wavenumber-frequency domain
and source-wavelet deconvolution. Interferences with overburden-borne multiples cause
notches in the wavenumber-frequency spectrum of the late reflection response Θ̄∪d [R] which
can be seen by comparing it against the reference R(ref) (see white arrows). These notches
coincide with the maxima of the dereverberation operator (see white arrows in Figure 7),
and are partially filled by single and double dereverberation (see Θ̄∪d

[
RV̄

]
and V Θ̄∪d

[
RV̄

]
).

The wavenumber-frequency spectra of the predicted multiples also contain characteristic
peaks and troughs suggesting that the multiples do not appear as individual events in the
offset gathers but rather as more complicated interference patterns. The dashed red lines
are associated with the same velocity as in Figure 5 (cp = 3.78 km s−1). Except for the
modeled reference R(ref), all panels are clipped at the 99 percentile of the late acoustic data
Θ̄∪d [R]. As the modeled reference R(ref) does not include overburden-borne transmission
losses, it is clipped independently at its 99 percentile.
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Figure 10: Images obtained from the target reflection responses in Figure 8. The images
in the top and bottom row are derived from acoustic and marina data, respectively. The
images in each column are clipped at the 99 percentile of the respective image in the top
row. A close-up of cp-model shows the imaging area. The images are computed via the
PSKDM algorithm.

Secondly, the action of the DDR becomes very apparent in the wavenumber-frequency
spectra. Here, the late reflection response Θ̄∪d [R] and the coda of the dereverberation oper-
ator Θs [V ] have some coinciding notches and peaks (see white arrows in the respective kx-f
panels in Figures 7 and 9). When applying the SDR and DDR, the dereverberation operator
partially fills the multiple-induced spectral notches of the reflection response. Further, the
multiples predicted by the DDR are dominated by frequencies around 20 Hz and 55 Hz (see
Figure 9). A similar observation is made in the field data example by Staring et al. (2020)
where the predicted multiples also contain a peak around f = 20 Hz and frequencies above
about 40 Hz were excluded.

Thirdly, based on the above observations, we investigate whether multiple-induced imag-
ing artifacts can be better illustrated using the spectra of the images. A detailed visual
comparison of the images is challenging because they are dominated by finely-layered nearly-
horizontal structures. Thus, we opt for an alternative analysis: A 2D spatial Fourier trans-
formation is applied to the images Φ(x, z) in Figure 10, taking into account the selected
imaging area D according to,

Φ(kx, kz) =
∫∫

D Φ(x, z)e−i(kxx+kzz)dxdz. (17)

Next, the absolute value of the result is summed for all horizontal wavenumbers,

Φ(kz) =
∑
kx

|Φ(kx, kz)|. (18)

The resulting kz-spectrum is smoother when derived from the DDR result V Θ̄∪d
[
RV̄

]
in-

stead of the late reflection response Θ̄∪d [R] (see top-center panel in Figure 11). Moreover,
the kz-spectrum of the predicted multiples is dominated by two peaks around kz = 0.1 m−1
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and kz = 0.14 m−1 (see top-left panel in Figure 11). A similar nature of the predicted mul-
tiples with two characteristic low-wavenumber peaks is observed in the kz-spectrum shown
in the field data study by Staring et al. (2020).

Finally, an approximate reference response is modeled and compared against the DDR
result. Since the model contains numerous reflectors, the multiples are expected to strongly
interfere. Moreover, the predominantly horizontal layering makes it difficult to structurally
discriminate between overburden-borne multiples and target primaries. Hence, a reference
is needed to assess the quality of the demultiple result. For this purpose, we model a
target reflection response R(ref) using an acoustic model that is identical to the true one
below zi, but has a smooth overburden (see Figure 4c). The smoothness allows us to
model scattering-free transmissions through the overburden, which excludes multiples as
well as scattering-induced transmission losses. The response R(ref), however, is only an
approximate reference for the DDR result and the following differences are expected: (1)
Target-overburden-target multiples persist after applying the DDR demultiple method (see
Figures 2a and 2b) but they are absent in the reference. (2) Contrary to the reference
R(ref), the DDR result contains scattering-induced losses of the direct transmission through
the actual overburden, i.e. these responses will have different amplitudes. (3) Imperfect
smoothening of the overburden can lead to a minor global phase shift between the reference
and the DDR response.

The retrieved DDR result V Θ̄∪d
[
RV̄

]
indeed compares to the modeled reference R(ref)

as expected. These two responses share a near-to-perfect kinematic match at early times (see
white arrows in the respective panels in Figure 8) while they increasingly divert towards
late times where more target-overburden-target multiples are expected. The SDR and
DDR introduce an interference pattern at t = 1.9 s that is absent in the reference response
(see top panels in Figure 8). This effect could be generated by targert-overburden-target
multiples that are potentially suppressed in the late reflection response through destructive
interference with source- and receiver-side multiples. Since recordings after about t = 1.3 s
do not contribute to the selected imaging area, it is no surprise that the images derived
from the DDR result and the reference are nearly identical (compare respective panels in
Figure 10). The wavenumber-frequency and image spectra of the late reflection response
and the reference differ by sharp notches (see respective panels in Figures 9 and 11). After
applying the DDR, these differences are significantly reduced, indicating that the character
of the observed multiples is more noticeable in these domains than in the offset gathers.

Marine results

Firstly, the impact of elastic effects is analyzed by comparing the acoustic against the
marine reflection data. The strongest differences are steep events in the offset gathers that
vanish at zero-offset (see top row in Figure 5). Hence, they are likely to be associated to
mode conversions to slower traveling S-waves. Furthermore, there are amplitude deviations
at far-offsets, i.e. larger angles of incidence, where mode conversions tend to be stronger.
Analogously, these most significant differences are found towards the outer edges of the
wavenumber-frequency cone, which are removed during preprocessing (see kx-f panels in
Figure 5). Thus, the preprocessed acoustic and marine reflection operators only feature
minor differences, that appear to be small variations of the AVO behavior (see right column
in Figure 5).
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Figure 11: Vertical-wavenumber spectra of the images in Figure 10, computed according to
Eqs. 17 and 18. The top and bottom rows are associated with the acoustic and marine case,
respectively. A significant difference between these two (top and bottom rows) is observed
at kz = 0.16 m−1 (indicated by the vertical dashed lines).

Secondly, we compare the Marchenko results obtained from acoustic and marine data
prior to migration. Although some features show a high level of agreement, significant
discrepancies are observed for the dereverberation operators (see right column in Figure 7)
as well as for the various target responses (compare top and bottom rows in Figures 8 and
9). These differences have a similar nature as those observed between acoustic and marine
reflection data, i.e. steep events in the offset gathers. We speculate that they are caused
by slower propagating mode-converted waves that are only present in the marine data.

Finally, the migration significantly reduces the differences between the acoustic and
marine demultiple results (compare first and second row in Figure 10). The impact of
elastic effects on the images is very subtle, which makes a detailed comparison challenging.
Their kz-spectra, however, reveal that the images derived from acoustic and marine data
mostly differ around kz = 0.16 m−1 (indicated by vertical dashed lines in Figure 11). This
difference is not introduced by the DDR algorithm but it is already present in the input
data.

DISCUSSION

This synthetic case study improves our understanding of the demultiple results obtained in
a recent field data example by Staring et al. (2020). Similar to other practical applications,
their evaluation of the results was limited to a comparison between seismic data before and
after multiple elimination. Initially, the aforementioned authors were particularly puzzled by
the nearly monochromatic behavior of the predicted multiples. However, the here presented
work indicates that the observed nature of multiples can indeed be expected in geological
settings akin to the region. Further, our synthetic and their field data results are in near-to-
perfect agreement on (1) the convergence behavior of the dereverberation operator retrieval
and (2) the image spectra of the predicted multiples. Hence, our work provides supporting
evidence for these field data results.
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Our analysis focuses on structural imaging of the geology in the region, i.e. our insights
may not generalize to other applications or geological settings. The consistency between
acoustic Marchenko algorithms and marine reflection data decreases with increasing angles
of incidence. Hence, it remains unclear whether the resulting offset-dependent amplitude
variations provide reliable subsurface information, which is important e.g. for AVO analysis
or geologies beyond nearly 1.5D geometries. In particular in elastic media, the target
primary will always be convolved with a train of forward-converted waves, which (a) is
often ignored in AVO analysis and (b) cannot be removed within the framework of (existing)
Marchenko methods without detailed prior knowledge the subsurface (Reinicke et al., 2020).
For the future, it would be very valuable to conduct a synthetic study for sub-salt exploration
targets where multiple elimination also remains an outstanding challenge (e.g. by including
elastic effects in the synthetic salt body example by Vasconcelos et al., 2015). Moreover, our
assessment excluded intrinsic attenuation which is not a first order problem in the region.
In other areas such as onshore Middle East, however, significant losses can be induced
by the complex near-surface geology (Mokhtar et al., 1988). Existing Marchenko schemes
that account for intrinsic attenuation unfortunately require often unavailable two-sided
data including measurements above and below the target (Slob, 2016). Hence, it would
be desirable to approximate and compensate for intrinsic attenuation prior to Marchenko
multiple elimination which only uses single-sided illumination. Analogously to our study as
well as in view of the amplitude fidelity and the higher order terms argument made prior,
such approximations need to be carefully inspected using representative synthetics which
will be subject to future research.

Elastic effects pose unresolved theoretical challenges for internal demultiple methods. In
the context of Marchenko methods, these fundamental questions are related to the existence
of the dereverberation operator as well as the implementation of the separation functions.
Due to these challenges, existing field data examples apply Marchenko methods using an
acoustic approximation. However, there is a high risk of drawing incorrect conclusions
from the results without cautiously analyzing the impact of ignoring elastic effects. In our
synthetic study, the acoustic Marchenko demultiple method appears to be robust towards
elastic effects in marine data. Moreover, elastic effects present in the data before and after
multiple elimination have nearly no impact on the migrated images.

Based on our experience from this project, we would like to highlight a few remarks on
the implementation and the theory. As for other Marchenko applications, accurate data
preprocessing was crucial, yet, realizable for marine data. In this case, it was necessary to
include a wavenumber-frequency filter in the preprocessing workflow to ensure that the as-
sumptions of the Marchenko method are closely satisfied. We would like to emphasize that
the DDR algorithm does not alter the amplitudes of the desired primaries, which facilitates
the evaluation of the results. Other Marchenko demultiple methods are based on a multi-
dimensional deconvolution, which allows them to remove a wider class of multiples, however,
they do not allow for a direct comparison between the input and output data. Moreover,
the presented Marchenko theory aims to remove multiples, while other Marchenko formu-
lations additionally apply redatuming (e.g. see Wapenaar et al., 2014). The marine case
is challenging for both of these strategies because the existence of the respective demul-
tiple operators is no longer guaranteed. Multiple elimination without redatuming, however,
may be easier because we can hope that an identity is still a good initial estimate for the
dereverberation operator.
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CONCLUSIONS

In the presented synthetic example, the acoustic Marchenko method appears to correctly
remove acoustic multiples and seems undeterred by elastic effects. The DDR scheme uses
similar operations and data as conventional internal demultiple methods but preserves true
amplitudes. This advantage enables Marchenko methods to handle multiples without the
need for adaptive subtraction. The nature of multiples in field data can often be very
complex as e.g. observed in the aforementioned field data application. To better under-
stand and evaluate respective demultiple results, we found it extremely useful to conduct a
representative synthetic case study. The similarities between these independently obtained
results emphasize the relevance and reliability of the presented work.
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