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Data-driven Expressions for the Control of Network Systems with
Asynchronous Experiments

Silvia Cianchi, Federico Celi, Pietro Tesi, and Fabio Pasqualetti

Abstract— This paper proposes a direct data-driven approach
to address decentralized control problems in network systems,
i.e., systems formed by the interconnection of multiple sub-
systems, or agents. Differently from previous work, in this
paper we assume that coordination among agents is limited
in the data collection phase. Specifically, while we allow for
multiple experiments to be performed on the network, these
can be asynchronous (meaning that we do not require that all
agents take part to each experiment). We focus this study on an
open-loop optimal control problem, and propose a strategy to
reconstruct the missing experimental data, i.e., data from the
agents not participating to a given experiment. Importantly,
our data-reconstruction strategy does not compromise the
performance or numerical reliability of the approach, as we
give conditions under which the missing data can be exactly
reconstructed. We complement our findings with numerical
simulations, showcasing the effectiveness of our approach in
decentralized control scenarios.

I. INTRODUCTION

Over the last few decades, the controls community has
extensively focused on the study of network systems [1].
Modeling interactions among agents through networks has
proven useful in various scientific and engineering domains,
including robotics [2], [3], transportation [4], [5], social
science [6], and energy markets [7]. However, the inher-
ent heterogeneity and large-scale nature of these systems,
coupled with the continuous evolution in complexity of
human-made network systems, pose a significant challenge in
accurately identifying a model for their underlying dynamics.
In the end, employing inaccurate models can jeopardize the
analysis and control design phases, leading to unreliable
controllers.

At the same time, thanks to the recent improvements in
sensor accuracy, storage efficiency and processing power,
large amounts of data can be collected even for these
complex systems. This abundance in data availability mo-
tivated the development of the numerous recent data-based
techniques for controller design. Within this data-driven
framework, a recent trend involves the so-called direct data-
driven approach to controller design: at the core of this
approach is to use data to directly design a desired control
action, without explicitly identifying a model of the system

This material is based upon work supported in part by awards
AFOSR-FA9550-20-1-0140 and AFOSR-FA9550-19-1-0235. Silvia Cianchi
is with DCSC, Delft University of Technology, and VITO, Belgium,
scianchi@tudelft.nl. She was a master’s student at University of
Florence, Italy, and a visiting student at the University of California, River-
side. Federico Celi and Fabio Pasqualetti are with the Department of Me-
chanical Engineering, University of California at Riverside, {fceli001,
fabiopas}@ucr.edu. Pietro Tesi is with DINFO, University of Flo-
rence, Florence, Italy, pietro.tesi@unifi.it .

[8]–[10]. Numerous interesting results in this direction have
already been discussed in the literature. However, these often
rely on limiting assumptions, e.g., they implicitly require
coordination among agents in the data collection phase.
Requiring constant coordination among all agents can be
especially restrictive when dealing with network systems,
since these cannot always rely on a centralized coordinating
entity when collecting experimental data. In this work we
propose a strategy to extend the data-driven control literature
by collecting experiments where agents collect and store data
locally and experiments are asynchronous.
Related work. Over the past few years, the field of direct
data-driven control has evolved rapidly, and we refer the
reader to the seminal papers [8], [9], [11] and to the recent
review papers [10], [12] for a broader overview of the topic.
Within this framework, the intersection between data-driven
control and network systems has been studied, for example,
in [13]–[16]. What all these works have in common, however,
is the implicit assumption that each agent within the network
takes part to all experiments concurrently. This assumption
translates in the necessity of a central planner who is able to
coordinate the data collection phase among all agents. To the
best of our knowledge this is the first work that aims at lifting
this assumption by allowing for asynchronous experiments.
Paper contribution. This paper introduces a novel frame-
work for designing optimal controllers for network systems
in the presence of data collected from asynchronous ex-
periments. Unlike traditional scenarios, the assumption of
data collection from asynchronous experiments challenges
the classical notion of persistency of excitation in the data.
To address this, we extend the concept of persistently ex-
citing data to accommodate asynchronous experiments. We
demonstrate that, under certain assumptions on the collected
data, it is possible to precisely reconstruct data from idle
agents not participating in a specific experiment. The combi-
nation of recorded and reconstructed datasets, as illustrated
in this work, forms a comprehensive basis for solving the
considered quadratically optimal control problem.
Paper organization. The paper is organized as follows. In
Section II we formulate our problem and review existing
data-driven results. Section III contains the main contribu-
tions of this work. In Section IV numerical results are shown.
Notation. We let R and N denote the set of real and natural
numbers, respectively. Given a matrix A ∈ Rn×m, Rank(A),
Basis(A), Ker(A), and A⊤ denote the rank, a basis of the
column space, the kernel, and the transpose of A. We let Aij

refer to the element from the i-th row and j-th column of A.
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For any non-square matrix A, we denote its Moore-Penrose
pseudoinverse as A†. For vectors x1 ∈ Rn

1 , x2 ∈ Rn
2 , we let

vec(x1, x2) =
[
xT
1 xT

2

]T ∈ Rn1+n2 .

II. PROBLEM SETUP AND PRELIMINARY RESULTS

Consider a linear time-invariant system

xt+1 = Axt +But, (1)

where xt ∈ Rn and ut ∈ Rm are the state and input at time
t ∈ N, respectively. In this paper we discuss how to design
optimal controllers when the system model in (1) is unknown
but when data from the system is available. With respect
to previous work on data-driven control, in this paper we
relax some assumptions of the data collection phase and, in
particular, we allow for experiments to be asynchronous and
distributed among multiple agents in network. We leave the
details of our assumptions on the asynchronous experiments
to Section III. In the remainder of this section, instead, we
detail the control problem under investigation, together with
the setup for the distributed data experiments. In particu-
lar, we frame our analysis within the bounds of a simple
but insightful problem, i.e., the minimum energy control
problem. Of course, while the solution we propose in this
paper is particular for the problem at hand, the framework
is broad and can be extended to more complex and general
problems. Consider the problem of computing the control
input u∗

T = vec(u∗
0, . . . , u

∗
T−1) that, given a desired final

state x̂T , solves

minimize
uT

∥uT ∥22
subject to xt+1 = Axt +But,

x0 = 0,

xT = x̂T .

(2)

While the solution to (2) is well known in the traditional case
of known A and B [17], in this paper we find a solution to
(2) by relying only on a series of asynchronous experiments.
First, we recall how (2) can be solved when data is both
synchronous and available at a centralized location. Then,
we focus on strategies to lift some of the assumptions on
the data, i.e., by (i) assuming that data is distributed among
multiple agents in the network and (ii) that the experiments
are performed asynchronously.

Let N ∈ N be the cardinality of the available experi-
ments, each of length T ∈ N. In particular, for experiment
j ∈ {1, . . . , N}, let uj

T = vec(uj
0, . . . , u

j
T−1) be the input

supplied to (1) during that experiment, and let xj
T be the

associated final state. In this paper we consider episodic
experiments where the network state is reset to zero before
running a new trial: xj

0 = 0, for j ∈ {1, . . . , N}. The data
recorded throughout the experiments is collected in matrices

U =
[
u1
T . . . uN

T

]
∈ RmT×N , (3a)

X =
[
x1
T . . . xN

T

]
∈ Rn×N . (3b)

Then, the following holds.

Lemma 2.1: (Data-driven solution to (2) [11]) If the
matrix U in (3a) is full row rank then, for any final state
x̂T , the input minimizing (2) can be computed as

u∗
T = (XU†)†x̂T . (4)

□
The centralized data-driven controller (4) requires the full

knowledge of both data matrices X and U , which is a
limiting assumption for network systems. Instead, we shall
assume that data is collected and stored locally by a set of
M agents, each assigned to a subset of the states of (1).
Further, we allow for agents to exchange information through
a communication graph G = (V, E) in order to solve the
control objective. Formally, (1) can be rewritten as

xi,t+1 = Aiixi,t +

M∑
j=1
j ̸=i

Aijxj,t +

M∑
j=1

Bijuj,t, (5)

where xi,t ∈ Rni and ui,t ∈ Rmi are the state and input
assigned to agent i ∈ {1, . . . ,M}. For simplicity of notation
we assume that xt = vec(x1,t, . . . , xM,t), which is always
satisfied after a reordering of the elements of xt (and a
similar transformation over A and B). Clearly,

∑M
i=1 ni = n

and
∑M

i=1 mi = m. In this setting, each agent is able to
collect data referred to its assigned states xi,t and inputs
ui,t only, and has control authority over ui,t. Then, the data
matrices in (3) can be partitioned among the M agents as

Ui =

 u1
i,1 uN

i,1
... · · ·

...
u1
i,T−1 uN

i,T−1

 , (6a)

Xi =
[
x1
i,T · · · xN

i,T

]
, (6b)

and, in the following, we shall refer to the input sequence
of agent i during experiment j as

uj
i,T = vec(uj

i,1, . . . , u
j
i,T−1).

III. LEARNING MINIMUM ENERGY CONTROLS WITH
MISSING DATA AND ASYNCHRONOUS EXPERIMENTS

A. Asynchronous experiments and data-missing matrices

The experimental setup described in Section II assumes
that all agents collect experimental data in a synchronous
fashion. Namely, every agent i is aware that an experiment is
taking place, and consequently it records its input sequence
ui,T and final state xi,T . This assumption is restrictive in
distributed scenarios, as it requires an implicit coordination
among agents. In this paper, we relax this assumption and
allow agents to perform experiments asynchronously.

We design asynchronous experiments by allowing for a
subset of all agents to take part to an experiment, while the
other agents remain idle. Specifically, if agent i does not take
part to the j-th experiment, then i does not apply an input
sequence, and uj

i,T = 0. Although i is not taking part to
experiment j, generally xj

i (t) ̸= 0 as a result of the activity
of the other agents in the network. Therefore, when an agent

4868
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i does not take part to an experiment j, its associated final
state remains unknown, which we refer to as xi,T = ∗.

Definition 1: (Data-missing matrix) We call P ∈ Rr×c

a data-missing matrix if it contains at least an unknown
element, i.e., there exist i and j such that Pij = ∗. □

In the asynchronous scenario considered in this paper, the
data matrix X (as well as the local data matrices Xi) are, in
general, data-missing matrices. Hence, known results, such
as Lemma 2.1, cannot be employed to compute minimum
energy controls. In the upcoming sections we discuss a
strategy to compute minimum energy controls when X is a
data-missing matrix. We remark that these results are general
and are not restricted to the asynchronous experiments sce-
nario. For instance, other applications of these results include
scenarios in which elements of X are missing, e.g., as a result
of packet losses or sensor malfunctions, see also [18].

B. Centralized minimum energy with data-missing matrices

For each agent i ∈ {1, . . . ,M} in (1), let Si ⊆ {1, . . . , N}
be the set of experiments to which i takes part to, and let S̄i

be its complement (the set of experiments in which i is idle).
For the matrices U and X in (3) and a set S ⊆ {1, . . . , N},
we let U{S} (resp. X{S}) be the matrix formed by the
columns of U (resp. X) corresponding to the experiments
indexed by the elements of S. Finally, let Q denote the set
of experiments to which all M agents take part to, i.e.,

Q = {j : j ∈ Si for all i ∈ {1, . . . ,M}} . (7)

Notice that (U{Q}, X{Q}) is the dataset comprised of the
data collected during the experiments in which all agents
participated to (i.e., the synchronous experiments). It is easy
to show that if U{Q} is full-row rank, then the minimum
energy control can be found through Lemma 2.1 as

u∗
T =

(
X{Q}U{Q}†

)†
x̂T . (8)

The above is the trivial case in which asynchronous exper-
iments can be discarded and the remaining experiments are
sufficiently informative to compute the optimal solution. In
the following, instead, we will focus on the case in which
U{Q} is not full-row rank and Lemma 2.1 cannot be used.

We begin by proving a preliminary result, which will be
used to prove the main theorem of this work.

Lemma 3.1: (Rank relationship between partitions of U
and Ker(U)) For N ≥ mT , let U =

[
U1 U2

]
∈ RmT×N

be full-row rank, and let K =

[
K1

K2

]
= Basis (Ker(U)).

Then, U1 is full-row rank if and only if K2 is full-row rank.
□

Proof:

(i) [U1 full-row rank ⇒ K2 full-row rank]: Suppose by
contradiction that K2 is not full-row rank. This implies that
there exists a vector v ̸= 0 such that v /∈ Im(K2). However,
since by hypothesis U1 is full-row rank then there exists a
vector w that solves U1w + U2v = 0. Define

z :=

[
w
v

]

and note that z /∈ Im(K). (Otherwise, there would exist
a vector α such that z = Kα and this would imply that
v = K2α contradicting the fact that v /∈ Im(K2)). Thus, z
jointly satisfies Uz = 0 and z /∈ Im(K). This implies that
K is not a basis of the null space of U , a contradiction.

(ii) [K2 full-row rank ⇒ U1 full-row rank]: Suppose by
contradiction that U1 is not full-row rank. This implies that
there exists a vector v ̸= 0 such that v⊤U1 = 0. Recalling
that UK = 0, we obtain

0 = v⊤UK = v⊤
[
U1 U2

] [K1

K2

]
= v⊤U2K2.

This implies that v⊤U2 = 0 since K2 is full-row rank by
hypothesis. This, along with v⊤U1 = 0 implies that v⊤U =
0, which contradicts the assumption that U is full-row rank.

Through the above lemma we have shown that, for a parti-
tioned matrix, the rank of a partition is closely related to the
rank of the null-space of the complementary partition. This
conclusion is instrumental to derive the following theorem.

Theorem 3.2: (Reconstructing missing elements of X)
Let the matrices U and X be as in (3), with U full-row rank
and X data-missing (see Definition 1). For each agent i, with
i ∈ {1, . . . ,M}, let Xi be as in (6b) and let Si be the set of
experiments to which i takes part to. Further, let

X̄i = Xi{S̄i}, (9)

and
Ki = (K⊤{S̄i})⊤, (10)

where K = Basis(Ker(U). Then, if U{Si} is full-row rank,
the missing dataset X̄i can be reconstructed as

X̄i = biK
†
i , (11)

where

bi =
[
b1i . . . bN−mT

i

]
, (12)

and bji = −
∑

q∈Si
xq
i,TKqj ,∀j ∈ {1, . . . , N −mT}. □

Proof: The dynamics of the network can be de-
scribed introducing the controllability matrix CT =[
B AB · · · AT−1B

]
as follows

xT = CTuT , (13)

and equivalently

X = CTU. (14)

From (14) notice that α ∈ Im(K) =⇒ α ∈ Im(KX)) for
α ∈ RN , where KX denotes a matrix whose columns form a
basis of the kernel of X and Im(·) represents the image of a
given matrix. Then it holds that XK = 0 and, consequently,

XiK = 0, (15)

which can simply be rewritten as

N∑
q=1

xq
i,TKqj = 0,∀j ∈ {1, . . . , N −mT} . (16)
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Let Si and S̄i be the sets of indices defined as in the
previous section, and notice that S̄i contains the indices of
the unknown elements of Xi we aim to reconstruct. Then,
we can split (16) into∑
q∈Si

xq
i,TKqj +

∑
q∈S̄i

xq
i,TKqj = 0,∀j ∈ {1, . . . , N −mT} .

(17)

By introducing x̄i,T ,Ki and bi as defined in (9), (10), (12)
respectively, (17) can be reformulated as

X̄iKi = bi. (18)

The equation (18) demonstrates that the reconstruction of
each row i of the data-matrix X consists in solving a simple
linear system. Therefore, if Ki is full row rank, then the
closed-form solution to (18) is

X̄i = biK
†
i . (19)

From Lemma 3.1 we notice that Ki is full row rank if and
only if U{Si} is full row rank, which is true by hypothesis,
and this ends the proof of the theorem. Notice that, through
this latter step, results of the theorem are reformulated in
terms of experimental conditions, in line with the overall
data-driven approach existing in literature.

Remark 1: (Asynchronous experimental setup) We re-
mark that in our approach we overcome the requirement of
a centralized planner coordinating the experiments execution
by allowing autonomous agents to perform experiments asyn-
chronously and collect experimental measurements locally.
However, the reconstruction and controller design phases
still call for some degree of coordination, as they rely on
global information Ki, which is built from the data matrix U
(sharing of data matrix X , instead, is not required). This is a
limitation of our approach since a central planner is required
to compute the control laws (see, e.g., [13], [19] for fully
decentralized approaches with synchronous experiments.) □

Remark 2: (Redundancy in the experiments) In order to
reconstruct the data-missing matrix X some redundancy in
the experiments is needed. If U{Si} is full row rank, then
necessarily N − |S̄i| ≥ mT , which implies N ≥ mT . □

Remark 3: (Pairwise coordination among agent) A con-
sequence of Theorem 3.2 is that any agent i must take part
to at least mT experiments, to ensure that U{Si} is full-
row rank. Of these, some must involve two or more agents
in order for the dataset to be suitable for our control goal.
In fact, if agent i takes part to |Si| experiments without
overlapping with any other agent j, that is Si∩Sj = ∅,∀j ̸=
i, then Rank(U{Si}) is at most miT < mT . However, under
specific assumptions, pairwise coordination among agents
can be sufficient to satisfy the requirements of Theorem
3.2. For instance, if each agent i takes part to miT linearly
independent experiments by itself, plus at least a set Sij of
experiments together with another agent j, repeated for all
agents j ̸= i, and such that |Sij | = mjT , and uk

j,T ,∀k ∈ Sij ,
are linearly independent, then U{Si} is full row rank. The
sufficiency of this condition can be proved by noticing that

Fig. 1: Experiment schedule discussed in Remark 3 (M = 3,
T = 3, fully connected network, mi = 1, for each i). Each
agent performs mT = 9 experiments. Specifically, it takes
part to miT = 3 experiments by itself, plus to mjT = 3
experiments pairwise overlapping with agent j,∀j ̸= i.

matrix U , after a reordering of its rows, can be reconducted
to an upper triangular blocks matrix, with non singular blocks
on the diagonal. This is illustrated in Fig. 1. □

In this section, we presented a strategy to compute a
minimum energy control when the dataset X is distributed
among multiple agents in a network and where some of its
elements are missing due to the asynchronous nature of the
experiments. The proposed strategy involves a preliminary
centralized step to share data matrix U through which miss-
ing experimental data is reconstructed (cf. Remark 1). By
leveraging this new information, the data-driven minimum
energy controller can then be computed. Crucially, the data
is collected without a central authority coordinating the
data-acquisition phase. This means that, in our framework,
experimental data can be collected by every agent in the
network, at their best convenience. Sharing U can then be
achieved via distributed approaches, e.g., see [20]. Moreover,
the strategy that we propose to reconstruct data-matrix X
is not restrictive, as it can be applied to the data-driven
computation of any control law relying on data-matrices X
and U . In the next section, numerical results are shown.

IV. NUMERICAL RESULTS

In this section we verify the results of the previous section
by means of numerical examples. First, consider a low-
dimension LTI system with M = 2 agents, with n = 2,
m = 2, i.e., each agent’s input and output are scalars.
Suppose that N = 5 asynchronous experiments of length
T = 2 are performed and that we have access to the
following, partially unknown, data-matrices:

U =


0.5377 0.3188 3.5784 0 −0.1241
1.8339 −1.3077 2.7694 −0.0631 0
−2.2588 −0.4336 −1.3499 0 1.4090
0.8622 0.3426 3.0349 −0.2050 0


(20a)

X =

[
−0.8590 0.2278 5.2634 ∗ 1.2849
0.4372 −1.3987 4.4545 −0.2680 ∗

]
.

(20b)

Agent i = 1 does not take part to experiment j = 4, thus
S1 = {1, 2, 3, 5} and S̄1 = {4} (i.e., u4

1,T = 0 and x4
1,T =

∗). Agent i = 2 does not take part to j = 5, as u5
2,T = 0

and x5
2,T = ∗, hence S2 = {1, 2, 3, 4} and S̄2 = {5}. Both

4870

Authorized licensed use limited to: TU Delft Library. Downloaded on April 11,2025 at 08:13:28 UTC from IEEE Xplore.  Restrictions apply. 



EXPERIMENTS:

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

10                           20                          30                          40                           50                          60                           70                        80

Fig. 2: Experiment schedule of each agent. N=80 asynchronous experiments are performed. All the agents take part only to
experiments j ∈ {1, . . . , 10}. However, each agent takes part to a sufficient number of experiments.

the agents take part to experiments j ∈ Q = {1, 2, 3}. Since
U{Q} is not full-row rank, this example does not reduce to
the trivial case in which (U{Q}, X{Q}) can be directly used
to compute the optimal controller through (4). Thus, columns
of data-matrices containing unknown elements can not be
simply discarded and a reconstruction step is needed. As
required by Theorem 3.2, we firstly compute the matrix K,
from which K1 and K2 can be easily extracted by selecting
rows of K indexed by elements contained in S̄1 and S̄2

respectively. Specifically:

K =


0.2596
0.2308
−0.0441
0.8243
0.4449

 (21a)

K1 = K
{
S̄1

}
=

[
0.8243

]
(21b)

K2 = K
{
S̄2

}
=

[
0.4449

]
. (21c)

By relying on the sub-matrix U{S1}, the local state of
agent i = 1 during the 4th experiment, i.e, x4

1,T , can be
reconstructed by applying (11). Specifically, it holds that

x4
1,T = b1K

†
1 = −0.2052, (22)

where b1 = −0.1691 is computed as in (12). By relying on
U{S2}, instead, x5

2,T is reconstructed as follows

b2 = 0.6267, (23a)

x5
2,T = 1.4086. (23b)

The reconstructed values (22) and (23b) can be used to make
the data-matrix X fully known. The aim of this example
is to better understand the key concept of Theorem (3.2),
which lies in the fact that unknown elements of Xi can be
reconstructed if and only if agent i took part to an informative
enough subset of experiments {Si}.

We now discuss a second example to show how the overall
performance of our approach improves as the number of re-
constructed elements of X grows. The idea is that by increas-
ing the number of fully-known columns of X , and in turn
increasing the cardinality of Q, the minimum energy control
inputs can be computed basing on a larger dataset. This leads
to an improvement of numerical reliability and accuracy of
our approach. Specifically, we want to identify a data-driven

open-loop minimum energy control problem over a finite
time horizon T = 10, given a randomly chosen final state x̂T ,
by relying on a data-missing dataset. We consider a network
composed of 5 agents and generated by the Erdös–Rényi
model, with edge probability p = log n/n + ϵ, ϵ = 0.5.
The network’s state and input dimensions are n = 20 and
m = 10 respectively, therefore each agent i has control
authority over an input of dimension mi = 1 and measures
its assigned local state having dimension ni = 4. We assume
that N = 80 asynchronous experiments are performed,
according to the schedule shown in Fig. 2. In particular, all
the agents take part only to experiments j ∈ {1, . . . , 10}.
Therefore matrix X is data-missing, as the columns indexed
by j ∈ Q = {1, . . . , 10} only are fully known, and
a reconstruction step is needed in order to compute the
data-driven control input. We iteratively compute the data-
driven control input (4) relying on (U{Q(k)}, X{Q(k)}),
where Q{k} is a set whose elements index columns of
X which are fully-known at step k. This means that we
start by considering the synchronous dataset (U{Q}, X{Q})
and then we gradually consider further experiments as the
corresponding columns of X are reconstructed. The first
aspect we aim at investigating regards the minimum number
of columns needed to be reconstructed in order to properly
apply (4). Fig. 3(a) shows that, if at least 40 columns of X
have been reconstructed, then U{Q(k)} is full row rank and
the available dataset (U{Q(k)}, X{Q(k)}) is informative
enough to compute the data-driven control input. In particu-
lar, the norm of the data-driven control inputs [11] reaches
its minimum value when at least 40 experiments have been
reconstructed, that is when the data-matrix U{Q(k)} is full
row rank (see Fig. 3(b)). Moreover, if a sufficiently large
number of experiments has been reconstructed, by applying
to the network the data-driven control strategy, the reached
final state is almost as close to x̂T as the one computed
via the model-based approach (see Fig. 3(c)). This example
shows that the reconstruction step does not affect the data-
driven performances presented in [11].

V. CONCLUSIONS AND FUTURE WORK

In this study, we investigate a direct data-driven approach
to tackle decentralized control problems in networked sys-
tems. We focus on open-loop optimal control scenarios,
assuming that agents conduct experiments asynchronously
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Fig. 3: This figure shows how data from asynchronous experiments can be used to build an informative dataset for the design
of optimal controls. The data-driven control input (4) is iteratively computed relying on (U{Q(k)}, X{Q(k)}), where in
Q{k} are the columns of X which are fully-known at step k. If at least 40 columns of X have been reconstructed, then (i)
U{Q(k)} is full row rank and the available dataset (U{Q(k)}, X{Q(k)}) is informative enough to compute the data-driven
control input (see panel (a)), and (ii) the norm of the data-driven control input, computed as in (4), reaches its minimum
value, and the final state is almost as close to x̂T as the one computed via the model-based approach, as shown in panel (b)
and (c). If the number of reconstructed columns is not sufficiently large, the data-driven technique performs worse than the
optimal case, both in terms of control input energy (see panel (b)) and of error in the final state (see panel (c)). Specifically,
when less than 10 experiments have been reconstructed, the reached final state is significantly far from the target value x̂T ,
allowing the norm of the data-driven control input to be smaller than the model-based one.

and store data locally. This leads to potentially incomplete
datasets, requiring a reconstruction step to fill in missing
information before computing a data-driven minimum energy
controller. Notably, when some conditions on the persistency
of excitation of the asynchronous dataset are met, the re-
construction phase we propose involves solving a system of
linear equations, leading to an exact reconstruction of the
missing data. While our approach aligns with the decentral-
ized nature of network systems in the experiment collection
phase, it still relies on some coordination among agents in
the data reconstruction and controller design phases. Further
limitations include restrictions on the experiment’s initial
condition, as well as the employment of noisy data and the
extension to nonlinear or time-varying systems, which we
leave as key topics for future research.
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