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Abstract
With the airline industry almost recovered from the COVID-19 pandemic, the focus on the long-term

future can be regained. With expectations of a doubling in passenger traffic in 2040, this growth leads

to significant environmental challenges. Part of the solution lies in a more efficient aircraft shape,

increasing the lift-to-drag ratio (L/D). Benad envisioned a flying-wing aircraft where payload and fuel

both reside in a V-shaped, crescent wing with large winglets that double as vertical tail planes: the

Flying V. As the passengers sit in the V-shaped wing, the lift-producing area is increased significantly

with respect to a traditional aircraft, while the wetted area is reduced. Based on previous Flying V

studies, a new parametrization of the Flying V was constructed by Benad. A detailed aerodynamic

optimization is required to maximize the efficiency of this design. This thesis project aims to maximize

the lift-to-drag ratio of the Flying V in cruise conditions by means of a high-fidelity CFD investigation.

The design parameters that describe the outer mold line of the Flying V are manually modified and

the aerodynamic performance of the aircraft is assessed by means of computational fluid dynamics.

The aircraft is parameterized in CATIA, based on previously performed work. The CATIA model

ensures a smooth transition between different wing sections. The oval retention parameter (ORT) is

introduced, which dictates the position where the oval inner structure stops and the interpolation

to the airfoil section starts. The Reynolds-averaged Navier–Stokes equations (RANS) equations are

solved to obtain the numerical results. A structured mesh consisting of 15 million nodes with a grid

convergence index of 0.01% discretizes the fluid domain. The solver includes a 3rd-order MUSCL

spatial discretization, where fluxes are computed using the Roe Flux-Difference Splitting Scheme. The

low-Reynolds, Menter SST turbulence model is used. Next to the three-dimensional optimization,

a two-dimensional gradient-based airfoil optimization is set up to generate airfoils suitable for the

outboard wing. The numerical set-up is validated using ONERA M6 validation data.

The baseline design showed excessive wave drag on the outboard wing and a lack of spanwise lift at the

mid-wing. In phase 1 of the design, several iterations were conducted, during which the inner, mid and

outboard wing sections were optimized, focusing both on elliptical lift and section performance. A lack

of lift in the middle section was resolved by an increase in camber and aft-loading. Improved airfoil

sections on the outboard wing were better capable of efficiently generating the required lift coefficient for

more elliptical lift. The lift-to-drag ratio obtained was 23.1 at an angle of attack of 3.5 degrees. The second

phase consisted of a planform optimization, where small changes were performed to redistribute and

reduce wing area. This increased the lift-to-drag ratio to 23.7. In the third phase, the two-dimensional

airfoil optimization proved to not increase the L/D. Airfoils obtained from Obert proved to increase

efficiency and reduce Mach numbers on the outboard wing. The maximum lift-to-drag ratio obtained

was 24.2 at an angle of attack of 3.6 degrees (Mach = 0.85, 𝐶𝐿 =0.26, Re = 88.3 million). The drag

divergence Mach number is estimated at 0.925.
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CFD Computational fluid dynamics Re Reynolds number

COP Center of Pressure SA Spallart-Allmaras

CRM Common research model SC Supercritical

DNS Direct numerical simulation SST Shear-stress model

FV Flying V t/c Thickness-to-chord ratio

GCI Grid convergence index TE Trailing edge

L/D Lift-to-drag ratio TP Transition point

LE Leading edge URANS Unsteady Reynolds Averaged Navier-

Stokes

LES Large eddy simulation

Symbols

Symbols Explanation Unit Symbols Explanation Unit
𝑎 Speed of sound m/s 𝑡 𝑗𝑖 Viscous stress tensor 𝑁/𝑚2

𝐴 Area 𝑚2 𝑢 x-velocity m/s

𝑐 Chord m 𝑢𝜏 Friction velocity m/s

𝐶𝑑 Section drag coefficient (-) 𝑢+
Normalized velocity (-)

𝐶𝐷 Drag coefficient (-) 𝑉 Velocity m/s

𝐶 𝑓 Skin friction coefficient (-) 𝑣 y-velocity m/s

𝐶𝑖 𝑗𝑘 Turbulent diffusion 𝑚2/𝑠3
w Cabin width parameter m

𝐶𝑙 Section lift coefficient (-) 𝑌𝑚 Dilatation of turbulence 𝑘𝑔/𝑠𝑚3

𝐶𝑝 Pressure coefficient (-) 𝑦+ Normalized y-coordinate (-)

𝑑 distance m 𝛼 Angle of attack rad

𝐷𝑤 Wave drag N 𝛽 Prandtl-Glauert correction (-)

𝑒 Specific Energy J/kg 𝛿 Kink angle rad

𝐹 Flux (-) 𝛿∗ Displacement thickness m

𝐺 Cabin Height Parameter (m) 𝛿𝑣 Viscous length scale (-)

𝐼 Turbulence Intensity (-) 𝛿𝑥 Boundary layer thickness m

𝐽 Jacobian (-) 𝜁 Bulk viscosity 𝑁𝑠/𝑚2

𝑘 Turbulence kinetic energy J 𝜖 dissipation 𝑚2/𝑠3

𝐿 Planform Length Parameter m 𝛾 Ratio of specific heats (-)

𝑀 Mach number (-) Γ Preconditioning matrix (-)

𝑝 Pressure Pa 𝜅 Von Karman constant (-)

𝑃𝑒 Peclet number (-) 𝜉 Damping Coefficient (-)

𝑃𝑟 Prandtl number (-) Λ Sweep angle rad

𝑞 Heat flux 𝐽/𝑚2 𝜇 Dynamic viscosity 𝑁𝑠/𝑚2

𝑟 Radius m 𝜈 Kinematic viscosity 𝑚2/𝑠
𝑅 Riemann invariant (-) 𝜈𝑇 Eddy viscosity 𝑚2/𝑠
𝑅𝑦 Wall normal Reynolds number (-) 𝜔 Specific dissipation 𝐽𝑠/𝑚2

𝑆 Surface area 𝑚2 𝜙 Velocity potential 𝑚2/𝑠
𝑆𝑖 𝑗 Strain rate tensor 1/s Π Pressure-strain correlation 𝑚2/𝑠3

𝑡 Time s 𝜌 density 𝑘𝑔/𝑚3

𝑇 Temperature K 𝜏 Slenderness ratio (-)
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1
Introduction

After two years of COVID-19 travel restrictions, the aviation industry has recently been recovering from

the reduced number of passenger traffic. As of September 2023, the number of flights is at 90% of

pre-COVID-19 numbers [13]. Looking forward, Airbus predicts a yearly growth rate of 3.9%, leading

to double the passenger traffic in 2040, with respect to pre-COVID-19 world annual traffic [20]. While

this growth might be beneficial from an economic standpoint, an increase in flights leads to a potential

increase in emissions. With the European goal of a reduction of 𝐶𝑂2 emissions of 55% in 2030 and

climate neutrality in 2050 [41], this growth leads to significant challenges.

Part of the solution lies in a more efficient aircraft shape, increasing the lift-to-drag ratio (L/D). Current

aircraft, separating lifting surface (the wing) and payload structure (the fuselage), are seeing diminishing

improvements in efficiency over time [30]. A new aircraft concept can improve aircraft efficiency further.

Benad [5] envisioned a flying wing aircraft in a V shape: the Flying V. As the passengers sit in the

V-shaped wing, the lift-producing area is increased significantly with respect to a traditional aircraft,

while the wetted area is reduced. The design also has several advantages over several blended wing

body designs. The design poses, for example, an easier trade-off between trimming requirements and an

elliptical lift distribution [16]. Aerodynamic studies have been performed on the Flying V with varying

degrees of fidelity ([16, 23, 40, 45, 27, 10]). To overcome shortcomings in previous parametrizations, a

new CATIA-based parametrization was devised by Benad. This parametrization is the starting point of

this study. As the model is only optimized using low-fidelity methods, a need for a high-fidelity study

arises. This thesis project aims to maximize the lift-to-drag ratio of the Flying V in cruise conditions by

means of a high-fidelity CFD investigation.

1.1. Research Objective
Several aerodynamic studies have been conducted regarding the cruise performance of the Flying V,

improving upon the original lattice vortex based optimization of Benad [5]. Notably, Faggiano [16]

performed a mixed optimization method of lattice vortex and Euler-based simulations. The parametriza-

tion of the Flying V was altered by Hillen [23] and Oosterom [45] to account for manufacturability and

introduce family design options, respectively. Van Luĳk optimized the new parametrization of the

Flying V with a combination of low and high-fidelity methods. The ParaPy model showed, however,

some shortcomings [61]. A need for high-fidelity optimization has arisen with a new, CATIA-based,

parametrization of the Flying V. The research objective for this thesis topic:

Research Objective

The research objective is to maximize the lift-to-drag ratio of the Flying V in cruise conditions by

means of a high-fidelity CFD investigation.

Several sub-objectives have been constructed to facilitate the final objective. These ensure the reliability

of the simulation, aim to gain insight into the physics behind the design and cover the multidisciplinary

aspects of the design.

1
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Research Sub-Objectives

• Establish a well-validated simulation framework, with a high level of result reliability

• Gather insights about the effect certain parametrization variables have on the aerodynamic

performance of the Flying V

• Ensure the accordance of structural and stability requirements with the aerodynamic

design

1.2. Research Questions
Based on the research objective, a research question and research subquestions are constructed. The

main question should be answered with a numeric value at the end of the thesis. The subquestions aim

to guide both the literature review and the research to make sure every aspect of the design is covered.

Research Question

What is the maximum lift-to-drag drag the Flying V can achieve in cruise conditions?

The areas of research are split up into three sections:

• Computational Fluid Dynamics

• Transonic Aerodynamics

• Flying V aerodynamics

Questions related to this research:

1. Computational Fluid Dynamics

(a) What are the mesh requirements for transonic aerodynamic simulations?

(b) Which turbulence models are suitable for transonic aerodynamics?

(c) How should shock regions be refined?

(d) What is a good advection scheme for transonic aerodynamics?

(e) What are good validation methods?

2. Transonic Aerodynamics

(a) What are the consequences of having a highly swept wing in transonic cruise conditions?

(b) What are the main mechanisms that can cause separation in cruise conditions?

(c) What are the main factors influencing 2D/airfoil design in transonic conditions?

(d) Which 3D phenomena have to be taken into account when designing a swept wing?

(e) What secondary flow principles are important in swept wing design?

3. Flying V aerodynamics

(a) What are critical aerodynamic areas of the Flying V?

(b) What is important in the transition from inboard to outboard wing in the Flying V?

(c) What is the drag divergence Mach number of the final design?

(d) How does the position of center of pressure change with angle of attack?

(e) What is the maximum operating Mach number of the final design?

(f) At what point does buffeting become a risk for the final design?

1.3. Thesis Outlook
The thesis is structured in the following way. Chapter 2 gives an overview of the previously performed

aerodynamic Flying V work. Chapter 3 treats the methodology of the thesis. This encompasses the

current parametrization of the Flying V, the numerical setup, optimization workflow and physical
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design principles. The numerical setup section consists of the theory behind the numerical settings,

the meshing strategy, domain and boundary conditions and the simulation setup and convergence

strategy. The optimization workflow describes how an iteration is performed. The design principle

section describes transonic physics and wing design principles. Chapter 4 verifies and validates the

numerical method. The results are presented and discussed in chapter 5. This section also includes the

performance of the final design. The thesis is concluded in chapter 6.



2
Flying V Aerodynamic Background

Ever since the start of fixed-wing aviation, engineers and designers have tried to move away from the

standard tube-and-wing configuration, towards less conventional configurations. Whether a larger

efficiency, more range, more carrying capacity or stealth is the objective, the flying wing and blended

wing body (BWB) have shown promising characteristics throughout history.

Figure 2.1: Top left: Dunne D.8
1
, Top right: Northrop YB-35

2
, Bottom left: Northrop Grumman B-2 Spirit

3
, Bottom right:

Airbus ZEROe BWB
4

The first functional practical flying-wing concepts arose in Europe around 1910. Inspired by the glider

experiments of Otto Lilienthal, one of the first working prototypes was created by J. W. Dunne, with

the Dunne D.81 [56]. The Second World War brought new attention to flying wings for a military

purpose with the benefit of an extended range and flight time, combined with a practical shape for

carrying ordinance. The Germans designed the Horten Ho 229 and the Americans designed what

would ultimately become the Northrop YB-352. Stability and control remained issues [56]. The YB-35

was ultimately developed into the well known Northrop Grumman B-2 Spirit 3. Next to its efficiency,

the flying wing proved to have good stealth characteristics as well [56].

A different approach is to retain a fuselage-like section, in the form of a blended wing body. An example

of this is the Airbus ZEROe BWB4. The transonic airliner blended wing body consists of an inboard

wing/passenger section with a high thickness-to-chord ratio and a more traditional outboard wing

with supercritical airfoils, as described by Liebeck [33]. Chen [12] summarizes the advantages and

disadvantages of blended wing bodies as follows: The aerodynamic advantages consist of a reduction of

most forms of drag due to a wetted area reduction, smooth transitions and improved lift distributions.

Stability, trimming and practical issues are the most significant disadvantages of the BWB.

While multiple studies show the promising efficiency gains of such a configuration [49, 34, 52, 35], the

1https://en.wikipedia.org/wiki/Dunne D.8

2https://en.wikipedia.org/wiki/Northrop YB-35

3https://en.wikipedia.org/wiki/Northrop Grumman B-2 Spirit

4https://edition.cnn.com/travel/article/airbus-zero-emissions-concept-plane/index.html

4
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aft-positions of the neutral point and centre of pressure lead to a small moment arm of the control

surfaces. This necessitates a large control surface area and results in potential trim drag penalties [49].

2.1. The Flying V
Building on the last hundred years of unconventional planform design, Justus Benad came up with a

new flying wing concept at the Airbus Future Projects office in Hamburg: the Flying V [5]. The Flying V

is a flying wing aircraft where payload and fuel both reside in a V-shaped, crescent wing with large

winglets that double as vertical tail planes. The Flying V promises the efficiency benefits of blended

wing bodies, while adhering to logistical constraints similar to the A350 and avoiding the need for an

extraordinarily large control surface area [7]. The Flying V fits in the same E-category airport apron as

the A350 5. As stated by Benad [5]: "Remarkable is also the elliptical lift distribution of the naturally

stable design using only a moderate wing twist and no reflexed camber lines.".

The first aerodynamic design was based around the Airbus ODILIA tool, a 3D lattice vortex method.

The tool allowed the optimization of the aircraft wing twist, striving for an elliptic lift distribution.

Figure 2.2: Original Flying V lift and twist distribution[5]

The transition between fuselage wing and outboard wing causes a reduction in chord length. This

reduction in chord length requires a lower sectional lift coefficient at the root to achieve an elliptical

lift distribution (figure 2.2). Due to this low wing loading, the high t/c fuselage wing is less likely to

reach pressure coefficients resulting in strong shock waves and wave drag is reduced. Wave drag was

therefore disregarded in the original Flying V design. A 10% increase in L/D compared to the A350-900

was estimated [5].

2.1.1. Faggiano’s Aerodynamic Optimization
After Benad’s original study, the Flying V was further aerodynamically optimized by Faggiano in 2016

[17]. Faggiano implemented Euler solver SU2, together with panel code AVL, into the knowledge-based

engineering ParaPy environment 6. The solver choice is a compromise between optimization fidelity

and optimization speed. The Euler code will be able to predict shock waves and wave drag, allowing for

a more reliable prediction than Benad’s original estimates. By not switching to a RANS-based CFD

simulation, the cost of the simulation is still kept relatively low, permitting the use of a large design

space.

Faggiano[16] incorporated supercritical Whitcomb airfoils into the outboard wing of the Flying V. With

5https://skybrary.aero/articles/icao-aerodrome-reference-code

6ℎ𝑡𝑡𝑝𝑠 : //𝑝𝑎𝑟𝑎𝑝𝑦.𝑛𝑙/
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the original twist distribution, the first results showed excessive lift on the outboard wing, resulting in

a less optimal lift distribution. High Mach numbers, resulting in strong shocks were observed at the

outboard wing.

Figure 2.3: Lift distribution of 2016 iteration of the Flying V aerodynamic design[17]

Faggiano decreased the outboard wing twist and swept back the outboard wing further. The effects of

this can be seen in figure 2.3, as the improved baseline design. The lift distribution is more elliptical and

the 𝑐𝑙 at the tip is reduced.

Figure 2.4: Mach contours of the 5 configurations[17]

These manual optimization steps are followed by an optimization algorithm-driven second phase. Two

approaches are taken: a dual-step approach, where first the planform and second the airfoils are

optimized and a single-step approach, where the whole aircraft is optimized in one step. The taper ratio
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is increased, reducing lift at the outboard section. In both approaches, the outboard wing is swept back

further and there is a certain degree of front loading introduced into the airfoil, to decrease the suction

on the upper surface, with an acceptable pitching moment.

Figure 2.4 shows the results of the optimization. The large supersonic region of the baseline is significantly

reduced and a strong shock is avoided. The algorithm-driven optimization reduces the pressure peak at

the leading edge and the region of highest velocity can be seen more aft. This also reduced the risk of

leading-edge separation, as a possible shock wave does not occur near the leading edge. The maximum

Mach number reached is reduced from 1.47 to 1.25 [17]. Compared to the baseline Flying V, the aft

loading at the root is reduced, decreasing the pitching moment of the aircraft.

The overall result of the design study was an increase in lift-to-drag ratio from 22.8 to 23.7. Furthermore,

the work done increased the fidelity of the aerodynamic performance estimations.

2.1.2. New Parameterization and Family Design
Hillen [23] redefined the parametrization of the Flying V in 2020, as described in section 3.1. The new

parameterization allows for cabin flexibility and takes into account manufacturability. The increased

cabin size did lead however to a rapid decrease in thickness between the inboard and outboard wing,

leading to unfavourable pressure distributions. The lift-to-drag ratio decreased by 13% compared to

Faggiano’s design.

This new parameterization was used by Niewenhuizen [40], to conceptually optimize the Flying V.

Increasing the inboard wing length and decreasing the inboard wing sweep angle promised some

significant improvements. The aerodynamic model used is low fidelity, based on the thesis from

Faggiano [16], so further aerodynamic investigation is required.

Oosterom [45] investigated the conceptual creation of a Flying V family, altering the parametrization.

Oosterom looked at changing the length of the untapered cabin to create a family of aircraft. AVL is used

in combination with a viscous model to estimate aerodynamic drag. The lift-to-drag ratio of the family

is estimated to be between 20.9 and 21.6, depending on the version. An overall fuel burn improvement

of 22% for the FV-1000 was estimated, compared to the A350-1000. Again the aerodynamic modelling

method in this study is relatively low fidelity, so a more in-depth study is required.

Van Luĳk [61] performed a constrained aerodynamic shape optimisation of the new parametrization.

She optimized the planform using a vortex-lattice method and optimized the outboard wing through a

Free-Form Deformation shape optimization based on the Euler equations[61]. The highest lift-to-drag

ratio obtained was 20.3. It is believed this lift-to-drag ratio can be improved through a parametrization

with smoother transitions.

2.1.3. Remaining Aerodynamic Studies
Several other Flying V aerodynamic studies have been performed, most focused on stability coefficients

and high lift.

Johnson [27] experimentally investigated the effect of winglet integration on the Flying V. As the winglet

and the wing-winglet junction were not significantly aerodynamically optimized, the integration of

the winglet reduced the lift-to-drag ratio. The 𝐶𝐿 is slightly increased at low angles of attack, due to a

decrease in induced angle of attack and slightly decreased at higher angles of attack, possibly due to an

increase in separation due to interference effects. The drag coefficient increased in all relevant angles of

attack, mainly due to the increase in friction drag.

Optimization of the nose cone of the Flying V was performed by Brouwer [10]. Brouwer simulated the

full aircraft at cruise Reynolds number using a RANS approach. At this Reynolds number, Brouwer

managed to simulate the boundary layer within the viscous sublayer (y+<1), showing the feasibility of

this method for high Reynolds numbers. Different designs are proposed, incorporating the cockpit into

the Flying V. The designs generally reduce the aft loading and increase the suction peak, reducing shock

strengths, as can be seen in figure 2.5. Different designs show improvements with respect to the original

Flying V ranging from 1.3 to 2.7 %.
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Figure 2.5: Comparison of 𝐶𝑝 plots inboard wing from Brouwer. Calculated at M=0.85, 𝛼 = 3
◦
, Re = 8.4e7, 𝐶𝑝∗=-0.3[10]

Different experimental and computational research has been done on the high-lift capabilities of the

Flying V. Even though high-lift is not the focus subject of this thesis, it can be useful to name some of

the key components.

Viet [62] experimentally investigated the high lift behaviour of the Flying V. Viet showed that the Flying

V scale model exerts linear 𝐶𝐿𝛼 behaviour until an angle of attack of 11 degrees. Beyond 11 degrees,

a leading edge vortex at the leading edge kink started to occur, leading to vortex lift and increasing

the 𝐶𝐿𝛼 . At thirteen degrees, a trailing edge vortex also appears. This vortex starts to merge with the

leading edge vortex at higher angles of attack. At higher angles of attack, the leading edge vortex

also moves forward and the 𝐶𝐿𝛼 starts to decrease. At 41 degrees the wing stalls with a 𝐶𝐿𝑚𝑎𝑥 of 1.09.

However, a pitch break exists at an angle of attack of 20 degrees, placing stability limits on the Flying V.

Van Uitert [60] showed this phenomenon could be slightly improved using trip strips or possibly a stall

fence. Benad showed similar vortical structures using high-fidelity simulation methods[8].

Even though it is not the focus point of the study, handling characteristics might influence the efficiency

at cruise conditions.

Figure 2.6: Damping ratio and natural frequency for eigenmodes of the Flying V.[46]

Using a combination of AVL for the linear regime and wind tunnel testing for non-linear behaviour van

Overeem et al. [46] showed that the aircraft is trimmable for the whole flight regime, with acceptable

elevon deflection at cruise. At approach conditions, slightly unstable Phugoid and Dutch roll eigenmodes

were observed (figure 2.6). Level 1 flight handling characteristics were observed for a majority of the

flight envelope. Later Joosten [28] showed that the current iteration of the Flying V did have stable

lateral eigenmodes, based on an inviscid model.



3
Methodology

This chapter focuses on the parameterization of the Flying V, simulation set-up, optimization procedure

and design principles of the research project. The Flying V is parameterized in CATIA, ensuring a

smooth transition between the sections. The simulation is performed with ANSYS Fluent using a

3rd-order MUSCL Reynolds Averaged Navier-Stokes simulation. The model is manually optimized to

reduce simulation costs and more easily take into account the multidisciplinary aspects of the project.

3.1. Parametrization
The Flying V concept, as envisioned by Benad [5] in 2015, featured a single-shell structure, with two

cylindrical pressurized sections. To increase design flexibility, the oval cross-section proposed by Vos et

al. [63] was incorporated into the design. Faggiano [16] expanded upon the existing model, enhancing

its capabilities to facilitate mid-fidelity optimization. The model was parameterized in the ParaPy

environment 1. The inboard section of the wing is defined by the oval fuselage, while the outboard wing

is composed of transonic airfoil sections. An interpolated transition section lies between these sections.

(a) Parameterisation of the Flying V planform. The dark

grey sections are part of the family design and can be

omitted in different versions.

(b) Layout of the Flying V 1000 in a 2-class configuration,

seating 378 passengers [8]

Figure 3.1: Parametrization and layout of the Flying V planform

Hillen [23] redefined the design by taking into account manufacturability and cabin design flexibility.

Hillen proposes a constant chord cabin section, for manufacturability reasons. This also introduces a

second kink in the trailing edge, as the leading edge is kept straight. In the 2D cabin shape, parameter

1ℎ𝑡𝑡𝑝𝑠 : //𝑝𝑎𝑟𝑎𝑝𝑦.𝑛𝑙/

9
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𝐻𝑤 is introduced, which fixes the position of the width of the fuselage, allowing more design freedom.

Oosterom and Vos [45] investigated the creation of a Flying V family. This introduces sections in the

oval cabin that can be omitted to create a smaller aircraft. These are visualised as the dark grey sections

in Figure 3.1a. This research focuses on the largest version, the Flying V 1000. The parameterization

used by Hillen and Oosterom showed certain shortcomings with regard to the aerodynamic design

[61]. In the year of 2022, a novel parameterization for the Flying V was introduced by Benad. It is

this parameterization which is used in the present work. In this new version of the Flying V, both

the planform and payload capacity from Oosterom’s design are retained, as is the family concept and

the inboard wing parameterization introduced by Hillen. The most drastic change lies in an updated

transition wing section in between the inboard and outboard wing. These changes are described in

detail in [6]. The new parameterization is displayed in Figure 3.1a. A distinct feature of the new model

is the oval retention parameter (ORP). The ORP determines where the oval cross-section ends and the

interpolation to the outboard wing profiles starts. This parameter facilitates a trade-off choice between

aerodynamic performance and cabin space. In the creation of the new parametric model, the parameters

were set by Benad as an engineering judgment based on the knowledge of previous studies. This initial

version is here referred to as the "baseline design".

Further details of the parameterization are as follows: The wing chord, defined orthogonally to the

leading edge for the cabin/cargo section, is specified near the root (𝐶𝑟), at station 3 (𝐶3) and at the

inboard and outboard section of the outboard wing (𝐶𝑂,𝑅 and 𝐶𝑂,𝑇). The cabin width, 𝑤1 and 𝑤3, are

important in shaping the sections, as these parameters determine where the cabin section transitions to

the trailing edge section, as seen in Figure 3.1a. Sweep angles Λ𝑖𝑛 and Λ𝑜𝑢𝑡 determine the overall sweep

of the design.

The layout of the Flying V 1000 is visualised in Figure 3.4. The configuration is 2-class, seating 378

passengers. The business class is located near the nose of the aircraft with economy in the two wing

sections. Cargo is stored further back, as the thickness-to-chord ratio in this region starts to decrease.

Fuel is stored in the trailing edge and outboard wing.

Figure 3.2: Cross-sectional parametrization of the Flying V

Figure 3.2 shows a cross-section of the cabin wing, orthogonal to the leading edge. Parameters 𝐻1 and

𝐻3 are important in defining the camber of the profile as more or less area can be added below or

above the chord line. The trailing edge height, 𝑧𝑇𝐸 and the trailing edge angles, ∠𝑜𝑝𝑒𝑛 and ∠𝑖𝑛𝑐., also

influence camber and aft-loading.

3.2. Numerical Background
To be able to simulate the Flying V in cruise conditions a reliable numerical set-up is required. This

section aims to summarize the theory behind the chosen numerical setup options. The motivation of

choices is discussed in section 3.5.

3.2.1. The Navier Stokes equations
The transonic conditions of the simulation require a coupled density-based approach, where time

stepping is used to converge the simulation [19]. The Favre and Reynolds averaged Navier-Stokes

equations [1] (continuity (equation 3.1), momentum (equation 3.2), energy (equation 3.3)) are solved as
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a trade-off between accuracy and computational cost.

𝜕�̄�

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖
(�̄��̃�𝑖) = 0 (3.1)

A fundamental principle of fluid dynamics is the conservation of mass, expressed by the continuity

equation (equation 3.1) [47]. This equation states that the mass that enters a certain system must either

accumulate there (
𝜕𝜌
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Based on Newton’s second law, the momentum equation (equation 3.2), relates the acceleration of the

fluid to the surface and body forces [47]. The surface forces, of molecular origin, consist of the viscous

component
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and pressure component
𝜕𝑝
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. For external aerodynamic cases, body forces are either

considered negligible.
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𝜕𝑥 𝑗

[
�̃�𝑖

(
𝑡𝑖 𝑗 − 𝜌𝑢′′

𝑖
𝑢′′
𝑗

)]
(3.3)

𝑞 𝑗 = −𝜅 𝜕𝑇

𝜕𝑥 𝑗
= − 𝜇

Pr𝐿

𝜕ℎ

𝜕𝑥 𝑗
(3.4)

As the density can vary with pressure in a compressible flow, an additional equation is required to

compute the density. This is given by the conservation of energy (equation 3.3 [67]), where e is the

specific internal energy, 𝑞 𝑗 the heat flux vector and ℎ = 𝑒 + 𝑝/𝜌 is the specific enthalpy. The left side

of the equation represents unsteady changes and convection of energy, and the right side conduction,

diffusion and dissipation of energy. The heat flux can be estimated by Fourier’s law (equation 3.4),

where Pr = 𝜈
𝛼 represents the Prandtl number.

3.2.2. Reynolds and Favre Averaging
As the computational costs for Direct Numerical Simulation, DNS, and Large Eddy Simulations, LES,

are too great for large-scale, high Reynolds number simulations, the Reynolds Averaged Navier-Stokes

or RANS equations will be solved. The RANS approach divides flow variables in its mean (𝜙) and

fluctuating (𝜙′
) components (equation 3.5)[47]. The mean of a flow variable is given by time averaging,

as shown in equation 3.6.

𝜙𝑖(x, 𝑡) = 𝜙𝑖(x) + 𝜙′
𝑖(x, 𝑡) (3.5)

𝜙𝑖(x) = lim

𝑇→∞

1

𝑇

∫ 𝑡+𝑇

𝑡

𝜙𝑖(x, 𝑡)𝑑𝑡 (3.6)

In an incompressible flow, the velocity is transformed by equation 3.5 and the whole Navier-Stokes

equation is averaged. For all linear terms, no unclosed terms arrive, as the average of the fluctuating

quantity is zero. The non-linear 𝜌 𝜕
𝜕𝑥𝑖

(
𝑢𝑖𝑢𝑗

)
term however leads to the unclosed 𝑢′

𝑖
𝑢′
𝑗
term as seen in

equation 3.7, also known as the Reynolds stress tensor[47]. This term is to be modelled. As the average

of the average is the same average and 𝑢𝑖𝑢
′
𝑗
= 0:

𝑢𝑖𝑢𝑗 = (𝑢𝑖 + 𝑢′
𝑖
)(𝑢𝑖 + 𝑢′

𝑖
) = 𝑢𝑖𝑢𝑗 + 𝑢′

𝑖
𝑢′
𝑗

(3.7)

For the compressible NS equations, this approach leads to multiple unclosed terms, as now also the

density has a fluctuating component (𝜌 = 𝜌 + 𝜌′):
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Figure 3.3: Unclosed terms in the compressible Navier-Stokes momentum equation2

Modelling all these terms becomes unpractical and unreliable. Favre [18] introduced the idea to mass

average the velocity in the NS equations, given by equation 3.8. This way density fluctuations can be

avoided. Now the fluctuation is given by equation 3.9

𝑓 =
⟨𝜌 𝑓 ⟩
⟨𝜌⟩ (3.8)

𝑓 ′′ ≡ 𝑓 − 𝑓 (3.9)

3.2.3. Closing the compressible RANS equations
After Reynolds and Favre averaging the Navier-Stokes equations, one unclosed term in the momentum

and 5 unclosed terms in the Energy equation remain. The unclosed terms in the Energy equation

seem like much to model, but many of these terms represent physical properties and are often already

(partially) modelled by common turbulence models [67]. This section aims to describe the most common

ways to close these terms.

�̄�𝜏𝑖 𝑗 ≡ −𝜌𝑢′′
𝑖
𝑢′′
𝑗

(3.10)

By averaging the compressible momentum equation the Favre-averaged Reynolds stress tensor,−𝜌𝑢′′
𝑖
𝑢′′
𝑗

appears. This is similar to the Reynolds Stress tensor 𝜌𝑢′
𝑖
𝑢′
𝑗

in incompressible flow. The two most

common ways to model this term are either by Eddy viscosity models or Reynolds stress models [19]

Eddy Viscosity Models
The Reynolds stress tensor can be related to the mean flow properties using the Boussinesq approximation

(equation 3.11 [67]). The unknown in this equation is the eddy viscosity, 𝜇𝑇 , which has to be modelled.

The advantage of the Boussinesq approximation is that it takes the same form as the Navier-Stokes

equation, allowing for a simple additional viscosity term. It was shown that the hypothesis is questionable

for more complicated flows [47], but it is still widely used due to computational efficiency. Important

for the compressible variant is the − 1

3

𝜕�̃�𝑘
𝜕𝑥𝑘

𝛿𝑖 𝑗 term, which tends to 0 in incompressible flow. Again Stokes’

hypothesis is used for the bulk viscosity (𝜁 = − 2

3
𝜇). To guarantee that the trace of 𝜏𝑖 𝑗 satisfies the

definition of the turbulent kinetic energy, the − 2

3
�̄�𝑘𝛿𝑖 𝑗 term is subtracted from the mean rate of strain

term[67].

�̄�𝜏𝑖 𝑗 ≡ −𝜌𝑢′′
𝑖
𝑢′′
𝑗
= 2𝜇𝑇

(
𝑆𝑖 𝑗 −

1

3

𝜕�̃�𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗

)
− 2

3

�̄�𝑘𝛿𝑖 𝑗 (3.11)

Eddy viscosity models aim to estimate the eddy viscosity 𝜇𝑇 . Multiple levels of computational resources

(algebraic, one-equation, two-equation) and multiple levels of physics/statistics/estimations are used in

the different models. The Menter SST model used in the thesis is discussed next.

k-𝜔 model and Menter SST
The starting point of two-equation eddy viscosity models is a dimensional analysis, relating 𝜈𝑇 (or 𝜇𝑇 in

the compressible case) to turbulent flow variables. In the case of k-𝜖, these two flow variables are the

turbulent kinetic energy, k and the dissipation rate, 𝜖:

𝜈𝑇 ∼ 𝑘1/2ℓ , 𝜖 ∼ 𝑘3/2/ℓ (3.12)

2ℎ𝑡𝑡𝑝𝑠 : //𝑏𝑟𝑖𝑔ℎ𝑡𝑠𝑝𝑎𝑐𝑒.𝑡𝑢𝑑𝑒𝑙 𝑓 𝑡.𝑛𝑙/𝑑2𝑙/𝑙𝑒/𝑐𝑜𝑛𝑡𝑒𝑛𝑡/397970/𝑣𝑖𝑒𝑤𝐶𝑜𝑛𝑡𝑒𝑛𝑡/2611947/𝑉𝑖𝑒𝑤
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Where the 𝑘 − 𝜖 models the dissipation 𝜖, 𝜔 the dissipation per unit turbulence kinetic energy could

be considered. For homogeneous turbulence, the two variables lead to the same results but for

inhomogeneous turbulence, the diffusion term changes [47]. The following relations between eddy

viscosity, characteristic length and dissipation are proposed:

𝜈𝑇 ∼ 𝑘/𝜔, ℓ ∼ 𝑘1/2/𝜔, 𝜖 ∼ 𝜔𝑘 (3.13)

The turbulence kinetic energy transport equation (equation 3.14) is derived from the momentum equation.

The model presented here is the compressible 2006 Wilcox 𝑘 − 𝜔 model [67].

𝜕

𝜕𝑡
(�̄�𝑘) + 𝜕

𝜕𝑥 𝑗

(
�̄��̃�𝑗 𝑘

)
= �̄�𝜏𝑖 𝑗

𝜕�̃�𝑖
𝜕𝑥 𝑗

− 𝛽∗�̄�𝑘𝜔 + 𝜕

𝜕𝑥 𝑗

[(
𝜇 + 𝜎∗ �̄�𝑘

𝜔

)
𝜕𝑘

𝜕𝑥 𝑗

]
(3.14)

Deriving 𝜔 from the momentum equation gives too many unclosed terms. Wilcox [67] constructed

the transport equation for 𝜔 (equation 3.15) on an empirical basis, such that all relevant processes are

represented (production, dissipation, diffusion etc.). For the constants used for the equation, the reader

is referred to [67].

𝜕

𝜕𝑡
(�̄�𝜔) + 𝜕

𝜕𝑥 𝑗

(
�̄��̃�𝑗𝜔

)
= 𝛼

𝜔
𝑘
𝜌𝜏𝑖 𝑗

𝜕�̄�𝑖
𝜕𝑥 𝑗

− 𝛽�̄�𝜔2 + 𝜎𝑑
�̄�

𝜔
𝜕𝑘

𝜕𝑥 𝑗

𝜕𝜔

𝜕𝑥 𝑗
+ 𝜕

𝜕𝑥 𝑗

[(
𝜇 + 𝜎

�̄�𝑘

𝜔

)
𝜕𝜔

𝜕𝑥 𝑗

]
(3.15)

The main difference between this model and the k-𝜖 model is that the k-𝜔 model is superior in the

treatment of the viscous near-wall region and can account here for streamwise pressure gradients,

partly due to the increased performance in viscous diffusion [47]. However, away from the wall in the

non-turbulent regime, k-𝜔 becomes problematic. The model becomes dependent on the boundary

conditions, which can become unphysical [47]. Menter [36] proposed the Menter SST model, blending

the 𝑘 − 𝜔 and 𝑘 − 𝜖 models. Menter expresses the 𝑘 − 𝜖 model in the form of 𝜔 and adds a term for

the principal shear stress. The constants of the equation are then based, as seen in equation 3.16, on

essentially the 𝑦+ value. 𝜙 is a vector of constants for the Menter SST model, 𝜙1 and 𝜙2 the constants of

the 𝑘 − 𝜔 and 𝑘 − 𝜖 models. 𝐹1 and 𝐹2 determine the region of the flow. The Menter SST model gives

significantly improved results for external aerodynamics [47]. It has to be noted that the Wilcox 2006

model also gives significantly improved results in non-turbulent regions compared to the 1994 model,

due to tuning of the constants [67].

𝜙 = 𝐹1𝜙1 + (1 − 𝐹1)𝜙2 (3.16)

3.2.4. Energy Equation Closures
With the Reynolds stress modelled as previously described, four unknowns remain in the Energy

equation. As creating transport equations for these terms is computationally expensive, relating them

to mean flow variables is more efficient. The most common ways to model these terms are discussed in

this section.

Turbulence Kinetic Energy

The
1

2
𝜌𝑢′′

𝑖
𝑢′′
𝑖

term represents the turbulence kinetic energy per unit volume, k [67]. This is convenient,

as many turbulence models compute k. Otherwise, other approximations are required based on the

turbulence model.

�̄�𝑘 =
1

2

𝜌𝑢′′
𝑖
𝑢′′
𝑖

(3.17)

Turbulent Heat-Flux Vector
The Reynolds analogy is the basis for the most used closure of the turbulent heat-flux vector [67]. It

assumes the turbulent heat flux to be proportional to the mean flow temperature gradient. The turbulent
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Prandtl number 𝑃𝑟𝑇 is flow dependent, but often assumed to be 0.89 [67].

𝑞𝑇𝑗 = 𝜌𝑢′′
𝑗
ℎ′′ = −

𝜇𝑇 𝑐𝑝

𝑃𝑟𝑇

𝜕�̃�

𝜕𝑥 𝑗
= − 𝜇𝑇

𝑃𝑟𝑇

𝜕ℎ̃

𝜕𝑥 𝑗
(3.18)

Molecular Diffusion and Turbulent Transport
Molecular diffusion and turbulent transport are usually small and are sometimes neglected for subsonic

flows. The most common way to model them is by assuming these terms are proportional to the

turbulent kinetic energy gradient, as seen in equation 3.19 [67].

𝑡 𝑗𝑖𝑢
′′
𝑖
− 𝜌𝑢′′

𝑗

1

2

𝑢′′
𝑖
𝑢′′
𝑖
=

(
𝜇 + 𝜇𝑇

𝜎𝑘

)
𝜕𝑘

𝜕𝑥 𝑗
(3.19)

3.2.5. Wall Behaviour
Close to the wall, in the buffer and viscous sublayer, certain effects become important. Pope [47]

summarizes them as following:

• Low Reynolds Number: The turbulent Reynolds number tends to zero near the wall

• High shear rate: The maximum mean velocity gradient occurs near the wall

• Two-component turbulence: For small y, the u and w components of the turbulence start to dominate

• Wall blocking : The pressure field influences the flow due to the no-slip condition

Depending on the model used, corrections or whole models for the region close to the wall might be

required. 𝑘 − 𝜖 for example has a poor near-wall performance and requires some kind of wall function

[47].

Figure 3.4: Subdivisions of near wall region [1]

Figure 3.5: Near-Wall treatments [1]

DNS simulations and experiments have shown a similar general shape when non-dimensionalising the

region in boundary layers close to the wall. In this region, the flow behaves (relatively) independently

of the outside flow. Figure 3.4 shows the subdivisions of the near wall region. Close to the wall viscous

diffusion dominates as the velocity at the wall tends to zero. This is known as the viscous sublayer.

Further away from the wall turbulence starts to dominate in the log-law region. In between, there is the

buffer layer where both phenomena play a role. This region is also the most challenging to model[47].

The surface shear stress at the wall is, apart from flow properties, determined by the mean flow gradient

at the wall[47]. A flow close to separation will for example have a lower shear stress, due to the almost

reversed flow at the wall.

𝜏w ≡ 𝜌𝑣

(
d⟨𝑈⟩
d𝑦

)
𝑦=0

(3.20)
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From the shear stress, appropriate viscous scales can be set up. These are friction velocity 𝑢𝜏 and viscous

length scale 𝛿𝑣 .

𝑢𝜏 ≡
√

𝜏w

𝜌
(3.21)

𝛿𝑣 ≡ 𝑣

√
𝜌

𝜏w

=
𝑣

𝑢𝜏
(3.22)

With a viscous length scale defined, the y coordinate can also be non-dimensionalised, such that a

wide range of flows can be compared. The resulting 𝑦+ can be seen as a local Reynold number and its

magnitude determines the importance of viscous and turbulence processes [47].

𝑦+ ≡ 𝑦

𝛿𝑣
=

𝑢𝜏𝑦

𝑣
(3.23)

Also, the mean flow velocity can be normalized. The important point is that this normalized velocity

depends solely on 𝑦+ for 𝑦/𝛿 ≪ 1 [47].

𝑢+ ≡ ⟨𝑈⟩
𝑢𝜏

(3.24)

Assuming the log layer only depends on turbulent convection, the log law can be derived, used in the

log layer. Where 𝜅 is the Von Kármán constant (0.41) and B a constant.

𝑢+ =
1

𝜅
ln 𝑦+ + 𝐵, (3.25)

There are two main approaches to modelling the inner layer. One approach is to refine the mesh

sufficiently to model the inner layer (standard 𝑦+ <1) and modify the turbulence model. Another

approach is to not resolve the inner layer and use a semi-empirical wall function [1].

The downside of wall functions is the occurrence of numerical problems with derivatives and the

following error in wall shear stress and heat transfer coefficient [67].

3.2.6. Discretization: Finite Volume Method
The partial differential equations described have to be discretized, such that the resulting matrix can be

solved by computer algorithms. While both Finite Volume and Finite Element methods are suitable for

solving complex fluid dynamics problems, ANSYS Fluent uses a finite volume method.

The finite volume method (FVM) uses the integral formulation of the Navier-Stokes equations. One

advantage is the use of divergence theorem. Divergence operators on a cell volume can be expressed as

fluxes leaving the surface area of that cell. This way divergence operators, like the continuity equation,

become (close to) exact [9]. In a finite volume method, physical quantities can be stored in points,

lines, edges and volumes. This brings additional advantages as certain physical properties are better

conserved in lines/surfaces/volumes than points. Because of the conservation properties and the

relative ease of implementing FVM in complex grids, it has become the dominant way of solving fluid

problems [9].

A certain conservation equation is put in its integral formulation [1] (equation 3.26). Where 𝜙 is a certain

scalar quantity, A the surface area vector, Γ the diffusion coefficient and S a certain source term.∫
𝑉

𝜕𝜌𝜑

𝜕𝑡
𝑑𝑉 +

∮
𝜌𝜑®𝑣 · 𝑑 ®𝐴 =

∮
Γ𝜑∇𝜑 · 𝑑 ®𝐴 +

∫
𝑉

𝑆𝜑𝑑𝑉 (3.26)

For a certain cell, this is discretized in the form:

𝜕𝜌𝜑

𝜕𝑡
𝑉 +

𝑁
faces∑
𝑓

𝜌 𝑓
®𝑉𝑓 𝜑 𝑓 · ®𝐴 𝑓 =

𝑁
faces∑
𝑓

Γ𝜑∇𝜑 𝑓 · ®𝐴 𝑓 + 𝑆𝜑𝑉 (3.27)
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The
𝜕𝜌𝜑
𝜕𝑡 𝑉 term has to be discretized in time. The convective term,

∑𝑁
faces

𝑓
𝜌 𝑓

®𝑉𝑓 𝜑 𝑓 · ®𝐴 𝑓 , is often still

nonlinear. Equation 3.28 shows the linearized version of the 𝜌 𝑓
®𝑉𝑓 𝜑 𝑓 term, where nb represents the

neighbouring cells. The content of these matrices depends on the method used.

𝑎𝑃𝜑 =
∑
𝑛𝑏

𝑎𝑛𝑏𝜑𝑛𝑏 + 𝑏 (3.28)

The momentum equation becomes [1], where I is the identity matrix and S is the source term :

𝑎𝑝𝑢 =
∑
𝑛𝑏

𝑎𝑛𝑏𝑢𝑛𝑏 +
∑

𝑝 𝑓𝐴 · 𝐼 + 𝑆 (3.29)

3.2.7. Spacial Discretization
Depending on in which part of the mesh flow properties are stored, interpolation might be required to

interpolate values from for example cell centre points to cell boundaries. Different methods of different

orders are possible here, depending on which quantity (convective vs. diffusive flux) and other flow

properties (shocks, discontinuities) appear in the flow. The viscous fluxes, because of their diffusive

nature, are normally discretized using central differences. The diffusive nature of the viscous flux

requires information from both cells to deal with high gradients[9]. For convective fluxes, upwind,

central difference and high-resolution methods are all feasible.

First Order Upwind

Figure 3.6: First order upwind scheme 3

First-order upwind is a relatively simple interpolation, where the cell-centre value is assumed to hold

true for the entire cell and the value at the cell boundary is equivalent to the centre value. This

is computationally stable and efficient, but only recommended for flow that faces the cell direction

(structured mesh, laminar flow)[2].

Higher Order Upwind
Higher-order methods can be set up by performing a Taylor series expansion around the centre cell

node. For a second-order scheme, the first expansion term is used (equation 3.30). The gradient is

required. Gradient computations are discussed in section 3.2.9.

𝜑 𝑓 𝑆𝑂𝑈 = 𝜑 + ∇𝜑 · ®𝑟 (3.30)

For some simulations, higher-order schemes may not be feasible due to flow fluctuations. Blending

methods are a compromise between first and higher-order methods, where a lower blending factor can

stabilize the simulation by increasing the numerical diffusion, towards a first-order scheme [1]. This

blending coefficient is chosen manually.

Central Differencing
The second-order central differencing scheme uses two cell nodes instead of 1, as shown in equation 3.31

[1]. Also here the gradient of the two cells is required. Central differencing methods normally converge

3ℎ𝑡𝑡𝑝𝑠 : //𝑏𝑟𝑖𝑔ℎ𝑡𝑠𝑝𝑎𝑐𝑒.𝑡𝑢𝑑𝑒𝑙 𝑓 𝑡.𝑛𝑙/𝑑2𝑙/𝑙𝑒/𝑐𝑜𝑛𝑡𝑒𝑛𝑡/397950/𝑣𝑖𝑒𝑤𝐶𝑜𝑛𝑡𝑒𝑛𝑡/2274109/𝑉𝑖𝑒𝑤
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faster, at the cost of higher numerical diffusion [9]. For processes with a diffusive nature, like viscous

diffusion, central difference methods are the superior option.

𝜑 𝑓 ,𝐶𝐷 =
1

2

(𝜑0 + 𝜑1) +
1

2

(
∇𝜑0 · ®𝑟0 + ∇𝜑1 · ®𝑟1

)
(3.31)

Stability problems/non-physical wiggles problems can occur in central differencing schemes. Using a

deferred correction can avoid stability problems[1]:

𝜑 𝑓 =
𝜑 𝑓 ,𝑈𝑃

implicit part

+
(
𝜑 𝑓 ,𝐶𝐷 − 𝜑 𝑓 ,𝑈𝑃

)
explicit part

(3.32)

CD stands for central differencing and UP stands for upwind differencing. While the solution converges,

the explicit part will become equal to the implicit part, and the final solution will be purely the

second-order central differencing solution.

High Resolution and Higher Order Methods
For finer meshes and meshes with discontinuities, like shocks, higher order/high-resolution methods

might be a good option. For both high-order schemes and higher-order methods, it is important that

the mesh is fine enough: The Peclet number should be lower than 1 (𝑃𝑒 =
𝜌𝑢𝐿
Γ

< 1) [1].

The Third-order MUSCL scheme [32] also blends a central difference and second-order upwind scheme.

The blending factor 𝜃 is 1/3. Typically a flux delimiter is introduced to 𝑟𝑖 =
𝑢𝑖−𝑢𝑖−1

𝑢𝑖+1−𝑢𝑖 reduce oscillations

due to a discontinuity.

𝜑 𝑓 = 𝜃𝜑 𝑓 ,𝐶𝐷 + (1 − 𝜃)𝜑 𝑓 ,𝑆𝑂𝑈 (3.33)

If stability becomes an issue in any of the higher-order schemes a relaxation term can be added to the

equation leading to the following relation [1]:

𝜑new = 𝜑
old

+ 𝑓 (𝜑intermediate
− 𝜑

old ) (3.34)

Where f is the relaxation factor. This can be more efficient than blending with a first-order scheme [2]

3.2.8. Temporal Discretization
For transient simulations or time-stepping methods, the time component has to be discretized. This

can be done either implicitly (equation 3.35) or explicitly (equation 3.36). In an implicit way, the flow

variable nodes 𝜙 of a future time are considered, creating the need to solve or estimate the system of

equations that arises. The advantage is the unconditionally stable nature of the problem [9]. With an

explicit method the system of equations matrices do not have to be inverted for the time step, but the

simulation might become unstable [9], requiring very small timesteps (determined by the CFL condition

[1]).

𝜑𝑛+1 − 𝜑𝑛

Δ𝑡
= 𝐹

(
𝜑𝑛+1

)
(3.35)

𝜑𝑛+1 − 𝜑𝑛

Δ𝑡
= 𝐹(𝜑) (3.36)

3.2.9. Gradient Evaluation
The computation of gradients is important in the discretization of the Navier-Stokes equations. It is

required to compute the gradients of velocity used for convection and the diffusive terms. Also in

interpolation, the gradients are important. Again, many techniques exist, but this section focuses on the

Least Squares Gradient Evaluation technique used in the thesis project.
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Least Squares Gradient Evaluation
In the least squares method, a linear relation between two nodes is assumed, where 𝑟𝑖 is the distance

between two nodes [1]:

(∇𝜑)𝑐0 · Δ𝑟𝑖 = (𝜑𝑐𝑖 − 𝜑𝑐0) (3.37)

A system of equations can be set up relating a centre cell to all its surrounding centre cells:

[𝐽](∇𝜑)𝑐0 = Δ𝜑 (3.38)

Where J is a matrix based on the distances between cells. This system is overdetermined, so a least

squares method is used to set up the gradients, based on the minimization of the problem. The least

squares method is relatively cheaper than the node-based method with similar results [1].

3.2.10. Flow Solvers
There are two main approaches solving for the pressure when discretizing the Navier-Stokes equations.

The pressure-based approach calculates the pressure by manipulating the momentum and continuity

equations. Even though this was originally developed for incompressible flow (pressure is independent

of temperature), compressible formulations are also possible [1]. The density-based approach determines

the density from the continuity and energy equation and calculates the pressure using the equation of

state [1]. This is intended for compressible flows, as it is both more expensive and numerical errors can

occur when performing the density approach for incompressible flow.

Density Based Solvers
The continuity, momentum and energy equations can be combined in the following system [1]:

𝜕

𝜕𝑡

∫
𝑉

𝑊𝑑𝑉 +
∮

[𝐹 − 𝐺] · 𝑑𝐴 =

∫
𝑉

𝐻𝑑𝑉 (3.39)

With vectors W,F and G:

𝑊 =

©­­­­«
𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝐸

ª®®®®¬
, 𝐹 =


𝜌𝑣

𝜌𝑣𝑢 + 𝑝𝚤

𝜌𝑣𝑣 + 𝑝 𝑗

𝜌𝑣𝑤 + 𝑝𝑘
𝜌𝑣𝐸 + 𝑝𝑣

ª®®®®®¬
, 𝐺 =


0

𝜏𝑥𝑖
𝜏𝑦𝑖
𝜏𝑧𝑖

𝜏𝑖 𝑗𝑣 𝑗 + 𝑞


(3.40)

Vector H contains source terms, like energy and body forces.

This system of equations becomes stiff for low Mach number/incompressible flow, because of the large

difference between the flow speed and the speed of sound. [1]. Density-based solvers can still be

used for these low-speed scenarios but the system of equation 3.39 has to be preconditioned; that is

modifying the time derivative term, by adding an additional matrix that scales the eigenvalues [1].

Convective Fluxes
Vector F in equation 3.39 represents an inviscid convective flux. As this flux tends to move with the flow

direction an upwinding scheme can be beneficial [1]. A Roe-Flux-Difference splitting scheme [51]

splits up F in the speeds and direction the characteristic information of the flux is travelling according to

the eigenvalues. F is thus split at the face in a left, L, and right, R, side with the different eigenvalues

contained in matrix �̂� according to equation 3.41.

𝐹 =
1

2

(𝐹𝑅 + 𝐹𝐿) −
1

2

Γ|�̂�|𝛿𝑄 (3.41)

Where Q is the vector {𝑝, 𝑢, 𝑣, 𝑤, 𝑇}𝑇 , 𝛿𝑄 the spatial difference between 𝑄𝑟 and 𝑄𝐿. 𝐹𝑟 and 𝐹𝐿 are

computed using vectors 𝑄𝑅 and 𝑄𝐿. Matrix |�̂�| is defined as:
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|�̂�| = 𝑀 |Λ|𝑀−1

(3.42)

Where Λ is the diagonal matrix with eigenvalues and M is the modal matrix reflecting the eigenvectors.

3.2.11. Solving the system
All the methods described thus far result in a certain system of equations that has to be solved either

implicitly or explicitly. The high number of cell nodes in the thesis project, combined with the high

transonic conditions require a multigrid method.

Multigrid Methods
Due to differences in velocities (boundary layer vs stagnation vs free stream vs speed of sound) and

differences in timescales of certain processes (the diffusion timescale is much larger than the wave

propagation time scale at high RE) the resulting systems of equations for implicit methods and the scalar

equations (e.g. turbulence) for explicit methods are stiff [67]. An efficient way to solve stiff systems

is a multigrid method, where corrections on coarse levels are performed using the finer grid levels to

accelerate convergence speed.

The basic principle of a multigrid method is to split up the solution of algebraic system 𝐴𝜑 + 𝑏 = 0 into

an approximate part (𝜙𝑒 ) and a correction (𝜓): Parameter d is the error of the approximate solution,𝜙𝑒 ,

gives. Mathematical manipulation gives [1].

𝐴𝜓 + 𝑑 = 0 (3.43)

Equation 3.43 is the correction equation which can be solved on the coarse grid. The defects are

transferred down to the finer grids:

𝐴𝐻𝜓𝐻 + 𝑅𝑑 = 0 (3.44)

Where H represent the coarse operators and matrix R transfers the defects down to finer levels. Finally,

𝜙 is updated with a correction for the finer levels, represented by matrix P:

𝜑new = 𝜑 + 𝑃𝜓𝐻
(3.45)

Algebraic Multigrid (AMG)
The algebraic multigrid method is called algebraic, because it does not redistribute the mesh or

rediscretize the geometry. This has the advantage that it can be used for a wide array of cases. However,

non-linearities are not carried over to the coarse mesh, which can be done with the Full-Approximate

Storage (FAS) method [1].

Hutchinson and Raithby [25] proposed a method based on piecewise constant interpolation between

the levels. The coarse cell has no geometrical features, but is a mathematical construct. This way the

restriction matrix R, becomes the transpose of the correction matrix P[25].

𝑃 = 𝑅𝑇
(3.46)

The defect associated with the corrected fine level should vanish when transferring back to the coarse

level. This gives the condition:

𝑅𝑑𝑛𝑒𝑤 = 0 (3.47)

Transferring back to equation 3.44 leads to equation 3.48. Where the RAP term is the coarse level operator

𝐴𝐻
.

𝑅𝐴𝑃𝜓𝐻 + 𝑅𝑑 = 0 (3.48)
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The order in which the switch between coarse and fine grid occurs, and filtering/corrections are applied

is known as a cycle. The cycle used by the algebraic multigrid method is the F cycle [25], of which the

procedure is laid out in equation 3.49

pre sweep → restrict → W cycle → V cycle → prolongate → post sweep (3.49)

A pre-sweep is related to the reduction of high-frequency components by iterating on a fine grid.

Restriction is the switch to a coarser grid level. Next cycles, known as V and W cycles are performed. A

V cycle goes from fine to coarse to fine again, while a W cycle can switch between coarse and fine grids

at any step [25]. Prolongation refers to the transfer function to switch back to the fine grid again. Finally,

the post relaxation gird occurs on the fine grid, to remove high-frequency errors [25].

A flexible cycle is also possible, where switches between levels are made based on the residual reduction

rate [1].

3.3. Meshing Strategy
The creation of a good mesh that adheres to the requirements set by the discretization and turbulence

options is an important feature of a good simulation. Regions of steep gradients, like boundary layers or

regions of vortex interaction, should be refined to properly capture these phenomena. The three main

mesh options are a structured mesh, where neighbouring cells have similar topological features, an

unstructured mesh, where neighbouring cells can differ significantly topologically and a hybrid mesh

blending the two approaches, often by means of a prism layer near the wall.

A structured mesh is the preferred option for this simulation, as the geometry is relatively simple and

significant gains can be achieved with structured meshes compared to unstructured meshes [19].

Figure 3.7: Example of a physical mesh and corresponding

computational geometry [59]

Figure 3.8: Different types of structured meshes
4

The structured mesh, often consisting of hexahedrons, has a relatively straightforward ordering structure.

The grid points are addressed by i,j and k numbers in the x,y,z Cartesian directions. However when

dealing with changing meshes, like wall refinements or bends (figure 3.7), the storage of coordinate

physical properties would lead to large memory requirements and solving times. The system is therefore

solved in the curvilinear coordinate domain [59] (figure 3.7) and a transformation is applied (x,y -> 𝜉,𝜂)

to transform the physical problem to the computational domain. This can either be done by interpolation

or by relating the coordinate systems with partial differential equations (like the Poisson equation) [59],

with the grid points as boundary values. Using the elliptical approach the coordinates are related by:

4ℎ𝑡𝑡𝑝𝑠 : //𝑏𝑟𝑖𝑔ℎ𝑡𝑠𝑝𝑎𝑐𝑒.𝑡𝑢𝑑𝑒𝑙 𝑓 𝑡.𝑛𝑙/𝑑2𝑙/𝑙𝑒/𝑐𝑜𝑛𝑡𝑒𝑛𝑡/397950/𝑣𝑖𝑒𝑤𝐶𝑜𝑛𝑡𝑒𝑛𝑡/2274113/𝑉𝑖𝑒𝑤
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𝜕2𝜉

𝜕𝑥2

+ 𝜕2𝜉

𝜕𝑦2

= 𝑃(𝜉, 𝜂)

𝜕2𝜂

𝜕𝑥2

+
𝜕2𝜂

𝜕𝑦2

= 𝑄(𝜉, 𝜂)
(3.50)

In a practical sense, a structured mesh is often applied in block form. The mesh domain is connected

using certain blocks, wherein each block cells have similar parameters. This allows different rules for

different parts of the mesh, making it easier to create meshes for more complicated geometry.

These blocks are given characteristics, usually in the form of H, O or C- grids. Depending on the shape

of the physical product, well-fitting shapes can be selected.

The mesh is subjected to the following criteria: The determinant is the most important factor in a

structured mesh [3]. It is a measure of the smallest divided by the largest determinant in the Jacobian

matrix. A determinant of 1 dictates a totally regular mesh element, a negative determinant implies an

inverted edge. The minimum value should be 0.3[3]. Rumsey, in a NASA assessment of current CFD

capabilities, recommends streamline spacing of the grid to be no more than 0.1% of the chord near the

leading edge and 0.2% of the chord near the trailing edge [53]. In the wake, the grid should be aligned

with the trailing edge bisection angle to align the grid with the flow direction [53]. Goetten et al. [21]

recommend 80-100 cells in the chord direction on lifting surfaces if no transition model is used. The

skewness, expressed by angle 𝜃, is important to avoid numerical instabilities. Generally, 𝜃 < 30
◦

or

𝜃 > 150
◦

is recommended. Close to the wall 𝜃 should be close to 90 degrees [59].

One of the challenges of setting up a mesh is estimating the set-up of the prism layer beforehand. Spalart

[58] recommends a prism layer growth rate of 1.25 when looking at different turbulence models and

between 1.05 and 1.2 when taking into account numerical dissipation.

The wall-normal coordinate can be estimated, by estimating the skin friction. Equation 3.21 and 4.4 can

be used to compute the wall-normal coordinate. Different empirical relations exist, most based on the

Reynolds number. For high Reynolds numbers (based on a flat plate) Schlichting derived [54]:

𝐶 𝑓 =
[
2 log

10
(𝑅𝑒𝑥) − 0.65

]−2.3
for 𝑅𝑒𝑥 < 10

9

(3.51)

With this estimation of the skin friction coefficient, the wall-normal coordinate is determined. 𝑅𝑒𝑥 is

based on the position on the chord of the wing, thus the estimated y+ will change over the chord. The

height of the boundary layer can be approximated by [54]:

𝛿𝑥 =
0.37𝑥

𝑅𝑒0.2
𝑥

(3.52)

Goetten recommends a safety factor of 1.5 [21] on this 𝛿𝑥 value, due to the flat plate estimation.

Figure 3.9: Blocking around the wing

Figure 3.9 shows the blocking around the Flying V wing. A similar structure extends to the spherical

outer domain. The size of the blocking around the airfoil is chosen such that it is small enough to not

have the small expansion ratio coming from the wall extend too long, but also create a smooth transition
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without too much curvature to the outer blocking. This is a compromise between mesh quality and

simulation cost. The wing is split up into three different blocking zones: outboard wing, inboard wing

and wing-winglet junction. As the kinks in the wing coincide with the change in block zoning, the

transitions lead to minimal skewness in the mesh elements. The blocks at the inboard and outboard

wing are relatively straightforward as the geometry follows the general block size. The block around

the winglet is relatively curved, as can also be seen in figure 3.10d. With a sufficiently large density of

mesh elements, this curvature shouldn’t lead to significantly skewed elements. The tip of the winglet

has a block enclosing the three-dimensional geometry. This is a relatively critical block, as the small

surface area of the winglet tip is expanded to the boundary. The curvature of the blocking lines is

also relatively large here. Finally, these blocks require a smooth transition from the inner blocks to

the boundary. Curves parallel to the inner blocks curving towards the boundary are constructed to

facilitate this process. This naturally expands the size of the blocks, as seen in figure 4.5.

An O-mesh is the preferred option around the airfoil, as a blunt trailing edge is present in the Flying V

parametrization. No singular point arises, which would occur with a sharp trailing edge combined

with a C-mesh. The O-mesh will curve around the Flying V winglet (Figure 3.10), so special care is

taken such that the curving of the mesh does not lead to excessively skewed elements.

(a) O-grid around the wing (b) Surface mesh

(c) Outboard wing, top view (d) Outboard wing, front view

Figure 3.10: Mesh visualisation at 15 million domain nodes

Figure 3.10 visualizes the mesh. Figure 3.10a shows the O-grid at the root. The densification of the

mesh towards the boundary is clearly visible. The node distribution parallel to the wall is constructed

such that the wall and first node are as orthogonal as possible in the wall-normal coordinate. This

bigeometric distribution also ensures a smooth transition between the leading/trailing edge and middle

blocks. The mesh becomes significantly more dense at the trailing edge, as the continuity of a structured

mesh requires the same number of nodes at the leading and trailing edge. The transition between inner

and outer blocks is smooth, as it can not be distinguished in the picture. Figure 3.10b shows the surface

mesh. As continuation is required, the mesh gets denser at the outboard wing. To better capture the

curvature of the winglet, the spanwise mesh spacing is reduced at the wing-winglet junction. The

increase in chordwise mesh density at the leading and trailing edge can also be seen.
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3.4. Domain and Boundary Conditions
The computational domain is visualised in Figure 3.11. The domain is approximately 50 times the

root chord of the airfoil to reduce artificial boundary errors, as recommended by Gotten [21]. A

far-field pressure boundary condition is applied at the spherical boundaries, which approximates flow

perturbations using the Euler equation Riemann invariants [1]. Non-slip boundary conditions are

applied on the smooth half-wing. The no-slip condition is a Dirichlet boundary condition specifying 0

velocity at the wall. The wall is adiabatic. A symmetry condition is applied at the half-plane.

Figure 3.11: Grid computational domain with dimensions and boundary conditions

The Pressure Far-Field Boundary Condition aims to model a free-stream condition at infinity, with

free-stream conditions specified (static pressure, Mach number, temperature, flow direction, turbulence

parameters) [2]. This is classified as a characteristic boundary condition, as it uses characteristics to

determine the flow variables[2].

The characteristics are based on Riemann invariants of a one-dimensional flow. Determining the

eigenvectors of the Euler equations and setting up the integral curves of the characteristic family leads

to the following two Riemann invariants (for subsonic flow) [9][2]:

𝑅∞ = 𝑣𝑛∞ − 2𝑐∞
𝛾 − 1

𝑅𝑖 = 𝑣𝑛𝑖
+ 2𝑐𝑖

𝛾 − 1

(3.53)

Where 𝛾 is the ratio of specific heats, 𝑐 the speed of sound and 𝑣𝑛 the normal velocity. Rearranging

leads to:

𝑣𝑛 =
1

2

(𝑅𝑖 + 𝑅∞)

𝑐 =
𝛾 − 1

4

(𝑅𝑖 − 𝑅∞)
(3.54)

𝑉𝑛 and c are specified on the boundary. With 𝑉𝑛 and c, the Riemann invariants are computed. Based on
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the Riemann invariants, density, velocity, temperature, and pressure at the boundary face are computed

[2]

Two equation models and the SA turbulence model are complete, they do not require input to compute

boundary layer characteristics. They do need boundary conditions as a starting value of the transport

equations. An often-used term is the turbulence intensity I, related to the magnitude of turbulence. For

external free stream flows, the turbulence intensity is usually between 0.05 and 1 % [1].

𝐼 ≡ 𝑢′

𝑢𝑎𝑣𝑔
(3.55)

This turbulence intensity can be related to turbulence model transport equation variables, like 𝑘, 𝜖, 𝜔
and 𝜇𝑡 .

𝑘 =
3

2

(
𝑢avg 𝐼

)
2

, �̃� =
𝜇𝑇

𝜇
𝜇, 𝜀 = 𝐶𝜇

𝑘2

𝜇𝑇

𝜇 𝜇
, 𝜔 = 𝐶𝜇

𝑘
𝜇𝑇

𝜇 𝜇
(3.56)

The turbulent viscosity ratio sets a certain eddy viscosity, based on the kinematic viscosity. The

turbulence boundary conditions are set at 1 % turbulent intensity and a viscosity ratio of 10. As

transition is not well predicted by the Menter SST model, these relatively high free stream values should

ensure a realistic transition point.

3.5. Simulation Setup and Convergence Strategy
The flowfield is initialized using a hybrid initialization method, which couples a potential flow simulation

with the boundary layer equations [1]. The simulation is started in first-order, as higher-order simulations

require a good initial estimate, due to the dependence on higher-order terms. This is caused by the

phenomenon illustrated by equation 3.57. With a decreasing element size, the higher-order terms

dominate lower-order terms when a poor initial estimate of flow conditions is present. This leads to

stability issues and possible non-convergence. A second strategy applied is underrelaxation of the time

marching. A factor of 0.8 was found to be a good compromise between convergence and simulation cost.

Δ2𝜙

Δ𝑥2

,
Δ2𝜙

Δ𝑦2

>> 𝑢
Δ𝜙

Δ𝑥
, 𝑣

Δ𝜙

Δ𝑦
(3.57)

Next, the simulation is converged using the intended higher order scheme (3rd order MUSCL[1]), while

progressively increasing the CFL number to speed up convergence. An implicit scheme is used to

guarantee stability and reduce computational costs. The third-order MUSCL scheme was selected

because of its stabilizing effect on shocks due to the flux delimiter present and because of its third-order

nature. As it is predicted that shocks will play a large role in the flow phenomena of the simulation,

the flux delimiter in the MUSCL scheme will decrease oscillations, with limited diffusive behaviour,

as common with lower-order schemes. As the mesh is relatively dense, a third-order scheme should

reduce the discretization error. Verification should show the influence of this third-order scheme.

The flux over cell boundaries is computed using the Roe Flux-Difference Splitting Scheme [51]. The

highly compressible nature of the simulation is deemed to benefit from the Roe Flux-Difference Splitting

Scheme approach of splitting up the fluxes in its characteristics. This should help reduce oscillations

near shocks [51]. Gradients are computed using a least squares cell-based approach. Cell-based

Green-Gauss can be a good option for structured meshes, but starts to decrease in accuracy when the

mesh is skewed[1]. As a certain degree of skewness is present in the mesh, due to the leading edge

sweep angle and curving of the mesh around the winglet, the slightly more expensive least squares

cell-based approach is selected. The solving of the overdetermined system gives more accurate results

for meshes with a less orthogonal orientation[1].

The low Reynolds Menter SST turbulence model is used for its good inner layer resolving qualities

compared to the 𝑘 − 𝜖 model [47]. In the transonic Flying V case, the Menter SST model was preferred

over the Spalart-Allmaras (SA) model, as the SA model, even though it has been designed for transonic

flow over wings, does not have much validation in the Reynolds number range of the Flying V, while
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the Menter SST preserves more physical features [47]. An algebraic multigrid solver is used, in which

corrections on coarse levels are performed using the finer grid levels to accelerate convergence speed,

based on the work of [25]. This creates a close to linear relation between grid size and convergence

speed [1].

The simulation is started at a CFL of 0.5 and in 5000 steps progressed to a CFL of 5. At this point a

relatively stable solution is present and the CFL is ramped up in larger steps up to 200. A total of 15000

steps is required to converge the simulation. Convergence criteria are set at 1e-5 for the normalized flow

criteria (continuity, velocity, energy, k, omega ). The total cost of one simulation is estimated at around

2500 CPU hours.

The research will use ANSYS Fluent for the simulations and ANSYS ICEM for the meshing. ANSYS

Fluent is a well-validated tool [1]. ANSYS ICEM is a tool especially suitable for structured meshes,

which is the focus of this research. As the simulation is too large to run locally, the Aerospace faculty’s

high-performing cluster (HPC) is used for the simulations.

3.6. Optimization Workflow
At the start of the research project, reliability was identified as one of the key parameters of the project.

As LES or DES simulations for this range of Reynolds numbers are infeasible, a high-fidelity RANS

calculation is the preferred method of simulation. As the current parametrization consists of around 100

variables, a full gradient-based, algorithm-led optimization is deemed infeasible due to the associated

costs. The research will apply a manual iteration approach, where physical insights dictate the direction

of optimization. This approach offers an additional benefit by enabling a more direct consideration of

trade-offs between aerodynamic improvements and potential volume and structural drawbacks.

As the centre of gravity can still differ in this conceptual stage, especially due to the placement of the

engines, an important aerodynamic constraint is the proximity of the centre of pressure to the neutral

point. With the centre of gravity in front of the neutral point, static longitudinal stability is assured,

while minimizing trim drag. The requirement states: (xnp − xcp)/MAC > 0.02. The centre of pressure is

an output of the simulation software. The aerodynamic centre is estimated using equation 3.58[29]. At

least two angle-of-attack computations are required for this estimation, but linear regression can be

used with multiple measurements to increase accuracy. Non-linearities due to the compressible nature

of the flow might complicate the estimation of the neutral point.

xnp − xref

c

=
xref

c

−
(
𝜕CM

ref

𝜕CL

)
(3.58)

The simulation workflow is visualised in Figure 3.12. The first step is to analyse the results and

implement changes in the CAD model. As the design of the Flying V is highly coupled, it is checked

if the proposed aerodynamic changes leave sufficient volume/dimensions in the wing section and if

the structural changes are acceptable (stage 3). The inboard wing is constrained by its dimensions

and volume, which is required to carry passengers/cargo. The outboard wing is characterized by

thickness-to-chord ratio constraints of 10% and 8 % at the respective root and tip sections. The output of

stage 2 serves as the input for the meshing and solver input (stage 4). The blocking of the structured

mesh is reassigned, such that the iterations have similar meshes. Again the mesh criteria are checked

and the node distribution is slightly altered to take into account the changed geometry. The resulting

Fluent case serves as input for the aerodynamic solver (stage 5), run on the HPC. This step normally

requires 2 iterations to get the right lift coefficient. The lift slope changes slightly between the iterations,

such that usually the estimated lift coefficient of the second iteration agrees with the estimated required

angle of attack. Stage 6 consists of the post-processing of the simulation data. ANSYS CFD-POST is

used to generate visual data and to export data of wing section 2.5m apart to a csv file. A python script

is used to translate this data into pressure, lift and drag distributions. The lift and drag distributions are

calculated based on pressure and skin friction coefficient of section elements. Finally, the neutral point

and centre of pressure constraint is checked.
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Figure 3.12: The research’s optimization workflow

3.7. Two-Dimensional Optimization
As the inboard wing is composed of many parameters, described in section 3.1, this parametrization

allows for detailed changes of the inboard wing profiles. The outboard wing profiles are described

by the CST coefficients of an airfoil and its incidence angle. An optimized outboard wing profile is

thus highly dependent on the airfoil shape. Well-validated, open-source airfoils in the M = 0.85 regime,

with the right design section lift-coefficient and thickness-to-chord ratio are scarce. A gradient-based,

algorithm-led optimization of these airfoils can help improve the performance of the outboard wing

considerably. As a full-scale, three-dimensional optimization is deemed infeasible due to its cost,

a two-dimensional optimization of these sections can improve the design of the three-dimensional

wing. For a high aspect ratio wing the flow away from the root and tip can be partly considered

two-dimensional [29].

It should be noted that the sweep of the outboard wing will introduce cross-flow, limiting the two-

dimensional nature of the flow. The relatively low aspect ratio of the outboard wing (AR = +/-3) will

also reduce the dominance of two-dimensional features. Interference with the inboard wing and winglet

influences the performance of the three-dimensional wing. Despite these limitations, a two-dimensional

optimization can still be a cost-effective way of increasing the outboard wing efficiency, as other airfoils

will not be optimized for the wing’s conditions.

Both the root and the tip airfoil are optimized, as the wing is interpolated between these two airfoils. The

design lift coefficient is based on the optimal lift distribution found in the three-dimensional manual

optimization. The airfoil is discretized using 12 Class and Shape functions (CST) coefficients. CST

functions are an efficient way of parameterizing airfoil shapes, as they allow for a relatively large

amount of design freedom, without being prone to significant parameterization errors [11]. The shape

of the airfoil is determined by a combination of a class function, C(x/c), a shape function, S(x/c) and a

term taking into account the trailing edge thickness (equation 3.59 [11]). The class function (equation

3.60 [11]) determines the general shape, where for an airfoil N1 = 0.5 and N2 = 1. The shape function

determines the more detailed features of the y/c distribution. Kulfan and Bussoletti [31] proposed the

use of Bernstein polynomials for the shape functions. The CST coefficients represent the contribution of

every Bernstein polynomial used.

𝑦

𝑐
= 𝐶

( 𝑥
𝑐

)
𝑆

( 𝑥
𝑐

)
+ 𝑥

𝑐

Δ𝑧𝑡𝑒

𝑐
(3.59)
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𝑐
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𝑐

]𝑁2
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The two-dimensional Navier-Stokes equations (equation 3.2) are used to estimate the aerodynamic

performance of the airfoil. The computational mesh is automatically generated for each iteration. The

Mesh generation algorithm is based on the mesh-generation toolbox created by Hofer [24]. The toolbox

is however intended for internal flows. The toolbox was altered to allow for a significant increase of

the boundary size, to allow far-field boundary conditions. This required a change in the part of the

algorithm that calculates the transition of mesh parts. This is now based on the y+ and boundary box

size to ensure smoothness. The bigeometric growth rates on the outer mesh blocks are replaced by

geometric1 growth rates to ensure a continuous growth of cell size of 1.3 towards the boundary. A mesh

density factor was introduced to allow for an easy densification of the mesh. This increases the number

of nodes evenly over the mesh and increases/decreases the growth rates of cells.

(a) Visualisation of the mesh around the airfoil
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(b) Simulation domain and boundary conditions

Figure 3.13: Mesh visualisation at 140,000 cells

The domain is split up into an outer blocking and a blocking at the airfoil, allowing the setting of

boundary layer mesh characteristics. The mesh consists of an O-mesh in the blocking at the airfoil

wall and an H-mesh in the outer blocking, as seen in figure 3.13b. The y+ value is kept below 0.5,

with a growth rate of 1.2. The H-mesh in the outer blocking allows for a rectangular domain, which

decreases the chance of error in the meshing process due to its simplicity. A downside of the rectangular

domain is the streamlines that can enter and leave the straight boundaries in near proximity, something

that is avoided in circular meshes. A large domain size (130c x 100c) is chosen to limit this streamline

interference. At this size, there is no change observed in lift and drag coefficient when the domain

size is increased further. The dense mesh near the airfoil leads to blocks with a relatively high aspect

ratio near the boundaries orthogonal and parallel to the airfoil. This however should not affect the

performance of the solver, as the velocity gradients in the outer region are minimal [59].

The discretization/simulation options are kept similar to the 3D simulation. The implicit, density-based

solver is used due to the transonic nature of the flow. This solves the NS-equations (continuity,

momentum, energy) in a coupled way. The flux over cell boundaries is computed using the Roe

Flux-Difference Splitting Scheme [51] and gradients are computed using the least square-based approach

[1]. As shown in figure 3.14, the third-order MUSCL scheme showed a large dispersive error, which was

not occurring in 3D. Therefore the second order upwind scheme is used. As a potentially large number

of iterations will be performed, the Spallart-Allmaras [57] turbulence model is preferred over Menter

SST [36]. This reduces the cost of the simulation as only one transport equation is used to compute the

eddy viscosity. A hybrid initialization is used to generate the initial flowfield. The algebraic multigrid

solver is used to solve the system of equations.
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Figure 3.14: Dispersive error in the simulation using a 3rd order MUSCL scheme

Matlab’s fmincon function is used to facilitate the optimization process. The initial design vector

consists of the 12 CST coefficients of the NACA SC(2)-0610 airfoil [22]. This airfoil has the target

thickness-to-chord ratio of the root airfoil and a slightly higher design lift coefficient. The experimental

drag divergence Mach number lies around M=0.8, lower than the design conditions of this optimization.

The lift coefficient is however lower than the design condition of the NACA airfoil. This should partly

compensate for the higher Mach number. The optimizer should find a way to reduce compressibility

losses stemming from these design conditions.

Matlab’s sequential quadratic programming (SQP), based on the work of Powell [48], is used. Its

ability to handle large-scale problems, while being a Medium-Scale algorithm, thus saving on memory

requirements, which can be important on the HPC, makes it a good choice [26]. Furthermore, the SQP

algorithm can handle non-linear constraints well [26]. The possibility of non-convergence of the CFD

simulation requires a good way to handle these artificial non-linearities.

The SQP algorithm aims to find the minimum of equation 3.61 [48]. F(x) represents the objective

function, 𝜆𝑖 the Lagrange multiplier and 𝑔𝑖(𝑥) the constraints. The Lagrange multiplier is introduced to

incorporate constraints into the objective function. A second-order Taylor expansion around the current

iteration linearizes the non-linear constraints. This expression is known as the Quadratic Programming

(QP) Subproblem and is minimized using an active set strategy [26]. The solution for the subproblem

gives a search direction. The current iterations and lagrangian polynomials are subsequently updated

[48] (equation 3.62).

𝐿(𝑥,𝜆) = 𝑓 (𝑥) +
𝑚∑
𝑖=1

𝜆𝑖 · 𝑔𝑖(𝑥) (3.61)

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (3.62)

Figure 3.15 shows the workflow of the optimization. The optimizer has 12 design variables, the CST

coefficients. These coefficients are passed to the Geometry and mesh tool. This tool first converts the

CST coefficients to Cartesian coordinates and checks whether the geometry is valid (No overlapping).

The geometry is built up in ICEM, the appropriate y+ value is calculated and the mesh spacing is

assigned. Finally, the tool exports the generated mesh to a Fluent mesh. The Aerodynamic solver runs

the CFD calculation and outputs the lift coefficient, drag coefficient and minimum pressure coefficient.

The objective function outputs the lift-to-drag ratio and makes sure the simulation is converged by

checking the convergence criteria history.
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Figure 3.15: Workflow chart of the two dimensional airfoil optimization

Four different constraints ensure the validity of the designed airfoil. These constraints are described in

table 3.1.

Constraint Wing Root Wing tip Description

𝑐𝑙 ineq. 0.55>𝑐𝑙>0.48 0.6>𝑐𝑙>0.52 The section lift coefficient should be in an acceptable range,

based on the lift distribution on the Flying V outboard wing

t/c ineq. t/c >0.1 t/c >0.08 This is a high level requirement, based on structural mass

of the wing and low speed characteristics

𝑅𝑛𝑜𝑠𝑒 ineq R>0.025c R>0.02c The nose radius should not be too small, as this leads to

large suction peaks at higher angles of attack

𝐶𝑝 ineq 𝐶𝑝 >-0.85 𝐶𝑝 >-0.85 A pressure coefficient of -0.85 relates to a Mach number of

1.3. These speeds shouldn’t be surpassed as buffeting could

start to occur [43].

Table 3.1: Inequality constraints of the 2D optimization of the airfoil

3.8. Design Principles
The last section of the Methodology focuses on the physical design principles of transonic wings.

The manual iteration approach requires an understanding of the basic principles, such that based on

observed behaviour, appropriate design changes can be made. This section tries to summarize the most

important principles.
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3.8.1. Compressibility Effects on Pressure

Figure 3.16: Effect of free stream Mach number on local Mach number increase [64]

From the isentropic relationships, figure 3.16, can be constructed [64]. It shows the effect compressibility

has on the rise in local Mach number. When increasing the free stream Mach number the local Mach

number, based on a certain pressure coefficient, rises sharply. Another effect important for transonic

aircraft is that the region of influence increases with increasing Mach number. Streamlines further away

from the body are affected with increasing Mach number.

An important concept in transonic design is the critical Mach number (𝑀𝑐𝑟𝑖𝑡) and the critical pressure

coefficient (𝐶𝑝𝑐𝑟𝑖𝑡 ), where sonic flow first appears on an airfoil. Equation 3.63 shows the relation between

𝐶𝑝𝑐𝑟𝑖𝑡 and 𝑀𝑐𝑟𝑖𝑡 [64]. With compressibility corrections, the critical pressure coefficient and Mach number

can be estimated, based on the incompressible 𝐶𝑝𝑚𝑖𝑛

𝐶𝑃crit
=

2

𝛾𝑀crit


(
1 + 𝛾−1

2
𝑀2

crit

𝛾+1

2

) 𝛾
𝛾−1

− 1

 (3.63)

The drag divergence Mach number, 𝑀𝑑𝑑, is often defined as the Mach number where gradient 𝜕𝐶𝑑/𝜕M

reaches a value of 0.1 [65]. At this point, strong separation starts to occur and the lower side of the airfoil

is in near supercritical condition. Increasing the Mach number further will also lead to a significant loss

in lift [65].

3.8.2. Interaction of Shock Wave and Boundary Layer
One of the characteristic behaviours of transonic flows is shock waves. As the no-slip condition has

to be satisfied at the wall, the shock wave will not propagate through the entire boundary layer, but

interacts with it.

(a) Weak interaction of a shock wave and boundary layer (b) Strong interaction of a shock wave and boundary layer

Figure 3.17: Interaction of shock wave and boundary layer [64]

Figure 3.17a shows the weak interaction between shock wave and boundary layer. The shock wave does
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not extend into the boundary layer, but is instead formed by a series of compression waves. The outer

flow experiences a large pressure gradient in the shock, which would lead to separation in the boundary

layer. The boundary layer, however, encounters a significantly smaller pressure gradient due to a series

of compression waves. The shock wave interaction thickens the boundary layer, increasing the shape

factor and decreasing the skin friction coefficient [64].

In a strong interaction the shock wave itself descends further into the boundary layer. Due to the large

pressure gradient closer to the wall, the flow separates at point S, forming a separation bubble. This

in turn causes a strong streamline curvature, leading to the compression waves that form the oblique

shock in the first place. A second oblique shock is formed to turn the flow back to the wall direction.

The shocks merge in the triple point, where the shock becomes normal (or slightly oblique). At the

second oblique shock, the streamlines expand, aiding the reattachment of the flow. The boundary layer

is now prone to separation and when increasing the shock strength further, the flow can fully separate

at the shock foot [64].

Wave Drag
Wave drag is the drag originating from shock waves. Shock waves both transfer energy from the flow to

the outer region, of which the loss of energy can be seen as drag and when strong enough, can cause

shock-induced separation, leading to large pressure losses.

𝐷𝑤

𝑞0

≈
∫

1

0

∫
1

0

𝑆′′(𝑥)𝑆′′(𝜉) log

1

𝑥 − 𝜉
d𝑥 d𝜉 (3.64)

For a non-lifting body, the Whitcomb area rule, named after Richard Whitcomb, states that the wave

drag of a certain mostly depends on the cross-sectional area distribution of that body. Equation 3.64

[44], representing the wave drag of a certain body, shows it depends on the second derivative of the area

of that body.

3.8.3. Interference Drag
When two bodies are in each other’s vicinity, they can mutually interfere, increasing supervelocities and

increasing drag. This phenomenon is known as interference drag. The merging of boundary layers can

also lead to separation.

The sharper the intersection between certain bodies is, the higher the supervelocities become. One way

of reducing the supervelocities and avoiding undesirable boundary layer merging is the creation of a

fillet to smoothen out the transition.

In transonic flow, these phenomena are magnified. The region of influence of a body is larger and

shockwaves can occur due to interference. When these shock waves lead to separation, the drag-

divergence Mach number can be affected [64]. In transonic aerodynamics, area ruling can lead to a good

fairing design, minimizing interference.

3.8.4. Two Dimensional Transonic Features
In high aspect ratio wings, sections of the wing can be approximated in a two-dimensional way,

as two-dimensional effects dominate the flow phenomena [64]. In aircraft design, this leads to the

well-known airfoil, of which the design is critical in wing design. Basic airfoil theory is assumed to be

known to the reader, thus this section will focus on transonic airfoil design.
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Figure 3.18: Comparison of 6 digit NACA and transonic airfoil[64]

Traditional airfoils start creating strong shock waves in transonic conditions. Therefore in the 1950s a

new generation of transonic airfoils, called supercritical airfoils, was designed under the supervision of

W.T. Whitcomb [64]. Figure 3.18 compares supercritical airfoil SC(2) 0412 with a Natural Laminar Flow

(NLF) airfoil. The Mach number on the supercritical airfoil’s upper side is kept within limits, leading to

reduced shock strength. A portion of the lift is created by the concave surface at the TE of the lower side.

This phenomenon is called aft loading [64]. This section of the lower surface often follows a curvature

according to the Stratford criteria [22] and supersonic flow should be avoided here. The supercritical

airfoil delays shock-induced separation to significantly higher Mach numbers. Most important for the

𝑀𝑑𝑑 are the thickness-to-chord ratio and design lift coefficient. The following empirical relation is given

for supercritical airfoils [64]:

𝑀dd + 𝑡/𝑐 + 0.10𝑐1.5
𝑙

= 𝑀★
with 𝑀★ = 0.935 (3.65)

Figure 3.19: Compression and expansion waves on a

supercritical airfoil[43]

Figure 3.20: Trailing edge shapes[64]

In the design of the upper surface of supercritical airfoils compression and expansion waves are balanced

such that a relatively flat pressure distribution arises, with some isentropic recompression [43] (figure

3.18 and 3.19). This reduces the shock strength, while keeping the boundary layer stable. Two main

factors come into play: the upper surface curvature and nose radius. The nose radius of a transonic

airfoil is normally relatively large, to allow for a rapid expansion of the flow. This in turn allows for

the expansion waves to be reflected back as compression waves [43]. The curvature on the upper side

should be restricted to reduce the strength of the expansion waves originating from the surface [43].

The combination of upper surface curvature and nose leading edge design should be such that the

coalescence of compression waves does not lead to a strong shock, but a weak one [64]. This design

does lead to a strong pressure peak in subcritical conditions [66].

Another feature of transonic airfoils is the slight plateau in pressure distribution right after the shock

(figure 3.18). This plateau allows for the mixing of the boundary layer, before being subjected to the
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adverse pressure gradient, making it more separation resistant [66]. The pressure plateau, at sonic

speeds, also stops disturbances from moving upstream, decreasing shock wave strength [22]. This is

realized by an increase in curvature after the design shock position.

The trailing edge of transonic airfoils is also an important design parameter. Transonic airfoils are

characterized by strong adverse pressure gradients [64]. Altering the trailing edge by means of a cusp

or bluntness can decrease this pressure gradient. The cusp, as shown in figure 3.20, allows for the

(theoretically inviscid) trailing edge velocity to be larger than zero, reducing the pressure at the trailing

edge. Structurally, this solution is questionable. A blunt trailing edge can help alleviate some of the

loads. A blunt trailing edge can also be aerodynamically advantageous, as the separation zone, which

does increase base drag, can allow for some of the surface pressure recovery, relieving the adverse

pressure gradient [64]. This effect is mainly seen in a TE thickness around 0.7% c [22].

Several transonic airfoil designs aim to remove the shock altogether. Shock-Free airfoils are carefully

designed, such that compression waves do not intersect and the flow is compressed isentropically

[64]. In practice, these airfoils are rarely used due to their sensitivity to external conditions. Another

approach is to keep the Mach number close to its critical condition (M=1), known as sonic rooftop

airfoils. This also avoids shocks, but leads to thin structures. These are used in practice, like on the

Airbus A300B [64]. Advantages of supercritical airfoils over sonic roof-top airfoils are a larger relative

thickness, larger possible wing loading and a larger leading edge radius, improving 𝐶𝐿𝑚𝑎𝑥 [43].

The Reynolds number has a significantly stronger effect in transonic airfoils than in subsonic [43] for

two reasons:

• When the boundary layer is still laminar up to the shock, a lambda shock is likely to form, not

penetrating the boundary layer. A turbulent boundary layer is more likely to interact with a

normal shock, increasing the likelihood of separation [43].

• Increasing the Reynolds number decreases the displacement thickness, increasing effective

curvature. This moves the shock aft, increasing shock strength and adverse pressure gradient [43].

This also increases the negative pitching moment. More momentum is concentrated near the wall,

thus the boundary layer does become less prone to separation.

3.8.5. High-Speed Stall and Buffeting
When shock strength becomes strong enough to cause separation, aerodynamic vibrations become a

likely occurrence. This phenomenon is known as high-speed buffeting. High-speed stall is therefore

characterized by buffeting. The onset of high-speed buffeting is caused by the separation bubble at a

shock reaching the trailing edge [43]. Buffeting can have fatal consequences, so certification demands a

design lift coefficient 30% below the buffeting onset lift coefficient for any Mach number [64].

3.8.6. Three Dimensional Transonic Features
So far two methods reducing wave drag and transonic effects have been discussed: airfoil design and

area ruling. The third way to reduce wave drag is wing sweep. By sweeping the wing, the section in

the flow direction changes. This apparent thinner section is more suited for higher Mach numbers. By

applying sweep, instead of reshaping the section itself, major structural penalties and reduced fuel

storage are avoided [64].
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Wing Sweep Theory

Figure 3.21: Wing sweep angle[65]

Wing sweep theory is based on an infinite swept wing, without taper ratio. The free stream velocity can

be decomposed into two components: a vector tangential and a vector normal to the leading edge of the

wing, 𝑉𝑁 and 𝑉𝑇 . Relating the change in velocity to the lift formula leads to the following relations [65]:

𝐶𝑝,𝑁 = 𝐶𝑝 ·
1

cos
2 𝜑

(3.66)

𝐶𝑙 ,𝑁 = 𝐶𝑙 ·
1

cos
2 𝜑

(3.67)

𝛼𝑁 = 𝛼 · 1

cos 𝜑
(3.68)

Swept Wing Aerodynamics

Figure 3.22: Pressure gradients on a swept wing [64] Figure 3.23: Flow pattern on a swept wing [64]

Wing sweep theory does, however, not represent the real flow phenomena on the wing. Figure 5.14

[64], shows the flow direction, aligned with the freestream flow and the direction of steepest pressure

gradient, aligned with the airfoil shape normal to the leading edge. These pressure gradients influence

the inviscid streamlines. A favourable pressure gradient will direct the flow inwards, an adverse

pressure gradient outwards [64]. Figure 3.23 shows the s-shaped path effect this has on a swept wing.

Wings are, however, finite. The root and tip influence the flow behaviour of the wing. As the centre of a

swept wing is at a different longitudinal position, than the root and tip, the wing effectively generates

upwash on itself. For an aft-swept wing, this increases the angle of attack towards the tip, as shown in

figure 3.24.
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Figure 3.24: Induced angles of attack on a swept wing[43]

Figure 3.25: Pressure isobars of a swept wing[64]

At the root of the airfoil, due to a symmetry condition of forces, the isobars of both wing parts have to

align in a tangential manner, as shown in figure 3.25. This root effect shifts the suction peak more aft and

reduces the magnitude of the suction peak. Also, a stronger adverse pressure gradient is present. The

suction on the aft part of the airfoil results in a net drag effect [64]. At the tip, the isobars curve forward,

influenced by the three dimensional flow field [64]. This in turn shifts the suction peak forward and

increases its strength.

These phenomena can be counteracted by taking these phenomena into account in airfoil and planform

design. At the root, the camber can be decreased, position of maximum thickness moved forward,

the incidence angle can be changed and the thickness of the wing increased to create similar pressure

distributions and realign the isobars. Due to the larger chord at the root, given the taper ratio, these

modifications might lead to too much lift inboard for an elliptical distribution. The increase in lift can

be negated by changing the thickness distribution of the lower side of the airfoil [43].

At the tip, opposite measures can be taken to reduce tip effects. Moving the position of 𝑡/𝑐𝑚𝑎𝑥 aft has

negative consequences for stall behaviour due to the sharpening of the nose [64]. Modifying the 3D

geometry, like the introduction of a Küchemann tip [64] can help realign isobars.

Viscous Effects
The misalignment of pressure gradient and flow direction, as seen in figure 5.14, has a profound effect

on another part of the flow: the boundary layer. This low-momentum part of the flow has a relatively

larger streamline deflection than the inviscid part of the flow [64]. The direction of this cross-flow

component depends on the pressure gradient of the inviscid part of the flow.

Figure 3.26: Boundary layer cross-flow on wind tunnel model [64]

Figure 3.26 shows the effect cross-flow has on a transonic wing featuring an outboard shock-wave.

Cross-flow can be seen from the root onwards. Due to the large pressure loss at the shock wave,
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cross-flow is amplified towards the tip. The larger distance this boundary layer has travelled, together

with the lower Reynolds numbers at the tip due to the taper ratio, lead to the tip being more prone to

flow separation [64]. Tip stall in a swept wing can change the neutral point of the aircraft, resulting in a

pitch-up moment. To increase the 𝐶𝐿𝑚𝑎𝑥 and to keep the aircraft safe, design implications are required

to postpone tip stall. At the root, the wing becomes resistant to separation, because of the cross-flow

thinning of the boundary layer [43].

Another phenomenon of swept wings is instabilities that promote transition. Where in a flat plate

Tollmien-Schlichting waves are dominant, in a swept wing attachment-line instabilities, cross-flow

instabilities and centrifugal instabilities start playing a role [64]. In a swept wing the attachment line is

not a stagnation point, but the flow moves parallel to the leading edge. Interaction with disturbances here

can lead to early transition, known as attachment-line instability [64]. A second cause for instabilities is

cross-flow instability. The inflection point in the cross-flow direction leads to cross-flow vortex structures,

which when breaking down can cause transition. This depends on the turbulence levels of the flow

and roughness of the walls [64]. Finally, centrifugal instabilities, occurring when a curved streamline

increases in r but decreases in |rV| causing streamline vortices, are also transition mechanisms.

Design Considerations on Finite Wings
Obert [43] summarizes the design considerations for a finite wing in the following way

• Maximum local Mach number at each wing station The local Mach number should not exceed 1.2

to prevent excessive drag creep. Boundary layer separation occurs between a local Mach number

of 1.35 and 1.45, depending on shock position and Reynolds number [43].

• Aft pressure gradient The position of the shock should not be too much aft to avoid a too strong

pressure gradient and trailing edge separation [43]

• Spanwise lift distribution An elliptical lift distribution should be obtained, with near straight

pressure isobars [43]

• Pitching moment coefficient The pitching moment coefficient should be reasonable. As the

outboard wing of a tapered wing has a larger wing loading, the moment coefficient on the inboard

wing can be more easily reduced [43].



4
Verification and Validation

Verification and Validation are an integral part of any simulation-based optimization process to guarantee

the reliability of the simulations. Tu et al. [59] describe verification as the degree to which the model

does what the user developed it to do and validation of the degree to which the model agrees with

reality. This chapter presents the verification, consisting of a grid convergence study, model uncertainty

quantification, grid quality study, validation of the simulation method and verification and validation

of the two-dimensional optimization numerical setup.

4.1. Verification
Verification aims to quantify the discretization error and uncertainties in the simulation. This is done in

three parts: a grid convergence study, model uncertainty quantification and grid quality study.

4.1.1. Grid Convergence Study
A grid convergence study aims to determine the ordered discretization error of a set of simulations.

The temporal and spatial discretization errors should converge to zero asymptotically, as the grid

and timestep are refined. The goal of the study is to estimate the perceived order of the method and

determine a suitable number of grid cells at which the simulation can reliably be run, while minimizing

the simulation costs. The NPARC verification procedure is followed [42], of which the methods are

largely based on the book by Roach [50]. Richardson extrapolation [50] can be used to estimate the order

of the method. This requires three solutions in the asymptotic range of convergence on three different

grid spacings. With the order of convergence of the simulation known, the required number of grid

cells can be estimated based on a required grid convergence index (GCI), which gives an indication of

the magnitude of the normalized discretization error (equation 4.2). 𝐹𝑎 represents a safety factor, 𝜖 is

the relative error, r the grid refinement ratio and p the order of convergence of the method.

𝑓3 − 𝑓2

𝑟
𝑝𝑜
23

− 1

= 𝑟
𝑝𝑜
12

(
𝑓2 − 𝑓1

𝑟
𝑝𝑜
12

− 1

)
(4.1)

GCI 𝑓 𝑖𝑛𝑒 =
𝐹𝑎 |𝜖 |

(𝑟𝑝 − 1) (4.2)

𝑟∗ =

(
GCI

∗

GCI23

)
1/𝑝

(4.3)

The first three runs which showed to be in the asymptotic region are the runs of 1M, 2.5M and 5M

nodes. Using equation 4.1 [42], the perceived order of spatial convergence is estimated to be 3.5. This is

reasonably close to the 3rd order MUSCL method that is used as the spatial discretization scheme in the

simulation. As refining a grid consistently in a structured mesh is relatively hard, as nodes are specified

by the user in each block or subsection of the simulation domain, some inconsistency in the perceived

order of convergence is expected.

37
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(a) Flying V baseline wing mesh convergence study (b) Flying V sensitivity study (Baseline: 𝐶𝐿=0.26, 𝐶𝐷=122 drag counts

Figure 4.1: Flying V Mesh convergence and sensitivity studies

The 5 million nodes mesh gives a GCI of 0.8%. Based on the examples and guidelines given in [42] and

[50], together with the focus on reliability in the thesis project, a GCI of 0.01% is deemed acceptable,

corresponding to a mesh density of 15 million nodes. The computed GCI from the simulated case is

0.0092%, thus acceptable. The reason for this relatively low GCI lies in the fact that this thesis will focus

on manual optimization steps, instead of having an optimizer exploring the design space. This leads to

a significantly reduced number of total simulations performed and allows for stricter requirements on

the accuracy of the simulation, especially in this complicated fluid domain. Figure 4.1a shows the full

spatial convergence study.

4.1.2. Model Uncertainty Quantification
As the simulation depends on a number of assumptions and model choices, it is important to quantify

the effect these choices have on the simulation results. Figure 4.1b shows the percentage difference

between the simulation options. Table 4.1 explains the parameters explored.

Index name Uncertainty Specifics

𝑘 − 𝜖 turbulence Turbulence model Realizible 𝑘 − 𝜖 turbulence model, including a

wall model

S-A turbulence Turbulence model Spalart-Allmaras vorticity based turbulence

model

Compressibility Correction Turbulence model Menter SST turbulence model with a compress-

ibility correction

Low Inlet Turbulence Turbulence model Low intensity turbulence inflow conditions

High Inlet Turbulence Turbulence model High intensity turbulence inflow conditions

2nd Order Discretization Discretization scheme Second order upwind scheme

AUSM flux Discretization scheme AUSM flux type

Double Domain size Domain Size of the domain doubled for artificial bound-

ary influence

Table 4.1: Uncertainty parameters

Figure 4.1b shows a relatively large dependence on the turbulence model used. The 𝑘 − 𝜖 results can be

questioned, as the high Reynolds model, in combination with a wall model might not perform well

near the wall in complicated flows [67]. The 3-4% difference in results of the Spalart-Allmaras model

should be considered as an uncertainty margin. This is quite a significant margin based solely on the

turbulence model. The other model choices show a smaller impact on simulation results. Using a

second-order scheme changes the drag coefficient by approximately 0.7%. This is relatively close to

the baseline. A second-order scheme is expected to have a slightly higher discretization error. The

AUSM flux splitting scheme shows similar behaviour. The AUSM splits the flux into convective and
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pressure parts and based on this calculates the flux between two cells [1]. A small difference with the

Roe flux splitting scheme was expected. Finally, it can be concluded that the domain is large enough,

as increasing the domain size has limited influence on the simulation results. The inflow turbulence

has limited influence on the results, presumably because the turbulence is dissipated due to the large

domain once it reaches the airfoil.

4.1.3. Grid Quality
Simultaneously to the grid convergence study, the quality of the generated meshes has to be ensured.

Especially while refining a mesh, erroneous elements can cause instability, non-convergence and a

higher cost of simulation. An overall poor-quality mesh can lead to unreliable results. A certain number

of objective grid quality parameters can be set up to evaluate the quality of the mesh. The mesh quality

criteria in a hexahedral structured mesh differ from the criteria of a tetrahedral unstructured mesh due

to the nature of the orientation of the cells [9]. The lack of gradients in a certain region can make larger

aspect ratios numerically acceptable, just like a lack of pressure gradient in the y direction makes the

large aspect ratios near walls acceptable [21]. Thus in areas aligned with the flow, sufficiently away

from the body, larger aspect ratios are not likely to cause convergence issues. Tetrahedral unstructured

meshes are far less likely to align with the flow compared to hexahedral structured meshes. The Flying

V mesh, for example, aims to save computational cost by increasing the aspect ratio near the domain

boundary, as shown in figure 4.5. This saves cells in the boundary normal direction.

Three important indications of a good structured mesh are the determinant [3] indicating the quality of

a cell, the minimal or skew angle [21], indicating the orientation of the cell and the 𝑦+ value, important

for the turbulence model[47].

Figure 4.2: 𝑦+ distribution on the upper surface of the Flying V

half wing (Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26) Figure 4.3: Flying V mesh determinant distribution

𝑦+ =
𝑦𝑢𝜏

𝜈
(4.4)

Figure 4.2 shows the 𝑦+ distribution on the wing. The 𝑦+ parameter (equation 4.4) normalizes the

wall-normal coordinate with respect to the friction velocity (𝑢𝜏 =
√

𝜏𝑤
𝜌 ) such that regions of the boundary

layer can be characterised based on 𝑦+ value. This value should be below one to sufficiently capture the

viscous sublayer near the wall [47]. The wall-normal distance of the first cell is set equally (at 0.008 mm)

at every stage of the wing, so the difference in 𝑦+ will be caused by changes in wall shear stress, thus

velocity gradient, and density, thus velocity. This is evident in the increase of 𝑦+ right after the shock at

the outboard wing. The shock will cause a sudden thickening of the boundary layer, which will reduce

the velocity gradient at the wall. A region of relatively higher values of 𝑦+ is also observed at the root.

This is possibly caused by the lower wing loading and relatively low local lift coefficient (𝑐𝑙 = 0.18). The

lower local lift coefficient leads to lower supervelocities and thus a higher local density. This decreases

the friction velocity and could explain the higher values of 𝑦+ near the root.

Overall the 𝑦+ value is well below one. The viscous sublayer should be well represented, combined

with the growth rate of the first cell of 1.25. This is the maximum ratio advised for Navier-Stokes-based

RANS codes by Spalart [58]. The highest 𝑦+ value observed is 0.61 and occurs at the winglet junction,
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possibly due to the double shock occurring at this section. With changing flow conditions in different

designs the 𝑦+ value should stay below one.

Another important aspect of the quality of a structured mesh is the determinant. It gives an indication of

the quality of the cell, whether the edges of the cell are orientated properly or not. Section 3.2 describes

how the determinant is calculated. A minimum value of 0.3 is recommended [2]. A determinant close

to zero indicates a block close to inversion. Figure 4.3 shows the determinant distribution of the Flying

V mesh. Overall, the determinant is close to 1, indicating that most blocks resemble a hyperrectangle.

The largest deterioration of the mesh occurs near the tip of the winglet. At this section the mesh has

to both, curve back towards the z-x plane, orthogonal to the wing root section, and the blocks start to

expand towards the outer boundary. This can also be seen in figure 3.10d. Especially the blocks near

the boundary are the most critical here. Their determinant value is still deemed sufficient.

Figure 4.4: Flying V mesh min angle Figure 4.5: Flying V boundary mesh

alignment

The final criterion of a structured mesh is the minimum angle. The term ’minimum angle’ concerns the

smallest angle formed by any of the faces of a hexagonal cell [3]. The minimum angle that ANSYS Fluent

can handle is 8 degrees [3], however a value of 30 degrees is desirable from a convergence perspective.

Figure 4.4 shows the minimum angle distribution of the Flying V mesh. The relatively high deviation

from the ideal 90-degree hexagonal element can be explained by the spherical shape of the domain, the

high sweep of the wing and the curvature of the mesh around the winglet. The spherical domain effect

is illustrated in figure 4.5. As the mesh has to follow the curvature of the boundary, the angles of the

hexagon will never be 90 degrees, as it has to follow the external geometry. This behaviour is amplified

near the wing, as the shape of the bounding box becomes elliptical. The choice of boundary shape will

always lead to similar behaviour, but the improvements in the far-field pressure boundary condition

behaviour due to a spherical shape were deemed to outweigh the relatively worse orientation of the

blocks.

The high sweep of the wing causes a mismatch of the orientation of the mesh cells and wing leading

edge, as can be seen in figure 3.10c. This leads to a relatively skewed mesh element and is the most

important reason for the skewness of the mesh. The blocks are however aligned with the flow and

except for cross-flow, don’t experience significant gradients in the skewed area. No major performance

penalties were observed.

Figure 3.10d shows the curving of the mesh around the winglet. In this region, especially near the

trailing and leading edge of the winglet tip, the highest deterioration of the mesh occurs, seen in figure

4.4 as the 14% of the nodes below an angle of 35 degrees. The combination of mesh curvature of both

the winglet and the contraction of the mesh makes it hard to avoid this phenomenon. No significant

problems were observed during post-processing.

The choice for a structured mesh, in combination with a spherical domain leads to a relatively poorer

skewness distribution than an unstructured mesh in a conical domain would. The alignment of the

mesh with the flow, the structured nature and the smooth transition from boundary layer to outer mesh

do however compensate for this behaviour and, as shown in the Validation section, lead to satisfactory
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results.

4.2. Validation
The simulation set-up described in section 3.5 is validated using the industry-standard experimental

data of the ONERA M6 wing. The experimental data is obtained by Schmitt, V. and F. Charpin [55] at a

Mach number of 0.8395, angle of attack of 3.06 degrees and Reynolds number of 11.72 million. Even

though the ONERA M6 wing differs from the Flying V, the same transonic behaviour, e.g. isentropic

compression, shocks, boundary layer thickening, can be observed, covering the most important aspects

of the simulation. The mesh is constructed according to the methodology described in chapter 3 and

consists of 4 million cells.

Figure 4.6: ONERA M6 wing mesh convergence study Figure 4.7: ONERA M6 wing sensitivity study

Figure 4.6 shows the grid convergence study of the ONERA M6 validation wing. At around 4 million

cells the grid convergence index reaches 0.01%, the same level as the Flying V wing. The 4 million cell

mesh is used for the validation. Figure 4.7 shows the sensitivity study performed on the ONERA M6

wing. The largest difference is again seen in the turbulence modelling. The 𝑘 − 𝜖 model shows the

largest change, but the high-Reynolds turbulence model might not produce valid results in this flow

region. The Spalart-Allmaras turbulence model again shows a 3-4% difference with the Menter SST

model. As the S-A model is a valid model for this flow regime, this is again taken as an uncertainty

margin. The second-order scheme only shows small changes.

Figure 4.8 shows the comparison of pressure distribution of the validation simulation and experimental

data by Schmitt, V. and Charpin, F. [55]. The numerical and experimental data correlate well, also

compared to other studies using the ONERA M6 validation data ([61],[16][38][14]). Near the root

(figure 4.8a) the pressure peak is captured well, but the numerical code overpredicts the expansion

and subsequent shock magnitude. This could be caused by an underprediction of the boundary layer

thickness. The same behaviour is however not seen at different spanwise stations. As the wing in the

experiment has a wing fence near the root, this might influence the experimental data. Different authors

([16][38][14]) show similar behaviour of overpredicting the shock strength at the root, strengthening this

presumption. The lower side of the airfoil does show good correlation.

At the centre section of the wing (figure 4.8c and 4.8d) numerical and experimental data correlate well,

except for the steepness of the shock. The effect is slightly more pronounced at the 80% span than at

the 65% span location. This might be caused by a certain amount of numerical diffusion, as the mesh

will not be as dense as the thin shock. This is expected and accepted as otherwise a non-realistically

dense mesh would be required. The third-order MUSCL scheme is designed for these relatively coarser

meshes. The delimiter in the scheme will cause some numerical diffusion, which we see here. This is

also seen by other authors ([61],[16][38][14]). The stronger shock at the tip (figure 4.8d), caused by the

tip effect, is captured well. The pressure peak correlates well with the experimental data.
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(a) y/b = 0.20 (b) y/b = 0.65

(c) y/b = 0.80 (d) y/b = 0.9

Figure 4.8: Pressure distribution validation on the ONERA M6 wing (Mach = 0.8395, AOA = 3.06 degrees, Re = 11.72

million)

Table 4.2 compares the aerodynamic coefficients of different numerical studies to the results of this

Validation study. The drag coefficient is displayed in drag counts. The different studies show the

inherent uncertainty margin in performing RANS simulations. The FLUENT validation study is within

the range of all studies performed. The relatively fine, structured mesh used in the Validation study

also captures certain shocks, like the shock at y/b=0.8, which were not captured in the lower fidelity

Flying V aerodynamic studies [16][61]. The range of outcomes from different authors should be taken

into account in the uncertainty margin of this study.

Turbulence model Spatial discretization 𝐶𝐿 (-) 𝐶𝐷 (drag counts)

Study SST MUSCL + Roe FDS 0.268 171

Araya[4] SA Central dif. + JST 0.260 175

Araya [4] 𝑘 − 𝜔 Central dif. + JST 0.262 179

Araya [4] SST Central dif. + JST 0.253 189

Crovato et al.[14] Baldwin-Lomax Green gauss + JST 0.272 174

Le Moigne, Qin [38] SA MUSCL+Riemann 0.270 168

Nielsen, Anderson [39] SA 2nd ord. upwing+ Riemann 0.253 181

Table 4.2: Simulation set-up validation using numerical data of the ONERA M6 wing (Mach = 0.8395, AOA = 3.06 degrees, Re =

11.72 million)
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4.3. Two-Dimensional Verification & Validation
Next to the main simulation, the reliability of the two-dimensional simulation is confirmed through

verification and validation. Figure 4.9a shows the mesh convergence study performed on a NACA

SC(2)-061 airfoil. The mesh is refined by consistently changing the growth ratio of the cells normal

to the airfoil, outside of the boundary layer. As the 𝑦+ value is kept constant, this might explain the

relatively quick convergence of the drag coefficient, while generally the lift coefficient tends to have a

quicker convergence. The perceived order of convergence is estimated, using Richardson extrapolation,

to be 2.18, reasonably close to the chosen order of 2 (second order upwind). The GCI of the finest mesh

is estimated to be 0.1%, which with the goal of many iterations in mind, is deemed acceptable.

(a) Grid convergence study, NACA SC(2)-061 airfoil

(Mach =0.83, Re = 22 million)

(b) MBB-A3 Validation data (Mach = 0.76, Re = 6.01

million, 𝐶𝐿= 0.626)

Figure 4.9: Two-dimensional airfoil simulation verification and validation

The method is validated using the MBB-A3 supercritical airfoil, using data gathered by the Politecnico di

Torino team in the Bedford windtunnel [15]. The test is performed at an angle of attack of 2.21 degrees,

Mach number of 0.76 and Reynolds number of 6.01 million. Windtunnel data of higher Mach numbers

is available, but MBB-A3 supercritical airfoil and other open-source well validated airfoils [15], as well

as the NACA supercritical airfoil series [22], reach there drag divergence Mach number between M

=0.78-0.8, making validation non-trivial.

Figure 4.9 shows the validation results. Initially the zero-roughness wall boundary condition led to

an overprediction of the expansion area and shock-strength. This indicates an underprediction of the

boundary layer thickness, increasing the airfoil camber. Michael and Sharif [37] showed similar results

in the validation of the RAE-2822 airfoil. They showed that adding a certain roughness to the wall can

cause earlier transition and thickens the boundary, such that the shortfall in turbulence modelling based

on the Boussinesq approximation can be compensated. Figure 4.10 shows the effects of adding 0.025

mm of roughness on transition, indicated by the black lines. The position where transition starts to

occur, marked by a turbulent viscosity higher than 0.02, changes from 𝑥/𝑐 = +/−0.6 to 𝑥/𝑐 = +/−0.2.

The thicker, turbulent boundary that ensues, leads to a significant improvement in the agreement of

numerical and experimental data. The experimental lift coefficient of 0.626[15] agrees well with the

numerical lift coefficient of 0.620. The roughness did increase the drag coefficient such that the drag

coefficient of 195 drag counts is significantly higher than the experimental 87 drag counts[15]. It is

assumed the increase in drag coefficient is caused by the roughness and influences the skin friction

coefficient. As the pressure distribution does correlate well with the experimental data, the optimization

results are assumed realistic. The drag coefficient might be higher than the values expected on the

three-dimensional wing.
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Figure 4.10: Turbulent viscosity of a smooth (upper) and 0.025mm rough (lower) wall

The findings of the validation are implemented in the optimization. As the Reynolds number differs by

a factor of 3.5 compared to the Flying V simulation, the roughness is scaled with the Reynolds number,

such that the roughness penetrates approximately to the same relative 𝑦+ value in the boundary layer.

An estimation of the effect of Reynolds number on the skin friction coefficient shows a correlation of

𝐶 𝑓 ∼ 𝑅𝑒−1/5
(equation 3.52). The friction velocity correlates to the skin friction coefficient as: 𝑢𝜏 ∼ 𝐶

1/2

𝑓

(equation 3.21) and y plus correlates linearly with the friction velocity (equation 4.4). With these

correlations equation 4.5 is set up and the roughness height is subsequently scaled. This leads to a

roughness height of 0.00219 mm for the Flying V airfoil.

𝛿𝑅𝑒2
= 𝛿𝑅𝑒1

𝑅𝑒2

𝑅𝑒1

−1/10

(4.5)
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Results and Discussion

With the set-up of the simulation validated, the Flying V in its current parametrization can be optimized.

The optimization procedure is described in chapter 3. As this study focuses on cruise performance, the

Flying V is optimized at cruise conditions. The top-level requirements of a Mach number of 0.85 and

cruise altitude of 13 km lead to a design Reynolds number of 88.3 million. Based on the drag polar and

top-level requirements, the geometry is optimized for a cruise lift coefficient of 0.26. The angle of attack

is obtained through an iterative process.

Flight Conditions Reference Values

Cruise altitude 13 km 𝑐 19 m

Mach number 0.85 𝑆𝑟𝑒 𝑓 880 𝑚2

Reynolds number 88.3e6 T 216.6 K

𝐶𝐿 0.26 𝜇 1.432e-5 Pa·s

Table 5.1: Flight conditions and reference values for the Fluent simulations

The research is divided into three different phases. As the planform is based on numeral previous

Flying V studies, the first phase focuses on the optimization of Flying V sections, leaving the planform

unaltered. The objective is to find a balance between an elliptical lift distribution, wave drag, section

performance and longitudinal static stability, which maximizes the L/D. With the insights from phase 1,

phase 2 aims to make relatively small planform changes to redistribute wing area. Local lift coefficients

on sections that suffer high compressibility losses can be reduced to relieve these sections. Other

sections could have some increased loading. These area distributions should provide a more efficient

lift distribution. Phase 3 focuses on the airfoils of the outboard wing. As open-source airfoils in the

right flow regime are scarce, a two-dimensional optimization aims to create a new set of airfoils, suitable

for the flow regime. The three-dimensional nature of the flow at the outboard wing will change the

characteristics of the airfoil. Therefore multiple iterations are performed to obtain the optimal twist

distribution of the new airfoils. The lift and drag polars and the drag divergence plot of the final design

are presented.

5.1. Phase 1: Section Optimization
Four iterations steps are summarized in this section:

45
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Iteration Description

1.1 Baseline The baseline design is based on previous Flying V work, with the new

parametrization.

1.2 Improved Airfoils The original NACA supercritical airfoils of the outboard wing had suboptimal

performance. Based on the work of Faggiano[16] the airfoils of the outboard

wing are changed. Also, the transition section profile is improved upon.

1.3 Section Optimized Based on the results of iteration 1.2.Improved airfoils, the lift at the root is lowered,

the camber and aft-loading of the middle wing increased, profiles smoothened

and incidence angles of the outboard wing are increased.

1.4 Elliptical Lift This iteration tries to create an elliptical lift distribution based on the incidence

angle and camber of different sections.

Table 5.2: Flying V iterations summarized

(a) Flying V 1.1.Baseline (b) Flying V 1.2.Improved Airfoils

(c) Flying V 1.3.Section Optimized (d) Flying V 1.4.Elliptical Lift

Figure 5.1: Mach contours of different Flying V iterations (Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)

Figure 5.1 shows the Mach number isosurfaces on the wing. The relatively large supersonic area on the

outboard wing of the baseline design leads to a relatively high wave drag, decreasing cruise performance.

A clear root effect is visible, as the Mach isobars curve towards the root. This leads to shock formation

near the trailing edge. Another important point is the large thickening of the boundary layer at the

sections with the highest thickness-to-chord ratio (0.4<y/b<0.6). This effectively decambers the upper

part of the section, decreasing lift near the trailing edge. The pressure distribution plots show this effect

as upper and lower 𝐶𝑝 curves tend to merge (Figure 5.4b). Interference effects are recognizable at the

wing-winglet junction.
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(a) Spanwise lift distributions (b) Section lift distributions

Figure 5.2: Spanwise lift and section lift distributions of the different iterations (Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)

Figure 5.2 shows the spanwise lift and lift distributions of the iterations. The winglet is included in the

lift distribution so y/b exceeds 1. The baseline design shows a decrease in spanwise lift at the transition

section of cabin and outboard wing. This can partially be explained by the boundary layer thickening

due to the high t/c ratio in this section, which is not taken into account by inviscid codes and partially

by a lack of camber and aft-loading in this section (Figure 5.4c). Design of this section is limited by

cabin/cargo space structural and volume constraints. An example of the boundary layer thickening is

shown in figure 5.3b, visualizing the decambering of the section due to the thick boundary layer.

(a) Lift-to-drag ratios of the different iterations (b) Example of boundary layer thickening at y/b = 0.4

Figure 5.3: Boundary layer thickening and lift-to-drag ratios (Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)

5.1.1. 1.1.Baseline to 1.2.Improved Airfoils Design
As relatively significant shock losses on the outboard wing and a reduction of lift in the mid-section are

present in the baseline design, multiple steps are taken to mitigate these issues. The baseline outboard

wing sections consist of NACA supercritical airfoils, defined by a set of CST coefficients. To reduce

the supersonic region, more suitable airfoils for the required lift coefficient can improve performance.

These airfoils were found in the original Flying V aerodynamic optimization performed by Faggiano

[16]. These sections were optimized starting from the NACA supercritical sections, using an Euler code.

These airfoils are designed for a lift coefficient ranging from 0.45 to 0.5, which is approximately the

range in which the baseline design operates. The results of this implementation can clearly be seen

in Figure 5.1b. The supersonic region on the outboard wing has decreased significantly, while the lift

coefficient outboard slightly increased. The airfoils have their maximum thickness-to-chord ratio further

aft and show a sharper nose radius. This leads to an airfoil with a more ’peaky’ supersonic bubble, but

also a reduced shock strength and some further expansion after the shock.

Certain changes to the wing were made to increase lift in the mid and transition sections. First of all

the camber was increased by lowering the trailing edge, increasing 𝐻3, the upper surface height and

lowering 𝐻1, the lower surface height. Increasing the camber was possible due to the absence of strong

shocks in this region, especially near the trailing edge. Secondly, the aft loading of the wing is increased

by changing the trailing edge open and incidence angles. This has the additional advantage that the
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angled trailing edge aids in the pressure recovery of the upper surface. Finally, these sections were

optimized for smoothness.

A significant increase in lift-to-drag ratio is observed with the mentioned changes. Wave drag losses

are decreased, while the Oswald factor is increased due to a more elliptical lift distribution. It can be

observed that lift at the root is still relatively high, which is a focus point of following iterations.

5.1.2. 1.2.Improved Airfoils to 1.3.Section Optimized Design
The focus point of iteration 1.3.Section optimized is a more elliptical lift distribution, while maintaining

section performance. The root trailing edge height was increased to reduce the camber and incidence

angle of the root. To maintain the same lift coefficient, 𝐶𝐿, for the same angle of attack, lift over the

mid-and outboard wing has to be increased. The incidence angle of the inboard section of the outboard

wing and the aft loading at the oval retention parameter are increased (figure 5.4c). Furthermore, the

camber of the mid-wing is increased (Figure 5.4b).

The changes led to a further 1.5% improvement in L/D. Figure 5.2a shows the reduction of lift at the root

and an almost linear increase in lift at the mid-and outboard wing. This should improve the Oswald

efficiency factor, which is important for a low aspect ratio wing like the Flying V. Important to notice is

the fact that the section lift coefficient outboard of the outboard wing starts exceeding a value of 0.5,

which exceeds the design conditions of the airfoil. This can also be perceived in the pressure distribution

of the section (figure 5.4d). A lower pressure coefficient, thus a higher Mach number near the leading

edge is observed. The stronger shock compared to iteration 1.2.Improved airfoils leads to higher wave

drag, decreasing performance.

The root, as seen in Figure 5.4a, still shows a clear root effect as the pressure peak is shifted significantly

aft. The coupled nature of the parametrization makes it difficult to implement classical root changes,

such as a reduction in camber, coupled with an increase in incidence angle, as the shape is constrained

by volume and shape requirements.

The transition between cabin and outboard wing is visible between Figure 5.4b and Figure 5.4c. The

shape at y/b=0.4 is relatively complicated to control as it cuts through different profile sections. The

section shape, together with the boundary layer thickening, as visualised in Figure 5.3b, leads to only

small improvements in the pressure distributions between the iterations. The pressure at lower and

upper side is almost identical near the trailing edge. Significant improvements are however made more

outboard of the transition zone. At y/b = 0.6 the profile starts to show transonic profile characteristics

with aft loading and a relatively thin, angled trailing edge. Iteration 1.3.Section Optimized shows

improved aft loading and upper section loading without wave drag penalties. The section lift coefficient

increased by 0.9.

Another important improvement is the cruise angle of attack. The baseline model has an angle of attack

of 5.2 degrees for the required 𝐶𝐿 of 0.26. By increasing the mid/outboard wing section lift relatively

more than the implemented decrease of lift at the root, the cruise angle of attack was reduced to 3.5

degrees in iteration 1.3.Section optimized. This reduces the required rotation angle at take-off, thus

lowering landing gear size and weight.
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(a) y/b = 0 (b) y/b = 0.4

(c) y/b = 0.6 (d) y/b = 0.94

Figure 5.4: 1.Baseline and 3.Section Optimized sections and pressure distributions (Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)

5.1.3. 1.3.Section Optimized Design to 1.4.Elliptical Lift
Iteration 1.4.Elliptical Lift aims to create an elliptical lift distribution. A further increase in outboard wing

incidence angles and increase in camber on the mid-wing is required for an elliptical lift distribution.

Without planform changes the section lift coefficient starts to exceed the limitations of the outboard

wing airfoils, explaining the reduction in L/D associated with this iteration. The section lift coefficient

exceeds 0.6 at the outboard section, 20% higher than the design lift coefficient at a Mach number of

0.85. This leads to a relatively strong shock and degraded performance. At the root, a reduction of lift is

perceived. As the TE profile is interpolated between y/b=0 and y/b = 0.35, it is not straightforward to

tweak individual parts of the lift distribution.

5.2. Phase 2: Planform Optimization
Phase one aimed to optimize the different sections of the Flying V outer mold line, resulting in an

improvement of L/D. The planform dimensions are the result of the continuous effort over the past

years, summarized by Vos en Benad in [8]. Significant planform changes are not the goal of this study,

but the high-fidelity method can give insight into some minor changes.
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𝑐𝑖𝑛 ↓

𝑐𝑜𝑢𝑡 ↑ 𝑐𝑜𝑢𝑡 ↓

𝑐𝑖𝑛 ↓

Λ𝑜𝑢𝑡 ↑

𝑐𝑖𝑛 ↓

Figure 5.5: Planform change strategies to optimize the L/D

The three strategies to planform change are illustrated in figure 5.5. The main goals are to reduce the

wetted area of the aircraft and to change the distribution of area to facilitate a more efficient section lift

distribution.

(a) Spanwise lift distributions (b) Section lift distributions

Figure 5.6: Spanwise lift and section lift distributions of the different iterations (Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)

Baseline 2.1 2.2 2.3

Half Wing Area (𝑚2
) 453.0 451.3 446.6 451.2

Table 5.3: Changes in wing area of the designs

(a) Lift-to-drag ratio of the second phase (b) Section drag coefficient

Figure 5.7: Boundary layer thickening and lift-to-drag ratios (Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)

5.2.1. Design 2.1.Chord Redistribution
As relatively strong shocks are observed at the outboard wing, shown in figure 5.4d and a lack of

(stronger) shocks is present on the inboard wing, a slight decrease in chord near the inboard wing and



5.2. Phase 2: Planform Optimization 51

increase in chord near the outboard wing could increase efficiency. This is visualised in the leftmost

wing of figure 5.5. The largest thickness-to-chord ratio occurs at the transition section. Because of the

boundary layer thickening issues described in section 5.1, the chord length is not decreased near the

transition section, which can be seen as a slight tapering of the chord length decrease in figure 5.5.

The most optimal design, shown in figure 5.6, has a reduction of root chord length of 20 cm and an

increase of outer chord length of 15cm. The results show a clear reduction of lift near the root with an

increase of lift in especially the middle section. The increase in outboard wing chord length allowed

for a significant reduction in outboard wing local lift coefficient. A plateau of wing coefficient was

chosen at the outboard wing, partly because the optimal design of Faggiano [16] showed a 𝑐𝑙 plateau,

and partly to relieve loads at the tip/winglet, where a double shock is present. Analysis indicates that

this leads to a relatively high amount of wave drag in this specific area. The spanwise lift distribution

hints at a more elliptical lift distribution, pointing at a promising design.

The lift-to-drag ratio of the design was however reduced to 22.1. The section drag coefficient (figure 5.7b)

does indicate a lower drag coefficient around the winglet. The change in drag coefficient is however

significantly less than the decrease in lift coefficient. The airfoils are either at a more off-design condition

here or other non-linear effects are coming into play. The drag coefficient has also slightly increased

over the inboard wing, due to the relatively smaller chord length.

5.2.2. Design 2.2.Inboard Chord Reduction
As design 2.1.Chord redistribution only slightly decreases the wetted area, the second approach is

to decrease the chord of the inboard wing only. The unaltered chord length of the outboard wing

necessitates a slightly elevated section lift coefficient, as the reduction in wing area requires an increase

in angle of attack. Again the length at the transition section is unaltered, as the thickness-to-chord ratio

is at a maximum in this area. The chord is reduced by 25 centimeters at the root, tapering off to 0 at the

trailing edge kink, as seen in figure 5.5. To compensate for the reduction in chord length, the trailing

edge is lowered to increase camber.

The reduction in root chord requires a slightly higher angle of attack of 3.8 degrees. The increase of

angle of attack increased the lift at the tip as seen in figure 5.6. The higher angle of attack also leads to

large supervelocities at the winglet. Overall this reduced the lift-to-drag ratio to 21.9.

5.2.3. Design 2.3.Overall Chord Reduction
An overall reduction of wetted area, as visualised in the rightmost wing of figure 5.5, is attempted to

increase overall efficiency. An overall reduction in wing area will lead to a slightly higher section lift

coefficient across the wing. The outboard wing, leading edge sweep angle is slightly increased to keep

a constant trailing edge sweep angle, important for the control surfaces. An increase in leading edge

sweep angle might also decrease the large suction peak perceived.

As larger changes in chord length did not seem to increase the L/D, this iteration only changes the chord

length in the order of magnitude of centimeters. The most efficient design was an overall reduction of

2.5 cm in chord length, except for the trailing edge kink, shaving off approximately 2 𝑚2
of wetted area.

The L/D of this iteration increased to 23.7, which is a significant improvement. The incidence angles of

the winglet were also reduced in this iteration, which will have played a part in the increase of L/D.

The lift in the middle of the wing is slightly increased, with a decrease in lift at the root. This should

give a little more elliptical lift distribution, without greater wave drag, which did occur in previous

iterations. The improvement of the wing-winglet junctions is explored later in the thesis.
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(a) y/b = 0 (b) y/b=0.64

(c) y/b = 0.93 (d) y/b = 1.06

Figure 5.8: 1.3.Section Optimized and 2.3.Overall reduction sections and pressure distributions (Mach =0.85, Re = 88.3 million, 𝐶𝐿 =

0.26)

Figure 5.16 shows a comparison of pressure distributions of iteration 1.3 and 2.3. The slight decrease in

chord length slightly increases the effective camber. Figure 5.8b shows this phenomenon and the lift in

the middle section of the airfoil is increased. At the root (figure 5.8a) the main difference is a slight

redistribution of lift distribution towards the middle of the airfoil. Near the tip (figure 5.8c) isentropic

recompression weakens the shock compared to design 1.3. The unloading of the winglet root has a clear

effect on the pressure distribution. As wing-winglet junction interference plays a large role here, the

highest Mach numbers are observed in this area. The reduction of winglet incidence angle significantly

reduces the perceived Mach number. It is still high, at M = 1.41, so buffeting is a possibility. The second

shock could not be mitigated, as the interference remains strong. Overall the decrease in wave drag

likely had a significant role in the increase in L/D.

5.3. Wing-Winglet Junction
As shown in section 5.2.3, the wing-winglet junction has a significant influence on the overall efficiency

of the design. This section aims to investigate the effects of different sections and incidence angles at the

winglet on the efficiency of the Flying V.
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Baseline
1.3 Sec�on
Op�mized

2.4 Winglet
Op�mized

Figure 5.9: Mach number contour of the wing-winglet interaction

Figure 5.10: Airfoils and pressure distribution at the wing-winglet junction

Figure 5.10 shows the pressure distribution at the wing-winglet junction. While the Faggiano airfoil (1.3
Section Optimized) shows more isentropic recompression and a weakening of the first shock, compared

to the baseline, an optimization of the incidence and dihedral angle, combined with a 0.01c thick trailing

edge improves performance. The strength of the second shock is weakened less by the changes, but

no longer interacts with the first shock towards the winglet tip, as seen in figure 5.9. Even though the

RANS simulation only shows a relatively small separation bubble, the Mach numbers above 1.5 for the

first and above 1.3 for the second shock of the baseline design are likely to cause buffeting. The Mach

number of the first shock is still between 1.3 and 1.4 depending on the position of the optimized design,

so buffeting should be investigated further. The second shock shows reduced Mach numbers ranging

from 1.1 to 1.2. Still, this is an area of concern as the boundary layer might be exhausted by the first

shock. The optimized winglet (iteration 2.4) increased the L/D from 23.7 to 23.9.

5.4. Phase 3: Airfoil Gradient-Based Optimization
The previous iterations proved the importance of the design of the outboard wing. Only a limited range

of airfoils operating efficiently at M=0.85 are, however, available in literature. The Faggiano airfoils

used in phases 1 and 2 are optimized using an Euler code, for a different Flying V geometry [16]. An
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optimized airfoil for these flight conditions could improve performance. This section presents the

results of the two-dimensional airfoil optimization.

(a) Root airfoil (Mach =0.83, Re = 34.7 million, 𝑐𝑙 = 0.48) (b) Tip airfoil (Mach =0.83, Re = 13.5 million, 𝑐𝑙 = 0.52 )

Figure 5.11: Airfoil visualisation and Mach contour of the optimized airfoils

Figure 5.11 shows the results of the two-dimensional optimization. The simulation is run at a slightly

lower Mach number than the cruise speed, at M = 0.83. The 10% thick NACA SC(2)-0410 airfoil, seeding

airfoil for the root, reaches its drag divergence Mach number here for a 𝑐𝑙 of 0.48. With a higher Mach

number, no valid results could be obtained. An initial L/D of 17.8 was reached. This is relatively low

compared to the L/D ratios of excess of 50 that can be reached in two dimensions [15], but the NACA

airfoil is approximately at/above its Mach drag divergence Mach number so efficiency is decreasing.

The tip airfoil with its lower thickness to chord ratio of 8 % performs slightly better at an L/D of 20.2.

The L/D of the root airfoil was increased from 17.8 to 32.9. The large increase can mainly be explained

due to the lack of trailing edge separation in the new design, which was occurring in the baseline. As

seen in figure 5.12a, the nose radius constraint is satisfied, but not in the way that was envisioned. The

constraint that enforces a certain thickness near the nose allowed the nose radius on the upper surface

to become sharp. This might work well for this flight condition, but likely leads to issues at off-design

conditions. A relatively flat upper surface up to the shock allows for some isentropic recompression.

After the shock the aft-camber is increased, generating extra lift. Aft-loading is kept relatively constant.

Curious is the shock that exists on the lower side. This is not seen in any of the three-dimensional

simulations performed, but will influence the efficiency in two dimensions.

The tip airfoil shows similar design characteristics as the root airfoil. The L/D was increased from 20.2 to

36.6. The nose radius is less sharp at the upper side than the root airfoil, creating a more versatile design.

The reduced t/c helps to mitigate the shock that is present at the root. The maximum perceived Mach

number is also lower than the thicker airfoil. The off-design performance of both airfoils is questionable

Figure 5.12a shows the pressure distributions of both designs. Until x/c = 0.5 the flow is isentropically

recompressed. After this point, the flow is expanded again as the airfoil’s aft-camber starts to increase.

A clear difference between the airfoils can be seen at the lower side, where the larger t/c is mainly shown

in the reduced pressure on the lower side of the root airfoil. It reaches the critical Mach number at x/c =

0.5 and even a small shock is present. This can also partly explain the higher efficiency of the tip airfoil.
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(a) Root vs Tip pressure distribution (Mach = 0.83)

(b) 2D vs 3D pressure distribution at y/b =0.78 (Re = 34.2

million, 𝑐𝑙 = 0.48)

Figure 5.12: Pressure distributions of the new airfoils

The second part of this section concerns the implementation of the new airfoils on the Flying V. As

three-dimensional effects, like sweep and the tip vortex, influence the local angle of attack. The sections

are matched in 𝑐𝑙 , not incidence angle. Figure 5.12b shows the pressure distribution near the root of the

outboard wing (y/b =0.78). A large discrepancy is seen between the pressure distributions. The suction

peak in the three-dimensional simulation is significantly higher, leading to a strong shock towards

the leading edge instead of the inflection point of the airfoil. Also, the lower side shows remarkably

different behaviour in three dimensions, as the pressure is higher and decreases more gradually. The

same behaviour can be seen when comparing the pressure distributions of the Faggiano and NACA

airfoils in two and three dimensions. The large expansion and subsequently strong shock can be seen

in figure 5.13a as the dark red area followed by the shock. Of the five iterations performed, with five

different optimized airfoils, the maximum L/D reached was 22.9, compared to 23.9 reached in the

previous optimization. The conclusion that can be drawn is that three-dimensional effects dominate the

flow physics of the outboard wing. The performed two-dimensional optimization does not make sense

if the pressure distributions do not correlate with the three-dimensional conditions. These findings

were confirmed by comparing the two-dimensional and three-dimensional performance of the Faggiano

and NACA airfoils. The reduced Mach number of the 2D optimization will also have an effect.

(a) Mach number contour with the new airfoils (Mach

=0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)

(b) Velocity vector field behind the winglet, with a

maximum velocity of 55.5 m/s

Figure 5.13: Mach number contour and velocity vector field with the Obert airfoils

There are different ways in which the outboard wing is influenced by three-dimensional effects. At the

outboard wing root a strong vertical tapering occurs, as the t/c decreases from inboard to outboard wing.

This can be seen in figure 5.13a as a distortion of Mach isobars near the leading edge kink. The subsequent

spanwise changes in pressure create a spanwise pressure gradient creating three-dimensional effects.

This makes the two-dimensional assumption less valid.

The low aspect ratio of the wing of 3.59 and measured from the leading edge kink of the outboard wing
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2.27 means the tip vortex has a large influence on the entire wing. This is visualised in figure 5.13b. The

entire outboard wing sees a change in flow angle, also in the spanwise direction. This influences the

two-dimensional characteristics of the flow. Towards the tip a distortion of the Mach isobars is visible.

A combination of the tip effect and wing-winglet junction leads to more three-dimensional influence on

the flow region.

(a) Front view of cross-flow (y/b = 0.8)

7.5°

(b) Top view of cross-flow (y/b = 0.8)

Figure 5.14: Cross-flow on the outboard wing (Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)

Cross-flow also influences the two-dimensional characteristics of the wing. Figure 5.14 shows streamlines

in cruise conditions. The effects of cross-flow on a standard wing are mainly important at high-lift

conditions, where boundary layer cross-flow can lead to separation [43]. Figure 5.14b shows a 7.5 degree

angle between the free stream and the flow on the wing. The 7.5 degrees alone do not explain the

discrepancy between two-dimensional and three-dimensional simulation conditions, but will contribute.

Near the leading edge, significant spanwise streamline curvature could contribute to the large suction

peak shown in figure 5.12b. The consequent larger shock changes the pressure distribution over the

whole wing.

The three effects described try to explain the discrepancy in pressure distributions.

5.4.1. A Different Set of Airfoils
As the results of the two-dimensional optimization are suboptimal and large pressure peaks on the

outboard wing are still present, a different set of airfoils is tried. The airfoils are taken from Obert [43]

and recreated using Bezier curves. The sections are based on the design of modern transonic airliners.

The main goal of this part of the optimization is to reduce the Mach numbers on the outboard wing.

(a) Airfoil sections of the outboard wing

(b) Twist distribution over the outboard wing and

winglet

Figure 5.15: Outboard wing characteristics including the Obert airfoils

Figure 5.15a shows the airfoils implemented on the outboard wing, on the most efficient iteration.
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This is also the final version of this thesis/the most efficient design. The airfoils show supercritical

characteristics. The curvature on the upper side is relatively small and the nose radius is relatively

large. The trailing edge features a blunt cusp. Aft-loading is present to compensate for the reduced

upper surface curvature. The thickness-to-chord ratio starts at 10% and ends at 8% at the wing tip.

Figure 5.15b shows the twist distribution of the outboard wing. The winglet starts at y/b=1. The twist

is decreased over the wing, even though the lift coefficient is relatively constant. The sweep of the wing

will increase the effective angle of attack towards the tip (figure 3.24). Peculiar in the twist distribution

is the decrease in twist at the winglet root (y/b=1.08). Interference effects play a large role here, thus

decreasing the supervelocities on the winglet section proved to decrease wave drag. The choice was

made to unload the winglet more than the outboard wing, as otherwise the lift distribution is altered

on the whole outboard wing. A sharp increase in twist angle is seen towards the winglet tip. This

increase in loading at the winglet tip increased the L/D of the aircraft by 0.1. Presumably induced drag

is decreased, due to a higher downwash of the winglet, countering the tip vortex.

(a) y/b = 0.69 (b) y/b = 0.86

(c) y/b = 1 (d) y/b = 1.06

Figure 5.16: 2.4.Winglet Optimized (solid) and 3. Obert Airfoil (dashed) sections and pressure distributions of the outboard wing

(Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)

Figure 5.16 shows the pressure distribution and changes in airfoil shape between iteration phases 2 and

3. The suction peak associated with the sharp nose radius of Faggiano’s airfoils is reduced significantly.

At the outboard wing root (figure 5.16a) the large suction peak, followed by a strong shock is replaced

by an extensive region of isentropic recompression. The maximum Mach number reached is also

reduced significantly, to 1.36. The transition from oval section to the sharp nose seen at y/b= 0.69 led

to this high-pressure gradient. The rounded nose facilitates a much-improved transition. The front

loading which characterized Faggiano’s airfoil is absent in the new sections. This is compensated by the

extended suction region caused by the isentropic recompression. In the middle section of the outboard

wing (figure 5.16b) a stronger shock is present. The shock strength is reduced compared to the Faggiano

airfoil. A similar lack of front loading can be seen. The Mach number before the shock reaches 1.3,

which is within the buffeting limits described by Obert [43]. At the wing-winglet junction (figure 5.16c)

a significant decrease in shock strength of the first shock is seen. The second shock moves forward.

Finally on the winglet near the root (figure 5.16d), the double shock is avoided. The thin airfoil leads to a
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pressure distribution with a large region of isentropic recompression and a weak shock. The redesigned

outboard wing shows a significantly reduced magnitude of Mach numbers and should increase the

performance near the high-speed aerodynamic limits.

This iteration ( 3. Obert Airfoil) improves the L/D from 23.9 to 24.2. The Mach number remains high

at the leading edge kink. Analysis shows that in this region the flow is isentropically recompressed,

however, limiting the risk of buffeting. The performance of this iteration is further explored in section

5.6.2.

5.5. Flying V Root Tail
A strong root effect, concentrating the pressure isobars near the trailing edge, is present on the Flying V.

The large sweep angle is the main cause of this root effect. Inspired by the YB-35/49 1 (figure 5.17a),

a tail section at the trailing edge of the root could realign the isobars and reduce the shock strength.

Furthermore, the added volume can be useful, for, for example, the auxiliary power unit.

(a) YB-49 bomber prototype
1 (b) Flying V, tail configuration

Figure 5.17: YB-49 and Flying V showcasing a tail at the root

Figure 5.17b shows a similar tail implemented on the Flying V. The tail trailing edge is positioned slightly

higher than the original trailing edge. This, combined with the larger airfoil length, locally decreases

the camber. This can be seen in the shock strength. In figure 5.18a the Mach isobars are spaced further

apart. In figure 5.18b, the pressure distribution shows a smaller suction peak near the trailing edge for

the tail configuration. This also reduces the strength of the shock. This tail configuration decreased

the drag coefficient with 0.4 drag counts. With the increase in weight due to the structure the overall

efficiency gains will be small, but the extended volume can be a useful addition and the reduced suction

peak could mitigate operating limit root issues. A more detailed study of the tail geometry is required

to see the impact of the tail on the structure and to optimize the design aerodynamically further.

1https://en.wikipedia.org/wiki/Northrop YB-49
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(a) Flying V, tail configuration Mach contours

(b) Flying V, tail configuration root pressure

distribution

Figure 5.18: Flying V tail configuration(Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)

5.6. Aerodynamic Characteristics of the Final Design
Design 3.Obert airfoil shows the highest L/D with acceptable flight characteristics. This section gives an

overview of the aerodynamic characteristics of this design. The final L/D achieved is 24.2.

5.6.1. Cruise Characteristics

(a) Twist and camber distribution (b) Thickness-to-chord ratio distribution

(c) Spanwise lift distribution (d) Section lift distribution

Figure 5.19: Wing twist, t/c and lift distributions of the final design (Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)

Figure 5.19 shows the camber, twist, thickness-to-chord ratio, lift and spanwise lift distributions of

the final iteration. The maximum local camber is defined as the maximum distance between camber

and chordline, divided by the chord length. An opposite trend in camber and twist angle is seen over

the wingspan. As the camber is increased in the airfoil sections, the twist angle is decreased. A steep

increase in camber can be perceived at the transition section. This results in an increase in local 𝑐𝑙 . The

thickness-to-chord ratio also starts to increase in the transition region. The blue line in the spanwise lift

chart represents an elliptical lift distribution. Compared to previous iterations, the outboard wing is
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loaded relatively lower. The outboard wing shows a relatively triangular lift distribution. Even though

a slightly less elliptical lift distribution is achieved, the reduced local lift coefficients help reduce wave

drag and excessive magnitude of Mach numbers on the outboard wing. This is partly compensated by a

higher lift at the root, where the flow conditions are less critical. The highest thickness-to-chord ratio is

reached at approximately y/b = 0.45. A slight drop of lift is observed at this section.

Figure 5.20: Mach number contour of the final design (Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)

Figure 5.20 shows the Mach number contour of the final wing. The scale is extended to a Mach number

of 1.4 to better visualize the outboard wing, compared to the other Mach number plots. At the root

reduced Mach numbers and a reduced shock strength are observed due to the lower loading and

section optimization. The middle wing shows reduced pressure peaks and an increase in aft loading.

A reduction in Mach numbers on the outboard wing is observed and double shocks on the winglet

are mostly avoided. The highest Mach numbers at the leading edge kink are mostly isentropically

recompressed.

Figure 5.21: Visualisation of pressure distributions (Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)
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Figure 5.21 shows the pressure distributions at certain wing spanwise sections. Pressure distributions

over the full wing can be found in appendix B. At the root, the aforementioned root effect leads to a

shock near the trailing edge. The middle sections of the wing show a pressure peak, followed by a

region of relatively constant pressure/Mach numbers. The boundary layer thickening, as shown in

figure 5.3b, results in similar pressures on the upper and lower surfaces near the trailing edge. This is

also reflected in the drag distribution (figure 5.22b). The thick, more highly loaded sections of the wing

produce significantly more drag than the inner or outer parts of the wing. The relatively large area of

lower pressure, which near the trailing edge has a component in the flight direction, causes significant

pressure drag. The large t/c ratio increases the component of the pressure in the flight direction further.

The final design does show improvements in this region compared to the baseline. The outboard wing

shows supercritical airfoil characteristics, as discussed.

(a) Skin friction coefficient contour of the final design (b) Drag distribution

Figure 5.22: Flying V Skin friction contour and drag distribution(Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)

The skin friction coefficient contour (figure 5.22a) shows a large skin friction coefficient near the leading

edge, which agrees with the thin boundary layer in this region. The skin friction coefficient quickly

reduces after a shock due to the thickening of the boundary layer. The boundary layer thickening at

the transition section of the wing, near the trailing edge kink, is also clearly visible. It is characterized

by a low skin friction coefficient. Simulations at lower Reynolds numbers showed the occurrence of

separation in this transition part of the wing. A critical section is the root, where the skin friction

coefficient nears 0. Caused by the aft-shock, this remains an area of attention. The Flying V root tail

configuration reduces this phenomenon.

5.6.2. Flight Performance and Off-Design Characteristics

𝐶𝐿 𝐶𝐷 𝐶𝐷𝑜 AR e 𝑆𝑟𝑒 𝑓 (𝐶𝐿/𝐶𝐷)𝑚𝑎𝑥 𝐶𝐿𝑜𝑝𝑡 𝐴𝑂𝐴𝑐𝑟𝑢𝑖𝑠𝑒 𝑀𝑙𝑜𝑐𝑚𝑎𝑥

Flying V Baseline 0.26 122 72 3.59 0.78 906 21.3 0.26 5.3 1.54

Flying V Final Design 0.26 107 62 3.59 0.84 902 24.2 0.27 3.6 1.36

Table 5.4: Comparison of aerodynamic and planform characteristics of the baseline and final design. Drag coefficients are in drag

counts

Table 5.4 shows a summary of planform and aerodynamic characteristics of the baseline and final design.

The final design has a significantly lower zero drag coefficient. This can partly be explained by the

fact that at zero lift a larger supersonic region on the lower side of the outer airfoil can be perceived

on the baseline, creating drag. This is caused by the relatively low loading of the outboard wing on

the baseline design and the airfoil shape. The final design shows a slightly higher Oswald efficiency

factor. This can be explained by the more elliptical lift distribution. The Oswald efficiency factor was
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computed based on a quadratic lift polar, using least-squares regression to compute the slope
𝑑𝐶𝑑

𝑑(𝐶2

𝐿
) . It

should be noted that the Oswald efficiency factor showed changing behaviour with different ranges of

lift coefficients. The non-linearities due to the transonic nature of the flow might cause discrepancies.

Figure 5.23: Center of pressure (COP) and neutral point (NP) (Mach =0.85, Re = 88.3 million)

Next to the aerodynamic efficiency, static longitudinal stability should be ensured, while minimizing

trim drag. This requirement is quantified as equation 3.58. This ensures the neutral point is behind

the centre of pressure. The centre of gravity can be designed such that it coincides with the centre of

pressure, ensuring static longitudinal stability and minimizing trim drag. Figure 5.23 shows the centre

of pressure and neutral point at different angles of attack in cruise conditions. The center of pressure

moves backwards at increasing angle of attack, until non-linear behaviour starts occurring in the 𝐶𝐿 − 𝛼
curve. The centre of pressure starts moving forward again at this point. This indicates the outboard

wing starts stalling first. The wing has been designed such that the centre of pressure, at the design lift

coefficient of 0.26, is 2% of the mean aerodynamic chord length in front of the neutral point, which is a

required static margin. The neutral point and centre of pressure in design condition are located 32.7

and 32.4 meters from the nose of the aircraft respectively.

Figure 5.24 shows the off-design performance of the Flying V. The lift curve (figure 5.24a) shows linear

behaviour up to an angle of attack of 5 degrees. It was already shown that the centre of pressure starts

to move forward around this angle of attack. The lift-to-drag ratio (figure 5.24b) also decreases rapidly

in this angle of attack range. The maximum lift-to-drag ratio reached is 24.25 at an angle of attack of

3.79 with a 𝐶𝐿 of 0.27. There is a plateau around the maximum L/D, so a wider range of lift coefficients

remains efficient. The drag polar (figure 5.24c) shows parabolic behaviour, but wave drag also plays a

role in the drag polar. The drag divergence curve is presented in figure 5.24d. The drag divergence

Mach number is taken as the Mach number where d𝐶𝐷/d𝑀 = 0.10, used by Airbus and Douglas[64].

This occurs at a Mach number of 0.925. A plateau in drag coefficient is seen between Mach numbers of

0.75 and 0.85. Around the design Mach number the drag coefficient starts to rise as wave drag starts to

increase. At a Mach number of 0.7, the drag coefficient rises slightly. This is caused by the increased

angle of attack at lower Mach numbers, which leads to relatively high pressure peaks and stronger

shocks.
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(a) Lift curve (Mach = 0.85, Re= 88.3e6)

(b) Lift-to-drag ratio at different angles of attack (Mach

= 0.85, Re= 88.3e6)

(c) Drag polar (Mach = 0.85, Re= 88.3e6) (d) Drag divergence curve (𝐶𝐿 = 0.26)

Figure 5.24: Off-design curves at different flight conditions. The drag coefficient is reported in drag counts

It should be noted that the RANS simulations used to generate the off-design data do not predict

unsteady effects such as high-speed buffeting. The real drag divergence and stall angles might be limited

by unsteady effects. The simulations also become less reliable when large regions of separation occur,

so the (high-speed) stall results are an estimation that should be confirmed in later work.



6
Conclusion and Recommendations

6.1. Conclusion
With the airline industry almost recovered from the COVID-19 pandemic, the focus on the long-term

future can be regained. With expectations of a doubling in passenger traffic in 2040, this growth leads

to significant environmental challenges. Part of the solution lies in a more efficient aircraft shape,

increasing the lift-to-drag ratio (L/D). Benad envisioned a flying-wing aircraft where payload and fuel

both reside in a V-shaped, crescent wing with large winglets that double as vertical tail planes: the Flying

V. As the passengers sit in the V-shaped wing, the lift-producing area is increased significantly with

respect to a traditional aircraft, while the wetted area is reduced. Based on the previous Flying V studies,

a new parametrization of the Flying V was constructed by Benad. A need for detailed aerodynamic

optimization has arisen to maximize the efficiency of this design. This thesis project aims to maximize

the lift-to-drag ratio of the Flying V in cruise conditions by means of a high-fidelity CFD investigation.

The design parameters that describe the outer mold line of the Flying V are manually modified and

the aerodynamic performance of the aircraft is assessed by means of computational fluid dynamics.

The aircraft is parameterized in CATIA, based on previously performed work. The CATIA model

ensures a smooth transition between different wing sections. The oval retention parameter (ORT) is

introduced, which dictates the position where the oval inner structure stops and the interpolation

to the airfoil section starts. The Reynolds-averaged Navier–Stokes equations (RANS) equations are

solved to obtain the numerical results. A structured mesh consisting of 15 million nodes with a grid

convergence index of 0.01% discretizes the fluid domain. The solver includes a 3rd-order MUSCL

spatial discretization, where fluxes are computed using the Roe Flux-Difference Splitting Scheme. The

low-Reynolds, Menter SST turbulence model is used. Next to the three-dimensional optimization,

a two-dimensional gradient-based airfoil optimization is set up to generate airfoils suitable for the

outboard wing. The numerical set-up is validated using ONERA M6 validation data.

The baseline design showed excessive wave drag on the outboard wing and a lack of spanwise lift at the

mid-wing. Three design phases were conducted. In phase 1, several iterations were conducted, during

which the inboard, mid and outboard wing sections were optimized, focusing both on elliptical lift and

section performance. A lack of lift in the middle section was resolved by an increase in camber and

aft-loading. Improved airfoil sections on the outboard wing were better capable of efficiently generating

the required lift coefficient for more elliptical lift. The lift-to-drag ratio obtained was 23.1 at an angle of

attack of 3.5 degrees. The second phase consisted of a planform optimization, where small changes were

performed to redistribute and reduce wing area. This increased the lift-to-drag ratio to 23.7. In the third

phase, the airfoil optimization proved to not increase the L/D. Airfoils obtained from Obert proved

to increase efficiency and reduce Mach numbers on the outboard wing. An optimization of winglet

incidence angles and profiles largely removed the double shock witnessed in the baseline and reduced

the maximum Mach number at the wing-winglet junction to 1.255. The maximum lift-to-drag ratio

obtained was 24.2 at an angle of attack of 3.6 degrees, compared to 21.3 and 5.2 degrees of the baseline

(Mach = 0.85, 𝐶𝐿 =0.26, Re = 88.3 million). The drag divergence Mach number is estimated at 0.925.

6.2. Recommendations for Future Work
This study showed relatively significant improvements using a manual iteration approach. Additional

research is however required to further optimize the design and ensure the design is safe and efficient

over a wide range of flight conditions. In particular, the middle section of the wing, outboard of the

trailing edge kink, shows a high drag coefficient distribution and low skin-friction coefficient. Future

64
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studies should investigate the unsteady effects of the boundary layer thickening, as the RANS simulation

does not include these effects. If unsteady effects prove to be significant, planform changes might

be required to reduce the thickness-to-chord ratio in this area, or the local loading might have to be

reduced.

To further improve the design, the outboard wing might benefit from parametrization changes. Airfoils

and incidence angles are only specified at the root and tip in the current parametrization. This leads to

a linear twist distribution on the outer wing. This study showed the importance of the wing-winglet

junction in terms of wave drag. This limits the acceptable local lift coefficient at the tip. As a consequence,

the outboard wing shows a more triangular than elliptical lift distribution. Defining more outboard

wing sections to depart from a linear twist distribution, might help increase the efficiency of the outboard

wing. It might also be beneficial to position the airfoils orthogonal to the leading edge of the wing

instead of parallel to the flow. The effect of sweep can more easily be researched where classical airfoils

are used orthogonal to the leading edge. Furthermore, the airfoil profiles selected are not necessarily

optimized for the flight conditions described in the results section. An (algorithm-led) redesign of the

profiles and incidence angles could improve performance of the outboard wing. The two-dimensional

optimisation of this study did show the importance of geometrical constraints on a future algorithm-led

optimization, as the airfoils should remain efficient at different flight conditions and angles of attack.

The root remains an area of concern. The aft-shock wave caused by the root effect resulted in an area of

an almost zero skin-friction coefficient. The unsteady effects of this region should be further investigated,

to see if this causes any buffeting. The Flying V root tail was presented as a partial solution. The root

tail remains unoptimized. Different angles, sizes and lengths could reduce the intensity of the shock.

The three-dimensional effects this tail has on the area surrounding the root should also be further

investigated.

Next to the on-design performance, the off-design importance should be further investigated. The Mach

drag divergence study showed that at higher angles of attacks (at lower Mach numbers), large suction

peaks occur at the outboard wing. This might also influence the low-speed aerodynamic performance

of the aircraft. Slats might be required at take-off and landing conditions to ensure safe flight. The

overall low-speed performance of the new design has to be evaluated. Longitudinal static stability was

ensured in this study. Lateral and dynamic stabilities should be further investigated.

The final section of this study focused on the aerodynamic flight performance of the aircraft. Even

though the drag divergence Mach number was estimated at 0.925, the reliability of the RANS code

becomes questionable in this flight regime. The RANS code also does not predict buffeting. Unsteady

simulations or wind tunnel testing will be required to more reliably estimate the drag divergence

characteristics of the aircraft. This study aimed to give a first estimation.
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7
Appendix A: ONERA M6 Validation

Data
Appendix A shows all pressure distribution comparison data of the ONERA M6 experimental validation.

(a) y/b = 0.20 (b) y/b = 0.44

(c) y/b = 0.65 (d) y/b = 0.8

Figure 7.1: Pressure distribution validation on the ONERA M6 wing (Mach = 0.8395, AOA = 3.06 degrees, Re = 11.72

million)
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(a) y/b = 0.9 (b) y/b = 0.95

(c) y/b = 0.99

Figure 7.2: Pressure distribution validation on the ONERA M6 wing (Mach = 0.8395, AOA = 3.06 degrees, Re = 11.72

million)



8
Appendix B: Pressure Distributions

Final Design
Appendix B shows the pressure distributions of the final design at every 2.5m of wing halfspan.

(a) y/b = 0.08 (b) y/b = 0.15 (c) y/b = 0.23

(d) y/b = 0.31 (e) y/b = 0.38 (f) y/b = 0.46

(g) y/b = 0.54 (h) y/b = 0.62 (i) y/b = 0.69

Figure 8.1: Pressure distributions of the final design (Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)
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(a) y/b = 0.77 (b) y/b = 0.85 (c) y/b = 0.92

(d) y/b = 1 (e) y/b = 1.06 (f) y/b = 1.13

(g) y/b = 1.18

Figure 8.2: Pressure distributions of the final design (Mach =0.85, Re = 88.3 million, 𝐶𝐿 = 0.26)
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